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PAPER

Efficient Query-by-Content Audio Retrieval by Locality Sensitive 

Hashing and Partial Sequence Comparison*

Yi YU†a), Student Member, Kazuki JOE†, and J. Stephen DOWNIE† †, Nonmembers

SUMMARY This paper investigates suitable indexing techniques to en-
able efficient content-based audio retrieval in large acoustic databases. To 
make an index-based retrieval mechanism applicable to audio content, we 
investigate the design of Locality Sensitive Hashing (LSH) and the partial 
sequence comparison. We propose a fast and efficient audio retrieval frame-
work of query-by-content and develop an audio retrieval system. Based on 
this framework, four different audio retrieval schemes, LSH-Dynamic Pro-
gramming (DP), LSH-Sparse DP (SDP), Exact Euclidian LSH (E2LSH)-
DP, E2LSH-SDP, are introduced and evaluated in order to better understand 
the performance of audio retrieval algorithms. The experimental results in-
dicate that compared with the traditional DP and the other three compititive 
schemes, E2LSH-SDP exhibits the best tradeoff in terms of the response 
time, retrieval accuracy and computation cost.
key words: indexing, locality-sensitive hashing, content-based audio re-
trieval, dynamic programming

1. Introduction

Content-based audio retrieval is not only a very promis-
ing research topic but also one of the main problems, in 
multimedia information processing. Handling audio se-
quence data is usually time-consuming due to the high di-
mensionality of the features, which makes it inconvenient 
to utilize the potential content-based information retrieval 
techniques on the Internet or personal media devices. To 
access a huge mass of audio information efficiently, it is 
necessary to explore the audio information, facilitate the 
management of audio data and serve multimedia applica-
tions. Consequently various indexing structures have been 
reported in the study of audio retrieval. These include, for 
example, hierarchical structure [1], R-trees [2], M-trees [3], 
KD-trees [4], active-search [18], Locality Sensitive Hashing 
(LSH) [5], [16], [17].

As far as the creation of query-by-content audio re-
trieval mechanism via indexing techniques is concerned the 
main challenges are as follows: (1) How to characterize a 
corpus of acoustic objects with a corpus of relevant features.
(2) How to organize audio features by indices. (3) How 
to locate the desired music segments with a given acoustic 

query sequence within the acceptable time.

There are several levels of closeness with increasing 

logic level in the similarity match between two songs [5]. 

We aim to search in an acoustic database the songs with 

the same main melody as the query and accelerate the re-

trieval by the indexing technique. This paper extends our 

previous work [16], [17], focusing on the studies of the al-

gorithms to evaluate its scalable performance. Mainly we 

show how to design the audio indexing structures and how to 

realize partial sequences comparison so as to support scal-

able query-by-content audio retrieval. The retrieval proce-

dure can be divided into two stages. Firstly features of the 

reference songs are organized in the database where •gindex-

ing•h means assigning hash values to features so that features 

are stored in the buckets according to their hash values. In 

times of query •gretrieving•h means (i) finding in the database 

the features that may be similar to the features of the query 

by the hash values and (ii) generating a ranked list of ref-

erence songs in the decreasing order of their similarity to 

the query. We depend on mapping features to hash values 

by heuristics and reducing pairwise comparisons (pairwise 

comparison means the distance calculation between a pair 

of features) by designing hashing structure.

This work begins with a novel approach to making ef-

fective comparisons of the massive acoustic sequences by 

designing appropriate metrics and algorithms to avoid all 

pairwise comparisons of feature sequences. We care about 

indexing structure on acoustic sequences and reorganiza-

tion of feature sequences. We present a novel framework 

to perform audio indexing and retrieval and provide scal-

able content-based searchability. The following retrieval 

scenario is considered: given a corpus of N musical refer-

ence songs find the similar songs with a query input of a 

much shorter length. First each audio data is divided into 

frames and spectral features are extracted. The reference 

songs can be represented by R={ri,j:ri,j•¸Ri, 1•…i•…

N, 1•…j•…|Ri|}, where ri,j is the jth spectral feature of the ith 

reference song Ri. Then the spectral features of the query, 

q1, q2,•cqQ, are used to filter the resemblances by Locality 

Sensitive Hashing (LSH) or Exact Euclidean LSH (E2LSH). 

The resembled features of the ith reference songs are reorga-

nized into partial sequences and compared with the query by 

either Dynamic Programming (DP) or the proposed Sparse 

DP (SDP).

