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ABSTRACT

As databases are increasingly outsourced to the cloudpdaia
ers require various security assurances. This paper igags$ one
particular assuranceuery integrity by which a database querier
(either the data owner or a third party) can verify that iterigs
were faithfully executed by the cloud server with respec¢h&out-
sourced database. Query integrity is investigated in thiengeof
dynamic databases, where the outsourced databases catetbedip
by the data owners as needed. We present a formal security-defi
tion of query integrity and a provably-secure efficient dongtion.
Our solution improves upon the state-of-the-art solutiopsddi-
tionally allowing aggregate queries and more flexible jaieges.
In addition, we provide better performance by eliminatingaar
factor in the extra storage complexity for security purposgur
solution also achieves a trade-off between computatiamikcam-
munication complexities.

Categories and Subject Descriptors

C.2.4 [Communication Networks]: Distributed Systems; H.2
[DATABASE MANAGEMENT ]:

General Terms
Security

Keywords

Dynamic outsourced database, query integrity, authepticdata
structure.

1. INTRODUCTION

When databases are outsourced to the cloud, security ssses
The concern that outsourced data may be modified or (paitiall
deleted has led to novel solutions to assuringdtoeage integrity
of outsourced data [2, 12, 3, 26, 8]. Howewgugery integrity ver-
ifying whether or not queries against outsourced data atefditly
executed, has not been adequately addressed. Intuitiyedry
integrity aims to assure the queriers, which can be the data o
ers and third parties (e.g., the data owners’ businessagrajtrthat
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their queries are executed against the outsourced datan@ither
a portion of it nor a modified version of it). Despite some jweg
studies [11, 13, 17, 18, 16, 19, 23], the problem of querygirity
largely remains open.

1.1 Our Contributions

We present a formal security definition and an efficient con-
struction for query integrity in the setting of outsourceghamic
database. Our solution can be characterized from thre@gers
tives: (i) functionality, (ii) security, and (iii) efficiecy. From the
perspective of (i) functionality, our solution supportsifdinds of
queries — selection, projection, join, and aggregate. \&dmrthe
state-of-the-art solutions [13, 23] only support selettjarojection
and join queries, but do not support aggregate queries (see S
tion 5.4 for details). Moreover, our solution supportscilyi more
flexiblejoin queries, namely that the queries do not have to be de-
fined with respect to pre-defined keyword attributes. In @stf
the state-of-the-art solutions [13, 23] only support joiredes with
respect to pre-defined keyword attributes.

From the perspective of (ii) security, our solution is prolyese-
cure as long as the two underlying building-blocks are potva
secure. The first building-block is callédithenticated Outsourced
Ordered Data Setand the second building-block is calletbmo-
morphic Linear Tag Although our concrete solution is based on
our specific constructions of these building-block, itausiy anal-
ysis can be directly applied to solutions that use otherhges
more efficient) building-blocks as long as the buildingdile sat-
isfy their respective security definitions. This is due to modular
construction and “compiler"-like security analysis.

From the perspective of (iii) efficiency, our solution is cheter-
ized as follows. Letn be the number of attributes amdbe the
number of tuples.

e Our solution incurs a®(n) storage complexity at the cloud
side for security purpose, in contrast to thémn) of [13,
23].

e For selection query, our solution incu€¥(n) exponentia-
tions at the querier side, which is not as efficient asdfie)
hash operations of [13] but more efficient than the:) ex-
ponentiation operations on bilinear map of [23].

Our solution incurs communication @#(n) tags, which is
less efficient than th&(log n) hash values of [13] but com-
parable to thed(n) of [23].

e For projection query, our solution incu€(n) modular ex-
ponentiations at the querier side. This is not as efficient as
the O(n) hash operations of [13], but much more efficient
than theO(nk) exponentiation operations on bilinear map



of [23], wherek < m is the number of attributes involved in
the projection operation.

Our solution incurs a® (n+m) communication complexity,
which is the same as in [23] but much more efficient than
the O((m — k)n) of [13], wherek < m is the number of
attributes involved in the projection operation.

e For join queries with respect to two tablesrofuples andn
attributes, our solution incu@(n) modular exponentiations
at the querier side, which is not as efficient asthe log n)
hash operations of [13], but more efficient th@(n) expo-
nentiation operations on bilinear map of [23].

Our solution incurs the communication complexity®fn +
m) tags, which is more efficient than tli&(n(log n)) hash
values of [13] and comparable to thEn) of [23].

The efficiency of our solution mainly comes from the secoritting-
block mentioned above, which is weaker than the Homomorphic
Linear Authenticator introduced in [2] and may be of indegbemt
value.

1.2 Related Work

The problem of assuring query integrity in the context of-out
sourced data was fundamentally related to the concept tfieer
data structures [27], which presents some results thatcareep-
tually important but not efficient. The state-of-the-arusions to
query integrity are due to [13, 23], which are the only salng
that support selection, projection and join queries siandbusly.
These two solutions follow two respective approaches tajtley
integrity problem.

e The tree-based approach: Basically, this approach uses the

Merkle hash tree [15] or its variants to index search keys [11

17,13, 7, 16, 31, 20, 21]. As a result, this approach leads to

logarithmic complexity in terms of both communication and
verification, possibly with some further tricks (e.g., usthe
Merkle hash tree to maintain signatures at multiple hagh tre
levels [11]). The best solution in this approach is due tg,[13
which uses the Merkle B-tree and the Embedded Merkle B-
tree in order to reduce I/O operations.

e The signature-based approach: Basically, this approaeh us
the signature aggregation technique [5, 18] to aggregate th
validity of query answers [18, 19, 23, 22]. As a result, this

privacy [29], and assuring probabilistic integrity in setlen and
join operations [28]. Query integrity is also somewhat tedato
outsourced verifiable computation [1, 6, 10].

Paper outline.

The rest of the paper is organized as follows. Section 2 ptese
the functional and security definitions of outsourced dyicatatab-
ase with the requirement of query integrity. Section 3 dbserthe
first building-block, and Section 4 describes the secontlimg-
block. Section 5 presents the main construction of autbetsd
outsourced dynamic database and analyzes its security find e
ciency. Section 6 presents an extension of the construttia-
commodate storage integrity of outsourced dynamic datalsec-
tion 7 concludes the paper with future research directions.

2. QUERY INTEGRITY FOR OUTSOURC-
ED DYNAMIC DATABASES: DEFINITI-
ONS

In the context of the present paper, a relational databassste
of multiple tables, and each table has multiple tuples antiphe
attributes. As shown in Figure 1, an outsourced databagersys
has three participants: data owner (who outsources itbadseato
the cloud), database server (i.e., the cloud), and datahsseers
(e.g., business partners of the data owner). The data ovaesr u
amanagement interfad® outsource its database to the cloud, in-
cluding dynamic updates of the database. There is algoeay
interface which can be used by any third party, including the data
owner itself if desired.

