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ABSTRACT
As databases are increasingly outsourced to the cloud, dataown-

ers require various security assurances. This paper investigates one
particular assurance,query integrity, by which a database querier
(either the data owner or a third party) can verify that its queries
were faithfully executed by the cloud server with respect tothe out-
sourced database. Query integrity is investigated in the setting of
dynamic databases, where the outsourced databases can be updated
by the data owners as needed. We present a formal security defini-
tion of query integrity and a provably-secure efficient construction.
Our solution improves upon the state-of-the-art solutionsby addi-
tionally allowing aggregate queries and more flexible join queries.
In addition, we provide better performance by eliminating alinear
factor in the extra storage complexity for security purpose. Our
solution also achieves a trade-off between computational and com-
munication complexities.

Categories and Subject Descriptors
C.2.4 [Communication Networks]: Distributed Systems; H.2

[DATABASE MANAGEMENT ]:

General Terms
Security

Keywords
Dynamic outsourced database, query integrity, authenticated data

structure.

1. INTRODUCTION
When databases are outsourced to the cloud, security issuesarise.

The concern that outsourced data may be modified or (partially)
deleted has led to novel solutions to assuring thestorage integrity
of outsourced data [2, 12, 3, 26, 8]. However,query integrity, ver-
ifying whether or not queries against outsourced data are faithfully
executed, has not been adequately addressed. Intuitively,query
integrity aims to assure the queriers, which can be the data own-
ers and third parties (e.g., the data owners’ business partners), that
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their queries are executed against the outsourced data (i.e., neither
a portion of it nor a modified version of it). Despite some previous
studies [11, 13, 17, 18, 16, 19, 23], the problem of query integrity
largely remains open.

1.1 Our Contributions
We present a formal security definition and an efficient con-

struction for query integrity in the setting of outsourced dynamic
database. Our solution can be characterized from three perspec-
tives: (i) functionality, (ii) security, and (iii) efficiency. From the
perspective of (i) functionality, our solution supports four kinds of
queries — selection, projection, join, and aggregate. Whereas, the
state-of-the-art solutions [13, 23] only support selection, projection
and join queries, but do not support aggregate queries (see Sec-
tion 5.4 for details). Moreover, our solution supports strictly more
flexible join queries, namely that the queries do not have to be de-
fined with respect to pre-defined keyword attributes. In contrast,
the state-of-the-art solutions [13, 23] only support join queries with
respect to pre-defined keyword attributes.

From the perspective of (ii) security, our solution is provably se-
cure as long as the two underlying building-blocks are provably
secure. The first building-block is calledAuthenticated Outsourced
Ordered Data Set, and the second building-block is calledHomo-
morphic Linear Tag. Although our concrete solution is based on
our specific constructions of these building-block, its security anal-
ysis can be directly applied to solutions that use other (perhaps
more efficient) building-blocks as long as the building-blocks sat-
isfy their respective security definitions. This is due to our modular
construction and “compiler"-like security analysis.

From the perspective of (iii) efficiency, our solution is character-
ized as follows. Letm be the number of attributes andn be the
number of tuples.

• Our solution incurs anO(n) storage complexity at the cloud
side for security purpose, in contrast to theO(mn) of [13,
23].

• For selection query, our solution incursO(n) exponentia-
tions at the querier side, which is not as efficient as theO(n)
hash operations of [13] but more efficient than theO(n) ex-
ponentiation operations on bilinear map of [23].

Our solution incurs communication ofO(n) tags, which is
less efficient than theO(log n) hash values of [13] but com-
parable to theO(n) of [23].

• For projection query, our solution incursO(n) modular ex-
ponentiations at the querier side. This is not as efficient as
theO(n) hash operations of [13], but much more efficient
than theO(nk) exponentiation operations on bilinear map



of [23], wherek ≤ m is the number of attributes involved in
the projection operation.

Our solution incurs anO(n+m) communication complexity,
which is the same as in [23] but much more efficient than
theO((m − k)n) of [13], wherek ≤ m is the number of
attributes involved in the projection operation.

• For join queries with respect to two tables ofn tuples andm
attributes, our solution incursO(n) modular exponentiations
at the querier side, which is not as efficient as theO(n log n)
hash operations of [13], but more efficient thanO(n) expo-
nentiation operations on bilinear map of [23].

Our solution incurs the communication complexity ofO(n+
m) tags, which is more efficient than theO(n(log n)) hash
values of [13] and comparable to theO(n) of [23].

The efficiency of our solution mainly comes from the second building-
block mentioned above, which is weaker than the Homomorphic
Linear Authenticator introduced in [2] and may be of independent
value.

1.2 Related Work
The problem of assuring query integrity in the context of out-

sourced data was fundamentally related to the concept of certified
data structures [27], which presents some results that are concep-
tually important but not efficient. The state-of-the-art solutions to
query integrity are due to [13, 23], which are the only solutions
that support selection, projection and join queries simultaneously.
These two solutions follow two respective approaches to thequery
integrity problem.

• The tree-based approach: Basically, this approach uses the
Merkle hash tree [15] or its variants to index search keys [11,
17, 13, 7, 16, 31, 20, 21]. As a result, this approach leads to
logarithmic complexity in terms of both communication and
verification, possibly with some further tricks (e.g., using the
Merkle hash tree to maintain signatures at multiple hash tree
levels [11]). The best solution in this approach is due to [13],
which uses the Merkle B-tree and the Embedded Merkle B-
tree in order to reduce I/O operations.

• The signature-based approach: Basically, this approach uses
the signature aggregation technique [5, 18] to aggregate the
validity of query answers [18, 19, 23, 22]. As a result, this
approach can lead to low (even constant) communication com-
plexity, but may require special treatment for handling more
powerful (e.g., projection) queries and often leads to large
storage and computational complexities. The best solution
in this approach is due to [23], which uses aggregate signa-
tures to sign each attribute and returns a single signature as
the validity proof for projection queries. This solution uses a
chaining signing technique to build the index for the search
key so as to facilitate range queries, and publishes a certi-
fied bitmap corresponding to every update so as to facilitate
dynamic updates. These cause a large storage and commu-
nication overhead while including many exponentiations and
pairing operations.

There are studies that are somewhat related to the theme of the
present paper as well. These include: authenticating the answers to
set operations using accumulator [25], authenticating theanswers
to aggregate queries using authenticated prefix-sums trees[14], au-
thenticating the answers to join queries [30], authenticating count
queries with respect to multi-dimensional data while preserving

privacy [29], and assuring probabilistic integrity in selection and
join operations [28]. Query integrity is also somewhat related to
outsourced verifiable computation [1, 6, 10].

Paper outline.
The rest of the paper is organized as follows. Section 2 presents

the functional and security definitions of outsourced dynamic datab-
ase with the requirement of query integrity. Section 3 describes the
first building-block, and Section 4 describes the second building-
block. Section 5 presents the main construction of authenticated
outsourced dynamic database and analyzes its security and effi-
ciency. Section 6 presents an extension of the constructionto ac-
commodate storage integrity of outsourced dynamic database. Sec-
tion 7 concludes the paper with future research directions.

2. QUERY INTEGRITY FOR OUTSOURC-
ED DYNAMIC DATABASES: DEFINITI-
ONS

In the context of the present paper, a relational database consists
of multiple tables, and each table has multiple tuples and multiple
attributes. As shown in Figure 1, an outsourced database system
has three participants: data owner (who outsources its database to
the cloud), database server (i.e., the cloud), and databasequeriers
(e.g., business partners of the data owner). The data owner uses
a management interfaceto outsource its database to the cloud, in-
cluding dynamic updates of the database. There is also aquery
interface, which can be used by any third party, including the data
owner itself if desired.