The rest of the paper is organized as follows: Sect. 2 

provides the background of the LSH/E2LSH and related 

works. Section 3 presents the framework of audio index-
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ing and describes content-based retrieval schemes in detail. 

Section 4 lists the simulation environment and analyzes the 

experiment results. Finally Sect. 5 concludes the paper.

2. Background and Related Work

2.1 Basics of LSH/E2LSH

LSH is an index-based data organization structure proposed 

to improve the scalability for retrieval over a large database, 

which essentially is a spatial access method-construct 

some locality sensitive hashing functions to perform index-

ing in parallel in Euclidean space [9], [10]. LSH plays an 

important part in various applications, e.g., database access 

and indexing [11], data compression and mining, multime-

dia information retrieval [5], [12]. In particular the features 

of the objects are represented as the points-form in the high 

dimensional space and a distance metric is adopted to judge 

whether two multimedia objects are similar (such as au-

dio [5], video [12], image [13]).

E2LSH [14] is to solve Approximate Nearest Neigh-

bors problem in a high-dimensional Euclidean space. It en-

hances LSH to make it more efficient for the retrieval with 

the very high dimensional feature. It performs locality sen-

sitive dimension reduction to get the projection of the fea-

ture in different low-dimension sub-spaces. With multiple 

hash tables in parallel, the retrieval accuracy can be guar-

anteed meanwhile the retrieval speed is accelerated. If two 

features (q, r) are very similar they will have a small dis-

tance •aq-r•a, hash to the same value and fall into the same 

bucket with a high probability. If they are quite different 

they will collide with a small probability. A function family 

H={h:S•¨U}, each h mapping one point from domain 

S to U, is called locality sensitive, if for any features q and 

r, the probability 

Prob(d)=PrH[h(q)=h(r):‖q-r‖=d] (1)

is a strictly decreasing function of d. That is, the col-

lision probability of features q and r is diminishing as 

their distance increases. The family H is further called 

(R, cR, p1, p2) (c>1, p2<P1) sensitive if for any q, r•¸S, 

if‖q-r‖<R, PrH[h(q)=h(r)]≧p1

if‖q-r‖>cR, PrH[h(q)=h(r)]≦p2 (2)

A good family of hash functions will try to amplify the gap 

between p1 and P2.

Consider a distribution D over  and any i.i.d. ran-

dom variables x1, x2,•c,xl, x with distribution D. Let X=

(x1, X2,•c,x1)T. If there exists P so that for any l-dimension 

real vector vk=(vk1, vk2,•c,vkl )T, fvk(X)=ƒ°li=1vkixi has 

the same distribution as ƒ°li=1|vki|P)1/Px, the distribution D 

is called P-stable. vk satisfying (ƒ°li=1|vki|=1 makes 

fvk(X) follow the same distribution D as x.

In E2LSH the locality sensitive dimension reduction 

can be applied on a vector whose each dimension follows 

the same P-stable distribution. Each fvk(•E) with the parame-

ter vk (1•…k•…m) generates a single output. Then the l*m 

matrix V=(v1, v2,•c,vm) leads to an m-dimension vec-

tor fv(X)=(fv1(X), fv2(X),•c,fvm(X))T, each dimension of 

which also follows the distribution D. When each dimension 

of q and r follows a P-stable distribution, each dimension of 

fv(q) and fv(r) also follows the same distribution. Then 
q and r can be replaced by fv(q) and fv(r) respectively in 
Eq. (1-2).

2.2 Acceleration of Sequence Comparison

A quick search engine is of great importance to retrieval sys-
tems. Many researchers [6]-[8] have studied DP and also 
applied DP or optimized DP in content-based music infor-
mation retrieval to match the query input against the songs 
in the database. Usually DP requires the calculation of dis-
tance between all pairs of features so as to fill in the DTW 
table and then performs the sequence comparison.

Instead of exhaustive search, reduction of the number 
of comparisons can effectively decrease the response time. 
In our previous work [15] spectral-similarity based feature 
merge was proposed to remove the spectral redundancy. In 

[2] the extracted features are grouped by Minimum Bound-
ing Rectangles (MBR) and compared with an R*-tree. In 

[18] the time-series active search scheme is adopted. Fea-
tures in a window are summarized by a histogram. Though 
the number of features can be reduced in [2], [18], some-
times the summarized (grouped) features may not suffi-
ciently discriminate two different signals.

