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Quantum state tomography—deducing quantum states from measured data—is the gold 
standard for verification and benchmarking of quantum devices. It has been realized in systems 
with few components, but for larger systems it becomes unfeasible because the number of 
measurements and the amount of computation required to process them grows exponentially 
in the system size. Here, we present two tomography schemes that scale much more favourably 
than direct tomography with system size. one of them requires unitary operations on a constant 
number of subsystems, whereas the other requires only local measurements together with 
more elaborate post-processing. Both rely only on a linear number of experimental operations 
and post-processing that is polynomial in the system size. These schemes can be applied to a 
wide range of quantum states, in particular those that are well approximated by matrix product 
states. The accuracy of the reconstructed states can be rigorously certified without any a priori 
assumptions. 
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One of the principal features distinguishing classical systems 
from quantum many-body systems is that quantum systems 
require exponentially many parameters in the system size to 

fully specify the state, compared with only linearly many for classi-
cal systems. Put to use constructively, the exponential complexity 
enables the construction of information processing devices funda-
mentally superior to any classical device. At the same time, however, 
this ‘curse of dimensionality’ makes engineering tasks—such as ver-
ifying that the quantum processing device functions as intended— 
a daunting challenge.

The full determination of the quantum state of a system, known 
as quantum state tomography1, has already been achieved by meas-
uring a complete set of observables whose expectation values deter-
mine the quantum state2–7. As it is typically formulated8, simply to 
output an estimate for a generic state would take exponential time 
in the system size N, given that there are an exponential number of 
coefficients in a generic state’s description. This is but one of several 
inefficiencies. Most quantum states have exponentially small ampli-
tudes in almost every basis, so to distinguish any one of those ampli-
tudes from zero, one must take an exponential number of samples. 
Assuming one were able to collect all the data from an information-
ally complete measurement, one is left with the intractable compu-
tational task of inverting the measured frequencies to find an esti-
mate of the state.

However, the traditional representation of quantum states is in a 
sense too general. Indeed, states that occur in many practical situ-
ations are specified by a small number of parameters. An efficient 
description could be a practical preparation scheme that outputs the 
state or, in the case of thermodynamical equilibrium states, a local 
Hamiltonian and temperature. This insight is not new: researchers 
in many-body physics and quantum information theory have found 
many classes of states, which are described by a number of param-
eters scaling polynomially in N9–13 and closely approximate the kind 
of states found in physical systems14,15. However, the question of 
whether these restricted classes can be put to use in the context of 
tomography has remained largely open.

In this work, we address the above challenge. The physical sys-
tem we have in mind is one where the constituents are arranged in a 
one-dimensional configuration (for example, ions in a linear trap3). 
But the methods that we are presenting here can be generalized to 
higher-dimensional arrangements, such as those realized in opti-
cal lattices16. It is highly plausible that in such a setting, correlations 
between neighbouring particles are much more pronounced (due to 
direct interaction) than correlations between distant systems (medi-
ated, for example, by global fluctuations of control fields). An effi-
ciently describable class of states anticipating exactly this behaviour 
has long been studied under the names of finitely correlated states 
(FCS) or matrix product states (MPS)9,10. Importantly, restricting 
to this class is not a limitation as every state may be written as an 
MPS with a suitable, albeit possibly large, matrix dimension. As 
many states that are relevant for quantum information processing 
or quantum many-body physics have a small (independent of N) 
bond dimension, our methods are directly applicable to such states; 
examples include, but are not limited to, ground and thermal states, 
the GHZ, W, cluster and AKLT states, the latter two being universal 
resource states for quantum computing.

Here, we present two schemes for identifying systems that are 
well approximated by an MPS, initially focusing on pure states for 
simplicity. We will view each system as consisting of a linear chain 
of N particles (or qudits), each having d internal degrees of free-
dom. Both schemes require the measurement of linearly (in the 
system size N) many local observables within finite accuracy, as 
well as polynomial classical post-processing of the data. They can 
also certify the accuracy of the reconstructed state without mak-
ing any technical assumptions about the state in the laboratory. 
The first scheme requires unitary control and local measurements, 

whereas the second scheme removes the need for unitary control 
at the cost of more elaborate post-processing. Given that stand-
ard tomography is no longer feasible in a range of recent and 
upcoming experiments involving large numbers of qubits, our 
results represent a significant advance in the ability to verify and 
quantitatively and efficiently benchmark systems of experimental 
importance.

