
1730
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

PAPER

Efficient Query-by-Content Audio Retrieval by Locality Sensitive

Hashing and Partial Sequence Comparison*

Yi YU†a), Student Member, Kazuki JOE†, and J. Stephen DOWNIE† †, Nonmembers

SUMMARY This paper investigates suitable indexing techniques to en-
able efficient content-based audio retrieval in large acoustic databases. To
make an index-based retrieval mechanism applicable to audio content, we
investigate the design of Locality Sensitive Hashing (LSH) and the partial
sequence comparison. We propose a fast and efficient audio retrieval frame-
work of query-by-content and develop an audio retrieval system. Based on
this framework, four different audio retrieval schemes, LSH-Dynamic Pro-
gramming (DP), LSH-Sparse DP (SDP), Exact Euclidian LSH (E2LSH)-
DP, E2LSH-SDP, are introduced and evaluated in order to better understand
the performance of audio retrieval algorithms. The experimental results in-
dicate that compared with the traditional DP and the other three compititive
schemes, E2LSH-SDP exhibits the best tradeoff in terms of the response
time, retrieval accuracy and computation cost.
key words: indexing, locality-sensitive hashing, content-based audio re-
trieval, dynamic programming

1. Introduction

Content-based audio retrieval is not only a very promis-
ing research topic but also one of the main problems, in
multimedia information processing. Handling audio se-
quence data is usually time-consuming due to the high di-
mensionality of the features, which makes it inconvenient
to utilize the potential content-based information retrieval
techniques on the Internet or personal media devices. To
access a huge mass of audio information efficiently, it is
necessary to explore the audio information, facilitate the
management of audio data and serve multimedia applica-
tions. Consequently various indexing structures have been
reported in the study of audio retrieval. These include, for
example, hierarchical structure [1], R-trees [2], M-trees [3],
KD-trees [4], active-search [18], Locality Sensitive Hashing
(LSH) [5], [16], [17].

As far as the creation of query-by-content audio re-
trieval mechanism via indexing techniques is concerned the
main challenges are as follows: (1) How to characterize a
corpus of acoustic objects with a corpus of relevant features.
(2) How to organize audio features by indices. (3) How
to locate the desired music segments with a given acoustic

query sequence within the acceptable time.

There are several levels of closeness with increasing

logic level in the similarity match between two songs [5].

We aim to search in an acoustic database the songs with

the same main melody as the query and accelerate the re-

trieval by the indexing technique. This paper extends our

previous work [16], [17], focusing on the studies of the al-

gorithms to evaluate its scalable performance. Mainly we

show how to design the audio indexing structures and how to

realize partial sequences comparison so as to support scal-

able query-by-content audio retrieval. The retrieval proce-

dure can be divided into two stages. Firstly features of the

reference songs are organized in the database where •gindex-

ing•h means assigning hash values to features so that features

are stored in the buckets according to their hash values. In

times of query •gretrieving•h means (i) finding in the database

the features that may be similar to the features of the query

by the hash values and (ii) generating a ranked list of ref-

erence songs in the decreasing order of their similarity to

the query. We depend on mapping features to hash values

by heuristics and reducing pairwise comparisons (pairwise

comparison means the distance calculation between a pair

of features) by designing hashing structure.

This work begins with a novel approach to making ef-

fective comparisons of the massive acoustic sequences by

designing appropriate metrics and algorithms to avoid all

pairwise comparisons of feature sequences. We care about

indexing structure on acoustic sequences and reorganiza-

tion of feature sequences. We present a novel framework

to perform audio indexing and retrieval and provide scal-

able content-based searchability. The following retrieval

scenario is considered: given a corpus of N musical refer-

ence songs find the similar songs with a query input of a

much shorter length. First each audio data is divided into

frames and spectral features are extracted. The reference

songs can be represented by R={ri,j:ri,j•¸Ri, 1•…i•…

N, 1•…j•…|Ri|}, where ri,j is the jth spectral feature of the ith

reference song Ri. Then the spectral features of the query,

q1, q2,•cqQ, are used to filter the resemblances by Locality

Sensitive Hashing (LSH) or Exact Euclidean LSH (E2LSH).

The resembled features of the ith reference songs are reorga-

nized into partial sequences and compared with the query by

either Dynamic Programming (DP) or the proposed Sparse

DP (SDP).

The rest of the paper is organized as follows: Sect. 2

provides the background of the LSH/E2LSH and related

works. Section 3 presents the framework of audio index-

Manuscript received November 26, 2007.

Manuscript revised February 11, 2008.
† The authors are with the Graduate School of Humanity and

Science, Nara Women's University, Nara-shi, 630-8506 Japan.
†† The author is with the Graduate School of Library and Infor-

mation Science, University of Illinois Urbana Champaign 501 E.
Daniel St. Champaign, IL, 61820, USA.

*This work was partly discussed and done when Yi visited

IMIRSEL Summer, 2007.
a) E-mail:yuyi@ics.nara-wu.ac.jp

DOI:10.1093/ietisy/e91-d.6.1730

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineer

s

YU et al.: EFFICIENT QUERY-BY-CONTENT AUDIO RETRIEVAL

1731

ing and describes content-based retrieval schemes in detail.