Management Query
interface 1| | interface
1
1 1
1 1
1 1
1 1 SQL query
1 DB outsource \:\
: (update & Result & Proof | @
b 1 maintenance) 1
1
Data (DB) Owner DB Querier

Figure 1: Outsourced dynamic database system model.

approach can lead to low (even constant) communication com-

plexity, but may require special treatment for handling enor
powerful (e.g., projection) queries and often leads todarg
storage and computational complexities. The best solution

Intuitively, query integrity means that any quersy is faithfully
executed with respect to the databdself we treat a quergry as

in this approach is due to [23], which uses aggregate signa- & function, the querier should be able to verify that the s

tures to sign each attribute and returns a single signature a
the validity proof for projection queries. This solutioressa
chaining signing technique to build the index for the search

key so as to facilitate range queries, and publishes a certi-

fied bitmap corresponding to every update so as to facilitate

its query is indeedry(D). The concern is legitimate because the
cloud may execute the quedqyy with respect taD’, whereD’ # D
because (for example) the cloud vendor may use an outdated ve
sion of D rather than the up-to-date one, Bf C D because the
cloud vendor wants to spend less resources on searchingtihe e

dynamic updates. These cause a large storage and commuZ’- Moreover, the cloud may return the answer to a modified query

nication overhead while including many exponentiationd an
pairing operations.

qry’ on databasé or even someD’ # D. As a concrete exam-
ple, a querygry asks for the tuples with some attribute values that
belong to the interva]10, 100], but the cloud actually returns the

There are studies that are somewhat related to the theme of th tuples whose attribute values belong to the smaller intéta20].

present paper as well. These include: authenticating theexrs to
set operations using accumulator [25], authenticatingatisvers
to aggregate queries using authenticated prefix-sums[irépsu-
thenticating the answers to join queries [30], autheritigatount
queries with respect to multi-dimensional data while présg

Without assuring query integrity, the querier cannot télether the
returned answer is indeegy (D) or someqry’ (D").

In what follows, we present the functional and security defin
tions of Authenticated Outsourced Dynamic Databdsgl{DDB),
which was somewhat inspired by the definitions of Authem¢ida



Data Structures that allow verifiable queries over dynareis 24,
25].

Definition 1. (AuthDDB) Let D be a database outsourced to the
server. AnAuthDDB scheme consists of the following algorithms:

e KeyGen: This algorithm takes as input the primary security
parameter/, and outputs a pair of private and public keys
(sk, pk). We denote this by

(sk, pk) < KeyGen(1°).

e SetUp: This algorithm is executed by a data owidgbefore
outsourcing its databage to the server. By taking as input
the private keysk and the databas®, this algorithm out-
puts some cryptographic auxiliary informatidw and state
informationState. Both D andAu will be outsourced to the
server andState will be made public (so as to allow third
parties to verify the query answers). We denote this by

(State, Au, D) < SetUp(sk, D)

e Update: This protocol is executed between a data owder
and the servef to perform update operations, the detail of
which is described bypd. By taking as input the private key
sk and the current state informatiGmate, the data owner in-
teracts with the server, which takes as input the stored data
D and the cryptographic auxiliary informatigxu. The data
ownerQ updates its state information $aate’ from the up-
date informatiorlJpd, and the server obtainsu’ and D’ by

The challenger rungsk, pk) < KeyGen(1¢) and givepk to
the adversary.

A makes oracle access $etUp, by presenting a database
Dy. The challenger computes

(Stateg, Aug, Dq) < SetUp(sk, Do),

and givesStateg, Aup to .A. The challenger makeState,
public.

A asks for updatingDo adaptively withUpd,, ¢ > 0. The
challenger computes
(Aui+1, Statei+1, Di+1) “—
(O(Sk7 State;, Updi, Au;, Dl) <~ S(Aui, DI))

A may execut&ueryVrfy polynomial-many times. Eventu-
ally, A outputs a quergry and a query resuRst with proof
Prf.

A wins the game if
(accept, Rst, Prf)} < (Q(pk, qry, Stater) <> S(Aug, Dy))

for somek > 0 andRst # localRst, wherelocalRst <«
LocalQuery(qry, Dy,) is produced by the challenger that faith-
fully executes queryry on databasé,.

We say thatA is sound if any polynomial-time algorithma can

updating the stored database accordingly. We denote the pro Win the game with at most a negligible probability.

tocol by
(AU, State’, D) + (O(sk, State, Upd) + S(Au, D))

e QueryVrfy: This is a protocol between a queri€;, which
issues a SQL queryry, and the servelS, which answers
the query with the resulRst and a proofPrf. The querier
verifies the resulRst with Prf, and outputseject if Rst is
not valid with respect to the queryry and the stat&tate;
otherwise, the querier accef®st and Prf. We denote the
protocol by

{(reject), (accept, Rst, Prf)} +
(Q(pk, ary, State) <> S(Au, D))

We require arAuthDDB scheme to be correct, meaning that for
any honest servel(sk, pk) < KeyGen(1%), (State, Au, D) «+
SetUp(sk, D), polynomial-many executions of tié¢pdate proto-
col, and a queryry, it holds that

(accept, Rst, Prf) < (Q(pk, qry, State) <> S(Au, D))

We require arAuthDDB scheme to be sound, meaning that no
malicious server can return incorrect query answers witheing
detected by the querier. Specifically, we sayfathDDB scheme
is sound if for any queryry on databaseD, the server can not
return an incorrecRst such that

(accept, Rst, Prf)} < (Q(pk, gry, State) <> S(Au, D)).
Formally,

Definition 2. (soundness AuthDDB) Let A = (KeyGen, SetUp,
Update, QueryVrfy) be anAuthDDB scheme and4 be a proba-
bilistic polynomial-time adversary. Consider the follogisecurity
game between a challenger aAd

3. BUILDING-BLOCK I: AUTHENTICATED
OUTSOURCED ORDERED DATA SET
(AUTHODS)

In this section, we introduce a building block for assuringge
query integrity on ordered data set that is outsourced teeheer.
This building-block is called Authenticated Outsourcedl€ed
Data Set AuthODS), which is similar toAuthDDB.

3.1 Definition of AuthODS

Definition 3. (AuthODS) Let E be an ordered data set. An
AuthODS scheme consists of the following algorithms, which are
similar to those in Definition 1:

e KeyGen: This key generation algorithm generates the pub-

lic/private key a¥KeyGen in Definition 1.

e SetUp: This setup algorithm is the same &stUp in Defi-

nition 1, except that the database is replaced with an addere
setk.

e Update: This update protocol proceeds is the samédpdate

in Definition 1, except that the update operations are elémen
insertion/deletion/update on the ordered datatset

e QueryVrfy: This query protocol is the same QsieryVrfy in

Definition 1, except that it only supports range query(a, b)

that asks for all elements in the interyal b].

The correctness oAuthODS can be defined similar to that of
AuthDDB scheme.



Definition 4. (soundness chuthODS) For anAuthODS scheme,
A = (KeyGen, SetUp, Update, QueryVrfy), we consider the se-
curity game as in Definition 2, except that (i) the initial alaase
is replaced with an ordered sEt (ii) the update operation is ele-
ment insertion, deletion or update on the ordered data 1se(ii&)
the queries are only range querigg(a, b) that ask for elements in
the interval[a, b]. We say that\ is sound if any polynomial-time
algorithm.A can win the game with at most a negligible probability.