Some researchers also applied LSH in the field of au-
dio sequences comparison. Yang used random sub-set of 
the spectral features to calculate hash values for the paral-
lel LSH hash instances in [5]. With a query as input, its 
features match reference features from hash tables. Then 
Hough transformation is performed on these matching pairs 
to detect the similarity between the query and each reference 
song by the linearity filtering.

2.3 Our Work

Similar to [5] our retrieval scheme adopts the spectral fea-
ture. We would like to avoid exhaustive comparison as sug-

gested by [2], [5], [18]. Compared with [2] and [18] where 
the feature summary is used to reduce the number of to-
tal features, we filter features in the database that are simi-
lar to the query by LSH/E2LSH without losing the discrim-
inating capability. In comparison with [5] where LSH is 
also adopted to organize features, we utilize both LSH and 
E2LSH and report retrieval mechanisms of index-based au-
dio sequences, data organization structure of features as well 
as recreation and comparison of the feature sequences. In 
our system DP takes the query sequence and the partial ref-
erence sequence (partial sequence has a shorter length com-

pared with the original one) as input and compares them 
over a DTW table with a smaller size. The proposed SDP 
uses the full size DTW so that the calculated distance in 
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the filtering stage by LSH/E2LSH can be directly filled 
in, avoiding recalculation of the distances. The extensive 
comparison among the presented four schemes (LSH-DP, 
LSH-SDP, E2LSH-DP, E2LSH-SDP) shows that the optimal 
combination-E2LSH-SDP-outperforms the others.

3. Design of Index-Based Audio Content Retrieval

We focus on providing fast and efficient content-based re-
trieval mechanisms of searching audio sequences data over 
a large audio sequences database by utilizing a suitable in-
dexing structure. Our retrieval system allows a user to take a 
fragment of the query song as input, performs content-based 
audio retrieval and returns songs similar to this query frag-
ment.

3.1 The Basic Framework

The indexing framework for music information retrieval 
consists of two main parts: (i) building indexing data struc-
ture of feature sequences and (ii) matching the recovered 
feature sequences. For the first object E2LSH/LSH estab-
lishes an effective data structure for acoustic-based music 
information. For the second object SDP/DP matches the re-
covered feature sequences and obtains the song closest to 
the query. Therefore, we propose four different retrieval 
schemes, LSH-DP, LSH-SDP, E2LSH-DP and E2LSH-SDP. 
Based on this general framework we want to evaluate the 
four schemes to solve the problem of scalable audio con-
tent retrieval and select the best tradeoff according to the 
response time, retrieval accuracy and computation cost. The 
details are discussed in the experiment parts.

We begin by introducing the basic query-by-content 
framework of acoustic-based music information retrieval. 
This framework is shown in Fig. 1 and its main procedure 
is summarized as follows: For each frame, its high di-
mensional spectral feature, Short Time Fourier Transform 
(STFT), is calculated. The spectral features of all the ref-
erence songs in form of searchable symbols are stored in

Fig. 1 An index-based audio retrieval framework. It mostly consists of 

locality sensitive feature mapping, parallel hash tables, filtering features, 

sequence recovery and matching.

the hash tables according to their respective hash values. 

E2LSH/LSH provides an effective organization of the au-

dio features, gives a principle to store the feature sequences, 

and facilitates an efficient sequences reconstruction . With 

each feature in the query sequence, the candidate features 

are searched in the hash table. The non-similar features are 

filtered out. Then the remaining features are reorganized 

into new sequences and the SDP/DP algorithm is employed 

to perform an accurate similarity comparison between the 

query and the partial reference sequences.

The Central Limit Theorem states that if the sum of 

many independent and identically-distributed random vari-

ables has a finite variance, it will be approximately normally 

distributed (i.e., following a Gaussian distribution). In the 

calculation of SIFT, each bin is a weighed sum of (e.g. 

N=2048) consecutive random audio samples and can be 

approximated by a Gaussian distribution. Any linear com-

bination of Gaussian distribution is still Gaussian. In such 

cases P equals 2 in the calculation of E2LSH.

3.2 Calculating Hash Values

First we consider a single hash instance, which logically 

consists of all the features of the audio sequences in the 

database. Each of the audio sequences is divided to frames. 

For each frame STFT is calculated as the spectral feature 

and regarded as a searchable symbol in Euclidean space. 