Section 4 lists the simulation environment and analyzes the

experiment results. Finally Sect. 5 concludes the paper.

2. Background and Related Work

2.1 Basics of LSH/E2LSH

LSH is an index-based data organization structure proposed

to improve the scalability for retrieval over a large database,

which essentially is a spatial access method-construct

some locality sensitive hashing functions to perform index-

ing in parallel in Euclidean space [9], [10]. LSH plays an

important part in various applications, e.g., database access

and indexing [11], data compression and mining, multime-

dia information retrieval [5], [12]. In particular the features

of the objects are represented as the points-form in the high

dimensional space and a distance metric is adopted to judge

whether two multimedia objects are similar (such as au-

dio [5], video [12], image [13]).

E2LSH [14] is to solve Approximate Nearest Neigh-

bors problem in a high-dimensional Euclidean space. It en-

hances LSH to make it more efficient for the retrieval with

the very high dimensional feature. It performs locality sen-

sitive dimension reduction to get the projection of the fea-

ture in different low-dimension sub-spaces. With multiple

hash tables in parallel, the retrieval accuracy can be guar-

anteed meanwhile the retrieval speed is accelerated. If two

features (q, r) are very similar they will have a small dis-

tance •aq-r•a, hash to the same value and fall into the same

bucket with a high probability. If they are quite different

they will collide with a small probability. A function family

H={h:S•¨U}, each h mapping one point from domain

S to U, is called locality sensitive, if for any features q and

r, the probability

Prob(d)=PrH[h(q)=h(r):‖q-r‖=d] (1)

is a strictly decreasing function of d. That is, the col-

lision probability of features q and r is diminishing as

their distance increases. The family H is further called

(R, cR, p1, p2) (c>1, p2<P1) sensitive if for any q, r•¸S,

if‖q-r‖<R, PrH[h(q)=h(r)]≧p1

if‖q-r‖>cR, PrH[h(q)=h(r)]≦p2 (2)

A good family of hash functions will try to amplify the gap

between p1 and P2.

Consider a distribution D over and any i.i.d. ran-

dom variables x1, x2,•c,xl, x with distribution D. Let X=

(x1, X2,•c,x1)T. If there exists P so that for any l-dimension

real vector vk=(vk1, vk2,•c,vkl)T, fvk(X)=ƒ°li=1vkixi has

the same distribution as ƒ°li=1|vki|P)1/Px, the distribution D

is called P-stable. vk satisfying (ƒ°li=1|vki|=1 makes

fvk(X) follow the same distribution D as x.

In E2LSH the locality sensitive dimension reduction

can be applied on a vector whose each dimension follows

the same P-stable distribution. Each fvk(•E) with the parame-

ter vk (1•…k•…m) generates a single output. Then the l*m

matrix V=(v1, v2,•c,vm) leads to an m-dimension vec-

tor fv(X)=(fv1(X), fv2(X),•c,fvm(X))T, each dimension of

which also follows the distribution D. When each dimension

of q and r follows a P-stable distribution, each dimension of

fv(q) and fv(r) also follows the same distribution. Then
q and r can be replaced by fv(q) and fv(r) respectively in
Eq. (1-2).

2.2 Acceleration of Sequence Comparison

A quick search engine is of great importance to retrieval sys-
tems. Many researchers [6]-[8] have studied DP and also
applied DP or optimized DP in content-based music infor-
mation retrieval to match the query input against the songs
in the database. Usually DP requires the calculation of dis-
tance between all pairs of features so as to fill in the DTW
table and then performs the sequence comparison.

Instead of exhaustive search, reduction of the number
of comparisons can effectively decrease the response time.
In our previous work [15] spectral-similarity based feature
merge was proposed to remove the spectral redundancy. In

[2] the extracted features are grouped by Minimum Bound-
ing Rectangles (MBR) and compared with an R*-tree. In

[18] the time-series active search scheme is adopted. Fea-
tures in a window are summarized by a histogram. Though
the number of features can be reduced in [2], [18], some-
times the summarized (grouped) features may not suffi-
ciently discriminate two different signals.

Some researchers also applied LSH in the field of au-
dio sequences comparison. Yang used random sub-set of
the spectral features to calculate hash values for the paral-
lel LSH hash instances in [5]. With a query as input, its
features match reference features from hash tables. Then
Hough transformation is performed on these matching pairs
to detect the similarity between the query and each reference
song by the linearity filtering.

2.3 Our Work

Similar to [5] our retrieval scheme adopts the spectral fea-
ture. We would like to avoid exhaustive comparison as sug-

gested by [2], [5], [18]. Compared with [2] and [18] where
the feature summary is used to reduce the number of to-
tal features, we filter features in the database that are simi-
lar to the query by LSH/E2LSH without losing the discrim-
inating capability. In comparison with [5] where LSH is
also adopted to organize features, we utilize both LSH and
E2LSH and report retrieval mechanisms of index-based au-
dio sequences, data organization structure of features as well
as recreation and comparison of the feature sequences. In
our system DP takes the query sequence and the partial ref-
erence sequence (partial sequence has a shorter length com-

pared with the original one) as input and compares them
over a DTW table with a smaller size. The proposed SDP
uses the full size DTW so that the calculated distance in

1732
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

the filtering stage by LSH/E2LSH can be directly filled
in, avoiding recalculation of the distances. The extensive
comparison among the presented four schemes (LSH-DP,
LSH-SDP, E2LSH-DP, E2LSH-SDP) shows that the optimal
combination-E2LSH-SDP-outperforms the others.