Results
Scheme based on unitary transformations. The key idea of the 
method consists of a sequential procedure to disentangle the left 
hand side of the chain from the right hand side, using a sequence 
of unitary operations with small interaction length independent of 
N. The result will be a product state and a sequence of local unitary 
operations from which to construct the original state.

Suppose the ideal state in the laboratory is ˆ | |r f f= 〉〈 , which 
we assume for clarity is an MPS of given bond dimension. This 
implies that the rank of reductions to one part of a bipartite (left 
versus right) split of the chain is bounded by a constant R. The  
protocol starts by estimating, through standard state tomogra-
phy, the reduced density matrix of the first κ = logd(R)+ 1 sites,  
ˆ [ ˆ], ,s rk≈ +tr 1…N . This reduced density matrix has the eigendecom-

position ˆ | |s s f f= 〉〈=Σr
R

r r r1 , where the rank R ≤ dκ − 1. Hence, there 
exists a density matrix with one fewer qudit that has the same rank 
R and eigenvalues σr as ŝ . Therefore, we can disentangle the first site 
in ŝ  with the following unitary acting on the first κ-sites: 
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where |φ1〉,…,|φR〉 have been extended in some arbitrary way to get 
a complete basis for sites 1,…, κ. Applying Û produces the state 
Û v N| =|0 |1 2, ,f〉 〉 ⊗ 〉 … , where |v〉 is some pure state on sites 2,…, N. 
Hence, Û  disentangles the first qudit from all the others. Now, set aside 
this first qudit, look at sites 2,…, κ + 1, and repeat the above process 
as indicated in Figure 1. In this way, one obtains a sequence of uni-
taries ˆ , , ˆU UN1 1… − +k , where each Ûi  acts on sites i,…,i + κ − 1. This 
sequence transforms |φ〉 into ˆ ˆ | | |U UN

N
− +

⊗ − +〉 = 〉 ⊗ 〉k
kf h1 1

10 , 
where |η〉 is some pure state on the last κ − 1 sites.

In summary, this scheme infers the quantum circuit used to pre-
pare an MPS17. The MPS decomposition of |φ〉 can then be obtained 
readily from the Ui and |η〉18. If the state in the laboratory r̂ is arbi-
trary, then the reduced density matrices ŝ  will generally have full 
rank. Hence, in each step we will need to truncate the κ qudit state 
ŝ  to a rank R subspace with R ≤ dκ − 1. Then the above method will 
produce an MPS approximation to r̂. The accuracy of this estimate 
can be certified, without any assumptions on the state, by keeping 
track of the effects of truncating each of the reduced states ŝ . As 
shown in the Methods, errors of magnitude ε due to finite measure-
ment precision or truncation error (as measured by the weight of 
the truncated space) accumulate at most linearly with the number 
of sites, and can be evaluated directly from the data, leading to an 
estimate of accuracy Nε.

The present scheme requires unitary control of κ neighbouring 
qudits, which is challenging to implement in many current experi-
mental settings. We now present a second scheme that avoids uni-
tary control and requires only local measurements.

Certification of the estimated state. Consider again the state r̂  in 
the laboratory and suppose that a tomographically-complete set of 
local measurements on all groups of k neighbouring qudits has been 
performed. Further suppose that sufficient data has been taken to 
yield estimates ŝi  of the local reductions ˆ [ ˆ], , ; , ,r ri i i k N= … + + …tr1 1  
such that 

(1)(1)
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 ˆ ˆr s ei i i− ≤tr .

Determining these approximate reduced density operators ŝi  com-
pletes the experimental work. In the remainder we describe the clas-
sical post-processing that will result in an MPS estimate |ψ〉 to r̂  
and a lower bound to the fidelity 〈 〉y r y| |^ 19 that does not require 
assumptions on the nature of the state r̂ .