Cloud

Data (DB) Owner DB Querier

DB outsource 

(update & 

maintenance)

SQL query

DB

Result & Proof

Management 

interface

Query 

interface

Figure 1: Outsourced dynamic database system model.

Intuitively, query integrity means that any queryqry is faithfully
executed with respect to the databaseD. If we treat a queryqry as
a function, the querier should be able to verify that the answer to
its query is indeedqry(D). The concern is legitimate because the
cloud may execute the queryqry with respect toD′, whereD′ 6= D
because (for example) the cloud vendor may use an outdated ver-
sion ofD rather than the up-to-date one, orD′ ⊂ D because the
cloud vendor wants to spend less resources on searching the entire
D. Moreover, the cloud may return the answer to a modified query
qry′ on databaseD or even someD′ 6= D. As a concrete exam-
ple, a queryqry asks for the tuples with some attribute values that
belong to the interval[10, 100], but the cloud actually returns the
tuples whose attribute values belong to the smaller interval [10, 20].
Without assuring query integrity, the querier cannot tell whether the
returned answer is indeedqry(D) or someqry′(D′).

In what follows, we present the functional and security defini-
tions of Authenticated Outsourced Dynamic Database (AuthDDB),
which was somewhat inspired by the definitions of Authenticated



Data Structures that allow verifiable queries over dynamic sets [24,
25].

Definition 1. (AuthDDB) LetD be a database outsourced to the
server. AnAuthDDB scheme consists of the following algorithms:

• KeyGen: This algorithm takes as input the primary security
parameterℓ, and outputs a pair of private and public keys
(sk, pk). We denote this by

(sk, pk)← KeyGen(1ℓ).

• SetUp: This algorithm is executed by a data ownerO before
outsourcing its databaseD to the server. By taking as input
the private keysk and the databaseD, this algorithm out-
puts some cryptographic auxiliary informationAu and state
informationState. BothD andAu will be outsourced to the
server andState will be made public (so as to allow third
parties to verify the query answers). We denote this by

(State,Au, D)← SetUp(sk,D)

• Update: This protocol is executed between a data ownerO
and the serverS to perform update operations, the detail of
which is described byUpd. By taking as input the private key
sk and the current state informationState, the data owner in-
teracts with the server, which takes as input the stored data
D and the cryptographic auxiliary informationAu. The data
ownerO updates its state information toState′ from the up-
date informationUpd, and the server obtainsAu′ andD′ by
updating the stored database accordingly. We denote the pro-
tocol by

(Au′,State′, D′)← (O(sk,State,Upd)↔ S(Au, D))

• QueryVrfy: This is a protocol between a querierQ, which
issues a SQL queryqry, and the serverS, which answers
the query with the resultRst and a proofPrf. The querier
verifies the resultRst with Prf, and outputsreject if Rst is
not valid with respect to the queryqry and the stateState;
otherwise, the querier acceptsRst andPrf. We denote the
protocol by

{(reject), (accept,Rst,Prf)} ←

(Q(pk, qry, State)↔ S(Au, D))

We require anAuthDDB scheme to be correct, meaning that for
any honest server,(sk, pk) ← KeyGen(1ℓ), (State,Au, D) ←
SetUp(sk,D), polynomial-many executions of theUpdate proto-
col, and a queryqry, it holds that

(accept,Rst,Prf)← (Q(pk, qry,State)↔ S(Au, D))

We require anAuthDDB scheme to be sound, meaning that no
malicious server can return incorrect query answers without being
detected by the querier. Specifically, we say anAuthDDB scheme
is sound if for any queryqry on databaseD, the server can not
return an incorrectRst such that

(accept,Rst,Prf)} ← (Q(pk, qry,State)↔ S(Au, D)).

Formally,

Definition 2. (soundness ofAuthDDB) LetΛ = (KeyGen,SetUp,
Update,QueryVrfy) be anAuthDDB scheme andA be a proba-
bilistic polynomial-time adversary. Consider the following security
game between a challenger andA.

• The challenger runs(sk, pk)← KeyGen(1ℓ) and givepk to
the adversaryA.

• A makes oracle access toSetUp, by presenting a database
D0. The challenger computes

(State0,Au0, D0)← SetUp(sk,D0),

and givesState0,Au0 to A. The challenger makesState0
public.

• A asks for updatingD0 adaptively withUpdi, i ≥ 0. The
challenger computes

(Aui+1,Statei+1, Di+1)←

(O(sk,Statei,Updi,Aui, Di)↔ S(Aui, Di)).

• Amay executeQueryVrfy polynomial-many times. Eventu-
ally,A outputs a queryqry and a query resultRst with proof
Prf.

• A wins the game if

(accept,Rst,Prf)} ← (Q(pk, qry,Statek)↔ S(Auk, Dk))

for somek ≥ 0 andRst 6= localRst, wherelocalRst ←
LocalQuery(qry, Dk) is produced by the challenger that faith-
fully executes queryqry on databaseDk.

We say thatΛ is sound if any polynomial-time algorithmA can
win the game with at most a negligible probability.

3. BUILDING-BLOCK I: AUTHENTICATED
OUTSOURCED ORDERED DATA SET
(AUTHODS)

In this section, we introduce a building block for assuring range
query integrity on ordered data set that is outsourced to theserver.
This building-block is called Authenticated Outsourced Ordered
Data Set (AuthODS), which is similar toAuthDDB.

3.1 Definition of AuthODS

Definition 3. (AuthODS) Let E be an ordered data set. An
AuthODS scheme consists of the following algorithms, which are
similar to those in Definition 1:

• KeyGen: This key generation algorithm generates the pub-
lic/private key asKeyGen in Definition 1.

• SetUp: This setup algorithm is the same asSetUp in Defi-
nition 1, except that the database is replaced with an ordered
setE.

• Update: This update protocol proceeds is the same asUpdate

in Definition 1, except that the update operations are element
insertion/deletion/update on the ordered data setE.

• QueryVrfy: This query protocol is the same asQueryVrfy in
Definition 1, except that it only supports range queryqry(a, b)
that asks for all elements in the interval[a, b].

The correctness ofAuthODS can be defined similar to that of
AuthDDB scheme.



Definition 4. (soundness ofAuthODS) For anAuthODS scheme,
Λ = (KeyGen,SetUp,Update,QueryVrfy), we consider the se-
curity game as in Definition 2, except that (i) the initial database
is replaced with an ordered setE, (ii) the update operation is ele-
ment insertion, deletion or update on the ordered data set, and (iii)
the queries are only range queriesqry(a, b) that ask for elements in
the interval[a, b]. We say thatΛ is sound if any polynomial-time
algorithmA can win the game with at most a negligible probability.

3.2 Construction and Analysis of AuthODS:
Merkle B-Tree

Now we describe anAuthODS scheme, which is a Merkle B-
tree (MB-tree) and has been extensively studied in [13, 17].Merkle
B-tree applies the basic idea of Merkle tree on aB+ tree structure,
where the operations on Merkle B-tree (e.g., insertion and deletion)
are similar to those onB+ tree. The primary advantage ofB+

tree is that it has a large fan-out, which can reduce the number
of I/O operations when searching for an element [13]. LetSig =
(KeyGen,Sign,Verify) be a secure signature scheme. LetE be an
ordered set. The Merkle B-tree scheme consists of algorithms as
follows:

• (sk, pk)← KeyGen(1ℓ): This algorithm runsSig.KeyGen
(1ℓ) to obtain a pair of private and public keys(sk, pk).