3.2 Construction and Analysis of AuthODS:
Merkle B-Tree

Now we describe a\uthODS scheme, which is a Merkle B-
tree (MB-tree) and has been extensively studied in [13, &}kle
B-tree applies the basic idea of Merkle tree oR & tree structure,
where the operations on Merkle B-tree (e.g., insertion aheltithn)
are similar to those o™ tree. The primary advantage &f"
tree is that it has a large fan-out, which can reduce the numbe
of 1/0O operations when searching for an element [13]. Sigt=
(KeyGen, Sign, Verify) be a secure signature scheme. Edbe an
ordered set. The Merkle B-tree scheme consists of algositas
follows:

o (sk,pk) + KeyGen(1°): This algorithm runsig.KeyGen
(1%) to obtain a pair of private and public keysk, pk).

e (State, Au) < SetUp(sk, E): This algorithm outputs a suc-
cinct signature which can be used for verification. The struc
ture of Merkle B-treeT is similar to B tree, where the
leaves store elements in the ordered Betand the values
of internal nodes are computed from the concatenation of the
values of their children via an appropriate hash functidme T
root of the tree will be signed to produce the state informa-
tion, denoted bystate = Sig.Sign(7) andAu = T.

Update: The update protocol fulfills update operations. For
simplicity, we consider the example of the replacement op-

of E,, and the other path of the right-most leaf Bf.
Then the querier useBrf and the resulRst to con-
struct aB™ tree, and verifies whether the root of the
this B* tree is valid forState = Sig.Sign(7). If so,
the querier returngRst, Prf, accept); otherwise, the
querier aborts.

THEOREM 1. Assuming thafig is a secure signature scheme
and the hash function is collision resistant, the Merkledzscheme
is sound with respect to Definition 4.

4. BUILDING-BLOCK Il: HOMOMORPHIC
LINEAR TAG (HLT)

Now we present the second building blodkLT. Intuitively,
HLT offers the following property: If messagédi,..., M, are
respectively tagged with, . . . , o, USing some cryptographic func-
tion, then for coefficients:,...,c, in a pre-defined coefficient
space, the aggregate messagie= > " , ¢;M; can be verified via
the aggregate tag of o1, ..., 0, and the coefficients,, ..., c,.
HLT can be divided into two types:

e Publicly verifiableHLT: It allows anyone (without knowing
any secret) to verify the validity of tags. In order to allow
any third party to verify query integrity, this type 6fLT is
needed for the purpose of the present paper.

e Privately verifiableHLT: It allows someone who knows the
relevant secret to verify the validity of tags. Putting timito
the context of the present paper, this typ&laf can be used
to allow the data owner (but not third parties) to verify quer
integrity. Therefore, this type dfiLT will not be discussed
further in the paper.

The concept oHLT was inspired by the notion of Homomor-
phic Linear Authenticator (HLA), which was formally intraded
in [3]. The difference between them is thdt T is weaker than
HLA becauseHLT only considers attacks that do not attempt to

eration while assuming that the replacement preserves theamper the individual tags (which is dealt with by anotherekaof

order of the elements. We refer to [13] for details about the
insertion and deletion operations. Suppthed = “update
the elementF; to E;". Upon receivingUpd from the data
owner, the server updatééto E’ by replacingE; with E,

and update§ to 7'. The server provides a proof, a path of
E; in T, namely a sequence including values of the nodes
from E; to the root of MB-tree as well as the values of these
nodes’ siblings. The data owner can hash the paff; dfom

the bottom to the top and verify whether the root is valid with
respect to statState or not. If so, the data owner updates
the path from the bottom to the top by replaciBigwith E;,
which will result in a new root, signs the new root, and sets
State’ = Sig.Sign(7"); otherwise, the data owner aborts.

QueryVrfy: Given arange queryry(a, b), the server outputs
a proofPrf showing thaRst contains all elements ifa, b].

— If Rst is empty, which means there exists somsuch
that Es < a,b < Esy1. The server returns the proof
Prf including two paths: a path of; and a path of
E;11. The querier hashes each path from bottom to the
top, and verify whether the roots match the stitate,
and Es is neighbor toEs1. If so, the querier returns
the null setRst, Prf, andaccept. Otherwise, abort.

— If Rst is not null, suppose the query resul{i&;, .. .,
E:),s < t. The server returns the pro®%f includ-
ing two paths: one path of the left-most neighbor leaf

protection for free, namely by the first building-block); erkas,
HLA explicitly accommodates attacks that aim to tamper titb-i
vidual tags. This makes it possible to constrHtfl schemes that
are more efficient that their HLA counterparts. It is wortlieto
point out the following feature oHLT and HLA: the aggregated
message\/ and the aggregated tagare sufficient to allow the
verifier to test their validitywithout knowing the individual mes-
sagesMi, ..., M,. This is not the case for aggregate signatures
[5], batch RSA [9], and condensed RSA [18], which are not suffi
cient for the purpose dfiLT or HLA.

4.1 Definitions of HLT

Definition 5. (publicly verifiableHLT) A publicly verifiableHLT
scheme consists of the following algorithms:

o (pk,sk) « KeyGen(1%): This algorithm takes as input a
security parametef, and outputs a pair of public and private
keys(pk, sk). It may optionally specify a coefficient domain
C and a message spadd.

e o, <+ TagGen(sk, M;): This algorithm takes as input the
private keysk and a messagkl; € M, and outputs a tag;
for M;.

o < HLTAgg(c, ng): This linear aggregation algorithm
takes as input a vector of tagag = (o1, ..., 0,) With re-
spect to a vector of messaga$ = (M,,...,M,) and a



vector of coefficients’ = (ci1,...,¢,). It outputs an ag-
gregate tagr with respect to the aggregated message=
Z?:l CZ'MZ'.

e {0,1} « Vrfy(pk, M’ o’): This deterministic algorithm
takes as input the public keyk, a candidate message’,
and atagr’. It outputs 1 ifo’ is valid with respect ta\/”,
and outputs 0 otherwise.

We require eHLT scheme to be correct, meaning that any faith-
fully aggregated messagk/ and tago are always accepted as
valid. Formally, this means that fdipk, sk) «— KeyGen(1?),

M = (Mi,...,M,) € M", Tag = (o1,...,0,) Whereo; <
TagGen(sk, M;) for1 < i < n,andé= (ci1,...,c,) € C", then
o + HLTAgg (G, Tag) implies1 < Vrfy(pk, 37", ¢; M;, o).

The intuition behind the following security definition BILT is:
for any tago generated for messagd, there is no probabilistic
polynomial time adversary that can presédt # M such that
1 < Vrfy(pk, M', o). Formally, we have:

Definition 6. (security ofHLT) Let A = (KeyGen, TagGen,
HLTAgg, Vrfy) be aHLT and.A be a probabilistic polynomial-time
adversary. Consider the following security game betweehad c
lenger andA:

1. The challenger rungk, sk) < KeyGen(1°) and givespk
to A. The optional coefficient domaié and the message
spaceM are specified byKeyGen.