3. Design of Index-Based Audio Content Retrieval

We focus on providing fast and efficient content-based re-
trieval mechanisms of searching audio sequences data over
a large audio sequences database by utilizing a suitable in-
dexing structure. Our retrieval system allows a user to take a
fragment of the query song as input, performs content-based
audio retrieval and returns songs similar to this query frag-
ment.

3.1 The Basic Framework

The indexing framework for music information retrieval
consists of two main parts: (i) building indexing data struc-
ture of feature sequences and (ii) matching the recovered
feature sequences. For the first object E2LSH/LSH estab-
lishes an effective data structure for acoustic-based music
information. For the second object SDP/DP matches the re-
covered feature sequences and obtains the song closest to
the query. Therefore, we propose four different retrieval
schemes, LSH-DP, LSH-SDP, E2LSH-DP and E2LSH-SDP.
Based on this general framework we want to evaluate the
four schemes to solve the problem of scalable audio con-
tent retrieval and select the best tradeoff according to the
response time, retrieval accuracy and computation cost. The
details are discussed in the experiment parts.

We begin by introducing the basic query-by-content
framework of acoustic-based music information retrieval.
This framework is shown in Fig. 1 and its main procedure
is summarized as follows: For each frame, its high di-
mensional spectral feature, Short Time Fourier Transform
(STFT), is calculated. The spectral features of all the ref-
erence songs in form of searchable symbols are stored in

Fig. 1 An index-based audio retrieval framework. It mostly consists of

locality sensitive feature mapping, parallel hash tables, filtering features,

sequence recovery and matching.

the hash tables according to their respective hash values.

E2LSH/LSH provides an effective organization of the au-

dio features, gives a principle to store the feature sequences,

and facilitates an efficient sequences reconstruction . With

each feature in the query sequence, the candidate features

are searched in the hash table. The non-similar features are

filtered out. Then the remaining features are reorganized

into new sequences and the SDP/DP algorithm is employed

to perform an accurate similarity comparison between the

query and the partial reference sequences.

The Central Limit Theorem states that if the sum of

many independent and identically-distributed random vari-

ables has a finite variance, it will be approximately normally

distributed (i.e., following a Gaussian distribution). In the

calculation of SIFT, each bin is a weighed sum of (e.g.

N=2048) consecutive random audio samples and can be

approximated by a Gaussian distribution. Any linear com-

bination of Gaussian distribution is still Gaussian. In such

cases P equals 2 in the calculation of E2LSH.

3.2 Calculating Hash Values

First we consider a single hash instance, which logically

consists of all the features of the audio sequences in the

database. Each of the audio sequences is divided to frames.

For each frame STFT is calculated as the spectral feature

and regarded as a searchable symbol in Euclidean space.

This feature goes through a linear transformation-locality

sensitive mapping. When LSH is used, this mapping gener-

ates a new feature with the same size. While in E2LSH,

the mapping also reduces the feature dimension: a high-

dimensional feature X is projected to a low-dimension sub-

feature fv(X) with the P-stable random matrix V. The sub-

feature is of dimension m. Then the sub-feature is per-

dimensionally quantized to an integer vector, followed by

hash value calculation. This quantization ensures the local-

ity sensitivity in the hash. An equivalent hash function g(•E)

involves the effect of fv(•E) and the hash function H(•E). In the

following, g(•E) also means an audio bucket storing all the

features with the same hash value. Its meaning is obvious

from the context.

Figure 2 gives an example of the hash instance with

two original features q0 and r0. The new features after lo-

cality sensitive mapping are q and r. Then per-dimension

quantization is performed. This results in integer vectors.

With the random weight, their hash values, g(r0) and g(q0)

Fig. 2 Hash calculation.

YU et al.: EFFICIENT QUERY-BY-CONTENT AUDIO RETRIEVAL

1733

are calculated. Due to the random weight the hash values of

reference features are pseudo-random and belong to a wide

range. By the following mod operation on the hash table

size they are projected to a predefined integer range (e .g.,

0-127) and associated with the buckets. In such cases, the

hash table size needs not be a prime and a power of two (e.g.

128) makes it. convenient for the mod operation.

If q and r have a short Euclidian distance, then with a

high probability they are quantized to the same integer se-

quences and generate the same hash value. Since r is stored

in the bucket H(r), it is expected that r0 can be found by

q0 when g(q0)=g(r0). Sometimes even two vectors with

a close distance may be quantized to two different integer

vectors because the values of a specific dimension belong

to adjacent quantization space. As a result the two close

vectors have different hash values. More hash instances are

necessary to resolve this problem and increase the retrieval

accuracy of LSH/E2LSH, as was stated in [14]. Therefore

we construct several hash tables, each logically containing

all the features of the references. Hash instances are dis-

tinguished by their own locality sensitive mapping. The kth

hash instance has an equivalent hash function gk(•E), a combi-

nation of fVk(•E) and Hk(•E). Then it is probable that the quan-

tized vectors of two similar features are the same in at least

one of the hash instances.