• (State,Au)← SetUp(sk, E): This algorithm outputs a suc-
cinct signature which can be used for verification. The struc-
ture of Merkle B-treeT is similar toB+ tree, where the
leaves store elements in the ordered setE, and the values
of internal nodes are computed from the concatenation of the
values of their children via an appropriate hash function. The
root of the tree will be signed to produce the state informa-
tion, denoted byState = Sig.Sign(T ) andAu = T .

• Update: The update protocol fulfills update operations. For
simplicity, we consider the example of the replacement op-
eration while assuming that the replacement preserves the
order of the elements. We refer to [13] for details about the
insertion and deletion operations. SupposeUpd = “update
the elementEi to E′

i”. Upon receivingUpd from the data
owner, the server updatesE to E′ by replacingEi with E′

i,
and updatesT to T ′. The server provides a proof, a path of
Ei in T , namely a sequence including values of the nodes
from Ei to the root of MB-tree as well as the values of these
nodes’ siblings. The data owner can hash the path ofEi from
the bottom to the top and verify whether the root is valid with
respect to stateState or not. If so, the data owner updates
the path from the bottom to the top by replacingEi with E′

i,
which will result in a new root, signs the new root, and sets
State′ = Sig.Sign(T ′); otherwise, the data owner aborts.

• QueryVrfy: Given a range queryqry(a, b), the server outputs
a proofPrf showing thatRst contains all elements in[a, b].

– If Rst is empty, which means there exists somes, such
thatEs < a, b < Es+1. The server returns the proof
Prf including two paths: a path ofEs and a path of
Es+1. The querier hashes each path from bottom to the
top, and verify whether the roots match the stateState,
andEs is neighbor toEs+1. If so, the querier returns
the null setRst, Prf , andaccept. Otherwise, abort.

– If Rst is not null, suppose the query result is(Es, . . . ,
Et), s ≤ t. The server returns the proofPrf includ-
ing two paths: one path of the left-most neighbor leaf

of Es, and the other path of the right-most leaf ofEt.
Then the querier usesPrf and the resultRst to con-
struct aB+ tree, and verifies whether the root of the
this B+ tree is valid forState = Sig.Sign(T ). If so,
the querier returns(Rst,Prf , accept); otherwise, the
querier aborts.

THEOREM 1. Assuming thatSig is a secure signature scheme
and the hash function is collision resistant, the Merkle B-tree scheme
is sound with respect to Definition 4.

4. BUILDING-BLOCK II: HOMOMORPHIC
LINEAR TAG (HLT)

Now we present the second building block,HLT. Intuitively,
HLT offers the following property: If messagesM1, . . . ,Mn are
respectively tagged withσ1, . . . , σn using some cryptographic func-
tion, then for coefficientsc1, . . . , cn in a pre-defined coefficient
space, the aggregate messageM =

∑n

i=1 ciMi can be verified via
the aggregate tagσ of σ1, . . . , σn and the coefficientsc1, . . . , cn.
HLT can be divided into two types:

• Publicly verifiableHLT: It allows anyone (without knowing
any secret) to verify the validity of tags. In order to allow
any third party to verify query integrity, this type ofHLT is
needed for the purpose of the present paper.

• Privately verifiableHLT: It allows someone who knows the
relevant secret to verify the validity of tags. Putting thisinto
the context of the present paper, this type ofHLT can be used
to allow the data owner (but not third parties) to verify query
integrity. Therefore, this type ofHLT will not be discussed
further in the paper.

The concept ofHLT was inspired by the notion of Homomor-
phic Linear Authenticator (HLA), which was formally introduced
in [3]. The difference between them is thatHLT is weaker than
HLA becauseHLT only considers attacks that do not attempt to
tamper the individual tags (which is dealt with by another layer of
protection for free, namely by the first building-block); whereas,
HLA explicitly accommodates attacks that aim to tamper the indi-
vidual tags. This makes it possible to constructHLT schemes that
are more efficient that their HLA counterparts. It is worthwhile to
point out the following feature ofHLT and HLA: the aggregated
messageM and the aggregated tagσ are sufficient to allow the
verifier to test their validitywithout knowing the individual mes-
sagesM1, . . . ,Mn. This is not the case for aggregate signatures
[5], batch RSA [9], and condensed RSA [18], which are not suffi-
cient for the purpose ofHLT or HLA.

4.1 Definitions of HLT

Definition 5. (publicly verifiableHLT) A publicly verifiableHLT
scheme consists of the following algorithms:

• (pk, sk) ← KeyGen(1ℓ): This algorithm takes as input a
security parameterℓ, and outputs a pair of public and private
keys(pk, sk). It may optionally specify a coefficient domain
C and a message spaceM.

• σi ← TagGen(sk,Mi): This algorithm takes as input the
private keysk and a messageMi ∈M, and outputs a tagσi

for Mi.

• σ ← HLTAgg(~c, ~Tag): This linear aggregation algorithm
takes as input a vector of tags~Tag = (σ1, . . . , σn) with re-
spect to a vector of messages~M = (M1, . . . ,Mn) and a



vector of coefficients~c = (c1, . . . , cn). It outputs an ag-
gregate tagσ with respect to the aggregated messageM =∑n

i=1 ciMi.

• {0, 1} ← Vrfy(pk,M ′, σ′): This deterministic algorithm
takes as input the public keypk, a candidate messageM ′,
and a tagσ′. It outputs 1 ifσ′ is valid with respect toM ′,
and outputs 0 otherwise.

We require aHLT scheme to be correct, meaning that any faith-
fully aggregated messageM and tagσ are always accepted as
valid. Formally, this means that for(pk, sk) ← KeyGen(1ℓ),
~M = (M1, . . . ,Mn) ∈ M

n, ~Tag = (σ1, . . . , σn) whereσi ←
TagGen(sk,Mi) for 1 ≤ i ≤ n, and~c = (c1, . . . , cn) ∈ C

n, then
σ ← HLTAgg(~c, ~Tag) implies1← Vrfy(pk,

∑n

i=1 ciMi, σ).
The intuition behind the following security definition ofHLT is:

for any tagσ generated for messageM , there is no probabilistic
polynomial time adversary that can presentM ′ 6= M such that
1← Vrfy(pk,M ′, σ). Formally, we have:

Definition 6. (security ofHLT) LetΛ = (KeyGen,TagGen,
HLTAgg,Vrfy) be aHLT andA be a probabilistic polynomial-time
adversary. Consider the following security game between a chal-
lenger andA:

1. The challenger runs(pk, sk) ← KeyGen(1ℓ) and givespk
to A. The optional coefficient domainC and the message
spaceM are specified byKeyGen.

2. A may make oracle queries toTagGen by adaptively select-
ing M1, . . . ,Mn fromM. The challenger computesσi ←
TagGen(sk,Mi) for 1 ≤ i ≤ n and returns tags(σ1, . . . , σn)
to A. The challenger keeps the lists of messages and tags:
(M1, . . . ,Mn) and(σ1, . . . , σn).

3. Amay make oracle queries toHLTAgg by selecting a vector
of coefficients~c = (c1, . . . , cn), obtain the aggregate tagσ,
and runVrfy with the aggregate tagσ and the aggregated
message

∑n

i=1 ciMi. This can be performed polynomially
many times.

