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ABSTRACT
Geographic web search engines allow users to constrain and or-
der search results in an intuitive manner by focusing a query on a
particular geographic region. Geographic search technology, also
called local search, has recently received significant interest from
major search engine companies. Academic research in this area has
focused primarily on techniques for extracting geographic knowl-
edge from the web. In this paper, we study the problem of efficient
query processing in scalable geographic search engines. Query pro-
cessing is a major bottleneck in standard web search engines, and
the main reason for the thousands of machines used by the major
engines. Geographic search engine query processing is different
in that it requires a combination of text and spatial data process-
ing techniques. We propose several algorithms for efficient query
processing in geographic search engines, integrate them into an ex-
isting web search query processor, and evaluate them on large sets
of real data and query traces.

1. INTRODUCTION
The World-Wide Web has reached a size where it is becoming in-
creasingly challenging to satisfy certain information needs. While
search engines are still able to index a reasonable subset of the (sur-
face) web, the pages a user is really looking for are often buried un-
der hundreds of thousands of less interesting results. Thus, search
engine users are in danger of drowning in information. Adding ad-
ditional terms to standard keyword searches often fails to narrow
down results in the desired direction. A natural approach is to add
advanced features that allow users to express other constraints or
preferences in an intuitive manner, resulting in the desired docu-
ments to be returned among the first results. In fact, search en-
gines have added a variety of such features, often under a special
advanced search interface, but mostly limited to fairly simple con-
ditions on domain, link structure, or modification date.

In this paper we focus on geographic web search engines, which
allow users to constrain web queries to certain geographic areas.
In many cases, users are interested in information with geographic
constraints, such as local businesses, locally relevant news items, or
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tourism information about a particular region. For example, when
searching for yoga classes, local yoga schools are of much higher
interest than the web sites of the world’s largest yoga schools.

We expect that geographic search engines, i.e., search engines that
support geographic preferences, will have a major impact on search
technology and their business models. First, geographic search en-
gines provide a very useful tool. They allow users to express in
a single query what might take multiple queries with a standard
search engine. A user of a standard search engine looking for a
yoga school in or close to Brooklyn, New York, might have to try
queries such as

• yoga ‘‘new york’’

• yoga brooklyn

• yoga ‘‘park slope’’ (a part of Brooklyn)

but this might yield inferior results as there are many ways to re-
fer to a particular area, and since a purely text-based engine has
no notion of geographical closeness (e.g., a result across the bridge
to Manhattan or nearby in Queens might also be acceptable). Sec-
ond, geographic search is a fundamental enabling technology for
location-based services, including electronic commerce via cellu-
lar phones and other mobile devices. Third, geographic search sup-
ports locally targeted web advertising, thus attracting advertisement
budgets of small businesses with a local focus. Other opportunities
arise from mining geographic properties of the web, e.g., for mar-
ket research and competitive intelligence.

Given these opportunities, it comes as no surprise that over the
last two years leading search engine companies such as Google
and Yahoo have made significant efforts to deploy their own ver-
sions of geographic web search. There has also been some work by
the academic research community, e.g., [32, 8, 12, 1, 19, 29, 30],
mainly on the problem of extracting geographic knowledge from
web pages and queries. Our approach here is based on a setup for
geographic query processing that we recently introduced in [30] in
the context of a geographic search engine prototype. While there
are many different ways to formalize the query processing problem
in geographic search engines, we believe that our approach results
in a very general framework that can capture many scenarios.

1.1 Problem Statement and Motivation
We focus on the efficiency of query processing in geographic search
engines, e.g., how to maximize the query throughput for a given
problem size and amount of hardware. Query processing is the
major performance bottleneck in current standard web search en-
gines, and the main reason behind the thousands of machines used
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by larger commercial players. Adding geographic constraints to
search queries results in additional challenges during query execu-
tion which we now briefly outline.