We start with the latter, as the following easy calculation yields 
the fidelity bound we have in mind and hints at the MPS estimate we 
are after. Suppose, for the sake of the argument that |ψ〉 is the unique 
ground state (with energy zero) of a local Hamiltonian ˆ ˆH hi i= Σ ,  
where the ĥi is a projection operator acting only on sites i + 1, …, 
i + k (as it turns out, generic MPS are of this type). Then, expanding 

in the eigenbasis ˆ | |,H E E En n n n
N

= 〉〈=
−Σ 0

2 1  

tr[ ] | | ( | | ),H E E E E
n

n n
^ ^ ^ ^r r y r y≥ 〈 〉 = − 〈 〉

>
∑∆ ∆
0

1

where we denoted by ∆E the energy gap above the ground state |ψ〉. 
Hence, we have the fidelity bound 
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In other words, the Hamiltonian acts as a witness for its ground state 
|ψ〉. This bound is tight: suppose the experimental estimates ŝi  and 
the reductions of the state in the laboratory r̂i coincide, that is, εi = 0. 
If, in addition, the reductions of |ψ〉 match the ŝi  then, as |ψ〉 was 
assumed to be the unique ground state with energy zero of Σi iĥ , we 
have Σi i ihtr[ ]= 0ˆ ŝ , that is, 〈 〉y r y| | =1ˆ .

The goal is now clear: find a local gapped Hamiltonian Ĥ  such 
that the reductions of its ground state are close to the ŝi. A priori it 
is unclear whether such a convenient witness always exists and how 
it could be found efficiently. However, using formal methods, one 
can show that if the true state r̂ is close to a generic MPS, then such 
a witness Hamiltonian always exists10 if we chose k R≥   +2 12log . 
What is more, it can be constructed from the estimate of the algo-
rithm sketched below. Its properties, chief among them the gap, 
are efficiently computable. In the Methods section, we detail the  
efficient computation of these quantities, and we also consider how 

(2)(2)

(3)(3)

(4)(4)

to treat states, such as the GHZ, for which local marginals alone are 
not quite sufficient for complete characterization (they violate our 
‘generic’ condition).

An illustrative example. We illustrate how our certification pro-
cedure operates if our estimate for the state r̂ is a linear cluster 
state20. The cluster state is defined as the unique eigenstate (with 
eigenvalue  + 1) of stabilizers ˆ ˆ ˆ ˆK Z X Zi i i i= 1 1− +  for all i N=2, , 1… −  
(together with boundary terms ˆ ˆX Z1 2 and ˆ ˆZ XN N−1 , which we do 
not treat separately for simplicity). Assume that we have performed 
standard quantum state tomography on sets of three neighbour-
ing spins, k = 3, which is the smallest useful set because in a cluster 
state the rank of the reduced density matrices of contiguous blocks 
is upper bounded by R = 4. Let us now assume that on the basis of 
these data, our procedure suggests that the linear cluster state is 
indeed our estimate. The local Hamiltonian in this case is given by 
ˆ ˆH Ki i= (1 )/2Σ − , where the (1 )/2 =− ˆ ˆK hi i  are projectors, Ĥ  has 

the cluster state as its unique ground state (with energy zero) and an 
energy gap ∆E = 1. The fidelity between the cluster state |ψCS〉 and the 
state r̂ is bounded by 〈 〉 − +y r y s eCS CS i i i ih| | =1 ( [ ] )ˆ ˆ ˆΣ tr , where εi 
from equation (3) quantifies the statistical and experimental error in 
the local experimental estimates, and tr[ ]ˆ ˆhi is  quantifies how much 
the laboratory state r̂ deviates from an exact cluster state.