4. Eventually,A selects a vector of coefficients~c = (c1, . . . , cn),
whereci ∈ C, and someM ′ ∈M.

5. The adversaryA wins the game if1 ← Vrfy(pk,M ′, σ)

andM ′ 6=
∑n

i=1 ciMi, whereσ ← HLTAgg(~c, ~Tag) was
computed by the challenger, where~Tag = (σ1, . . . , σn) cor-
responds to the message vector(M1, . . . ,Mn) that can be
identified by the coefficient vector~c = (c1, . . . , cn) pro-
vided by the adversaryA.

We sayΛ is secure if no probabilistic polynomial-time algorithmA
can win the game with a non-negligible probability in the security
parameterℓ.

From the security game, we observe that the adversaryA is only
allowed to manipulate the messagesM1, . . . ,Mn but not the tags.
This further explains whyHLT is weaker than the aforementioned
HLA (Homomorphic Linear Authenticator) [2, 3, 26], where the
adversary can manipulateboth messages and tags. This can be
stated as:

LEMMA 1. Any secure HLA scheme as defined in [3] is also a
secureHLT scheme as defined above.

4.2 Construction and Analysis of HLT
We present aHLT scheme whose security is based on the Dis-

crete Logarithm (DLOG) problem. The scheme consists of the fol-
lowing algorithms.

• (sk, pk)← KeyGen(1ℓ):

1. Let q be aℓ−bit prime andp be another large prime
such thatq|(p− 1).

2. Selectv1 and v2 uniformly at random fromZ∗
p such

that the order ofv1 andv2 is q

3. Selectsj1, sj2 uniformly at random fromZ∗
q and set

zj = v
−sj1
1 v

−sj2
2 mod p, for 1 ≤ j ≤ m.

4. Letsk = {(s11, s12), . . . , (sm1, sm2)} andpk = {v1,
v2, z1, . . . , zm}.

5. The coefficient domainC is [0, q) and the message space
isM = [0, q)m.

• σi ← TagGen(sk,Mi): For Mi ∈ M, the tagσi is com-
puted by selectingr1, r2 uniformly at random fromZ∗

q and:

x = vr11 vr22 mod p,

y1 = r1 +
m∑

j=1

Mi[j]sj1 mod q,

y2 = r2 +
m∑

j=1

Mi[j]sj2 mod q.

Let σi = (x, y1, y2).

• σ ← HLTAgg(~c, ~Tag): Given tags ~Tag = (σ1, . . . , σn)
with σi = (xi, yi1, yi2), and~c = (c1, . . . , cn), the aggregate
tagσ = (x, y1, y2) is computed as:

x =
n∏

i=1

xci
i mod p,

y1 =
n∑

i=1

ciyi1 mod q,

y2 =

n∑

i=1

ciyi2 mod q.

• {0, 1} ← Vrfy(pk,M, σ): To verify thatM is valid with
respect to tagσ, check whether:

x
?
= vy11 vy22

m∏

j=1

z
M[j]
j mod p.

If it holds, return 1; otherwise, return 0.

It can be verified thatM =
∑n

i=1 ciMi matches the aggregated
tagσ because

vy11 vy22

m∏

j=1

z
M[j]
j = v

∑n
i=1 ciyi1

1 v
∑n

i=1 ciyi1
2

m∏

j=1

z
∑n

i=1 ciMi[j]
j

=
n∏

i=i

vciyi11

n∏

i=i

vciyi22

m∏

j=1

z
∑n

i=1 ciMi[j]
j

=

n∏

i=i

(vciyi11 vciyi22

m∏

j=1

z
ciMi[j]
j )

=

n∏

i=i

xci
i = x



THEOREM 2. Assuming DLOG problem is hard, theHLT scheme
is secure according to Definition 6.

PROOF. Let M1, . . . ,Mn be the messages adaptively selected
by A andσ1 = (x1, y11, y12), . . . , σn = (xn, yn1, yn2) be the
corresponding tags generated by the challenger. Assume thead-
versary wins the security game with a non-negligible probability.
That is, it outputs a vector of coefficients~c = {c1, . . . , cn} and
a messageM ′ ∈ M, such thatM ′ 6= M =

∑n

i=1 ciMi but
1 ← Vrfy(pk,M ′, σ), whereσ ← HLTAgg(~c, ~Tag), and ~Tag =
(σ1, . . . , σn). We show that ifA wins the security game with a
non-negligible probability, then we can solve the DLOG problem:
givenv1, v2 randomly selected fromZ∗

p , find logv2(v1).
Supposeσ = (x, y1, y2). Since1← Vrfy(pk,M ′, σ), we have

x = vy11 vy22

m∏

j=1

z
M′[j]
j .

On the other hand, asσ ← HLTAgg(~c, ~Tag), we have

x = vy11 vy22

m∏

j=1

z
M[j]
j ,

whereM =
∑n

i=1 ciMi. Therefore, we have

m∏

j=1

z
M′[j]
j =

m∏

j=1

z
M[j]
j ,

namely

m∏

j=1

z
M′[j]−M[j]
j = 1.

As M ′ 6= M , let ∆M [j] = M ′[j] − M [j] for 1 ≤ j ≤ m.
Sincezj = v

−sj1
1 v

−sj2
2 , we have

v
∑m

j=1 −sj1∆M[j]

1 v
∑m

j=1 −sj2∆M[j]

2 = 1.

We claim that
∑m

j=1−sj1∆M [j] mod q = 0 with negligible
probability becausesj1 for 1 ≤ j ≤ n are kept secret. Then we
have

v1 = v

∑m
j=1 sj2∆M[j]

∑m
j=1

−sj1∆M[j]

2 .

Performance.
As stated in Lemma 1, any secure HLA scheme is also a se-

cureHLT scheme. Now we show thatHLT constructions can be
significantly more efficient than HLA schemes. Specifically,we
compare ourHLT with two HLA schemes presented in [2, 26]. We
use comparable parameters that offer the same level of security.
Specifically, the parameterq is 140-bit andp is 512-bit in ourHLT
scheme,p is 160-bit in [26] andN is 1024-bit in [2]. We consider
n messages, namelyMi = (Mi[1], . . . ,Mi[m]) for 1 ≤ i ≤ n,
and compare the costs of the respective operations.

As shown in Table 1, the HLA scheme presented in [26] has the
shortest tag but incurs the most expensive computation. Recall that
exponentiations and multiplications in pairing groups aremuch less
efficient than those in integer groups (e.g., the cost of one pairing
is about that of 6-20 exponentiations [4]).

HLT HLA [26] HLA [2]
assumption DLOG CDH Factoring

pairing-based? No Yes No
tag size 790 bits 160 bits 1024 bits
tagGen 2n Ex+ mnMu mnEx+ mnMu mnEx+ mnMu

verify (single) mEx 2Pairing +mEx mEx

verify mEx+ mn Mu 2Pairing +(m + n)Ex (m + n)Ex
(aggregate) + mnMu +mnMu

tagAggregate nEx+ 2n Mu nEx+ n Mu nEx+ nMu

Table 1: Performance ofHLT and HLA, where Ex denotes ex-
ponentiation andMu denotes multiplication.

5. QUERY INTEGRITY FOR OUTSOURCED
DYNAMIC DATABASES: CONSTRUCTION
AND ANALYSIS

In this section, we begin with a discussion on the solution design
space. Then, we present the main construction and analyze its se-
curity. Finally, we discuss its efficiency with a comparisonto the
state-of-the-art solutions.