This feature goes through a linear transformation-locality 

sensitive mapping. When LSH is used, this mapping gener-

ates a new feature with the same size. While in E2LSH, 

the mapping also reduces the feature dimension: a high-

dimensional feature X is projected to a low-dimension sub-

feature fv(X) with the P-stable random matrix V. The sub-

feature is of dimension m. Then the sub-feature is per-

dimensionally quantized to an integer vector, followed by 

hash value calculation. This quantization ensures the local-

ity sensitivity in the hash. An equivalent hash function g(•E) 

involves the effect of fv(•E) and the hash function H(•E). In the 

following, g(•E) also means an audio bucket storing all the 

features with the same hash value. Its meaning is obvious 

from the context.

Figure 2 gives an example of the hash instance with 

two original features q0 and r0. The new features after lo-

cality sensitive mapping are q and r. Then per-dimension 

quantization is performed. This results in integer vectors. 

With the random weight, their hash values, g(r0) and g(q0) 

Fig. 2 Hash calculation.
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are calculated. Due to the random weight the hash values of 

reference features are pseudo-random and belong to a wide 

range. By the following mod operation on the hash table 

size they are projected to a predefined integer range (e .g., 

0-127) and associated with the buckets. In such cases, the 

hash table size needs not be a prime and a power of two (e.g. 

128) makes it. convenient for the mod operation.

If q and r have a short Euclidian distance, then with a 

high probability they are quantized to the same integer se-

quences and generate the same hash value. Since r is stored 

in the bucket H(r), it is expected that r0 can be found by 

q0 when g(q0)=g(r0). Sometimes even two vectors with 

a close distance may be quantized to two different integer 

vectors because the values of a specific dimension belong 

to adjacent quantization space. As a result the two close 

vectors have different hash values. More hash instances are 

necessary to resolve this problem and increase the retrieval 

accuracy of LSH/E2LSH, as was stated in [14]. Therefore 

we construct several hash tables, each logically containing 

all the features of the references. Hash instances are dis-

tinguished by their own locality sensitive mapping. The kth 

hash instance has an equivalent hash function gk(•E), a combi-

nation of fVk(•E) and Hk(•E). Then it is probable that the quan-

tized vectors of two similar features are the same in at least 

one of the hash instances.

3.3 Feature Organization in the Hash Tables

The jth spectral feature of the ith reference song, ri,j, is stored 

in gk(ri,j), k=1, 2,•cIts song number i and the corre-

sponding time offset j are stored together with the feature, 

for the purpose of providing facilities for reconstruction of 

the partial acoustic sequences after the filtering stage.

3.4 Filtering Features by LSH/E2LSH

In the query stage a sequence of query features q1, q2,•c,qQ 

is used to find the closest reference song. With a query fea-

ture qm, the candidate reference features in the bucket of the 

kth hash table, gk(qm), can be obtained. This bucket contains 

all the features matching to the same hash value. Though 

it is probable that the resemble features lie in the bucket, 

other non-similar features also exist due to the limited hash 

table size. It is necessary to remove these non-similar fea-

tures so as to reduce the post computation. We define a 

distance function that can represent the similarity degree, 

d(X,Y)=•aX-Y•a2/•ã•aX•a2•E•aY•a2, the normalized Euclidean 

distance. From the bucket gk(qm), we get the match pairs 

<qm, ri,j, d>. If the distance d between the feature ri,j and 

qm is greater than ƒÂ, the feature ri,j is filtered out and dis-

carded by Eq. (3). Namely, we would like to retain such 

features that lie within the ball centered at qm with a radius 

δ.

Sk,i,m={ri,j:ri,j∈gk(qm), d(fVk(qm), fVk(ri,j))≦ δ} (3)

The union Sk ,i=•¾mSk,i,m gives the candidate features 

of the ith reference obtained from the kth hash table for the 

whole query sequence. And the total candidates of the ith 

reference are obtained from all the hash tables as Si=•¾kSk,i. 

Since in E2LSH fVk(X) has a much smaller size than X, the 

filtering stage of E2LSH can be greatly accelerated in con-

trast to LSH, as is verified by the simulation.