In a nutshell, given a user query consisting of several keywords, a
standard search engine ranks the pages in its collection in terms of
their relevance to the keywords. This is done by using a text in-
dex structure called an inverted index to retrieve the IDs of pages
containing the keywords, and then evaluating a term-based ranking
function on these pages to determine the k highest-scoring pages.
(Other factors such as hyperlink structure and user behavior are
also often used, as discussed later). Query processing is highly op-
timized to exploit the properties of inverted index structures, stored
in an optimized compressed format, fetched from disk using effi-
cient scan operations, and cached in main memory.

In contrast, a query to a geographic search engine consists of key-
words and the geographic area that interests the user, called query
footprint [30]. Each page in the search engine also has a geographic
area of relevance associated with it, called the geographic footprint
of the page. This area of relevance can be obtained by analyzing
the collection in a preprocessing step that extracts geographic infor-
mation, such as city names, addresses, or references to landmarks,
from the pages and then maps these to positions using external geo-
graphic databases. In other approaches it is assumed that this infor-
mation is provided via meta tags or by third parties. The resulting
page footprint is an arbitrary, possibly noncontiguous area, with an
amplitude value specifying the degree of relevance of each loca-
tion. Footprints can be represented as polygons or bitmap-based
structures; details of the representation are not important here.

A geo search engine computes and orders results based on two fac-
tors: keywords and geography. Given a query, it identifies pages
that contain the keywords and whose page footprint intersects with
the query footprint, and ranks these results according to a combi-
nation of a term-based ranking function and a geographic ranking
function that might, e.g., depend on the volume of the intersection
between page and query footprint. Page footprints could of course
be indexed via standard spatial indexes such as R∗-trees, but how
can such index structures be integrated into a search engine query
processor, which is optimized towards inverted index structures?
How should the various structures be laid out on disk for maximal
throughput, and how should the data flow during query execution
in such a mixed engine? Should we first execute the textual part of
the query, or first the spatial part, or choose a different ordering for
each query? These are the basic types of problems that we address
in this paper.

Before describing our contribution in detail in Subsection 1.5, we
first provide some background on web search engines and geogra-
phic web search technology. We assume that readers are somewhat
familiar with basic spatial data structures and processing, but may
have less background about search engines and their inner work-
ings. Our own perspective is more search-engine centric: given a
high-performance search engine query processor developed in our
group, our goal is to efficiently integrate the types of spatial opera-
tions arising in geographic search engines.

1.2 Basics of Search Engine Architecture
The basic functions of a crawl-based web search engine can be di-
vided into crawling, data mining, index construction, and query
processing. During crawling, a set of initial seed pages is fetched
from the web, parsed for hyperlinks, and then the pages pointed to

by these hyperlinks are fetched and parsed, and so on, until a suf-
ficient number of pages has been acquired. Second, various data
mining operations are performed on the acquired data, e.g., detec-
tion of web spam and duplicates, link analysis based on Pagerank
[7], or mining of word associations. Third, a text index structure
is built on the collection to support efficient query processing. Fi-
nally, when users issue queries, the top-10 results are retrieved by
traversing this index structure and ranking encountered pages ac-
cording to various measures of relevance.

Search engines typically use a text index structure called an in-
verted index, which allows efficient retrieval of documents con-
taining a particular word (term). Such an index consists of many
inverted lists, where each inverted list Iw contains the IDs of all
documents in the collection that contain a particular word w, usu-
ally sorted by document ID, plus additional information about each
occurrence. Given, e.g., a query containing the search terms “ap-
ple”,“orange”, and “pear”, a search engine traverses the inverted list
of each term and uses the information embedded therein, such as
the number of search term occurrences and their positions and con-
texts, to compute a score for each document containing the search
terms. We now formally introduce some of these concepts.

Documents, Terms, and Queries: We assume a collection D =
{d0, d1, . . . dn−1} of n web pages that have been crawled and are
stored on disk. Let W = {w0, w1, . . . , wm−1} be all the dif-
ferent words that occur anywhere in D. Typically, almost any
text string that appears between separating symbols such as spaces,
commas, etc., is treated as a valid word (or term). A query q =
{t0, t1, . . . , td−1} is a set1 of words (terms).