3.3 Feature Organization in the Hash Tables

The jth spectral feature of the ith reference song, ri,j, is stored

in gk(ri,j), k=1, 2,•cIts song number i and the corre-

sponding time offset j are stored together with the feature,

for the purpose of providing facilities for reconstruction of

the partial acoustic sequences after the filtering stage.

3.4 Filtering Features by LSH/E2LSH

In the query stage a sequence of query features q1, q2,•c,qQ

is used to find the closest reference song. With a query fea-

ture qm, the candidate reference features in the bucket of the

kth hash table, gk(qm), can be obtained. This bucket contains

all the features matching to the same hash value. Though

it is probable that the resemble features lie in the bucket,

other non-similar features also exist due to the limited hash

table size. It is necessary to remove these non-similar fea-

tures so as to reduce the post computation. We define a

distance function that can represent the similarity degree,

d(X,Y)=•aX-Y•a2/•ã•aX•a2•E•aY•a2, the normalized Euclidean

distance. From the bucket gk(qm), we get the match pairs

<qm, ri,j, d>. If the distance d between the feature ri,j and

qm is greater than ƒÂ, the feature ri,j is filtered out and dis-

carded by Eq. (3). Namely, we would like to retain such

features that lie within the ball centered at qm with a radius

δ.

Sk,i,m={ri,j:ri,j∈gk(qm), d(fVk(qm), fVk(ri,j))≦ δ} (3)

The union Sk ,i=•¾mSk,i,m gives the candidate features

of the ith reference obtained from the kth hash table for the

whole query sequence. And the total candidates of the ith

reference are obtained from all the hash tables as Si=•¾kSk,i.

Since in E2LSH fVk(X) has a much smaller size than X, the

filtering stage of E2LSH can be greatly accelerated in con-

trast to LSH, as is verified by the simulation.

Figure 3 gives an example of single feature matching

with two hash instances, where q is similar to f1, f2, f3. In

the first hash instance, q, f1, f3 and f5 have the same hash

value. With q, f1 and f3 can be found and f2 is missing. The

non-similar f5 can be filtered out if the distance •af5-q•a is

greater than the threshold ƒÂ defined in Eq. (3). In the sec-

ond hash instance, f1, f2 and f4 have the same hash value

as q and f3 is missing. f4 can be filtered out if the distance

‖f4-q‖ is greater than ƒÂ. In the best case where both f4

and f5 are filtered out, the union of results from two hash

instances gives the similar set {f1, f2, f3} as desired. Due to

the approximation property of LSH/E2LSH, the non-similar

features f4 and f5 may also have a distance to q less than ƒÂ

and remain in the similar set. Then the following sequence

comparison is necessary to prevent the non-similar songs

from appearing in the final ranked list. In Fig. 4 a query

with 5 features is used to find the target reference song with

the help of two hash tables. With each of the query features,

the reference features in the two buckets of the two hash

tables are obtained and the non-similar features are filtered

out with the best effort. With 5 query features similar refer-

ence features in the 10 buckets are obtained and finally 14

features remain.

3.5 Sequence Matching

Few features of the songs that are non-similar to the query

remain after filtering. Among the features of the song that

Fig. 3 Matching with a single feature.

Fig. 4 Matching with a sequence of features.

1734
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

actually match the query only part of features remain. In

addition the remaining features that belong to the same song

may not be in the same time order as those of the query. The

reordering of the remaining features of the ith reference song

is to reorganize the features of the partial reference sequence

in the ascending time offset j1, j2,•c,jR, where j1, j2,•c

are non-continuous integers indicating the frame number of

the partial reference sequence. Then the query q1, q2,•c,qQ

is matched against each partial reference sequence to find

the desired song with the DP method similar to [7] or the

proposed SDP scheme.

3.5.1 Sequence Comparison with DP

Assume that Di(m, jn) is the minimum distance between the

query and the ith reference song, beginning from the leftmost

side (1, j1) of the DTW table to the current position (m, jn).

Equation (4) gives the recursive relation

Di(m, jn)=d(qm, ri,jn)+min

{Di(m-2, jn-1)
Di(m-1, jn-1)
Di(m-1, jn-2)

(4)

The matching features from different hash tables be-
long to different sub-space and have different distance to the

query. Then the Euclidean distance d(qm, ri,jn) calculated
from the original features qm and ri,jn is used in Eq. (4).
A single match pair <qm, ri,jn, d>is enough to provide the
match information and the duplicate match pairs are ne-

glected. Then the distance between the query and the ith
reference is

Di=minDi(Q,jn) (5)

Among all the reference songs, the following equation

gives the one that best matches the query.

iDP=arg min Di (6)

3.5.2 Partial Sequence Comparison with SDP

A much simple comparison way is to directly utilize the dis-

tance calculated in the filtering stage by filling the distance

in a DTW table. However, as shown in Fig. 5, most of the

points in the DTW table are gone after filtering. Therefore,

the conventional DP does not work well. We perform the

sequence comparison in a different way. For each matched

pair <qm, ri,jn> from kth hash table, the reverse of its distance

is used as the weight in the matching procedure, as shown in

Eq. (7). ƒÂ is the filtering threshold used in Eq. (3). Therefore

the weight is no less than 1. With Wmax, an occasional per-

fect match of a single feature has less effect on the sequence

comparison. On the other hand, if the pair <qm, ri,jn> does

not exist, its weight is set to 0.