5.1 Solution Space
As discussed in the related work section, the state-of-the-art so-

lutions to the query integrity problem fall into two approaches. The
first approach istree-based[13]. This approach incurs the least
computational complexity because of the hash functions, but also
incursO(n log n) communication overhead. The second approach
is signature-based[23]. This approach incurs high computational
complexity ofO(kn) bilinear map exponentiations and communi-
cation complexity ofO(n) bitmaps (a small constant bits). Both
approaches incurO(mn) extra storage complexity in the cloud.

Our solution is based on a third approach. It reduces the extra
complexity at the cloud side fromO(mn) to O(n). It achieves
a balanced trade-off between computational and communication
communications. Specifically, it is less efficient than the tree-based
solution in terms of computational complexity but substantially more
efficient than the tree-based solution in terms of communication
complexity. It is also substantially more efficient than thesignature-
based solution in terms of computational complexity but less effi-
cient than the signature-based solution in terms of communication
complexity. Perhaps more importantly, our solution can accommo-
date aggregate queries, which are not supported by the state-of-the-
art solutions [13, 23].

The high-level idea of our solution is the following: TheHLT
scheme generates a tag for each tuple in the table, and theAuthODS

scheme can be built on those tags, which are ordered by the search
key. Intuitively, theAuthODS scheme provides two functionali-
ties: one is to enable range query, and the other is to guarantee tag
integrity (i.e., preventingHLT tags from being manipulated). The
performance gain comes from theHLT scheme because only one
aggregate tuple is needed to verify the integrity of (parts of) tuples.
This is critical for the projection query because its query result only
contains a portion of attributes from all tuples.

5.2 Proposed Construction
Let R be a table ofn tuples with schema(A1, . . . , Am) and

r1, . . . , rn be tuples ordered by search keyA1. LetL andU be the
lower and upper bounds of the search keyA1, respectively.

Let ΛRS = (KeyGen,SetUp,QueryVrfy,Update) be a secure
AuthODS scheme andΛHLT = (KeyGen,Tag,Vrfy,HLTAgg) be
a secureHLT scheme. TheAuthDDB scheme is described as fol-
lows:

• KeyGen: Given the primary security parameterℓ, the data



owner obtains two secondary security parametersℓ1 andℓ2,
and generates a pair of private and public keys(sk, pk),

1. Compute(ΛRS.sk,ΛRS.pk)← ΛRS.KeyGen(1
ℓ1).

2. Compute(ΛHLT.sk,ΛHLT.pk)← ΛHLT.KeyGen(1
ℓ2).

3. sk = {ΛRS.sk,ΛHLT.sk} andpk = {ΛRS.pk,ΛHLT.pk}.

4. ΛHLT.KeyGen specifies the coefficient domainC and
the message spaceM, s.t. (ri.A1, . . . , ri.Am) ∈ M
for ri ∈ R, 1 ≤ i ≤ n.

• SetUp: The data owner takes as input the private keysk and
a tableR, and obtainsState andAu as follows:

1. Letr0 andrn+1 be two tuples added at both ends of ta-
bleR in order to facilitate range query, wherer0.A1 =
L andrn+1.A1 = U .

2. Computeσi ← ΛHLT.TagGen(ΛHLT.sk, ri) for tuple
ri, 0 ≤ i ≤ n+ 1.

3. LetERS be the ordered data set, such thatERS = {E0,
. . . , En+1} whereEi = (ri.A1, σi) for 0 ≤ i ≤ n+1
andERS is ordered byA1. Compute(StateRS,AuRS,
ERS)← ΛRS.SetUp(ΛRS.sk, ERS).

4. LetState = StateRS andAu = (AuRS, ERS). R and
Au will be outsourced to the server, andState will be
made public.

• Update: The data owner interacts with the server to update
the stored table with the update informationUpd.

Insertion:SupposeUpd is “insert the tupler into R where
rs.A1 < r.A1 < rs+1.A1, 0 ≤ s ≤ n”:

1. The data owner computesσ ← ΛHLT.TagGen(ΛHLT.sk,
r).

2. LetUpdRS be “add an element ofE = (r.A1, σ) be-
tweenEs andEs+1”. The data owner takes as input
UpdRS,ΛRS.sk andStateRS, runs protocolΛRS.Update
with the server, who takes as inputUpdRS andAuRS.
Eventually, the data owner outputsState′RS and the server
updatesAuRS toAu′RS andERS toE′

RS.

3. The data owner deliversUpd to the server, and the server
updatesR toR′.

Replacement:SupposeUpd is “update the tupler with r′”:

1. The data owner fetches the tagσ for the tupler from
the server.

2. The data owner computesσ′ ← ΛHLT.TagGen(ΛHLT.sk,
r′).

3. LetUpdRS be “update the element(r.A1, σ)with (r′.A1,
σ′)”. The data owner takes as inputUpdRS,ΛRS.sk
andStateRS, runs protocolΛRS.Updatewith the server,
who takes as inputUpdRS andAuRS. Eventually, the
data owner outputsState′RS and the server updatesAuRS
toAu′RS andERS toE′

RS.

4. The data owner deliversUpd to the server, and the server
updatesR toR′.

Deletion:SupposeUpd is “delete the tupler”:

1. The data owner fetches the tagσ for the tupler from
the server.

2. LetUpdRS be “delete the element(r.A1, σ)”. The data
owner takes as inputUpdRS,ΛRS.sk andStateRS, runs
protocolΛRS.Update with the server, who takes as in-
put UpdRS andAuRS. Eventually, the data owner out-
putsState′RS and the server updatesAuRS to Au′RS and
ERS toE′

RS.

3. The data owner deliversUpd to the server, and the server
updatesR toR′.

We present the construction ofQueryVrfy protocol based on the
query type. Recall thatState = StateRS andAu = (AuRS, ERS).

QueryVrfy on Selection Query.

Suppose the selection query isqry =“select * from R where
A1 ≥ a andA1 ≤ b”. There are two scenarios.

• If the resultRst is not null, assumeRst = {rs, . . . , rt}, 1 ≤
s ≤ t ≤ n, wherers−1.A1 < a ≤ rs.A1 andrt.A1 ≤ b <
rt+1.A1. The protocol proceeds as follows:

1. The server setsRst = {rs, . . . , rt}, and sendsRst to
the querier.

2. The querier runs protocolΛRS.QueryVrfy with the server
for range queryqry(a, b). If the output isreject, the
querier aborts; otherwise, the querier obtains range query
resultRstRS = ((rs.A1, σs), . . . , (rt.A1, σt)) andPrfRS.

3. The querier randomly selects a vector of coefficients
~c = (cs, . . . , ct), computesσ ← ΛHLT.HLTAgg(~c, ~Tag)

where ~Tag = (σs, . . . , σt), and runs
ΛHLT.Vrfy(ΛHLT.pk,

∑t

i=s
ciri, σ). If the output is 1,

the querier returns(accept,Prf = (RstRS,PrfRS),Rst);
otherwise, the querier returnsreject.

• If the resultRst is null, there exist two tuplesrs, rs+1, 0 ≤
s ≤ n such thatrs.A1 < a, b < rs+1.A1. The querier
can verify this fact by running protocolΛRS.QueryVrfy with
range queryqry(a, b), which should returnaccept andRstRS
is null.

QueryVrfy on Projection Query.

