
Efficient Query Processing for Large XML Data in Distributed Environments

Hiroto Kurita†, Kenji Hatano‡, Jun Miyazaki†, and Shunsuke Uemura†

† Graduate School of Information Science, Nara Institute of Science and Technology
Keihanna Science City, Ikoma, Nara 630–0192, Japan

‡ Faculty of Culture and Information Science, Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan

{hiroto-k|miyazaki|uemura}@is.naist.jp, khatano@mail.doshisha.ac.jp

Abstract

We propose an efficient distributed query processing
method for large XML data by partitioning and distribut-
ing XML data to multiple computation nodes. There are
several steps involved in this method; however, we focused
particularly on XML data partitioning and dynamic reloca-
tion of partitioned XML data in our research. Since the effi-
ciency of query processing depends on both XML data size
and its structure, these factors should be considered when
XML data is partitioned. Each partitioned XML data is dis-
tributed to computation nodes so that the CPU load can be
balanced. In addition, it is important to take account of the
query workload among each of the computation nodes be-
cause it is closely related to the query processing cost in dis-
tributed environments. In case of load skew among compu-
tation nodes, partitioned XML data should be relocated to
balance the CPU load. Thus, we implemented an algorithm
for relocating partitioned XML data based on the CPU load
of query processing. From our experiments, we found that
there is a performance advantage in our approach for exe-
cuting distributed query processing of large XML data.

1 Introduction

Extensible Markup Language (XML) [8] is a recom-
mended standard of the World Wide Web Consortium
(W3C) that is increasingly being used for various forms of
data exchanges between differing data sources. XML ap-
plications have been growing, and in recent years, uses for
large scale data such as a digital library system have been
expanding.

In normal applications, we use Document Object Model
(DOM) [7] or Simple API for XML (SAX)1 for processing
XML data. However, DOM and SAX are not appropriate
for processing of large sized XML data since the process-

1http://www.saxproject.org/

ing cost of these methods increases greatly with the size
of XML data. Instead, an efficient query processing ap-
proach tailored for large XML data is required. Moreover,
processing large XML data on single computation node is
confronted with the problem of limited CPU power as well
as limited capacity of hard disk drives and size of physical
memory. Thus, we propose an efficient large-scale XML
data query processing system that solves these problems
by partitioning and distributing XML data to multiple com-
putation nodes. Distributed processing has several advan-
tages, including parallel processing, load balancing, scala-
bility and redundancy.

The primary considerations when constructing a dis-
tributed query processing system for large XML data are:

1. Data partitioning
In order to achieve an efficient query processing for
large XML data, the XML data must be partitioned
evenly based upon data partition size. Moreover, XML
data is a tree structure, so that the XML data has to be
partitioned preserving the integrity of the tree struc-
ture. Therefore, the data partitioning algorithm must
consider the data size as well as its structure.

2. Data distribution
Similar to data partitioning, it is necessary to consider
data size and data structure when distributing the par-
titioned data. The query processing cost as well as
storage cost of XML data is dependent on the data
size, so that we should evenly distribute partitioned
data among computation nodes. If the partitioned data
can be distributed in such a way, query processing cost
is distributed among the multiple computation nodes.
Therefore, it is required to propose a technique for
balancing the processing costs among the computation
nodes. This is also related to dynamic data relocation,
which is mentioned below.

3. Distributed query processing
The query management is handled by a control node.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

The control node manages mapping of path informa-
tion of decomposed XML data. When queries ar-
rive at the control node, they are analyzed and dis-
patched to appropriate computation nodes. After issu-
ing the queries to computation nodes, it is responsible
for compiling the results from each of the computation
nodes. It is vital for the control node to efficiently and
correctly issue each query to computation nodes.

4. Dynamic data relocation
As mentioned in explanation of data distribution, it is
important to efficiently make use of computation nodes
as much as possible. Thus, partitioned and distributed
data should be relocated to balance the query process-
ing cost when the frequencies of queries change or the
query processing cost is unbalanced. It is important
to consider which distributed data should be relocated
to balance the query processing cost of computation
nodes after the changes.