wk(qm,ri,jn)={min{ƒÂ/d(fVk(qm), fVk(ri,jn)), Wmax}

0, <qm,ri ,jn> does not exist
(7)

The recurrence of a single match pair in different

Fig. 5 Sequence comparison with SDP. Since most of the pairs are re-

moved by LSH/E2LSH and the filtering stage, the remaining points are

sparse in the DTW table.

hash tables means that the pair is a suitable match with

a high probability. Then instead of a single weight in

Eq. (7), the weights of the duplicate match pairs (with the

same suffix) from different hash tables can be accumulated

by ƒ°k wk(qm,ri ,jn) and in Fig. 5 the match pair becomes

<qm, ri,jn, weight>, where weight equals ƒ°k wk(qm,ri,jn).

The sequence comparison is to select the path that max-

imizes the total weight. Despite the absence of most match-

ing pairs in Fig. 5, the matching path still contains as many

points as possible. The maximum weight is found by the

iteration in Eq. (8)

Wi(m,jn)=ƒ°wk(qm,ri,jn)+max{

Wi(m-2, jn-1)
Wi(m-1, jn-1)
W1(m-1, jn-2)

(8)

For the ith reference song, its weight Wi is obtained by
Eq. (9). Then by Eq. (10) the one with the maximum weight
matches the query.

Wi=maxjnWi(Q,jn) (9)

iSDP=arg maxi Wi (10)

4. Experiments Results and Analysis

The experiments have been carried out on the acoustic

database with both monophonic and polyphonic melodies.

Altogether we collected 506 songs from the public web

sites. These songs belong to three sub-sets. (i) 122 western

songs falling into 4 genres: dance, classical, jazz and coun-

try. (ii) 67+44•~2=155 Chinese folks from Twelve Girls

Band. (iii) 229 popular songs from two female Chinese

singers. Among the 506 songs, 44 songs in the second sub-

set have two versions with possible tempo variations. The

rest 506-44•~2=418 songs have single version. These 418

single-version songs and 44 out of the two-version songs

form the database and each of the 462 references consists

of a 60-second-long melodic slip. We also prepared 462

queries, each being 6-8 seconds long. 418 queries cor-

responding to the single-version songs are randomly seg-

mented from the reference songs and have different frame

YU et al.: EFFICIENT QUERY-BY-CONTENT AUDIO RETRIEVAL

1735

alignment (and different features). The rest 44 quires cor-
responding to the two-version songs are extracted from the
version different from the one in the database. Noise is also
added to each query song and the signal to noise ratio is
20dB.

The songs are in single-channel wave format, 16 bit per
sample, and the sampling rate is 22.05KHz. The direct cur-
rent component is removed and the music is normalized with
the maximum value equaling 1. Each audio data is divided
into overlapped frames. Each frame contains 1024 sam-
ples and the adjacent frames have 50% overlapping. Each
frame is weighed by a hamming window and further ap-
pended with 1024 zeros to fit the length of FFT (2048 point).
Like [5], the spectrum from 100Hz to 2000Hz is used as the
feature. Accordingly, each feature has the size 177. We use
several hash instances, each having 128 entries. In E2LSH
the dimension of the sub-feature is chosen to be m=8 by
some initial experiment result.

In our retrieval system each song in the database is
accompanied with its feature sequence. When the system
boots the hash tables are constructed in the memory. There-
fore, utilization of LSH/E2LSH has no extra disk storage re-
quirement though it does require some memory to hold the
hash tables.

Figure 6 gives a query-by-content music information
retrieval demo system developed under the matlab environ-
ment. The query has two sources, either the recording via
a microphone or those in the query list (on the left side).
From the right side the spectral feature, matching method
and LSH scheme can be selected. The ranked retrieval list
gives the top-4 results, with the best matching song as the
first. Both the query and retrieval result can be played to

Fig. 6 Demo system.

confirm the correctness of the retrieval.

In the current setting on the figure •gSparse DP•h

of •gMatching Method•h, •gUse LSH•h and •gE2LSH•h, •gBy

Recording•h of •gRetrieval Option•h are set respectively. The
“Ranked

Retrieval Result•h part shows 4 songs that best

match the recorded Ss-long piece of the query song called

“ victory”, with the desired song (•gvictory•h) appearing in the

top.

4.1 Evaluation Metrics

For the purpose of providing a thorough understanding of
our music retrieval mechanism, four different schemes are
examined and compared on the basis of the general frame-
work. In the experiment, we mainly consider three metrics
that can evaluate every scheme roundly.

1) Matched percentage. Since LSH/E2LSH is used to
avoid pairwise comparison, the first question always touch
on how much it can reduce the computation. Figure 7 shows
4 parameters.

● Ntm: the number of total features in a reference song.
● Ndm: the number of directly matched features in a ref-

erence song with LSH/E2LSH before filtering.
● Nmm: the number of features of the matched part in the

desired reference song. The desired song is known in
the preparation of the query. By applying normal DP

(without hash) to compare the query with its desired
song we can learn the start and end point of the query
in the reference song, and then Nmm.