2. A may make oracle queries TagGen by adaptively select-
ing M, ..., M, from M. The challenger computes <«
TagGen(sk, M;)for1 < i < nandreturnstagsr,...,on)

to A. The challenger keeps the lists of messages and tags:

(]\417 ey Mn) and(al, Ceey O'n).

3. A may make oracle queries L TAgg by selecting a vector
of coefficients¢ = (ci, ..., ¢, ), Obtain the aggregate tag
and runVrfy with the aggregate tag and the aggregated
message> ., ¢;M;. This can be performed polynomially
many times.

4. Eventually,A selects a vector of coefficients= (c1, . . .
wherec; € C, and someV’ € M.

7Cn)1

5. The adversaryd wins the game ifl < Vrfy(pk, M’, o)
and M’ # 37 ciM;, whereo < HLTAgg(c, Tag) was

computed by the challenger, wheTég = (01,...,04) COI-
responds to the message vectdf, ..., M,) that can be
identified by the coefficient vectaf = (c1,...,cn) pro-

vided by the adversary.

We sayA is secure if no probabilistic polynomial-time algorith#n
can win the game with a non-negligible probability in thelgéy
parameter.

From the security game, we observe that the adverdasyonly
allowed to manipulate the messagd¥s, . . ., M,, but not the tags.
This further explains whyiLT is weaker than the aforementioned
HLA (Homomorphic Linear Authenticator) [2, 3, 26], whereeth
adversary can manipulateoth messages and tags. This can be
stated as:

LEMMA 1. Any secure HLA scheme as defined in [3] is also a
secureHLT scheme as defined above.

4.2 Construction and Analysis of HLT

We present &1L T scheme whose security is based on the Dis-
crete Logarithm (DLOG) problem. The scheme consists ofdhe f
lowing algorithms.

o (sk,pk) « KeyGen(1°):
1. Letq be a/—bit prime andp be another large prime
such thaty|(p — 1).

2. Selectv; andwv. uniformly at random fromZ,, such

that the order of; andwvs is ¢
3. Selects;1, s;2 uniformly at random fromz; and set
z; =, 7w, 7% mod p,forl < j < m.

4. Letsk = {(s11,512),- - -, (8m1, 5m2) } andpk = {v1,

V2, 21y vy Zm )
5. The coefficientdomaiéi is [0, ¢) and the message space
isM=[0,¢)™

e o; < TagGen(sk, M;): For M; € M, the tago; is com-
puted by selecting:, 7> uniformly at random fron¥;; and:

x = wvjtvy? mod p,
m
yio= T+ ZMi[j]Sjl mod g,
j=1
Y2 = T2+ ZMi[j]sz mod gq.

j=1
Leto; = (:L',yl,yg).
e 0 «+ HLTAgg(c, Tag): Given tagsTag = (o1, ..

with g; = (:L'i, yil,yig), andc = (017 .
tago = (z,y1, y2) is computed as:

2 0n)
,cn), the aggregate

r = Hmf‘ mod p,
i=1
n

yi = Zci'yil mod g,
i=1

Y2 = Zcin mod gq.

i=1

e {0,1} «+ Vrfy(pk, M,o): To verify that M is valid with
respect to tag, check whether:

m
Y1,,92 M]j]
v{'vs | | z;
=1

If it holds, return 1; otherwise, return 0.

8
|

mod p.

It can be verified thal/ = }"" | ¢;M; matches the aggregated
tago because

Y1,,Y2

m m
M[5]  _ Sieq Civil, Doreq CiYil iy ¢ M; (4]
vyl ||z] = ] V5 ||z]
j=1

=1

n n m
n )
_ CiYi1 CiYi2 >i=1 ciM;[5]
= I |v1 I |v2 I I 2;
i=i i=i j=1
n

m
— CiYi1,, CiYi2 c; M; 5]
= | |(U1 Vo H Zj )
Jj=1

i=1

n
p— Ci __
= II&L’Z =z
i=i



THEOREM 2. Assuming DLOG problem s hard, the T scheme
is secure according to Definition 6.

PROOF Let M;,..., M, be the messages adaptively selected
by Aandor = (@1,911,¥12),--,0n = (Tn,Yn1,Yn2) be the
corresponding tags generated by the challenger. Assumadthe
versary wins the security game with a non-negligible prdtgb
That is, it outputs a vector of coefficients= {ci,...,c,} and
a message\l’ € M, such thatM’ # M = > 7 | ¢;M; but
1 « Vrfy(pk, M, o), whereo «+ HLTAgg(c, Tag), andTag =
(01,...,0n). We show that ifA wins the security game with a
non-negligible probability, then we can solve the DLOG ol
givenws, v2 randomly selected fronay;, find log,, (v1).

Supposer = (z,y1,y2). Sincel <+ Vrfy(pk, M’, o), we have
M M'[4]

J

— V1,02
T = v vy

j=1

On the other hand, as + HLTAgg(¢, Tag), we have
m [ ]
Ml[j
H 2
j=1

whereM = " | ¢;M;. Therefore, we have

m , m

M'[5] _ H M (5]
| | Zj = i
j=1 j=1

— Y1,¥2
T =vi'v3

namely

ﬁ MG g

j=1

As M' # M, let AM[j] = M'[j] — M[j]for1 < j < m.

Sincez; = v, 7'v, *?, we have

YLy —sj1AM[5] TN —sj2 AM]
v vy

: =1.

We claim thaty > | —s;1AM[j] mod g = 0 with negligible
probability because;; for 1 < j < n are kept secret. Then we
have

T sj2AM[G]
YT —sj1AMIj]
v1 = vy’ .

Performance.

HLT HLA [26] HLA [2]
assumption DLOG CDH Factoring
pairing-based?| No Yes No
tag size 790 bits 160 bits 1024 bits
tagGen 2n Ex+ mnMu mnEx+ mnMu mnEx+ mnMu
verify (single) mEx 2Pairing +mEx mEx
verify mEx+mn Mu | 2Pairing +(m + n)Ex (m + n)Ex
(aggregate) +mn Mu +mn Mu
tagAggregate nEx+ 2n Mu nEx+n Mu nEx+n Mu

Table 1: Performance ofHLT and HLA, where Ex denotes ex-
ponentiation and Mu denotes multiplication.

5. QUERY INTEGRITY FOR OUTSOURCED
DYNAMIC DATABASES: CONSTRUCTION
AND ANALYSIS

In this section, we begin with a discussion on the soluticsigte
space. Then, we present the main construction and anafyge-it
curity. Finally, we discuss its efficiency with a comparidorthe
state-of-the-art solutions.

5.1 Solution Space

As discussed in the related work section, the state-ofthee-
lutions to the query integrity problem fall into two apprbas. The
first approach igree-based13]. This approach incurs the least
computational complexity because of the hash functionsalso
incursO(nlog n) communication overhead. The second approach
is signature-based23]. This approach incurs high computational
complexity ofO(kn) bilinear map exponentiations and communi-
cation complexity ofO(n) bitmaps (a small constant bits). Both
approaches incud(mn) extra storage complexity in the cloud.