Inverted Index: An inverted index I for the collection consists of
a set of inverted lists Iw0 , Iw1 , . . . , Iwm−1 where list Iw contains
a posting for each occurrence of word w. Each posting contains
the ID of the document where the word occurs, the position within
the document, and possibly some context (in a title, in large or
bold font, in an anchor text). The postings in each inverted list are
usually sorted by document IDs and laid out sequentially on disk,
enabling efficient retrieval and decompression of the list. Thus,
Boolean queries can be implemented as unions and intersections
of these lists, while phrase searches (e.g., “Big Bang”) can be an-
swered by looking at the positions of the words.

Term-based Ranking: The most common way to perform ranking
is based on comparing the words (terms) contained in the docu-
ment and in the query. More precisely, documents are modeled as
unordered bags of words, and a ranking function assigns a score
to each document with respect to the current query, based on the
frequency of each query word in the page and in the overall col-
lection, the length of the document, and maybe the context of the
occurrence (e.g., higher score if term in title or bold face). For-
mally, given a query q = {t0, t1, . . . td−1}, a ranking function F
assigns to each document D a score F (D, q). The system then re-
turns the k documents with the highest score. One popular class of
ranking functions is the cosine measure [44], for example

F (D, q) =

d−1X

i=0

ln(1 + n/fti) · 1 + ln fD,tip|D| ,

where fD,ti and fti are the frequency of term ti in document D
and in the entire collection, respectively. Many other functions

1This is a slight simplification as the positions of the terms in the
queries and documents are often taken into account as part of the
ranking function. Our approach is not impacted by this.
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have been proposed, and the techniques in this paper are not lim-
ited to any particular class. In addition, scores based on link anal-
ysis or user feedback are often added into the total score of a doc-
ument; in most cases this does not affect the overall query exe-
cution strategy if these contributions can be precomputed offline
and stored in a memory-based table or embedded into the index.
For example, the ranking function might become something like
F ′(D, q) = pr(D) +F (D, q) where pr(D) is a precomputed and
suitably normalized Pagerank score of page D.

The key point is that the above types of ranking functions can be
computed by first scanning the inverted lists associated with the
search terms to find the documents in their intersection, and then
evaluating the ranking function only on those documents, using the
information embedded in the index. Thus, at least in its basic form,
query processing with inverted lists can be performed using only a
few highly efficient scan operations, without any random lookups.

1.3 Basics of Geographic Web Search
We now discuss the additional issues that arise in a geographic web
search engine. Most details of the existing commercial systems are
proprietary; our discussion here draws from the published descrip-
tions of academic efforts in [30, 32]. The first task, crawling, stays
the same if the engine aims to cover the entire web. In our systems
we focus on Germany and crawl the de domain; in cases where
the coverage area does not correspond well to any set of domains,
focused crawling strategies [9] may be needed to find the relevant
pages.

Geo Coding: Additional steps are performed as part of the data
mining task in a geographical search engines, in order to extract
geographical information from the collection. Recall that the foot-
print of a page is a potentially noncontiguous area of geographical
relevance. For every location in the footprint, an associated integer
value expresses the certainty with which we believe the page is ac-
tually relevant to the location. The process of determining suitable
geographic footprints for the pages is called geo coding [32].

In [30], geo coding consists of three steps, geo extraction, geo
matching, and geo propagation. The first step extracts all elements
from a page that indicate a location, such as city names, addresses,
landmarks, phone numbers, or company names. The second step
maps the extracted elements to actual locations (i.e., coordinates), if
necessary resolving any remaining ambiguities, e.g., between cities
of the same name. This results in an initial set of footprints for the
pages. Note that if a page contains several geographic references,
its footprint may consist of several noncontiguous areas, possibly
with higher certainty values resulting, say, from a complete address
at the top of a page or a town name in the URL than from a single
use of a town name somewhere else in the page text. Figure 1.1
shows an example of a page and its footprint.