Tomography on a cluster state can also be performed with the 
scheme based on unitary transformations. A cluster state is the out-
put of a quantum circuit where each qubit is initially prepared in 
the state | =1/ 2 |0 |1+〉 〉+ 〉( )  and a controlled phase transforma-
tion CZ acts successfully on each pair of neighbouring qubits. The 
CZ gate changes the sign of state |11〉 and acts trivially on the other 
states of the computational basis. Thus, a cluster state is the out-
put of a circuit whose structure corresponds to the one indicated in  
Figure 1, with κ = 2 and the scheme based on unitary transformations 
directly applies. Note that the unitary scheme takes advantage of the 
decreased rank of a reduced density matrix on the boundary to save 
one qubit worth of local tomographic effort (κ = 2 versus κ = 3).

Efficient determination of an MPS estimate. With the experimen-
tally obtained ŝi, we now turn to the task of finding an MPS |ψ〉 
such that its reductions tr1, , ; 1, , [| |]… …i i k N+ + 〉〈y y  closely match the 
ŝi. In other words: Let P̂m

i  be all possible products of Pauli operators 
(enumerated by m) that act non-trivially only on sites i + 1 ,…, i + k. 
Then, as the P̂m

i  are an orthogonal basis, the ŝi may be expanded as 

ˆ [ ˆ ˆ ] ˆ ,s si N
m

i m
i

m
itr P P= ∑1

2

where the expectations tr[ ]s^ ^
Pm
i ∈R  are obtained as results of tomo-

graphic measurements. Then we need to find a matrix |y y〉〈 |, such 
that for all m and i the expectations tr[| | ]y y〉〈 P̂m

i  coincide with 
those of the tomographic estimates, tr tr[| | ]= [ ]y y s〉〈 ˆ ˆ ˆP Pm

i
i m

i .
The method of choice for such a problem is singular value thresh-

olding (SVT)21,22, which has been developed very recently in the 
context of classical compressive sampling or matrix completion23 
and may also be applied to the quantum setting24–28. SVT is a recur-
sive algorithm that provably converges to a low-rank matrix satisfy-
ing constraints of the type tr tr[| | ]= [ ]y y s〉〈 ˆ ˆ ˆP Pm

i
i m

i . Unfortunately, 
a straightforward application of SVT requires time and memory 
that scale exponentially with the number of particles. However, a 
modification of the algorithm allows us to overcome this problem.

Given the measured values tr[ ]ˆ ˆsi m
iP  the algorithm may 

then be described as follows. First, set up the operator  
ˆ [ ˆ ˆ ] ˆ /,R P Pm i i m

i
m
i N= Σ tr s 2  and initialize Ŷ0 to some arbitrary matrix 

(for example, the zero matrix). Then proceed recursively by finding 
the eigenstate |yn〉 with largest eigenvalue, yn, of Ŷn and set 

(5)(5)

0

0

0

0

Û1

�

Û2

ÛN – �+1

�

Û3

Figure 1 | Quantum circuit to obtain matrix product state. The circuit 
transforms |φ〉 into |φ〉N − κ + 1|η〉 with κ = 3. The unitaries Ûi  successively 
disentangle the particles and the state |η〉 on the last sites acts as a 
boundary condition to determine the mPs description of |φ〉.
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So far, this algorithm still suffers from the fact that in every step the 
2N×2N matrix Ŷn needs to be diagonalized. However, the Ŷn are of 
the form Σm i

M
m i m

ia P, , , am i, ∈R, where the P̂m
i  act non-trivially only on 

sites i + 1, …, i + k, that is, they have the form of a local ‘Hamiltonian’. 
Hence, |yn〉 can be determined as the highest energy state of this 
Hamiltonian. For this task, standard methods have been developed 
in condensed matter physics13,29, for which the number of param-
eters scale polynomially in the system size and converge rapidly30,31 
to the optimal MPS approximation. The standard but exponentially  
inefficient SVT algorithm possesses a convergence proof, whereas 
our efficient modification does not. Hence, we now present numeri-
cal examples for different target states |φ〉 to demonstrate the  
feasibility and efficiency of the proposed algorithm.