● Nrm: the number of remaining features of matched part

in the desired reference song after the filtering stage in
LSH/E2LSH.

Further let Nfm represent the number of remaining ones
of the Ndm features after filtering. From these parameters
we define three ratios Ndm/Ntm, Nfm/Ntm and Nrm/Nmm as
Roughly Matched Percentage (RMP), Filtered Matched Per-
centage (FMP) and Valid Match Percentage (VMP) respec-
tively. RMP reflects how much pairwise comparison can be
reduced, FMP is associated with the potential reduction of
computation in the sequence comparison stage and VMP af-
fects the retrieval accuracy. With a good design of the hash
functions one will expect a low RMP/FMP and a high VMP.

2) Computation time. We will compare the filtering

Fig. 7 Matched part of the desired reference.

1736
IEICE TRANS. INF. & SYST., VOL.E91-D , NO.6 JUNE 2008

time between LSH and E2LSH, and the sequence compari-
son time between DP and SDP. The retrieval time of a query
is the sum of its hash value calculation time, its filtering time
and its sequence comparison time.

3) Retrieval accuracy. In our experiment each of
the queries is used to retrieve the desired song from the
database. The retrieval accuracy is defined as the ratio of
the number of correctly retrieved songs to that of the total

queries, as shown below:

#queries with desired songs in ranked list/

#queries 100%(11)

4.2 Matched Percentage

In the conventional CBMR system pairwise comparison is
done by the DP procedure. In our scheme LSH/E2LSH re-
duces most of the pairwise comparison. Its effectiveness in
computation cost reduction is reflected in RMP/FMP. Fig-
ure 8 shows RMP under different number of hash tables.
The estimation of RMP is simply (number of hash tables)/

(number of buckets in each hash table). The curves of LSH,
E2LSH and the estimation match very well. This reflects
that the hash values of all the reference features almost
evenly distribute over all the buckets, which is the desired
case.

LSH/E2LSH reduces most of the pairwise comparison.

However, the features with the same hash value are not nec-

essarily similar to the query feature. The filtering is done

just after indexing the hash tables to keep only the near

neighbors of the query. The filtering threshold ƒÂ in Eq. (3)

plays an important role. It determines how many features

will remain, which in turn affects the computation and the

retrieval accuracy.

Table 1 shows the normalized FMP, the ratio of FMP to

RMP achieved at three hash instances in Fig. 8. The normal-

ized FMP actually equals Nfm/Ndm, the ratio of the number

of remaining features after filtering to the number of features

found by LSH/E2LSH before filtering. Due to the limited

bucket entries, many non-similar features fall in the same

bucket as the query features. Table 1 indicates that by set-

ting the filtering threshold most of the non-similar features

can be filtered out and a low FMP can be achieved in both

Fig. 8 RMP under different number of hash tables.

LSH and E2LSH. FMP increases as ƒÂ does, i.e., more fea-

tures remain after filtering with a loose threshold and the

subsequent sequence comparison takes longer time . Table 2

shows VMP under different filtering threshold for LSH (Ta-

ble 2 (a)) and E2LSH (Table 2 (b)). A bigger ƒÂ leads to

a higher VMP. But it also results in a larger RMP/VMP

which is associated with heavy computation. By selecting

a suitable ƒÂ for the filtering stage, a low RMP/FMP can be

achieved while VMP is maintained at a certain level . It is

shown later that even a moderate VMP can achieve a high

retrieval accuracy. Hereafter, unless otherwise specified SLSH

is set to 0.03 and SE2LSH is set to 0.0075.

Figure 9 reveals that the increase of hash tables only

results in a little gain in VMP. Therefore in the following

three hash tables are the default setting.

4.3 Computation Time

LSH/E2LSH hash table construction is usually time-

consuming. Fortunately this is done before the actual query

takes place. The hash value of the query is calculated just

before retrieval. For a short query this time is almost negli-

gible.

The filtering stage in LSH/E2LSH is quite different

since the distance is directly calculated with the high di-

mensional feature in LSH while in E2LSH the distance is

calculated with the sub-features of a low dimension. Fil-

tering takes much time, especially when the feature has a

big size in the LSH scheme. With E2LSH the reduction of

Table 1 Normalized FMP under different filtering threshold (3 hash

tables).

Table 2 VMP under different filtering threshold (3 hash tables).

Fig. 9 VMP under different number of hash tables (ƒÂLSH=0.03,

ƒÂ E2LSH=0.0075).

YU et al.: EFFICIENT QUERY-BY-CONTENT AUDIO RETRIEVAL

1737

Fig. 10 Filtering time in LSH and E2LSH.

Fig. 11 Sequence comparison time in DP and SDP under different num-

ber of hash tables (ƒÂE2LSH=0.0075).

feature dimension greatly decreases the filtering time. Fig-

ure 10 shows that with more hash tables, the filtering time in

both LSH and E2LSH increases, but at different rate, which

indicates that E2LSH is more suitable for retrieval with high-

dimensional features.

Two sequence comparison methods are used in our

schemes. Both the number of hash tables and the filtering

threshold affect the comparison. Figure 11 shows the se-

quence comparison time with respect to the number of hash

instances and. Fig. 12 shows the similar results under differ-

ent filtering threshold ƒÂ. When few reference features are

matched, DP and SDP almost have the same retrieval speed.