Considering distributed query processing of large XML
data on digital library systems, the design of the XML data
can be straightforward, i.e., the records of each book infor-
mation should be closely located. In addition, users usually
issue simple XPath queries to find information related to
one book. In this case, structural join is rarely required to
get the search results of the queries if the subtrees of the
book data are not decomposed.

In this paper, we develop an XML query processing sys-
tem for large XML data considering four above-mentioned
points in distributed environments for digital library sys-
tems. In addition, we compare and evaluate three XML data
partitioning algorithms, and find the most effective one.

The rest of this paper is organized as follows: In Sec-
tion 2, we describe related work. In Section 3, we explain
our approach for constructing a distributed query process-
ing system for large XML data on digital library systems.
In Section 4, we show the comparative results of our exper-
iments, and we conclude our proposal in the final section.

2 Related Work

There have been many studies of distributed systems for
relational databases; however, few of them consider dis-
tributed XML databases. Data decomposition and dynamic
data relocation of distributed relational databases are classic
problems, so there are already various proposed methods to
solve them [3, 4]. Since relational databases are arranged
in tuples, data partitioning and relocation is relatively easy.
However, due to the XML tree structure, data partitioning
and relocation becomes more complicated.

Bramer et al. and Andrade et al. proposed efficient dis-
tributed processing for XML databases [1,2]. The key idea
of these systems is based on a structure summary called
Repository Guide, which is similar to Strong Data Guides,
in order to decompose XML data. However, this technique
requires three indexes to maintain partitioned data. Kido et

al. also proposed a method for partitioning XML data on a
PC cluster after mapping to relational tables [5]. In this ap-
proach, XML data mapped to tables is decomposed based
on the frequencies of the paths accessed by XPath queries.

These partitioning approaches were essentially achieved
by decomposing XML data into vertical and horizontal
fragmentations, which originally come from [2]. However,
these studies did not address the problem of skewed query
processing and storage costs. Although our approach is ba-
sically based on vertical fragmentation, it attempts to ad-
dress the skew problem through data partitioning, distribu-
tion, and dynamic data relocation.

3 Distributed Query Processing System

Our distributed query processing system for XML data
is as follows. To create an efficient distributed query system
for large XML data, we need to consider the following: data
partitioning, data distribution, distributed query processing
and dynamic data relocation based on both the query pro-
cessing and storage costs. We now explain each of these
parts in detail.

3.1 Summary of Proposed Distributed
Query Processing System

Our proposed system is shown in Figure 1. First, we
partition the large XML data and evenly distribute the data
partitions to multiple data nodes, called Query Processors
(QPs). Queries are sent from users to the control node,
called the Query Controller (QC). The QC analyzes the
queries to determine which QP nodes to send the query. The
QC then forwards the query to the appropriate QP nodes.
QP nodes execute the query via an XML query processing
engine. Query results from each QP are then sent back to
QC, where the results are integrated and finally returned to
users.

3.2 Data Partitioning

As for partitioning XML data, there are various strate-
gies. For example, considering only the data size, and con-
sidering only data structure.

It is important for distributed query processing to balance
the storage and query processing costs on each QP. That is,
we need to consider balanced data size and load of query
processing when distributing data. The storage cost depends
on the data size, while the query processing cost is associ-
ated with both the data size and its data structure. Therefore,
we propose a data partitioning method which takes the data
size as well as the data structure into account.