Our solution is based on a third approach. It reduces the extr
complexity at the cloud side fror®(mn) to O(n). It achieves
a balanced trade-off between computational and commumicat
communications. Specifically, itis less efficient than tleetbased
solution in terms of computational complexity but subsediytmore
efficient than the tree-based solution in terms of commuivica
complexity. Itis also substantially more efficient thansignature-
based solution in terms of computational complexity bus lefi-
cient than the signature-based solution in terms of comoation
complexity. Perhaps more importantly, our solution caroaumo-
date aggregate queries, which are not supported by thedftttie-
art solutions [13, 23].

The high-level idea of our solution is the following: THe.T
scheme generates a tag for each tuple in the table, akdith© DS
scheme can be built on those tags, which are ordered by thehsea
key. Intuitively, theAuthODS scheme provides two functionali-
ties: one is to enable range query, and the other is to gusaraag
integrity (i.e., preventindiLT tags from being manipulated). The
performance gain comes from th T scheme because only one

As stated in Lemma 1, any secure HLA scheme is also a se- aggregate tuple is needed to verify the integrity of (paftsuples.

cureHLT scheme. Now we show th&tLT constructions can be
significantly more efficient than HLA schemes. Specifically
compare ouHLT with two HLA schemes presented in [2, 26]. We
use comparable parameters that offer the same level ofigecur
Specifically, the parameteris 140-bit andp is 512-bit in ourHLT
schemep is 160-bit in [26] andV is 1024-bit in [2]. We consider
n messages, namelyl; = (M;[1],..., M;[m]) for1 < i < n,
and compare the costs of the respective operations.

This is critical for the projection query because its quesutt only
contains a portion of attributes from all tuples.

5.2 Proposed Construction

Let R be a table ofn tuples with schemdA,, ..., A,,) and
r1,...,T be tuples ordered by search kdy. Let L andU be the
lower and upper bounds of the search key, respectively.

Let Ars = (KeyGen, SetUp, QueryVrfy, Update) be a secure

As shown in Table 1, the HLA scheme presented in [26] has the A;thODS scheme and\yir = (KeyGen, Tag, Vrfy, HLTAgg) be

shortest tag but incurs the most expensive computatioralRbat

exponentiations and multiplications in pairing groupsraceh less
efficient than those in integer groups (e.g., the cost of @ieny

is about that of 6-20 exponentiations [4]).

a secureHLT scheme. ThéuthDDB scheme is described as fol-
lows:

e KeyGen: Given the primary security parametérthe data



owner obtains two secondary security parametesnd /s,
and generates a pair of private and public keys pk),

. Computg(Ags.sk, Ars.pk) <+ Agrs.KeyGen(11).
. Compute(Anit.sk, Anir.pk) < Anir-KeyGen(12).
sk = {ARs.Sk, AHLT.S/C} andpk: = {ARS .pk‘, AHLT.pk}.

. Anir.KeyGen specifies the coefficient domaih and
the message spadet, s.t. (r;.A1,...,ri.Am) € M
forr, e R,1 <i<n.

e SetUp: The data owner takes as input the private kiynd
atableRR, and obtain$tate andAu as follows:

1. Letro andr, 1 be two tuples added at both ends of ta-
ble R in order to facilitate range query, wherg A, =
L andrn+1.A1 =U.

2. Computeo; <+ Anir.TagGen(Ancr.sk,r;) for tuple
r;,0 <1< n+1.
3. LetEgs be the ordered data set, such that = { Eo,
Ly En+1} whereE; = (Ti.Al,O'i) for 0 <i1<n+1
and Eks is ordered by4,. Compute(Staters, Aurgs,
ERs) < ARs.SetUp(ARs.Sk, ERs).

4. LetState = Staters andAu = (Augs, Ers). R and
Au will be outsourced to the server, aBdate will be
made public.

e Update: The data owner interacts with the server to update

the stored table with the update informatiopd.

Insertion: SupposeUpd is “insert the tupler into R where
rs. A1 < 1. A1 <71rsy1.A41,0 < s <n”

1. The data owner computes«— Anit.TagGen(Anit. sk,
r).

2. LetUpdgg be “add an element of = (r.A:, o) be-
tweenE; and Es1". The data owner takes as input
Updgs, Ars.sk andStategs, runs protocolrs.Update
with the server, who takes as inpupdgs and Augs.
Eventually, the data owner outpi8gategs and the server
updatesAugs to Augs and Ers to Fis.

3. The data owner delivel$pd to the server, and the server

updatesi to R'.

ReplacementSupposeaJpd is “update the tuple with r’”:
1. The data owner fetches the tagor the tupler from
the server.

2. The data owner compute$ < Apir.TagGen(ApLt.sk,
r').

3. LetUpdgs be “update the elemefit. A1, o) with (. A1,
o’)". The data owner takes as inpUlpdgs, Ars.sk
andStategs, runs protocol\grs.Update with the server,
who takes as input/pdgs and Augs. Eventually, the
data owner outpuiStates and the server updat@sirs
to Augs and Egs t0 Egs.

4. The data owner delivet$pd to the server, and the server

updatesk to R’.
Deletion:SupposdJpd is “delete the tuple”:

1. The data owner fetches the tagor the tupler from
the server.

2. LetUpdgg be “delete the elemerft.A;, o). The data
owner takes as inpudpdgs, Ars.sk andStaters, runs
protocol Ars.Update with the server, who takes as in-
put Updgs and Augrs. Eventually, the data owner out-
putsStaters and the server updatésigs to Augs and
ERS tO E&S

3. The data owner delivet$pd to the server, and the server
updatesk to R'.

We present the construction QlueryVrfy protocol based on the

query type. Recall théitate = Staters andAu = (Augs, Ers).

QueryVrfy on Selection Query

Suppose the selection queryqsy ="select * from R where

A1 > aandA; <b". There are two scenarios.

e If the resultRst is not null, assum®&st = {rs,...,7:},1
s <t <mn,wherers_1.4; < a <rs;.Ayandr;. A1 <b
r++1.A1. The protocol proceeds as follows:

<
<

1. The server setBst = {rs,...,r:}, and sendsst to

the querier.

2. The querier runs protocdlgs.QueryVrfy with the server
for range queryry(a, b). If the output isreject, the

querier aborts; otherwise, the querier obtains range query

.y (’f’t.Al, O't)) andPrfRS.

3. The querier randomly selects a vector of coefficients
&= (Cs...,c1), computes < At HLTAgg(C, Tag)
whereTag = (0., . ..,0:), and runs
At Vrfy(Ancr.pk, S eiri, o). If the output is 1,
the querier return&ccept, Prf = (Rstgs, Prfgrs), Rst);
otherwise, the querier returmsject.

resultRstrs = ((rs.A1,0s), ..

e If the resultRst is null, there exist two tupless, rs11,0 <
s < n such thatrs. A1 < a,b < rsy1.A1. The querier
can verify this fact by running protocdlrs.QueryVrfy with
range queryjry(a, b), which should returaccept andRstgs
is null.