Suppose the projection query isqry =“selectA1, . . . , Ak from
R” (k ≥ 1). The protocol proceeds as follows:

1. The server setsRst = {(ri.A1, . . . , ri.Ak), 1 ≤ i ≤ n} and
passes it to the querier.

2. The querier runs protocolΛRS.QueryVrfy with the server on
range query(L,U). If the output isreject, the querier aborts;
otherwise, the querier obtains the range query resultRstRS =
((r0.A1, σ0), . . . , (rn+1.A1, σn+1)) and proofPrfRS.

3. The querier randomly selects a vector of coefficients~c =
(c1, . . . , cn) and sends it to the server.

4. The server computesr.Aj =
∑n

i=1 ciri.Aj , k+1 ≤ j ≤ m
and sends(r.Ak+1, . . . , r.Am) to the querier as part ofPrf.

5. The querier computesr.Aj =
∑n

i=1 ciri.Aj , 1 ≤ j ≤ k
from Rst = {(ri.A1, . . . , ri.Ak), 1 ≤ i ≤ n} and the
aggregated tagσ = ΛHLT.HLTAgg(~c, ~Tag), where ~Tag =
(σ1, . . . , σn).



6. The querier computesΛHLT.Vrfy(ΛHLT.pk,M, σ) whereM
= (r.A1, . . . , r.Am). If the output is 1, the querier returns

(accept,Rst,Prf = (RstRS,PrfRS, r.Ak+1, . . . , r.Am));

otherwise, the querier returnsreject.

QueryVrfy on Join Query.

Let P be another table with schema(B1, . . . , Bm) and be pro-
cessed bySetUp, whereB1 is the search key. For convenience,
supposeP hasn tuples, andA2 andB2 are the respective primary
key for tablesR andP . Suppose the join query isqry =“select
R.∗, P.∗ from R,P whereR.As = P.Bt” (1 ≤ s, t ≤ m). The
protocol proceeds as follows:

1. The server setsRst = (R∗, P ∗) and passes it to the querier,
whereR∗ andP ∗ are the tuples inR andP such thatR.As =
P.Bt.

2. The querier runsQueryVrfy on projection queries withqryR
= “selectA2, As from R” and qryP = “selectB2, Bt from
P ", respectively. If either execution outputs 0, the querier
aborts; otherwise, the querier obtains{(ri.A2, ri.As, σi), 1 ≤
i ≤ n} and{(pj .B2, pj .Bt, σ

′
j), 1 ≤ j ≤ n}.

3. The querier identifies tuples satisfyingR.As = P.Bt from
{(ri.A2, ri.As, σi), 1 ≤ i ≤ n} and{(pj .B2, pj .Bt, σ

′
j),

1 ≤ j ≤ n}. Specifically, letα andβ be two sets of indices
such thatα ⊆ {1, . . . , n}, β ⊆ {1, . . . , n} andi ∈ α, j ∈
β, ri.As = pj .Bt. Then, the querier obtains two sets of tu-
ples{(ri.A2, ri.As, σi), i ∈ α} and{(pj .B2, pj .Bt, σ

′
j), j ∈

β}, wherei ∈ α, j ∈ β, ri.As = pj .Bt. The querier verifies
that the number of tuples inR∗ equals to the number of tuples
in {(ri.A2, ri.As, σi), i ∈ α}, and the number of tuples in
P ∗ equals to the number of tuples in{(rj .B2, pj .Bt, σ

′
j), j ∈

β}. If both are true, the querier continues; otherwise, the
querier aborts.

4. The querier randomly selects a vector of coefficients~c =
(c1, . . . , c|α|), computesσ by aggregating tags{σi, i ∈ α},
and executesΛHLT.Vrfy with ~c, σ, R∗ andΛHLT.pk. The
same is executed with respect toP ∗. If both executions out-
put 1, the querier returns

(accept,Rst,Prf = (RstRS,R,PrfRS,R,RstRS,P ,RstRS,P ));

otherwise, the querier returnsreject. Here(RstRS,R,PrfRS,R)
are the query result and proof when executingQueryVrfy on
projection queryqryR, and that(RstRS,P ,PrfRS,P ) are the
query result and proof when executingQueryVrfy on projec-
tion queryqryP .

QueryVrfy on Aggregate Query.

Suppose the aggregate query isqry =“select SUM(A2) from
R whereA1 ≥ a andA1 ≤ b”. Suppose1 ≤ s ≤ t ≤ n,
rs−1.A1 < a ≤ rs.A1 andrt.A1 ≤ b < rt+1.A1. The protocol
proceeds as follows:

1. The server setsr.Aj =
∑t

i=s
ri.Aj for j = 1, . . . ,m, sets

Rst = r.A2, and passesRst and(r.A1, r.A3, . . . , r.Am) to
the querier.

2. The querier runs protocolΛRS.QueryVrfy on range query
qry(a, b) with the server. If the output isreject, the querier
aborts; otherwise, the querier obtainsRstRS = ((rs.A1, σs),
. . . , (rt.A1, σt)) andPrfRS for the range query.

3. The querier computesσ ← ΛHLT.HLTAgg(~c, ~Tag), where~c
is a vector of 1’s and~Tag = (σs, . . . , σt). The querier com-
putesΛHLT.Vrfy(ΛHLT.pk,M, σ), whereM = {r.A1, · · · ,
r.Am}. If the output is 1, the querier returns

(accept,Rst,Prf = (RstRS,PrfRS, r.A1, r.A3, . . . , r.Am));

otherwise, the querier returnsreject.

REMARK 1. In selection/projection/join query, we use randomly
selected~c to preventaggregate attack. To see this, let us con-
sider the case without using~c, namely~c is composed of 1s. The
server hasr′i = ri, s − 1 ≤ i ≤ t + 1, and manipulates two tu-
plesre, re+1, s ≤ e ≤ t − 1, to obtainr′e = (re.A1, re.A2 +
1, re.A3, . . .) and r′e+1 = (re.A1, re.A2 − 1, re.A3, . . .), which
makes

∑t

i=s
ri =

∑t

i=s
r′i. Hence, the server could haveΛHLT.Vrfy

output 1 with manipulated{r′s, . . . , r
′
t}.

REMARK 2. Note that our solution toward the aggregate query
supports only SUM queries and weighted SUM queries.

5.3 Security Analysis
It is easy to check the correctness of theAuthDDB scheme. In

what follows we focus on its security.

THEOREM 3. AssumeΛRS is a secureAuthODS scheme and
ΛHLT is a secureHLT scheme, where the coefficient space is large
enough (e.g.1/|C| is negligible). The proposedAuthDDB scheme
attains the soundness with respect to the selection, projection, join
and aggregate queries.

The basic idea to prove the soundness is to show that if there ex-
ists a probabilistic polynomial-time adversaryA that breaks sound-
ness of theAuthDDB scheme, we can break either soundness of
ΛRS or security ofHLT.

PROOF. We show our proof through a sequence of games be-
tween a challenger, who plays the role of the data owner , and ad-
versary A, who acts as the malicious server.
Game 0: Game 0 is defined as in Definition 2, where the challenger
only keeps the relevant public/private keys and the latest state in-
formationStatek.
Game 1: Game 1 is defined as in Definition 2, where the challenger
keeps the relevant public/private keys, the latest state information
Statek and the latest auxiliary informationAuk. We can see that
the probability thatA wins Game 1 is at most negligibly less than
the probability thatA wins Game 0.
Game 2: Game 2 is defined as in Definition 2, where the challenger
keeps the relevant public/private keys, the latest state information
Statek, the latest auxiliary informationAuk, and the latest database
Dk. We can see that the probability thatA wins Game 2 is at most
negligibly less than the probability thatA wins Game 1.