The partitioning method we propose decomposes XML
data into several fragments, so that each fragment can be
the same size while preserving the original data structure as
much as possible. The reason we took such a strategy is to
balance both storage and CPU costs. Considering storage

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

XML

・・・

ＸＭＬ Query
processing

engine

QP1

Query

Result Integration Processing

Result

XML

QP2

XML

QPn

1．Query analysis

2．Query publication to related QP

Result

Result Result

QC

Distributed Query
Processing System

ＸＭＬ Query
processing

engine

ＸＭＬ Query
processing

engine

Figure 1. Overview of Our System

cost, the size of each partitioned XML data should be sim-
ilar. The size of XML data is associated with CPU cost as
well. Whether DOM or SAX model is used to parse XML
data, CPU cost and data size correlate to each other. Con-
sidering the structure of XML data, on the other hand, each
partitioned XML data should also keep in its original data
structure, because query processing for XML data is greatly
based on the structure. If XML data is decomposed with-
out considering the structure, more CPU processing would
be required to reconstruct the original structure. This is the
key difference from distributed relational databases.

Here, we describe our partitioning algorithm briefly. Let
the size of original XML data be M , and the number of
fragments be N . An ideal data size after partitioning is ex-
pressed as α = M

N . Since it is difficult to decompose XML
data into the same sized fragments, we introduce a permis-
sible margin of fragments ε, such that α(1 − ε) ≤ L ≤
α(1 + ε), where L denotes the permissible size range of
fragments.

1. Parse XML data once, and get the number of child
nodes and the size of the subtree in each node recur-
sively.

2. For a child node nc of a node n in the XML data, cal-
culate the size of nc, which is denoted as Snc . If the
size Snc falls in the permissible size range L, then we
retain the subtrees whose parent node is nc, as a whole.

3. If Snc is larger than L, go to step 2 on a child node of
nc, which is denoted as ng .

4. If Snc is smaller than L, we combine nc and its siblings
one by one until the sum of them falls in the permis-

lib

books
papermagazine journal

science novel history

100MB

50MB

10MB 24MB 16MB

25MB 10MB 15MB

root

Figure 2. An example of XML data

sible size range L. A new subtree is then created by
combining the nodes.

5. If the size of the new subtree exceeds the range of L,
the node which causes oversize is skipped.

6. If the new subtree does not reach α, the procedure
moves back up to the parent node and goes to step 4
on the parent node, whose size should now be below
the range of L.

7. Repeat step 1 through 6 on the entirety of XML data.

In order to demonstrate our partitioning algorithm, an
example of XML data is shown in Figure 2. In Figure 2,
the numbers accompanying each node represent the sizes
of the respective subtrees. We apply our algorithm to de-
compose the XML data into four fragments. Since we set
M = 100, N = 4, α = 25, and ε = 0.1 as their initial
values, the size range of each fragment is 22.5 ≤ L ≤ 27.5.

In the XML data in Figure 2, there are four child nodes of
node lib: books, magazine, paper, and journal.
We process the nodes starting from node books. Since
the size of node books is larger than L, we process the
child nodes of books. There are three child nodes of node
books: science, novel, and history. We evaluate
these child nodes in this order. Since the size of node sci-
ence is smaller than L, the node is added to a temporary
tree. The temporary tree now contains the node science
and its size is 10MB. Next, we move to node novel. Since
the size of novel falls in L, we retain the subtree below
node novel as whole. Since the size of node books is
smaller than L, it is added to the temporary tree. The tem-
porary tree now contains nodes science and history
and its size becomes 26MB. Its new size now falls within
the range of L, and thus, we store this subtree by combin-
ing the nodes. The rest of the tree is processed in the same
way. The four data fragments generated by this algorithm
are shown in Figure 3. Data identifiers DataIDs are as-
signed to each node. Lastly, the node is linked up to the
root by adding all the missing nodes from the root of the
subtree.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

novel

lib

root

data_id1

24MB

science history

books

lib

root

data_id2

26MB

lib

magazine

root

data_id3

25MB

lib

paper journal

root

data_id4

25MB

Figure 3. Decomposed XML data

3.3 Data Distribution

When decomposed XML data are distributed to QPs,
query workload of each QP is not predictable. Therefore,
we initially distribute partitioned XML data to each QP
without any consideration. Our XML data partitioning al-
gorithm mentioned in Section 3.2 is based on both data size
and its structure, so that we arrange the same number of
partitioned XML data to each QP.