Figure 3 gives an example of single feature matching 

with two hash instances, where q is similar to f1, f2, f3. In 

the first hash instance, q, f1, f3 and f5 have the same hash 

value. With q, f1 and f3 can be found and f2 is missing. The 

non-similar f5 can be filtered out if the distance •af5-q•a is 

greater than the threshold ƒÂ defined in Eq. (3). In the sec-

ond hash instance, f1, f2 and f4 have the same hash value 

as q and f3 is missing. f4 can be filtered out if the distance 

‖f4-q‖ is greater than ƒÂ. In the best case where both f4 

and f5 are filtered out, the union of results from two hash 

instances gives the similar set {f1, f2, f3} as desired. Due to 

the approximation property of LSH/E2LSH, the non-similar 

features f4 and f5 may also have a distance to q less than ƒÂ 

and remain in the similar set. Then the following sequence 

comparison is necessary to prevent the non-similar songs 

from appearing in the final ranked list. In Fig. 4 a query 

with 5 features is used to find the target reference song with 

the help of two hash tables. With each of the query features, 

the reference features in the two buckets of the two hash 

tables are obtained and the non-similar features are filtered 

out with the best effort. With 5 query features similar refer-

ence features in the 10 buckets are obtained and finally 14 

features remain.

3.5 Sequence Matching

Few features of the songs that are non-similar to the query 

remain after filtering. Among the features of the song that 

Fig. 3 Matching with a single feature.

Fig. 4 Matching with a sequence of features.
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actually match the query only part of features remain. In 

addition the remaining features that belong to the same song 

may not be in the same time order as those of the query. The 

reordering of the remaining features of the ith reference song 

is to reorganize the features of the partial reference sequence 

in the ascending time offset j1, j2,•c,jR, where j1, j2,•c

are non-continuous integers indicating the frame number of 

the partial reference sequence. Then the query q1, q2,•c,qQ 

is matched against each partial reference sequence to find 

the desired song with the DP method similar to [7] or the 

proposed SDP scheme.

3.5.1 Sequence Comparison with DP

Assume that Di(m, jn) is the minimum distance between the 

query and the ith reference song, beginning from the leftmost 

side (1, j1) of the DTW table to the current position (m, jn). 

Equation (4) gives the recursive relation 

Di(m, jn)=d(qm, ri,jn)+min

{Di(m-2, jn-1)
Di(m-1, jn-1)
Di(m-1, jn-2)

(4)

The matching features from different hash tables be-
long to different sub-space and have different distance to the 

query. Then the Euclidean distance d(qm, ri,jn) calculated 
from the original features qm and ri,jn is used in Eq. (4). 
A single match pair <qm, ri,jn, d>is enough to provide the 
match information and the duplicate match pairs are ne-

glected. Then the distance between the query and the ith 
reference is 

Di=minDi(Q,jn) (5)

Among all the reference songs, the following equation 

gives the one that best matches the query.

iDP=arg min Di (6)

3.5.2 Partial Sequence Comparison with SDP

A much simple comparison way is to directly utilize the dis-

tance calculated in the filtering stage by filling the distance 

in a DTW table. However, as shown in Fig. 5, most of the 

points in the DTW table are gone after filtering. Therefore, 

the conventional DP does not work well. We perform the 

sequence comparison in a different way. For each matched 

pair <qm, ri,jn> from kth hash table, the reverse of its distance 

is used as the weight in the matching procedure, as shown in 

Eq. (7). ƒÂ is the filtering threshold used in Eq. (3). Therefore 

the weight is no less than 1. With Wmax, an occasional per-

fect match of a single feature has less effect on the sequence 

comparison. On the other hand, if the pair <qm, ri,jn> does 

not exist, its weight is set to 0.

wk(qm,ri,jn)={min{ƒÂ/d(fVk(qm), fVk(ri,jn)), Wmax}

0, <qm,ri ,jn> does not exist
(7)

The recurrence of a single match pair in different 

Fig. 5 Sequence comparison with SDP. Since most of the pairs are re-

moved by LSH/E2LSH and the filtering stage, the remaining points are 

sparse in the DTW table.

hash tables means that the pair is a suitable match with 

a high probability. Then instead of a single weight in 

Eq. (7), the weights of the duplicate match pairs (with the 

same suffix) from different hash tables can be accumulated 

by ƒ°k wk(qm,ri ,jn) and in Fig. 5 the match pair becomes 

<qm, ri,jn, weight>, where weight equals ƒ°k wk(qm,ri,jn).

The sequence comparison is to select the path that max-

imizes the total weight. Despite the absence of most match-

ing pairs in Fig. 5, the matching path still contains as many 

points as possible. The maximum weight is found by the 

iteration in Eq. (8)

Wi(m,jn)=ƒ°wk(qm,ri,jn)+max{

Wi(m-2, jn-1)
Wi(m-1, jn-1)
W1(m-1, jn-2)

(8)

For the ith reference song, its weight Wi is obtained by 
Eq. (9). Then by Eq. (10) the one with the maximum weight 
matches the query.