These numerical examples suggest convergence of our algorithm 
to an MPS that closely matches the experimentally obtained reduc-
tions ŝi. To arrive at the fidelity bound, we follow the steps of Sec-
tion ‘Certification of the estimated state’: (1) Obtain estimates ŝi of 
the reductions to k adjacent spins r̂i  of the state in the laboratory 
such that  ˆ ˆs r ei i i− ≤tr , (2) compute the expectations tr[ ]ˆ ˆsi m

iP , 
which are the input to the MPS-SVT algorithm, (3) obtain an MPS 
estimate |yn〉, the reductions of which closely match the ŝi by utiliz-
ing the MPS–SVT algorithm. As |yn〉 is an MPS, one can then effi-
ciently obtain a parent Hamiltonian10 and a lower bound, ∆, on the 
energy gap above the ground state (see Methods for details). Putting 
all this together, the above programme returns a state |yn〉, its parent 
Hamiltonian ˆ ˆH hii

=∑ , and a number ∆ such that 

〈 〉 ≥ −
+∑

y y
h

n n
i i ii| |

( [ ])
.r

e s
^

^ ^

1
tr

∆

Strongly interacting quantum systems example. We start with 
ground states of nearest-neighbour Hamiltonians on a chain, that is, 
the |φ〉 = |gs〉 are completely determined by all the reductions to two 
adjacent spins and we expect the above algorithm not only to pro-
duce states that match the reduced density matrices of the ground 
states but, in fact, also states that are themselves close to the ground 
states. Among ground states of one-dimensional nearest-neighbour 
Hamiltonians, those at a critical point are the most challenging to 
approximate by MPS as they violate the entanglement area law32. We 
demonstrate the effectiveness of our algorithm for such an example: 
the critical Ising model in a transverse field on a chain of length 
N with open boundary conditions. The ground state of this Ham-
iltonian is unique and hence it is completely characterized by its 
reductions to k = 2 neighbouring sites. In other words, if we find 
an MPS that has the same reductions, the fidelity will be one. We 
proceed as follows. (1) We obtain the reductions r̂i to two neigh-
bouring sites of the true ground state, (2) from these reductions we 
obtain the expectations tr[ ]ˆ ˆri mi

P , which are the input to the MPS-
SVT algorithm. In Figure 2, we show the fidelity fN,n = |〈yn|φ〉|2 of the 
true ground state |φ〉 and the n’th iterate of the above algorithm as 
a function of n and the length N of the chain. It shows that for fixed 
system size 1 − fN,n decreases as ~1/n, whereas for fixed n it increases 
slower than N2. This provides an indication that our algorithm is 
polynomial in the system size.

The Ising model is solvable and, in order to show that we are 
not considering a special case that is particularly favourable, we also 
consider one-dimensional random Hamiltonians of the form 

(6)(6)

(7)(7)

ˆ ˆ ˆ ,( ) ( )H r r
i

N

i
i
i
i=

=

−

+∑
1

1

1

where the r̂i
i( ), r̂i

i
+1
( )  act on spin i and i + 1, respectively, and are hermi-

tian matrices with entries that have real and imaginary part picked 
from a uniform distribution over [ − 1,1]. For each Hamiltonian, as 
before, we first determine the ground state |gs〉 (our target state |φ〉) 
and its reductions and then computed the fidelity fN,n after n itera-
tions of the MPS–SVT algorithm, see Figure 3.

W-state preparation in ion traps. Our method is of inter-
est for many situations, in which standard tomography will not 
be feasible. This is the case for the verification of state prepara-
tion in experiments with too many particles. An example is the 
recent ion trap experiment3 for the preparation of W-states, 
| (| | | )/f〉 = 〉+ 〉 + + 〉10 0 010 0 0 01    N , that were limited to 
8 qubits principally because the classical post-processing of data 
became prohibitive for longer chains. Here, we demonstrate the effi-
ciency of our approach (we are not limited to few ions and demon-
strate convergence for up to 20 ions—even higher number of ions 
are easily accessible due to the MPS alteration of the SVT method) 
by illustrating how one would post-process experimentally obtained 
reduced density matrices to guarantee the generation of |φ〉 or a state 
very close to it. Note that, as in the above spin chain examples, one 
need only take tomographic data on pairs (k = 2) of neighbouring 
qubits. We mimic experimental noise by adding Gaussian distrib-
uted random numbers with zero mean to the p Pm

i
i mi

= [ ]tr ˆ ˆr . After 
initializing the algorithm with ˆ ˆY R0 = , where we obtain R̂  from the 
MPS representation of |φ〉, we use x m p y P yn i m

i
n m

i
n:= | | | |Σ − 〈 〉ˆ  as 

a figure of merit for convergence, that is, after a given number of 
iterations, we pick the |yn〉 with minimum xn. The result of such a 
procedure is shown in Figure 4.