After distributing partitioned XML data, we create a
mapping table (referred to as datamap in this paper) on QC.
Datamap has three attributes: key is the original XPath ex-
pression from root node to a node, DataID represents the
identifier of partitioned XML data, and QPID is QP’s iden-
tifier. With these three attributes, QC can recognize which
QPs should handle which queries.

3.4 Distributed Query Processing

When users issue queries to QC, QC analyzes the queries
to determine which QP contains results related the queries.
As we described in the previous section, QC can find both
DataIDs and QPIDs by using keys extracted from the
queries. Therefore, QC can send the queries to QPs which
have the fragments containing the results to the queries, and
then, each QP returns the answers to QC. Finally, QC in-
tegrates all of partial results from QPs and returns a final
result to the users. Note that for the sake of simplicity, we
perform data integration on the QC itself. However, it is not
essential. It can be processed on any idle computation node
when QC is busy.

3.5 Dynamic Data Relocation

So far, each QP is well balanced from the storage cost
point of view. However, CPU cost on each QP cannot be
balanced when considering storage cost because query pro-
cessing cost on each QP is dependent on query workloads.
If this skew occurs, efficient query processing cannot be car-
ried out in distributed environments. This is because certain
QPs with heavy query processing costs will become bottle-
necks, leading to performance degradation. To cope with
this problem, we apply a dynamic relocation scheme for
partitioned XML data based on the query workloads when
the query processing cost of QPs is unbalanced.

Relocation of fragments is done as follows:

1. QC manages query processing times of each QP dur-
ing some period and determines QPL and QPS , where
QPL is the QP with the longest query processing time,
and QPS is the QP with the shortest query processing
time.

2. QC also calculates dL and dS , which are partitioned
XML data with the longest and shortest query process-
ing time on QPL and QPS , respectively.

3. QC asks the QPs to exchange dL and dS with each
other. Exchanging dL and dS allows the query pro-
cessing time on QPL to be reduced when the query
processing time of QPS is shorter. During the reloca-
tion process, the entries of dL and dS in datamap are
locked to avoid dispatching queries to wrong QPs.

4. QC updates the datamap in response to relocation of
fragments.

Repeating the above process, total query processing time
is reduced because query processing times of each QP are
balanced.

Even with this relocation algorithm, there are cases in
which a query can be dispatched to the wrong QP which
does not have the corresponding fragment any longer be-
cause it has already moved to another QP. In this case, such
a query is sent back to QC and re-dispatched to the appro-
priate QP.

4 Experimental Evaluation

The purpose of this evaluation is to show the advantage
of dynamic data relocation by using our XML partitioning
algorithm in distributed environments. Our test platform is
composed of five nodes (CPU: AMD Opteron 2.4GHz ×
2, main memory: 16GB) connected to a gigabit network.
One of the nodes is used as QC, and the others are QPs.
The software was developed on the Sun J2SE Development
Kit (version 1.5.06). We used XSQ (version 1.0) [6] as the
XPath processing engine on QPs.

In our experiments, we used 105.2MB of XML data gen-
erated by xmlgen2 and 24 queries as shown in Table 1.
The XML data is decomposed into several XML fragments
based on our proposed algorithm as well as two other ones.
These fragments are distributed to QPs evenly with respect
to their size. We assume that our XML data partitioning
algorithm is used to decompose large XML data on digi-
tal library systems, and we do not consider queries which
require structural join techniques.

2xmlgen is provided by XMark project.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Table 1. Our Query Set
Query Query

Q1 //date Q13 /site/regions/namerica/item[@id="item10000"]//text
Q2 //name Q14 /site/regions/namerica/item[@id="item13000"]//text
Q3 //seller Q15 /site/regions/namerica/item[@id="item15000"]//text
Q4 /site/regions//item Q16 /site/regions/samerica/item[quantity="1"]//mail
Q5 /site/regions/namerica/item Q17 /site/categories/category/name
Q6 /site/open auctions/open auction/initial Q18 /site/people/person[@id="person12000"]
Q7 /site/regions/europe/item Q19 /site/open auctions/open auction[@id="open auction35"]
Q8 /site/people/person/name Q20 /site/open auctions/open auction[@id="open auction3000"]
Q9 /site/regions/asia/item[quantity="1"] Q21 /site/open auctions/open auction[@id="open auction5600"]