This occurs whenn there are few hash instances in Fig. 11

or the filtering threshold is low in Fig. 12. As the num-

ber of remaining features increases, SDP has very obvious

superiority over DP since it avoids the calculation of fea-

ture distance and its sequence comparison time approaches

a steady value in Figs. 11-12, which guarantees the worst-

case retrieval time. This can be explained as follows.

In DP the query is compared with the partial reference

sequence over a DTW table of the size (length of query)•~

(length of the partial reference). The DTW table becomes

smaller in case few reference features remain. However DP

involves the calculation of pairwise distance among the re-

Fig. 12 Sequence comparison time in DP and SDP under different ƒÂ (3

hash tables).

Table 3 Average retrieval time under different schemes .

maining features. In contrast, in SDP, the feature distance

is taken from the filtering stage. But in the filtering stage

SDP does not know the final length of the partial refer-

ence. Then it constructs a DTW table of full size (length

of query)•~(length of the reference) so that the weight cal-

culated in Eq. (7) can be directly filled in. As the number

of hash instances increases in Fig. 11 or the filtering thresh-

old increases in Fig. 12, the number of VMP also increases,

however in a non-linear way. The biggest gain of VMP is

obtained by going from single hash instance to two hash

instances, or the filtering threshold going from 0.0025 to

0.005. Further increase of hash instance or filtering thresh-

old yields diminishing returns in terms of VMP and causes

little increase in the computation cost in Eq. (7). Meanwhile

the best path search over a full-size DTW takes a fixed time

in Eq. (8). Then in a total the sequence comparison time of

SDP approaches a steady value. Therefore SDP is preferred

when there are more hash instances or the filtering threshold

is large.

To show the effect of hashing, Table 3 lists the aver-

age retrieval time consumed for each query under the dif-

ferent schemes. The conventional DP (without hashing)

takes 21.7s. In comparison, E2LSH-SDP reduces the time

to 0.51s, accelerating the retrieval speed by 42.7 times.

4.4 Retrieval Accuracy

LSH/E2LSH was initially proposed to retrieve from a

database by single feature. To acquire a high retrieval ac-

curacy, many hash tables are required, which increases the

filtering time. In our scheme, LSH/E2LSH is used for au-

dio sequence comparison. Even though the retrieval ac-

curacy of a single feature is not very high, the following

sequence comparison effectively removes the unsimilar se-

1738
IEICE TRANS. INF. & SYST., VOL .E91-D, NO.6 JUNE 2008

Table 4 Top-4 retrieval accuracy with respect to the number of hash in-

stances (ƒÂLSH=0.03, ƒÂE2LSH=0.0075).

Table S Top-4 retrieval accuracy of LSH/E2LSH (3 hash tables) .

Table 6 Top-t retrieval accuracy with respect to t (ƒÂLSH=0.03, ƒÂE2LSH=

0.0075, 3 hash tables).

quences. Therefore, in our retrieval system, a few hash ta-

bles are sufficient to achieve high retrieval accuracy. Table 4

shows that the retrieval accuracy is satisfactory with mere 3

hash tables.

Table 5 shows the retrieval accuracy under different

filtering threshold ƒÂ. It is obvious that ƒÂLSH=0.03 and

δE2LSH=0.0075 are suitable thresholds since lower δ de-

creases retrieval accuracy while larger ƒÂ increases the com-

putation cost. Table 6 shows the Top-t retrieval accuracy

with ƒÂLSH=0.03, ƒÂE2LSH=0.0075, and 3 hash tables. t is

the length of the ranked list. When the desired song appears

in the ranked list, the retrieval is regarded as successful. Ac-

cording to Table 6, the four schemes almost have the same

retrieval accuracy and the retrieval accuracy increases as t

does. The Top-4 retrieval accuracy is relatively satisfactory.

5. Conclusions

We have established an index-based query-by-content

framework for music information retrieval, proposed and

evaluated four different retrieval schemes. In our system the

retrieval speed is accelerated in three ways: LSH reduces

the pairwise comparison; E2LSH further reduces the filter-

ing time by applying locality sensitive dimension reduction;

SDP decreases the comparison time by avoiding pairwise

distance computation in the sequence comparison stage.

From the extensive simulation results it is obvious that

E2LSH-SDP is the optimal choice. We also show that even

with only a few hash tables and relatively low filtering

threshold, the retrieval with a sequence still has high accu-

racy.

References

[1] N. Bertin and A. de Cheveigne, •gScalable metadata and quick re-

trieval of audio signals,•h ISMIR 2005, pp. 238-244
, 2005.

[2] I. Karydis, A. Nanopoulos, A.N. Papadopoulos, and Y.

Manolopoulos, •gAudio indexing for efficient music information re-

trieval,•h MMM'05, pp. 22-29, 2005.

[3] J.-Y. Won, J-H. Lee, K. Ku, J. Part, and Y.-S. Kim, •gA content-based

music retrieval system using representative melody index from mu-

sic databases,•h Computer Music Modeling and Retrieval: Second

International Symposium, CMMR 2004.

[4] J. Reiss, J.-J. Aucouturier, and M. Sandler, •gEfficient multidi-

mensional searching routines for music information retrieval
,•h 2nd

ISMIR, 2001.