The third step, geo propagation, improves quality and coverage of
the initial geo coding by analysis of link structure and site topology.
Thus, a page on the same site as many pages relevant to New York
City, or with many hyperlinks to or from such pages, is also more
likely to be relevant to New York City and should inherit such a
footprint (though with lower certainty). In addition, geo coding
might exploit external data sources such as whois data, yellow
pages, or regional web directories.

The result of the data mining phase is a set of footprints for the
pages in the collection. In [30], footprints were represented as

Figure 1.1: Text inside a web page (left) and the corresponding page
footprint (right) for the German web domain.

bitmaps which were stored in a highly compressed quad-tree struc-
ture, but this decision is not really of concern to us here. Other
reasonably compact and efficient representations, e.g., as polygons,
would also work. All of our algorithms approximate the footprints
by sets of bounding rectangles; we only assume the existence of a
black-box procedure for computing the precise geographical score
between a query footprint and a document footprint. During in-
dex construction, additional spatial index structures are created for
document footprints as described later.

Geographic Query Processing: As in [30], each search query con-
sists of a set of (textual) terms, and a query footprint that specifies
the geographical area of interest to the user. We assume a geogra-
phic ranking function that assigns a score to each document foot-
print with respect to the query footprint, and that is zero if the inter-
section is empty; natural choices are the inner product or the vol-
ume of the intersection. Thus, our overall ranking function might
be of the form F ′′(D, q) = g(fD, fq) + pr(D) + F (D, q), with
a term-based ranking function F (D, q), a global rank pr(D) (e.g.,
Pagerank), and a geographic score g(fD, fq) computed from query
footprint fq and document footprint fD (with appropriate normal-
ization of the three terms). Our focus in this paper is on how to
efficiently compute such ranking functions using a combination of
text and spatial index structures.

Note that the query footprint can be supplied by the user in a num-
ber of ways. For mobile devices, it seems natural to choose a cer-
tain area around the current location of the user as a default foot-
print. In other cases, a footprint could be determined by analyzing a
textual query for geographic terms, or by allowing the user to click
on a map. This is an interface issue that is completely orthogonal
to our approach.

1.4 Query Processing in Standard Engines
Recall that query processing in standard search engines is done by
traversing the inverted lists for the query terms, and evaluating the
ranking functions on all documents in the intersection of the lists
in order to obtain the k highest-scoring results. In large engines
the cost of query processing is dominated by the cost of traversing
the inverted lists, which grow linearly with the collection size. For
example, with about 7.5 million pages per node, the total size of
the inverted lists traversed by the average query is more than 10
MB per node even after careful compression of the inverted lists
[27]. This presents a major performance bottleneck, and a number
of techniques have been developed to overcome this.

Massive Parallelism: First, all major engines are based on large
clusters of hundreds or thousands of servers, and each query is ex-
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ecuted in parallel on many machines. In particular, current engines
usually employ a local index organization where each machine is
assigned a subset of the documents and builds its own inverted in-
dex on its subset. User queries are received at a front-end machine
called query integrator, which broadcasts the query to all partici-
pating machines. Each machine then returns its local top-k results
to the query integrator to determine the overall top-k documents
[24]. Note that this results in a very simple and efficient paral-
lelization of the query processing problem, reducing the problem
of optimizing overall throughput to that of optimizing throughput
locally inside a node, discussed next.

Caching: Search engines use caching on several levels. Results
for repeated queries may be cached directly at the query integrator,
resulting in benefits from 20% to 70% [24, 25, 39, 28, 40]. At each
node, frequently accessed inverted lists are cached in main memory
[40, 22, 27].

Index Layout and Compression: Each inverted list is laid out
sequentially on disk or in memory and compressed using one of
many techniques that have been proposed [44], though in practice
very simple techniques seem to work best [41]. Compression and
decompression is typically applied to chunks of some size, ranging
from a few KB down to as small as a CPU cache line in CPU-bound
scenarios.