Q10 /site/regions/australia/item[payment="Creditcard"] Q22 /site/open auctions/open auction[@id="open auction8300"]
Q11 /site/regions/europe/item[@id="item5000"] Q23 /site/closed auctions/closed auction/price
Q12 /site/regions/europe/item[@id="item7500"] Q24 /site/closed auctions/closed auction//text

4.1 Evaluation of Data Relocation

We firstly evaluate the efficiency of dynamic data reloca-
tion in our system. In order to evaluate the efficiency of dy-
namic data relocation, we measure query processing times
of our system in two cases: with and without dynamic data
relocation. We use data partitioning algorithm described in
Section 3.2 to decompose original XML data. In this exper-
iment, the original XML data is decomposed into 16 XML
fragments, and each of four XML fragments is distributed
to the same QP. This is because it helps to balance query
processing times among QPs at the data relocation process
compared with one fragment per one QP policy. This pol-
icy is similar to the fine grain bucket approach for skew
handling in parallel hash joins [3]. In order to measure the
query processing time, we issue total 2,400 queries chosen
from the query set shown in Table 1. Also, data relocation is
processed every 600 seconds in our system. We execute the
same experiments ten times and evaluate the results using
the average CPU time.

0

5,000

10,000

15,000

20,000

QP1 QP2 QP3 QP4

se
c.

Figure 4. Query processing time on each QP
without data relocation

Figures 4 and 5 show that the data relocation helps to
balance query processing times among QPs. We also mea-
sured the data relocation cost, and found that it takes only
less than one second for each relocation. Therefore, the
overhead can be ignored. Consequently, total CPU time of
our system with data relocation becomes faster than without
data relocation, even if it includes the relocation overhead
(see Table 2).

0

5,000

10,000

15,000

20,000

QP1 QP2 QP3 QP4

se
c.

Figure 5. Query processing time on each QP
with data relocation

Table 2. Total CPU times for query processing

no relocation with relocation
total CPU time (in sec.) 15,873 13,143

4.2 Evaluation of Data Partitioning

In order to confirm our data partitioning algorithm, we
compare ours to two other partitioning algorithms: one con-
siders only size, and the other considers only structure. In
the cases of ours and the size oriented one, the original
XML data is decomposed into 16 fragments, and each of
four XML fragments is stored into the same QP. On the
other hand, in the algorithm which considers only structure,
the original XML data is decomposed into 11 fragments,
and are distributed to four QPs, because it is quite difficult
to divide into arbitrary number of fragments by the struc-
ture oriented algorithm. However, we tried to distribute the
fragments to QPs, so that each QP has almost the same size
of fragments. We then measure query processing times of
each algorithm in the same way as the previous experiment.

Table 3 compares total CPU times of three data partition-
ing algorithms. In this experiment, 2,400 queries were also
executed. This table shows that our partitioning algorithm
obtains the best query processing performance of the three
algorithms.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Table 3. Total CPU times for query processing

Size and Structure Size Structure
total CPU time (in sec.) 13,143 13,603 19,778

4.3 Experimental Results and Discussion

From the result of the experiment shown in Section
4.1, it is clear that the dynamic data relocation improves
the efficiency of query processing in distributed environ-
ments. Since query processing times of XML fragments
on QPs usually differs, our system may become inefficient
if queries unevenly concentrate on a specific QP. In our sys-
tem, in order to achieve load balancing among QPs, QC
finds fragments dL and dS and asks the QPs associated with
dL and dS to exchange them each other (see Section 3.5).
This relocation brought about 17% performance increase.