[5] C. Yang, •gEfficient acoustic index for music retrieval with various

degrees of similarity,•h ACM Multimedia, pp. 584-591, 2002.

[6] W.-H. Tsai, H.-M. Yu, and H.-M. Wang, •gA query-by-example tech-

nique for retrieving cover versions of popular songs with similar

melodies,•h ISMIR2005.

[7] J.S.R. Jang and H.R. Lee, •gHierarchical filtering method for content-

based music retrieval via acoustic input,•h Proc. Ninth ACM Interna-

tional. Conference on Multimedia pp. 401-410, 2001.

[8] R.B. Dannenberg and N. Hu, •gUnderstanding search performance in

query-by-humming systems,•h Proc. ISMIR 2004, pp. 236-241, 2004.

[9] M. Datar and N. Immorlica, •gLocality-sensitive hashing scheme

baesd on P-stable dostributions,•h Proc. Symposium on Computa-

tional Geometry, pp. 253-262, 2004.

[10] P. Indyk and R. Motwani, •gApproximate nearest neighbors: Towards

removing the curse of dimensionality,•h Proc. 30th ACM STOC,

1998.

[11] J. Buhker, •gEfficient large-scale sequence comparison by locality

seneitive hashing,•h Bioinformatics vol.17, no.5, pp. 419-428, 2001.

[12] S. Hu, •gEfficient video retrieval by locality sensitive hashing,•h

ICASSP 2005, pp. 449-452, 2005.

[13] P. Indyk and N. Thaper, •gFast color image retrieval via embeddings,•h

Workshop on Statistical and Computational Theories of Vision (at

ICCV), 2003.

[14] LSH Algorithm and Implementation (E2LSH)

http://web.mit.edu/andoni/www/LSH/index.html

[15] Y. Yu, C. Watanabe, and K. Joe, •gTowards a fast and efficient

match algorithm for content-based music retrieval on acoustic data,•h

ISMIR 2005, pp. 696-701, 2005.

[16] Y. Yu, M. Takata, and K. Joe, •gIndex-based similarity searching with

partial sequence comparison for query-by-content audio retrieval,•h

Proc. LSAS06, 1st Workshop on Learning Semantics of Audio Sig-

nals, pp. 76-86, Athens, Greece, Dec. 2006.

[17] Y. Yu, M. Takata, and K. Joe, •gSimilarity searching techniques in

content-based audio retrieval via hashing,•h Proc. MMM07, 13th In-

ternational Multimedia Modeling Conference, Singapore, Jan. 2007.

Springer LNCS4351, vol.1, pp. 397-407, 2007.

[18] K. Kashino, G. Smith, and H. Murase, •gTime-series active search for

quick retrieval of audio and video,•h Proc. ICASSP, vol.VI, pp. 2993-

2996, 1999.

YU et al.: EFFICIENT QUERY-BY-CONTENT AUDIO RETRIEVAL

1739

Yi Yu is a Ph. D. student at Graduate School

of Humanity and Science, Nara Women's Uni-

versity. She received Bachelor's degree of En-

gineering from University of Science and Tech-
nology of China in 2001 and Master's de-

gree of Science from Nara Women's Univer-
sity in 2006 respectively. Her research inter-

ests include Multimedia Database Organization,

Index-based Query-by-Content Audio Informa-

tion Retrieval and Audio Content Representa-

tion and Audio Annotation.

Kazuki Joe received the B.S. in Mathe-

matics from Osaka University in 1984, and M.S.

and Ph. D. in Information Science from Nara In-

stitute of Science and Technology in 1995 and

1996, respectively. He is currently a Professor at

Nara Women s University. From 1984 to 1986,

he was a Software Engineer of Japan DEC.

From 1986 to 1990, he was a Researcher of ATR

Auditory and Visual Perception Research Lab.

From 1991 to 1993, he was a Senior Researcher

of Kubota corporation. From 1996 to 1997, he

was an Assistant Professor at Nara Institute of Science and Technology.

From 1997 to 1999, he was an Associate Professor at Wakayama Univer-

sity. His research interests include parallel computer architectures, analytic

modeling for parallel computers, parallelizing compilers, neural networks,

image processing and multimedia.

J. Stephen Downie is an Associate
Professor at the Graduate School of Library

and Information Science, University of Illinois

at Urbana-Champaign (UIUC). He earned his

MLIS (1993) and Ph. D. (1999) in Library and

Information Science from University of West-

ern Ontario. Professor Downie is Director of the

International Music Information Retrieval Sys-

tems Evaluation Laboratory (IMIRSEL). He is

Principal Investigator on the Human Use of Mu-

sic Information Retrieval Systems (HUMIRS)

and the Music-to-Knowledge (M2K) music data-mining projects. He has
been very active in the establishment of the Music Information Retrieval
and Music Digital Library communities through his ongoing work with the
ISMIR series of MIR conferences as a member of the ISMIR steering com-
mittee. His research interests include design and evaluation of IR systems,
multimedia and music information retrieval, digital library design and Web-
based music analysis technologies. Dr. Downie's research is supported by
the Andrew W. Mellon and the National Science Foundation (NSF) under
Nos. IIS-0340597 IIS-0327371.