Wi=maxjnWi(Q,jn) (9)

iSDP=arg maxi Wi (10)

4. Experiments Results and Analysis

The experiments have been carried out on the acoustic 

database with both monophonic and polyphonic melodies. 

Altogether we collected 506 songs from the public web 

sites. These songs belong to three sub-sets. (i) 122 western 

songs falling into 4 genres: dance, classical, jazz and coun-

try. (ii) 67+44•~2=155 Chinese folks from Twelve Girls 

Band. (iii) 229 popular songs from two female Chinese 

singers. Among the 506 songs, 44 songs in the second sub-

set have two versions with possible tempo variations. The 

rest 506-44•~2=418 songs have single version. These 418 

single-version songs and 44 out of the two-version songs 

form the database and each of the 462 references consists 

of a 60-second-long melodic slip. We also prepared 462 

queries, each being 6-8 seconds long. 418 queries cor-

responding to the single-version songs are randomly seg-

mented from the reference songs and have different frame 
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alignment (and different features). The rest 44 quires cor-
responding to the two-version songs are extracted from the 
version different from the one in the database. Noise is also 
added to each query song and the signal to noise ratio is 
20dB.

The songs are in single-channel wave format, 16 bit per 
sample, and the sampling rate is 22.05KHz. The direct cur-
rent component is removed and the music is normalized with 
the maximum value equaling 1. Each audio data is divided 
into overlapped frames. Each frame contains 1024 sam-
ples and the adjacent frames have 50% overlapping. Each 
frame is weighed by a hamming window and further ap-
pended with 1024 zeros to fit the length of FFT (2048 point). 
Like [5], the spectrum from 100Hz to 2000Hz is used as the 
feature. Accordingly, each feature has the size 177. We use 
several hash instances, each having 128 entries. In E2LSH 
the dimension of the sub-feature is chosen to be m=8 by 
some initial experiment result.

In our retrieval system each song in the database is 
accompanied with its feature sequence. When the system 
boots the hash tables are constructed in the memory. There-
fore, utilization of LSH/E2LSH has no extra disk storage re-
quirement though it does require some memory to hold the 
hash tables.

Figure 6 gives a query-by-content music information 
retrieval demo system developed under the matlab environ-
ment. The query has two sources, either the recording via 
a microphone or those in the query list (on the left side).
From the right side the spectral feature, matching method 
and LSH scheme can be selected. The ranked retrieval list 
gives the top-4 results, with the best matching song as the 
first. Both the query and retrieval result can be played to 

Fig. 6 Demo system.

confirm the correctness of the retrieval.

In the current setting on the figure •gSparse DP•h 

of •gMatching Method•h, •gUse LSH•h and •gE2LSH•h, •gBy 

Recording•h of •gRetrieval Option•h are set respectively. The 
“Ranked 

Retrieval Result•h part shows 4 songs that best 

match the recorded Ss-long piece of the query song called 

“ victory”, with the desired song (•gvictory•h) appearing in the 

top.

4.1 Evaluation Metrics

For the purpose of providing a thorough understanding of 
our music retrieval mechanism, four different schemes are 
examined and compared on the basis of the general frame-
work. In the experiment, we mainly consider three metrics 
that can evaluate every scheme roundly.

1) Matched percentage. Since LSH/E2LSH is used to 
avoid pairwise comparison, the first question always touch 
on how much it can reduce the computation. Figure 7 shows 
4 parameters.

● Ntm: the number of total features in a reference song.
● Ndm: the number of directly matched features in a ref-

erence song with LSH/E2LSH before filtering.
● Nmm: the number of features of the matched part in the 

desired reference song. The desired song is known in 
the preparation of the query. By applying normal DP 

(without hash) to compare the query with its desired 
song we can learn the start and end point of the query 
in the reference song, and then Nmm.

● Nrm: the number of remaining features of matched part 

in the desired reference song after the filtering stage in 
LSH/E2LSH.

Further let Nfm represent the number of remaining ones 
of the Ndm features after filtering. From these parameters 
we define three ratios Ndm/Ntm, Nfm/Ntm and Nrm/Nmm as 
Roughly Matched Percentage (RMP), Filtered Matched Per-
centage (FMP) and Valid Match Percentage (VMP) respec-
tively. RMP reflects how much pairwise comparison can be 
reduced, FMP is associated with the potential reduction of 
computation in the sequence comparison stage and VMP af-
fects the retrieval accuracy. With a good design of the hash 
functions one will expect a low RMP/FMP and a high VMP.