On the other hand, our data partitioning algorithm can
obtain the best performance for query processing in the
three algorithms from the experimental result. Compared
with the size oriented data partitioning algorithm, there was
not obvious difference from ours. However, the size ori-
ented one may lead to additional CPU cost when data struc-
ture reconstruction is necessary. For the structure oriented
partitioning algorithm, there is the possibility that larger
fragments may be more frequently accessed, resulting in
inefficient query processing performance due to unbalanced
accesses to fragments.

From these two experimental results, it proves that we
can realize efficient query processing in distributed environ-
ments if we consider both the size and structure to decom-
pose XML data. It is, in particular, important to give con-
sideration to the size when decomposing XML data. If we
do not consider the size, the data relocation causes skew in
storage cost. Though our data partitioning algorithm takes
only vertical fragmentation into consideration, it is possible
to apply horizontal fragmentation approaches [1, 2]. How-
ever, the size problem must be paid attention to carefully.
Otherwise, both storage and CPU costs cannot be balanced
when taking data relocation into account. It is worthwhile
to note that the query processing using our data partition,
distribution, and dynamic relocation techniques work well,
even if query workload of each QP is unpredictable.

Moreover, our approach shows the nearly linear scala-
bility at least up to 100MB of XML data according to other
measurements in performance when the data size changes.
Therefore, the fundamental techniques we proposed in this
paper can widely be acceptable for efficient query process-
ing for large XML data.

5 Conclusion and Future Work

In this paper, we propose methods for partitioning and
distributing XML data for digital library systems. Our

methods help us to execute efficient query processing for
large-scale XML data using multiple computation nodes.
Owing to distributed environments, our approach can ob-
tain several advantages including parallel processing, load
balancing, scalability and redundancy. Actually, our ex-
perimental results show data partitioning algorithm and dy-
namic relocation proposed in this paper can provide more
efficient query processing than the previously known alter-
natives.

In future work, we plan to explore a method to automati-
cally determine the schedule of data relocation on QPs. We
believe that this extension would be able to obtain better
performance than the current implementation.

Acknowledgment

This work was partly supported by CREST Program
of JST, JSPS (Grant-in-Aid for Scientific Research (A)
#15200010), and MEXT (Grant-in-Aid for Young Scientists
(B) #17700109).

References

[1] A. Andrade, G. Ruberg, F. Baião, V. P. Braganholo, and
M. Mattoso. Efficiently Processing XML Queries over Frag-
mented Repositories with PartiX. In Proc. of the 2nd In-
ternational Workshop on Database Technologies for Han-
dling XML Information on the Web (DataX’06), pages 14–25,
March 2006.

[2] J.-M. Bremer and M. Gertz. On Distributing XML Reposito-
ries. In Proc. of the 6th International Workshop on the Web
and Databases (WebDB2003), pages 73–78, June 2003.

[3] L. Harada and M. Kitsuregawa. Dyanamic Join Product Skew
Handling for Hash-Joins in Shared-Nothing Database Sys-
tems. In Proc. of the 4th International Conf on Database
Systems for Advanced Applications (DASFAA’95), pages 246–
255, April 1995.

[4] K. A. Hua and C. Lee. An Adaptive Data Placement Scheme
for Parallel Database Computer Systems. In Proc. of the
16th International Conference on Very Large Data Bases
(VLDB’90), pages 493–506, August 1990.

[5] K. Kido, T. Amagasa, and H. Kitagawa. Processing
XPath Queries in PC-Clusters Using XML Data Partition-
ing. In Proc. of the 2nd International Special Workshop on
Databases for Next-Generation Researchers (SWOD 2006),
pages 114–119, April 2006.

[6] F. Peng and S. S. Chawathe. XSQ: A Streaming XPath En-
gine. ACM Transactions on Database Systems, 30(2):577–
623, June 2005.

[7] World Wide Web Consortium. Document Ob-
ject Model (DOM) Level 3 Core Specifica-
tion. http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407/. W3C
Recommendation 07 April 2004.

[8] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0 (Fourth Edition). http://www.w3.org/TR/
2004/REC-xml-20060816/. W3C Recommendation 16
August 2006, edited in place 29 September 2006.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