Discussion
We have presented two schemes that efficiently produce an  
MPS description as a tomographic estimate of a quantum state, 
along with a tight fidelity bound. We emphasize that no assump-
tions are necessary for our scheme; if no such MPS description 
exists, this will be evident from the local tomographic data and 

(8)(8)
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Figure 2 | Performance of the MPS–SVT algorithm for the ground state 
of the critical Ising model. We chose k = 2, that is, only nearest-neighbour 
reductions are used to reconstruct the state. Plot illustrates the scaling 
of the error in the fidelity 1 1 2 2− = − 〈 〉 ∼f y N nN n n, | | | /f  with the number of 
spins N and the iterations n of the algorithm.
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our schemes will herald a failure. However, the enormous suc-
cesses of MPS for describing both one-dimensional quantum 
systems found in nature as well as a host of states relevant to 
quantum information ensures that our methods will be very  
useful in practice.

So far we presented the method for pure states and one-dimen-
sional systems. Various generalizations are possible: Our first scheme 
using unitary control can also handle mixed states corresponding to 
small ensembles of pure MPS. Suppose we are presented with a state 
r̂ that is a mixture of M-pure states, each of which is an MPS having 
bond dimension D. Then the reduction of r̂  to any subsystem has 
rank at most MD. We can proceed as before, performing unitary 
operations on blocks of κ = logd(MD) + 1 sites, to disentangle indi-
vidual sites from the rest of the chain. At the end of the chain, we 
will find a mixed state η of rank M on the last κ − 1 sites. We decom-
pose η as a mixture of M-pure states. This yields a representation 
of r̂ as an ensemble of M-pure MPS, each with bond dimension at 
most dMD.

Our second scheme using local measurements can also be 
extended to handle mixed states. While the k-particle reduced den-
sity matrices do not uniquely determine the mixed state r̂, recon-
structions of better and better quality can be obtained by increasing 
k. As an example, suppose r̂ is the Gibbs state corresponding to a  
k-local Hamiltonian Ĥ , that is, the state minimizing the free energy

tr[ ] ( )r r^ ^ ^H TS− .

The first term is, as before, determined by the reduced density 
matrices. The entropy of the total state, however, can only be learned 
exactly from the complete density matrix. Yet, for essentially all rea-
sonable physical systems, the entropy density k kS tr k→∞ +lim ( ( ))/,1 r^  
in the thermal state of a Hamiltonian exists33 (In particular, FCS 
are precisely those states whose entropy density is exactly equal to 
S Sk k( ( )) ( ( ))1,... ,...tr tr+ −ˆ ˆr r  for some finite value of k). As a conse-
quence, the total entropy of the state can be estimated efficiently 
from knowledge of the reduced density matrices. Hence, our second 

(9)(9)

scheme using local measurements may be extended to mixed states 
by considering purifications and can then, for example, also handle 
thermal states of local Hamiltonians, under the physically reason-
able assumption that the entropy density exists33. In addition, it can 
be generalized to all mixed FCS9, though it is not always possible to 
certify the resulting estimates.

Higher-dimensional systems are more challenging, because the 
most straightforward generalization of MPS, known as projected 
entangled-pair states34, cannot be computed as efficiently. However, 
the certification method using a frustration-free parent Hamiltonian 
remains efficient in the case of qubits with nearest-neighbour cou-
plings35. Combinations of our techniques can be used to reconstruct 
other classes of states, such as tree tensor networks36 and multiscale 
entanglement renormalization ansatz states37, for which efficient 
heuristics for minimizing local Hamiltonians are available.