2) Computation time. We will compare the filtering 

Fig. 7 Matched part of the desired reference.
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time between LSH and E2LSH, and the sequence compari-
son time between DP and SDP. The retrieval time of a query 
is the sum of its hash value calculation time, its filtering time 
and its sequence comparison time.

3) Retrieval accuracy. In our experiment each of 
the queries is used to retrieve the desired song from the 
database. The retrieval accuracy is defined as the ratio of 
the number of correctly retrieved songs to that of the total 

queries, as shown below: 

#queries with desired songs in ranked list/

#queries 100%(11)

4.2 Matched Percentage

In the conventional CBMR system pairwise comparison is 
done by the DP procedure. In our scheme LSH/E2LSH re-
duces most of the pairwise comparison. Its effectiveness in 
computation cost reduction is reflected in RMP/FMP. Fig-
ure 8 shows RMP under different number of hash tables. 
The estimation of RMP is simply (number of hash tables)/

(number of buckets in each hash table). The curves of LSH, 
E2LSH and the estimation match very well. This reflects 
that the hash values of all the reference features almost 
evenly distribute over all the buckets, which is the desired 
case.

LSH/E2LSH reduces most of the pairwise comparison. 

However, the features with the same hash value are not nec-

essarily similar to the query feature. The filtering is done 

just after indexing the hash tables to keep only the near 

neighbors of the query. The filtering threshold ƒÂ in Eq. (3) 

plays an important role. It determines how many features 

will remain, which in turn affects the computation and the 

retrieval accuracy.

Table 1 shows the normalized FMP, the ratio of FMP to 

RMP achieved at three hash instances in Fig. 8. The normal-

ized FMP actually equals Nfm/Ndm, the ratio of the number 

of remaining features after filtering to the number of features 

found by LSH/E2LSH before filtering. Due to the limited 

bucket entries, many non-similar features fall in the same 

bucket as the query features. Table 1 indicates that by set-

ting the filtering threshold most of the non-similar features 

can be filtered out and a low FMP can be achieved in both 

Fig. 8 RMP under different number of hash tables.

LSH and E2LSH. FMP increases as ƒÂ does, i.e., more fea-

tures remain after filtering with a loose threshold and the 

subsequent sequence comparison takes longer time . Table 2 

shows VMP under different filtering threshold for LSH (Ta-

ble 2 (a)) and E2LSH (Table 2 (b)). A bigger ƒÂ leads to 

a higher VMP. But it also results in a larger RMP/VMP 

which is associated with heavy computation. By selecting 

a suitable ƒÂ for the filtering stage, a low RMP/FMP can be 

achieved while VMP is maintained at a certain level . It is 

shown later that even a moderate VMP can achieve a high 

retrieval accuracy. Hereafter, unless otherwise specified SLSH 

is set to 0.03 and SE2LSH is set to 0.0075.

Figure 9 reveals that the increase of hash tables only 

results in a little gain in VMP. Therefore in the following 

three hash tables are the default setting.

4.3 Computation Time

LSH/E2LSH hash table construction is usually time-

consuming. Fortunately this is done before the actual query 

takes place. The hash value of the query is calculated just 

before retrieval. For a short query this time is almost negli-

gible.

The filtering stage in LSH/E2LSH is quite different 

since the distance is directly calculated with the high di-

mensional feature in LSH while in E2LSH the distance is 

calculated with the sub-features of a low dimension. Fil-

tering takes much time, especially when the feature has a 

big size in the LSH scheme. With E2LSH the reduction of 

Table 1 Normalized FMP under different filtering threshold (3 hash 

tables).

Table 2 VMP under different filtering threshold (3 hash tables).

Fig. 9 VMP under different number of hash tables (ƒÂLSH=0.03, 

ƒÂ E2LSH=0.0075).
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Fig. 10 Filtering time in LSH and E2LSH.

Fig. 11 Sequence comparison time in DP and SDP under different num-

ber of hash tables (ƒÂE2LSH=0.0075).

feature dimension greatly decreases the filtering time. Fig-

ure 10 shows that with more hash tables, the filtering time in 

both LSH and E2LSH increases, but at different rate, which 

indicates that E2LSH is more suitable for retrieval with high-

dimensional features.

Two sequence comparison methods are used in our 

schemes. Both the number of hash tables and the filtering 

threshold affect the comparison. Figure 11 shows the se-

quence comparison time with respect to the number of hash 

instances and. Fig. 12 shows the similar results under differ-

ent filtering threshold ƒÂ. When few reference features are 

matched, DP and SDP almost have the same retrieval speed. 