QueryVrfy on Projection Query.

Suppose the projection querydsy ="“selectAq, ..., A, from

R” (k > 1). The protocol proceeds as follows:

1. The server seRst = {(r;. A1, ..
passes it to the querier.

.,Ti.Ak), 1< < n} and

2. The querier runs protocdlrs.QueryVrfy with the server on
range query L, U). If the output isreject, the querier aborts;
otherwise, the querier obtains the range query résuks =
((To.Al, Uo), ey (Tn+1.A1, Un+1)) and prooﬂ’rfRs.

3. The querier randomly selects a vector of coefficiehts
(c1,...,¢,) and sends it to the server.

4. The server computesd; = > 7" | ciri.Aj,k+1<j<m
and send$r. Ay 41, . .

.,m.An) to the querier as part ¢rf.
5. The querier computesA; = "  criAj,1 < j <k
from Rst = {(r:.41,...,7:.4%),1 < i < n} and the
aggregated tag = Ap.HLTAgg(G, Tag), whereTag =

(o1y...,0n).



6. The querier computesyir.Vrfy(Aucr.pk, M, o) where M
= (r.A1,...,m.An). If the output is 1, the querier returns

(accept, Rst, Prf = (Rstgs, Prfrs, 7. Agt1, ..., 7. Am));

otherwise, the querier returmsject.

QueryVrfy on Join Query.

Let P be another table with scheni#, ..., B,,) and be pro-
cessed bysetUp, where B; is the search key. For convenience,
supposeP hasn tuples, and4d, and B; are the respective primary
key for tablesR and P. Suppose the join query iy ="select
R.*,P." from R, P whereR.A; = P.B," (1 < s,t < m). The
protocol proceeds as follows:

1. The server sef8st = (R*, P*) and passes it to the querier,
whereR* andP* are the tuples ik and P such thatk. A, =
P.By.

2. The querier runQueryVrfy on projection queries withry 5,
= “select Az, A; from R” and qry, = “select Bz, B, from
P", respectively. If either execution outputs 0, the querier
aborts; otherwise, the querier obtaif(s;. A2, ;. As, 03),1 <
( S n} and{(pj'B27p]"Bi7U;')7 1 S .7 S 'l’l}

3. The querier identifies tuples satisfyifgAs = P.B; from
{(Ti.AQ,m.AS, 0'1'), 1< < n} and{(pj.BQ,pj.Bt, (J';v)7
1 < j < n}. Specifically, leto and 3 be two sets of indices
such thatw C {1,...,n}, 8 C {1,...,n}andi € o, j €
B,ri.As = p;.By. Then, the querier obtains two sets of tu-
ples{(m.Ag, ri.As, O'i),i S Oé} and{(pj.BQ,pj.Bt, U;),j (S
B}, wherei € «, j € 8,7:.As = p;.Bt. The querier verifies
that the number of tuples iIR* equals to the number of tuples
in {(ri.A2,1i.As,04),1 € a}, and the number of tuples in
P* equals to the number of tuples{itr;. B2, p;. Bi, 05), j €
B}. If both are true, the querier continues; otherwise, the
querier aborts.

4. The querier randomly selects a vector of coefficiehts
(c1,...,¢ql), cOMputesr by aggregating tagso:, i € o},
and executes\p.t.Vrfy with & o, R* and Anr.pk. The
same is executed with respect®d. If both executions out-
put 1, the querier returns

(accept, Rst, Prf = (Rstrs, r, Prfrs, g, Rstrs, p, Rstrs,p));

otherwise, the querier returngect. Here(Rstgrs, g, Prfrs,r)
are the query result and proof when executingryVrfy on
projection queryqry, and that(Rstrs, p, Prfrs, ) are the
query result and proof when executiQueryVrfy on projec-
tion queryqry p.

QueryVrfy on Aggregate Query

Suppose the aggregate queryqiy ="select SUMA,) from
R whereA; > aandA; < b”. Supposel < s < t < n,
rs—1.41 < a < rs.A; andri.Ar < b < rep1.A1. The protocol
proceeds as follows:

1. The server sets4; = >°¢__

Rst = r. A2, and passeRBst and(r. A1, r.As, . ..
the querier.

ri.Ajforj =1,...,m, sets
,m.Ap) to

2. The querier runs protocolgrs.QueryVrfy on range query
qry(a, b) with the server. If the output igject, the querier
aborts; otherwise, the querier obtaRetrs = ((rs.A1,05),
..., (r+.A1,0+)) andPrfgs for the range query.

3. The querier computes < Apr.HLTAgg (¢, Tag), whereé
is a vector of 1's andag = (o, .. ., o). The querier com-
putesAnt Vrfy (Anir.pk, M, o), whereM = {r.A,---,
r.An}. If the output is 1, the querier returns

(accept, Rst, Prf = (Rstgs, Prfrs, 741,743, ..., 7.Am));

otherwise, the querier returmsject.

REMARK 1. In selection/projection/join query, we use randomly
selectedc to preventaggregate attack To see this, let us con-
sider the case without using namelyc is composed of 1s. The
server has”} = r;,s — 1 < i <t + 1, and manipulates two tu-
plesre,rer1,8 < e < t — 1, to obtainr, = (re.A1,7e. Az +
1,7¢.As,...) andréi_l = (re.A1,7e.As — 1,7..A3,...), which
makes ! r; = >_¢__ri. Hence, the server could have .Vrfy
output 1 with manipulatedr’, ..., r;}.

REMARK 2. Note that our solution toward the aggregate query
supports only SUM queries and weighted SUM queries.

5.3 Security Analysis

It is easy to check the correctness of thethDDB scheme. In
what follows we focus on its security.

THEOREM 3. AssumeAgs is a secureAuthODS scheme and
Aput is a securélLT scheme, where the coefficient space is large
enough (e.gl/|C| is negligible). The proposetluthDDB scheme
attains the soundness with respect to the selection, gfojeqgoin
and aggregate queries.

The basic idea to prove the soundness is to show that if tixere e
ists a probabilistic polynomial-time adversa#ythat breaks sound-
ness of theAuthDDB scheme, we can break either soundness of
Ags or security ofHLT.

PrROOF We show our proof through a sequence of games be-
tween a challenger, who plays the role of the data owner , dnd a
versary A, who acts as the malicious server.

Game 0 Game 0 is defined as in Definition 2, where the challenger
only keeps the relevant public/private keys and the latesé $n-
formationStatey,.

Game 1 Game 1 is defined as in Definition 2, where the challenger
keeps the relevant public/private keys, the latest stdtermation
Statey, and the latest auxiliary informatiofu,. We can see that
the probability that4 wins Game 1 is at most negligibly less than
the probability that4 wins Game O.