LetStatek,Auk andDk = R be the latest version of the state in-
formation, the auxiliary information and the database, whereStatek
= StateRS,Auk = (AuRS, ERS), andERS = {(L, σ0), (r1.A1, σ1),
. . . , (rn.A1, σn), (U,σn+1)}.

Soundness of Selection Query Suppose the adversaryA finds
a selection queryqry with query resultRst and proofPrf, and
wins Game 2. In other words, givenqry =“select * fromR where
A1 ≥ a andA1 ≤ b”, A returnsRst = {r′s, . . . , r

′
t} andPrf =

{RstRS,PrfRS}, and wins Game 2, whereRstRS = {(r′s.A1, σ
′
s), . . . ,

(r′t.A1, σ
′
t)}. Let localRst ← LocalQuery(qry, DK) andlocalRstRS

← ΛRS.LocalQuery(qry(a, b), ERS), which are produced by the
challenger with storedStatek,Auk andDk = R.



SinceA wins Game 3, we have

(accept,RstRS,PrfRS)←

(Q(ΛRS.pk, qry(a, b),Statek)↔ S(AuRS, ERS)).

This means that given range queryqry(a, b), RstRS is the query re-
sult on the ordered data setERS with respect to stateStatek. On the
other hand, iflocalRstRS 6= RstRS, there exist two different query
results with respect toqry(a, b), which contradicts with the sound-
ness ofΛRS. SinceΛRS is sound, we haveRstrs = localRstRS.
Therefore, we can assumelocalRst = {rs, . . . , rt}.

Suppose~c = (cs, . . . , ct) is the coefficient vector sent from the
challenger toA. The challenger computesσ′ ← ΛHLT.HLTAgg(~c,
~Tag′), where ~Tag′ = (σ′

s, . . . , σ
′
t). Since the adversary wins

Game 2, it should satisfy:

1← ΛHLT.Vrfy(ΛHLT.pk,

t∑

i=s

cir
′
i, σ

′).

If localRst 6= Rst, there exist somei, s ≤ i ≤ t, ri 6= r′i. So, we
have

∑t

i=s cir
′
i =

∑t

i=s ciri with negligible probability because
c1, . . . , cn are randomly selected fromC and 1

|C|
is negligible. That

is, we have another equation

1← ΛHLT.Vrfy(ΛHLT.pk,
t∑

i=s

ciri, σ
′),

which allows us to break security ofΛHLT if localRst 6= Rst. This
means that ifA breaks the soundness ofAuthDDB, we can break
either the soundness ofΛRS or the security ofΛHLT.

Soundness of Projection Query suppose the adversaryA finds a
projection queryqry with query resultRst and proofPrf, and wins
Game 2. In other words, givenqry =“selectA1, . . . , Ak from R”
(k ≥ 1), A returns query resultRst = {(r′i.A1, . . . , r

′
i.Ak), 1 ≤

i ≤ n} andPrf = (RstRS,PrfRS, r
′.Ak+1, . . . , r

′.Am). Let localRst
← LocalQuery(qry, Dk) andlocalRstRS ← ΛRS.LocalQuery(
qry(a, b), ERS), which are produced by the challenger with stored
Statek,Auk andDk = R.

SinceA wins Game 2, we have

(accept,RstRS,PrfRS)←

(Q(ΛRS.pk, qry(L,U),Statek)↔ S(AuRS, ERS)).

This means that given range queryqry(L,U),RstRS is the query re-
sult on the ordered data setERS with respect to stateStatek. On the
other hand, iflocalRstRS 6= RstRS, there exist two different query
results with respect toqry(a, b), which contradicts with the sound-
ness ofΛRS. SinceΛRS is sound, we haveRstrs = localRstRS.
Therefore, we can assumelocalRst = {r1, . . . , rn}.

Suppose~c = (c1, . . . , cn) is the coefficient vector sent from the
challenger toA. The challenger computesσ′ ← ΛHLT.HLTAgg(~c,
~Tag′), where ~Tag′ = (σ′

s, . . . , σ
′
t) andr′.Aj =

∑n

i=1 ciri.Aj , 1 ≤
j ≤ m. SinceA wins Game 2, we have

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, . . . , r

′.Am), σ′).

If localRst 6= Rst, there exist somei, j, 1 ≤ i ≤ n, 1 ≤ j ≤
k such thatri.Aj 6= r′i.Aj . This means that

∑n

i=1 cir
′
i.Aj =∑n

i=1 ciri.Aj with negligible probability. Therefore, we obtain
another equation

1← ΛHLT.Vrfy(ΛHLT.pk, (
n∑

i=1

ciri.A1, . . . ,
n∑

i=1

ciri.Am), σ′),

which allows us to break the security ofΛHLT if localRst 6= Rst.
This means that ifA breaks the soundness ofAuthDDB, we can
break either the soundness ofΛRS or the security ofΛHLT.

Soundness of Join Query This holds because of the soundness of
the projection query and the security ofΛHLT.

Soundness of Aggregate Query Suppose the adversaryA finds
an aggregate queryqry with query resultRst and proofPrf , and
wins Game 2. In other words, givenqry=“select SUM(A2) from
R whereA1 ≥ a andA1 ≤ b”, A returns query resultRst =
r′.A2 andPrf = {r′.A1, r

′.A3, . . . , r
′.Am,RstRS,PrfRS}, where

RstRS = {(r′s.A1, σ
′
s), . . . , (r

′
t.A1, σ

′
t)} for the range queryqry(a, b).

Let localRst ← LocalQuery(qry, DK) andlocalRstRS ← ΛRS.
LocalQuery(qry(a, b), ERS), which are produced by the challenger
with storedStatek,Auk andDk = R.

since the adversary wins Game 2, we have

(accept,RstRS,PrfRS)←

(Q(ΛRS.pk, qry(a, b),Statek)↔ S(AuRS, ERS))

This means that given range queryqry(a, b), RstRS is the query
result on the ordered data setERS with respect to stateStatek.
On the other hand, iflocalRstRS 6= RstRS, there exist two dif-
ferent query results with respect toqry(a, b), which contradicts
with the soundness ofΛRS. SinceΛRS is sound, we haveRstrs =
localRstRS, which means that any tupleri in R, wheres ≤ i ≤
t, satisfiesa ≤ ri.A1 ≤ b. The challenger computesσ′ ←

ΛHLT.HLTAgg(~c, ~Tag′), where ~Tag′ = (σ′
s, . . . , σ

′
t) and~c is all

1’s. If A wins Game 2, it should satisfy

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, . . . , r

′.Am), σ′).

If localRst 6= Rst, we have
∑t

i=s ri.A2 6= r′.A2. Therefore, we
obtain another equation

1← ΛHLT.Vrfy(ΛHLT.pk, (

t∑

i=s

ri.A1, . . . ,

t∑

i=s

ciri.Am), σ′),

which allows us to break the security ofΛHLT if localRst 6= Rst.
This means that ifA breaks the soundness ofAuthDDB, we can
break either the soundness ofΛRS or the security ofΛHLT.