Methods
Matrix product states. We start by recalling the MPS representation of a state |ψ〉 
with open boundary conditions (generalizations to periodic boundary conditions 
are entirely straightforward). 

| = [ ] [ ]|
1

1

=0

1

=0

1

1 1 1y 〉 〉
− −

∑ ∑
s

d

s

d

N N N

N

N

M s M s s s   ,

where the Mi[s] are Di =Di + 1 matrices with D1 =DN + 1 = 1. We denote the bond 
dimension by D = max Di.

Direct tomography. This method proceeds by disentangling all the qudits  
of the chain sequentially. Thus, it yields a valid MPS description if every unitary 
exactly disentangles one qudit. Put another way, while it is crucial to obtain a good 
estimate of the dκ − 1-dimensional subspace on which ŝ  is supported, it is not neces-
sary to identify the eigenvectors of ŝ  exactly: any set of orthonormal vectors  
generating the subspace is sufficient for our tomography procedure and leads to 
an MPS description in another gauge10. This property will be central to our error 
analysis.

(10)(10)

201510
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Figure 4 | Performance of the MPS–SVT algorithm for W-states. We are 
not limited to few ions and demonstrate convergence for up to 20 ions—
even higher number of ions are easily accessible due to the mPs alteration 
of the sVT method, demonstrating the efficiency of our approach. We 
mimic experimental noise by adding Gaussian distributed random numbers 
with zero mean to the local expectations tr[ ]ˆ ˆs i m

iP  and show results for 
n = 4,000 mPs–sVT iterations. Plot shows fN,n = |〈φ|yn〉|2 as a function of 
the number of ions, N, for no noise (dots) and Gaussian noise (densities 
obtained from 100 realizations for each N, arrows indicate mean) with a 
s.d. 0.005 (blue; only even values of N plotted for clarity) and 0.01  
(black, odd N).
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−
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Figure 3 | Performance of the MPS–SVT algorithm for ground states of 
random Hamiltonians. Fidelity fN,n = |〈φ|yn〉|2, for a fixed value n = 5, as a 
function of the number of spins N for the ground state (the target state 
|φ〉) of the random nearest-neighbour Hamiltonians of equation (8). As in 
Figure 2, we chose k = 2 to reconstruct the state. The plot shows densities 
(arrows indicate the mean) obtained from 1,000 random realizations. 
similar to the Ising model, the scaling for fixed n of 1 − fN,n is better than ~N2.
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To understand the effect of errors and imperfections in our tomography 
procedure, consider the very first step of the recursive procedure. Tomography is 
performed on the first κ-sites to ideally find a state with non-maximal support, and 
unitary Û1 is applied to rotate that state into the subspace H1

1=|0 ( )cutoff 〉 ⊗ ⊗ −Cd n .  
In any experimental setting, the resulting state Û1 |f〉 would surely not lie entirely 
in that subspace. This can be either because the state of the system is not exactly an 
MPS with bond dimension D, but merely close to one or because our estimate of 
the density matrix ŝ  on sites 1 to κ is slightly wrong due to measurements that are, 
in practice, noisy and restricted to finite precision. Indeed, we can expect that the 
reduced density matrix on the first κ-sites will actually be full-rank, although most 
of its probability mass will lie on a subspace of dimension at most D. So, each time 
we apply a disentangling operation Û1, we also want to truncate the reduced state 
to the desired subspace. Similarly, a faulty estimate of ŝ  will result in a small prob-
ability mass that lies outside the estimated support.

Given an estimated disentangling  unitary Û1, any state |φ〉 can be expressed as 

ˆ |

|
U

e

e e
1

1 1

1 1

| =
|0 |

1
f h〉 〉⊗ 〉+ 〉

+ 〈 〉
,

where |e1〉 is some subnormalized error vector supported on the subspace orthogo-
nal to H1

cutoff . The unitary Û1 is chosen to minimize the norm ε1 = 〈e1|e1〉 of this 
error vector. It is possible to directly estimate the magnitude of the error ε1 by 
measuring the first qudit in the standard basis; the error is equal to the population 
of the non-zero states.