Game 2 Game 2 is defined as in Definition 2, where the challenger
keeps the relevant public/private keys, the latest stdtermation
Statey, the latest auxiliary informatioAuy, and the latest database
Dy.. We can see that the probability thatwins Game 2 is at most
negligibly less than the probability that wins Game 1.

LetStatex, Aup andDy, = R be the latest version of the state in-
formation, the auxiliary information and the database,n@Beatey,
= StateRs, Aug = (AURs, ERS), andEgrs = {(L, Uo), (1"1.A1, (3'1)7
ey (Tn.Al, U'n), (U, O'n+1)}.

Soundness of Selection Query Suppose the adversagy finds
a selection quergry with query resultRst and proofPrf, and
wins Game 2. In other words, givemy ="select * from R where
Ay > aandA4; < b, AreturnsRst = {r%,...,r.} andPrf =
{Rstgs, Prfrs}, and wins Game 2, wheRstgrs = {(75.A1,0%), .. -,
(ri.A1,01)}. LetlocalRst + LocalQuery(qry, Dk ) andlocalRstgs
< Ags.LocalQuery(qry(a,b), Ers), which are produced by the
challenger with store8tatey, Auy, and Dy, = R.



Since A wins Game 3, we have

(accept, Rstgrs, Prfrs) <
(Q(Ars-pk, qry(a,b), Stater) <> S(Aurs, Ers)).

This means that given range quety(a, b), Rstrs is the query re-
sult on the ordered data sBks with respect to statBtate,. On the
other hand, iflocalRstrs # Rstgs, there exist two different query
results with respect tgry(a, b), which contradicts with the sound-
ness ofAgrs. SinceAgs is sound, we hav®st,; = localRstgs.
Therefore, we can assurfealRst = {rs,...,r:}.

Suppose = (cs, . .., c¢) is the coefficient vector sent from the
challenger tod. The challenger computes « A t.HLTAgg (¢,
T:;g’), WhereT:;g’ = (ol,...,01). Since the adversary wins
Game 2, it should satisfy:

t
1<+ AHLT.Vrfy(AHLT.pk, Z ciri, 0'/).

i=s

If localRst # Rst, there exist somé s < i < t, r; # r,. S0, we
have} ' ciri = S°'__ ciri with negligible probability because
ci,. .., cy are randomly selected fromand% is negligible. That
is, we have another equation

t
1<« AHLT.Vrfy(AHLT.pk, Z CiTi, 0',),

i=s

which allows us to break security dfy.t if localRst # Rst. This
means that if4 breaks the soundness AtithDDB, we can break
either the soundness aks or the security of\nr.

Soundness of Projection Query suppose the adversad/finds a
projection queryyry with query resulRst and proofPrf, and wins
Game 2. In other words, giveqry =“selectA, ..., A; from R”
(k > 1), Areturns query resuRst = {(r;.A1,...,ri.Ax),1 <
i < n}andPrf = (Rstgrs, Prfrs,r". Ap+1,...,7".Am). LetlocalRst
<+ LocalQuery(qry, D) andlocalRstrs +— Ars.LocalQuery(
qry(a,b), Ers), which are produced by the challenger with stored
Statek,/—\uk andDy = R.

Since A wins Game 2, we have

(accept, Rstgs, Prfrs) <
(Q(Ars.pk, qry(L,U), Statey,) <> S(Augs, ERs)).

This means that given range query (L, U ), Rstgs is the query re-
sult on the ordered data sBks with respect to statBtate,. On the
other hand, iflocalRstrs # Rstrs, there exist two different query
results with respect tgry(a, b), which contradicts with the sound-
ness ofAgrs. SinceAgs is sound, we hav®&st,; = localRstgs.
Therefore, we can assurfealRst = {r1,...,r}.

Suppose = (c1, .. ., ¢, ) is the coefficient vector sent from the
challenger tod. The challenger computes < Ant.HLTAgg(C,

T:;g’), whereT:;g/ = (0%,...,0p)andr’. A; = > eiri ;1 <
j < m. SinceA wins Game 2, we have
1+ Apur.Vrfy(Apur.pk, (' A, .. 7" Ay, o).

If localRst # Rst, there exist some, j,1 < i < n,1 < j <
k such thatr;.A; # ri.A;. This means thad !, ciri.A; =
>, ciri.Aj with negligible probability. Therefore, we obtain

another equation

1<+ AHLT.VI"fy(AHLT.pk7 (Z CZ’?“i.Al, ey Z C»ﬂ“i.Am), U/),
i=1 i=1

which allows us to break the security &fy 1 if localRst # Rst.
This means that if4 breaks the soundness AfithDDB, we can
break either the soundness/fs or the security of\y, .

Soundness of Join Query This holds because of the soundness of
the projection query and the security ®fi.r.

Soundness of Aggregate Query Suppose the adversag finds
an aggregate queryry with query resultRst and proofPrf, and
wins Game 2. In other words, givenpy="select SUM(-) from
R whereA; > aandA; < b", A returns query resulRst =
r’. Az andPrf = {r".A1,r".As,...,r".Am, Rstgs, Prfrs }, where
Rstrs = {(rs.A1,0%), ..., (ri. A1, o)} for the range queryry(a, b).
LetlocalRst < LocalQuery(qry, D) andlocalRstrs +— Ags.
LocalQuery(qry(a,b), Ers), which are produced by the challenger
with storedStatex, Aur and Dy = R.

since the adversary wins Game 2, we have

(accept, Rstrs, Prfrs) <
(Q(Ars.pk, qry(a,b), Stater) <> S(Augs, Ers))

This means that given range quefyy(a, b), Rstrs is the query
result on the ordered data sBks with respect to stat&tates.
On the other hand, ifocalRstrs # Rstgrs, there exist two dif-
ferent query results with respect tpy(a, b), which contradicts
with the soundness afrs. SinceAgs is sound, we hav&st,, =
localRstrs, which means that any tuple in R, wheres < i <
t, satisfiesa < r;.A; < b. The challenger computes’ <«
Apir HLTAgg(C, T:;g’), WhereT:;g’ = (0%,...,07) andcis all
1's. If Awins Game 2, it should satisfy

1 Anur Vrfy (Ancr.pk, (r'. Ay, 1" A, o).

If localRst # Rst, we haverzs r;. As # 1. As. Therefore, we
obtain another equation

t t
1<+ AHLT.Vrfy(AHLT.pk, (Z V“Z'.Al, ey Z C»L'?“Z'.Am), U/),
which allows us to break the security &fy 1 if localRst # Rst.
This means that if4 breaks the soundness AfithDDB, we can

break either the soundness/fs or the security of\pir. [

5.4 Performance

We compare the asymptotic performance of our solution with
that of the two state-of-the-art solutions [13, 23]. As shaw Ta-
ble 2, our solution is more expressive because it additipisaip-
ports aggregate queries, such as: “select SWNfrom R where
A1 > a." Moreover, our solution allows the join query with respect
to arbitrary attributes, such as: “sel&gt*, P.* from R, P where
R.As = P.B," withoutrequiring thatR.As and P.B4 be search
keys. Whereas, this type of join queries cannot be handletidy
state-of-the-art solutions [13, 23].