This occurs whenn there are few hash instances in Fig. 11 

or the filtering threshold is low in Fig. 12. As the num-

ber of remaining features increases, SDP has very obvious 

superiority over DP since it avoids the calculation of fea-

ture distance and its sequence comparison time approaches 

a steady value in Figs. 11-12, which guarantees the worst-

case retrieval time. This can be explained as follows.

In DP the query is compared with the partial reference 

sequence over a DTW table of the size (length of query)•~

(length of the partial reference). The DTW table becomes 

smaller in case few reference features remain. However DP 

involves the calculation of pairwise distance among the re-

Fig. 12 Sequence comparison time in DP and SDP under different ƒÂ (3 

hash tables).

Table 3 Average retrieval time under different schemes .

maining features. In contrast, in SDP, the feature distance 

is taken from the filtering stage. But in the filtering stage 

SDP does not know the final length of the partial refer-

ence. Then it constructs a DTW table of full size (length 

of query)•~(length of the reference) so that the weight cal-

culated in Eq. (7) can be directly filled in. As the number 

of hash instances increases in Fig. 11 or the filtering thresh-

old increases in Fig. 12, the number of VMP also increases, 

however in a non-linear way. The biggest gain of VMP is 

obtained by going from single hash instance to two hash 

instances, or the filtering threshold going from 0.0025 to 

0.005. Further increase of hash instance or filtering thresh-

old yields diminishing returns in terms of VMP and causes 

little increase in the computation cost in Eq. (7). Meanwhile 

the best path search over a full-size DTW takes a fixed time 

in Eq. (8). Then in a total the sequence comparison time of 

SDP approaches a steady value. Therefore SDP is preferred 

when there are more hash instances or the filtering threshold 

is large.

To show the effect of hashing, Table 3 lists the aver-

age retrieval time consumed for each query under the dif-

ferent schemes. The conventional DP (without hashing) 

takes 21.7s. In comparison, E2LSH-SDP reduces the time 

to 0.51s, accelerating the retrieval speed by 42.7 times.

4.4 Retrieval Accuracy

LSH/E2LSH was initially proposed to retrieve from a 

database by single feature. To acquire a high retrieval ac-

curacy, many hash tables are required, which increases the 

filtering time. In our scheme, LSH/E2LSH is used for au-

dio sequence comparison. Even though the retrieval ac-

curacy of a single feature is not very high, the following 

sequence comparison effectively removes the unsimilar se-
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Table 4 Top-4 retrieval accuracy with respect to the number of hash in-

stances (ƒÂLSH=0.03, ƒÂE2LSH=0.0075).

Table S Top-4 retrieval accuracy of LSH/E2LSH (3 hash tables) .

Table 6 Top-t retrieval accuracy with respect to t (ƒÂLSH=0.03, ƒÂE2LSH=

0.0075, 3 hash tables).

quences. Therefore, in our retrieval system, a few hash ta-

bles are sufficient to achieve high retrieval accuracy. Table 4 

shows that the retrieval accuracy is satisfactory with mere 3 

hash tables.

Table 5 shows the retrieval accuracy under different 

filtering threshold ƒÂ. It is obvious that ƒÂLSH=0.03 and 

δE2LSH=0.0075 are suitable thresholds since lower δ de-

creases retrieval accuracy while larger ƒÂ increases the com-

putation cost. Table 6 shows the Top-t retrieval accuracy 

with ƒÂLSH=0.03, ƒÂE2LSH=0.0075, and 3 hash tables. t is 

the length of the ranked list. When the desired song appears 

in the ranked list, the retrieval is regarded as successful. Ac-

cording to Table 6, the four schemes almost have the same 

retrieval accuracy and the retrieval accuracy increases as t 

does. The Top-4 retrieval accuracy is relatively satisfactory.

5. Conclusions

We have established an index-based query-by-content 

framework for music information retrieval, proposed and 

evaluated four different retrieval schemes. In our system the 

retrieval speed is accelerated in three ways: LSH reduces 

the pairwise comparison; E2LSH further reduces the filter-

ing time by applying locality sensitive dimension reduction; 

SDP decreases the comparison time by avoiding pairwise 

distance computation in the sequence comparison stage.

From the extensive simulation results it is obvious that 

E2LSH-SDP is the optimal choice. We also show that even 

with only a few hash tables and relatively low filtering 

threshold, the retrieval with a sequence still has high accu-

racy.
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