In subsequent steps of the recursion, we are given a state of the form 
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,

where |ei
cm 〉 is the accumulated error vector that lies in the subspace orthogonal 

to Hi
i d N icutoff =|0 ( )〉 ⊗⊗ ⊗ −C . As a first step, we can truncate this error vector by 

measuring the first i particles in the standard basis and post-select on the all-zero 
outcome. This occurs with a probability roughly 1− ei

cm, and leaves the system in 
the state |0 |〉 ⊗ 〉⊗i

ih . We then repeat the steps leading to equation (11) with the 
post-selected state |hi 〉. The resulting state will be 

ˆ ˆ ˆ
ˆ ˆ

U U U
U U e

e e
i i

i
i i i i

i i

+

⊗
+ +〉 〉 ⊗ 〉 + 〉

+ 〈 〉
1 1

1 1| =
|0 | |

1 |
… f h cm

cm cm

=
|0 | |

1 |

1
1 1

1 1

〉 ⊗ 〉+ 〉

+ 〈 〉

⊗ +
+ +

+ +

i
i i

i i

e

e e

h cm

cm cm

where

| =
| |

1 |
1

1e
e U e

e e
i

i i i

i i

+
+〉 〉 + 〉

+ 〈 〉
cm

cm

cm cm

and therefore e e ei i i+ +≤ +1 1
cm cm .

Thus, we see that errors accumulate linearly with the number of particles; if we 
denote | | |y hk

k
k〉 = … 〉 〉− +

− +
− +U UN

N
N1 1

1
10  the estimated MPS, we have 

| | | |f y ek
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=

− +

∑e e NN
i

N

i1
1

1
cm

where ε = maxi|||ei〉||. The overall error is at most the sum of the individual errors 
on each step. In addition, each of the εi is revealed during the tomographic  
procedure because they correspond to the post-selection success probability.  
This provides a direct method to certify the inferred state.

Parent Hamiltonians. Let |ψ〉 be as in (10) and such that s i iM s M s∑ [ ] [ ] =1†
 for 

all i = 1,…,N. This can always be achieved by subsuming qudits at the beginning 
and end of the chain into qudits with higher dimension and successive singular 
value decompositions9,10. Now let N, k∈N such that N/k∈N, and assume that the 
MPS is injective10 such that for all j = k, …, N–2k the set 

M s M s s dj j k k i i+ + = …{ }1 1 1[ ] [ ]| , ,

spans CDj Dj k+ × + +1 1. Then |ψ〉 is the unique ground state of
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/ 2−

∑

where P̂n is the projector onto the subspace orthogonal to the range of the mapping 
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To get an efficiently computable lower bound the energy gap, we use 

∆E H H= − ≥{ }max | ( ) .l l 0
^ ^

We find 
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where we omitted non-negative summands. Now consider the following quantity, 
which will bound the individual terms in the previous equation, 
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where the maximum is given by the smallest non-zero eigenvalue of ˆ ˆP Pn m+ . Hence 
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and therefore we have the lower bound ∆E ≥ −1 g , where 

g g= .
0

1 | | 2

,
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Injectivity may fail to hold in certain singular cases. The simplest example given 
by the family of GHZ-type states 1 2 0 0 1 1/ (| , , | , ,… 〉 + … 〉eif . As any local reduced 
density matrix is independent of φ, it is impossible to distinguish the members of 
that family based on local information alone. Indeed, in this example, the ground 
state space of Ĥ  will be two-dimensional, spanned by |0,…,0〉 and |1,…,1〉. One  
may check that the gap analysis above continues to hold in the degenerate case 
(unlike the original in ref. 9), now certifying the overlap between r̂ and the 
ground-state space. This fact alone implies an exponential reduction in the number 
of unknown parameters. It is easy to see that the small remaining uncertainty 
about r̂ can be lifted in our example by measuring the ‘string operator’ σx… σx, 
which has expectation value cosφ. Using, for example, the results of refs 38, 39, 
the method of this particular example immediately generalizes to any MPS with a 
two-fold degeneracy. Higher degeneracies may be treated by straightforward, but 
more tedious, methods. 
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