5.4 Performance
We compare the asymptotic performance of our solution with

that of the two state-of-the-art solutions [13, 23]. As shown in Ta-
ble 2, our solution is more expressive because it additionally sup-
ports aggregate queries, such as: “select SUM(A2) from R where
A1 > a." Moreover, our solution allows the join query with respect
to arbitrary attributes, such as: “selectR.∗, P.∗ from R,P where
R.A3 = P.B4" without requiring thatR.A3 andP.B4 be search
keys. Whereas, this type of join queries cannot be handled bythe
state-of-the-art solutions [13, 23].

Regarding pre-processing the database before outsourcingit to
the cloud, our solution is more efficient than [23], and as efficient
as [13]. In addition, our solution incurs the least extra storage com-
plexity. To see this, we compare the three solutions with parame-
ters in Table 1. Figure 2(a) shows that our solution is storage-space
more efficient than [13, 23] as long as the number of attributes is
greater thanTag/Hash, which is often the case. Moreover, from
Figure 2(b) we can see that the storage-space requirement inour
solution is independent of the number of attributes; in contrast, the
storage-space complexity of [13, 23] increases linearly with respect
to the number of attributes.

Regarding selection queries, projection queries and join queries,
our solution incurs respective computational complexityO(log n)



Li et al. [13] Pang et al. [23] This paper
Functions Selection, Projection, Join Selection, Projection, Join Selection, Projection, Join, Aggregate
Technique Merkle-based Hash Tree Aggregate Signature with Chaining Merkle-based Hash Tree andHLT

Security Sound Sound Sound

Data PreProcessing O(n)Hash O(mn)Ex O(n)Hash+ O(n)Ex
Storage Overhead O(mn)Hash O(mn)AggSig O(n)Hash + O(n)Tag

Selection
ComputationS N/A O(n)Mu N/A
Communication O(logn)Hash O(n)Bitmap O(logn)Hash+O(n)Tag
ComputationV O(n)Hash O(n)Ex O(logn)Hash+O(n)Ex

Projection
ComputationS N/A O(kn)Mu O(n)Mu
Communication O((m− k)n)attribute O(n)Bitmap O(n+m)Tag
ComputationV O(n)Hash O(kn)Ex O(n)Ex

Join
ComputationS N/A O(n)Mu O(n)Mu
Communication O(n log (n))Hash+ R∗ O(n)Bitmap+ R∗ O(n+m)Tag
ComputationV O(n log (n))Hash O(n)Ex O(n)Ex

Aggregate
ComputationS N/A N/A N/A
Communication N/A N/A O(logn)Hash+O(λ)Tag
N/A N/A N/A O(logn)Hash+O(λ)Ex

Update
ComputationS O(logn)Hash N/A O(logn)Hash
Communication O(1) O(1) O(1)
ComputationO O(logn)Hash O(m)Ex O(logn)Hash

Table 2: Comparison of asymptotic performance, whereHash is 160 bits,Sig is 1024 bits,AggSig= 160 bits,Tag= 792 bits,Bitmap

is a small constant,Ex denotes modular exponentiation,Mu denotes modular multiplication Pairing denotes pairing operation,k is
the number of attributes in projection query, attribute is an attribute value in R, R∗ denotes unmatched tuples inR, and assume
|R| = |P | = n in join query. Note that our solution supports aggregate queries and more flexible join queries, and we do not count
the basic search operation in the comparison.
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Figure 2: Comparison of storage overhead

Hash plusO(n)Ex, O(n)Ex, andO(n)Ex at the querier side in or-
der to aggregateHLT tags. However, our solution still outperforms
[23], which incurs respective computational complexityO(n)Ex,
O(kn)Ex, andO(n)Ex on bilinear group.

Regarding projection queries and join queries, our solutions re-
quiresO(n + m) tags. In contrast, [13] requiresO((m − k)n)
attribute values for projection queries, andO(n log n) hash values
plus those unmatched tuples inR for join queries. Although [23]
only requiresO(n) certified bitmap (recording updated tuples in on
update period) for projection queries, it requires at leastO(n) cer-
tified bitmap plus those unmatched tuples inR for join queries. It
is due to the fact that [13, 23] have to fetch at least one table(either
R or P ) for join queries.

Regarding aggregate queries, the computational and communi-
cation complexities are the same regardless of the number ofat-
tributes the querier wants to aggregate. For example, our solution
incurs the same complexity for queries such as: “select SUM(A1),

. . ., SUM(Ak) from R whereA1 > a andA1 < b" and “select
SUM(A1) from R whereA1 > a andA1 < b".

6. INTEGRATE QUERY INTEGRITY AND
STORAGE INTEGRITY

The accompanying concept to query integrity isstorage integrity,
namely the assurance that the outsourced data is kept intactin the
cloud. Elegant solutions to storage integrity include Provable Data
Possession (PDP) [2] and Proof of Retrievability (POR) [12]. In
particular, PDP can achieveconstantcomputational and communi-
cation complexities in the static setting [2], andlogarithmic com-
putational and communication complexities in the dynamic setting
[8].

A systematic solution should assure both query complexity and
storage complexity. Intuitively, query integrity is more demand-
ing than storage integrity because storage integrity does not have
to deal with the structure of database. However, one cannot simply
adapt PDP/POR techniques to the setting of outsourced database
because they deal with unstructured data. In what follows, we
sketch a solution that integrates PDP-flavor storage integrity with
respect to thelogical structure of the outsourced database (rather
than the physical structure of the database). The solution is not
optimal because it incurs communication complexity ofO(n) tags
and computational complexity ofO(n) exponentiations. We defer
a detailed analysis of the following solution to an expandedversion
of this paper.

Specifically, for a tableR with schema(A1, . . . , Am), whereAi

is the primary key (ID) that uniquely identifies a tuple. In order to
ensure storage integrity, the database storage integrity auditor (e.g.,
the data owner or a third party) can perform the procedure shown
in Figure 3. Since the auditor has no knowledge aboutR, it fetches



DB Auditor

Cloud

DB

1:  Select Ai from R (Ai is primary key)

2: {r1.Ai, …, rn.Ai},  Prf ={!1, …, !n}

3:  {(r b1.Ai, c1), ….. (rbt.Ai, ct) }

4:  c1rb1 + … + ctrbt

Figure 3: Procedures to ensure storage integrity

and verifies integrity of all primary keys (IDs) inR and their tags,
which is showed in Steps 1 and 2. Then the auditor randomly se-
lectst primary IDs from the set of IDs andt coefficients, denoted
by (rb1 .Ai, c1), . . . , (rbt .Ai, ct), and asks the server to compute
an aggregate tupler =

∑t

i=1 cirbi . Supposeσ is the aggregated
tag ofσb1, . . . , σbt with coefficientsc1, . . . , ct, the auditor can ver-
ify storage integrity by runningΛHLT.Vrfy(ΛHLT.pk, r, σ). If the
output is 1, the storage assurance can be guaranteed with(1− f)t

confidence, wheref is the fraction of the corrupted tuples.

7. CONCLUSION
We presented an efficient solution to the problem of query in-

tegrity in the setting of outsourced dynamic databases. Query in-
tegrity allows a querier, the data owner or a third party, to verify
that its queries were faithfully executed by the cloud server. Com-
pared with the state-of-the-art solutions, our solution is: (i) more
powerful by additionally supporting aggregate queries (inaddition
to selection, projection, and join queries), and (ii) more efficient
by eliminating a logarithmic (or even linear) multiplication factor
from the overall cost (depending on the type of the queries).

Our solution still incurs linear complexity. A notable direction
for future research is to address the following open problem: Can
we attain query integrity logarithmic (or constant) complexity as in
the case of assuring storage integrity?
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