Regarding pre-processing the database before outsoutding
the cloud, our solution is more efficient than [23], and asieffit
as [13]. In addition, our solution incurs the least extraage com-
plexity. To see this, we compare the three solutions wittaie-
ters in Table 1. Figure 2(a) shows that our solution is sesmace
more efficient than [13, 23] as long as the number of attribige
greater thanTag/Hash, which is often the case. Moreover, from
Figure 2(b) we can see that the storage-space requiremenir in
solution is independent of the number of attributes; in @sif the
storage-space complexity of [13, 23] increases lineart véispect
to the number of attributes.

Regarding selection queries, projection queries and joarigs,
our solution incurs respective computational complegitfog n)



Lietal. [13] [ Pangetal. [23] This paper
Functions Selection, Projection, Joiy Selection, Projection, Join Selection, Projection, Join, Aggrega
Technique Merkle-based Hash Tree | Aggregate Signature with Chaining Merkle-based Hash Tree ahtlL T
Security Sound Sound Sound
Data PreProcessing O(n)Hash O(mn)Ex O(n)Hash+ O(n)Ex
Storage Overhead O(mn)Hash O(mn)AggSig O(n)Hash + O(n)Tag
Computation g N/A O(n)Mu N/A
Selection | Communication | O(logn)Hash O(n)Bitmap O(log n)Hash + O(n)Tag
Computationy, | O(n)Hash O(n)Ex O(log n)Hash + O(n)Ex
Computation g N/A O(kn)Mu O(n)Mu
Projection [ Communication | O((m — k)n)attribute O(n)Bitmap O(n+ m)Tag
Computationy, O(n)Hash O(kn)Ex O(n)Ex
Computation g N/A O(n)Mu O(n)Mu
Join Communication | O(nlog (n))Hash + R | O(n)Bitmap + R* O(n + m)Tag
Computationy, | O(nlog (n))Hash O(n)Ex O(n)Ex
Computation g N/A N/A N/A
Aggregate [ Communication | N/A N/7A O(logn)Hash + O(\)Tag
N/A N/A N/A O(logn)Hash + O(X)Ex
Undate Computation g O(logn)Hash N/A O(logn)Hash
P Communication | O(1) o) o)
Computation 5 O (log n)Hash O(m)Ex O (log n)Hash

Table 2: Comparison of asymptotic performance, whereHash is 160 bits,Sig is 1024 bits,AggSig= 160 bits, Tag= 792 bits, Bitmap
is a small constant,Ex denotes modular exponentiationMu denotes modular multiplication Pairing denotes pairing operation,k is
the number of attributes in projection query, attribute is an attribute value in R, R* denotes unmatched tuples ink, and assume
|R| = |P| = ninjoin query. Note that our solution supports aggregate queies and more flexible join queries, and we do not count

the basic search operation in the comparison.
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Figure 2: Comparison of storage overhead

Hash plusO(n)Ex, O(n)Ex, andO(n)Ex at the querier side in or-
der to aggregatElLT tags. However, our solution still outperforms
[23], which incurs respective computational complexi®yn)Ex,
O(kn)Ex, andO(n)Ex on bilinear group.

Regarding projection queries and join queries, our sahstie-
quiresO(n + m) tags. In contrast, [13] required((m — k)n)
attribute values for projection queries, afidn log n) hash values
plus those unmatched tuples ifor join queries. Although [23]
only requiresD(n) certified bitmap (recording updated tuples in on
update period) for projection queries, it requires at 1€23t) cer-
tified bitmap plus those unmatched tuplesiror join queries. It
is due to the fact that [13, 23] have to fetch at least one t@itleer
R or P) for join queries.

Regarding aggregate queries, the computational and commun
cation complexities are the same regardless of the numbat- of
tributes the querier wants to aggregate. For example, dutico
incurs the same complexity for queries such as: “select SUM,

..., SUM(Ag) from R where A; > a and A; < b" and “select
SUM(A1) from R whereA; > aandA; < b".

6. INTEGRATE QUERY INTEGRITY AND

STORAGE INTEGRITY

The accompanying concept to query integritgtisrage integrity
namely the assurance that the outsourced data is kept intde
cloud. Elegant solutions to storage integrity include Rlde Data
Possession (PDP) [2] and Proof of Retrievability (POR) [112]
particular, PDP can achiew®nstanttomputational and communi-
cation complexities in the static setting [2], aledjarithmic com-
putational and communication complexities in the dynamitirsg
[8].

A systematic solution should assure both query complexity a
storage complexity. Intuitively, query integrity is morerdand-
ing than storage integrity because storage integrity doehave
to deal with the structure of database. However, one cammqtys
adapt PDP/POR techniques to the setting of outsourced atsab
because they deal with unstructured data. In what follows, w
sketch a solution that integrates PDP-flavor storage iityegith
respect to théogical structure of the outsourced database (rather
than the physical structure of the database). The solutiami
optimal because it incurs communication complexitygf) tags
and computational complexity @¥(n) exponentiations. We defer
a detailed analysis of the following solution to an expandagion
of this paper.

Specifically, for a table? with schemg A1, ..., A,,), whereA,
is the primary key (ID) that uniquely identifies a tuple. Irder to
ensure storage integrity, the database storage integudijoe (e.g.,
the data owner or a third party) can perform the procedura/ssho
in Figure 3. Since the auditor has no knowledge atioyit fetches



1: Select Aifrom R (Ai is primary key)

2:{r1.Ai, .., '.A}, Prf ={01, ..., On}

& 3: {(r b1.Aij, C1), ..... (rot.Ai, Ct) } I

DBAUdItOr 4. c1ppy + .. + Cerbt

Figure 3: Procedures to ensure storage integrity

and verifies integrity of all primary keys (IDs) iR and their tags,
which is showed in Steps 1 and 2. Then the auditor randomly se-
lectst primary IDs from the set of IDs andcoefficients, denoted

by (ry, . Ai,c1),. .., (rs,.Ai, ), and asks the server to compute
an aggregate tuple = 22:1 ciry,. Supposer is the aggregated
tag ofopr, . . . , o, With coefficientsy, . . ., ¢, the auditor can ver-

ify storage integrity by running\nir.Vrfy (Ancr.pk, v, o). If the
output is 1, the storage assurance can be guaranteediwithy)*
confidence, wherg¢ is the fraction of the corrupted tuples.

7. CONCLUSION

We presented an efficient solution to the problem of query in-
tegrity in the setting of outsourced dynamic databases.nQue
tegrity allows a querier, the data owner or a third party, éafy
that its queries were faithfully executed by the cloud ser@om-
pared with the state-of-the-art solutions, our solutian(is more
powerful by additionally supporting aggregate queriesa@dition
to selection, projection, and join queries), and (ii) moffécient
by eliminating a logarithmic (or even linear) multiplicati factor
from the overall cost (depending on the type of the queries).

Our solution still incurs linear complexity. A notable diteon
for future research is to address the following open probl€amn
we attain query integrity logarithmic (or constant) conxieas in
the case of assuring storage integrity?
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