DAAT Query Processing: When two lists are of similar size, the
best way to intersect them is to simply scan both lists. When one
list is much shorter, it is better to scan the shorter list and perform
lookups into the longer one, assuming elements in the longer list
can be accessed individually or in small enough chunks. More pre-
cisely, we fetch one element from the shortest list, and then per-
form a forward seek in the next longer list for a matching docID,
and if found another seek in the next list, and so on. This ap-
proach, taken by most current engines, is called document-at-a-
time (DAAT) query processing, and it results in a simultaneous
traversal of all lists involved in the query. Whenever an element
in the intersection is encountered, we evaluate its score under the
ranking function; the top-k results found so far are maintained in
a simple heap structure. Note that under this scheme, we may still
fetch the entire compressed inverted list from disk unless the for-
ward seeks result in very large skips ahead. However, we save sig-
nificantly on CPU work by not traversing and uncompressing all
retrieved chunks.

Discussion: The above optimizations increase query throughput by
an order of magnitude, and thus they need to be incorporated into
any realistic approach to geographic search query processing. The
DAAT approach essentially implements an iterator over documents
in the intersection, where all lists are traversed from left to right and
the elements in the intersection are produced sorted by docID and
without need for intermediate storage. Operators can be ordered
in various ways, but are best ordered by selectivity (i.e., shortest
list first). It is desirable to preserve this general framework when
adding geographic constraints.

One optimization that we do not consider here are top-k pruning
techniques that attempt to compute (or guess) the correct top-k re-
sults without iterating over the entire intersection of the inverted
lists, by presorting the lists according to their contributions to the
score and terminating the traversal early. There has been a signif-
icant amount of work in the IR and database communities on this
issue under various scenarios; see [2, 10, 14, 15, 26, 37]. Var-

ious schemes are used in current engines, but details are closely
guarded. We note that these techniques are highly dependent on a
particular choice of ranking function. Pruning techniques for geo-
graphic search engines are an interesting topic for future research,
but our goal is to first understand the general case.

1.5 Contributions of this Paper
We study the problem of efficient query processing in geographic
search engines, where each document (web page) consists of a tex-
tual part (bag of words) and a page footprint. Formally, a footprint
is a function that assigns a nonnegative integer to each location in
the underlying geographic domain. A query consists of a set of
terms and a query footprint. The query processing problem is to
determine the set of documents that contain all the query terms and
that also have a nonempty intersection between document footprint
and query footprint, and to compute a relevance score according to
a given ranking function on all such documents.

Figure 1.2: An illustration of footprints in a single spatial dimension.
At the top, we have a query footprint with a distance threshold (left),
and a footprint for a query that gives a lower score for documents that
are farther away (right). At the bottom, we show an intersection com-
putation between a query footprint and a document footprint.

As discussed in Subsection 1.3, we assume that the ranking func-
tion that needs to be evaluated is a monotone combination (usually
the sum) of a term-based measure (e.g., cosine or okapi), a global
score (e.g., Pagerank), and a geographic score that can be efficiently
computed from the exact document and query footprints. Note that
we assume AND semantics between the term-based and geogra-
phic scores, i.e., only documents with non-zero term-based score
and non-empty footprint intersection (non-zero geographic score)
are considered. While most search engines return only documents
containing all textual query terms, our approach does also allow
term-based ranking functions based on more general OR seman-
tics. However, all our experiments use AND semantics between
terms, and performance might be lower in the OR case. We also re-
quire that the precise relevance score is computed for all such doc-
uments; thus top-k query approaches based on pruning, which typ-
ically compute only approximate scores or precise scores for only
a subset of such documents, are not considered. Such approaches
are an interesting problem for future research, though we note that
the benefits might depend heavily on details of the ranking function
that is used.

We argue that the considered setup provides a very flexible ap-
proach to geographic search engine query processing. Footprints
can be derived in many different ways, and many different geogra-
phic ranking schemes can be used as long as they satisfy a few ba-
sic conditions. Thus, document footprints can be obtained through
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a variety of data extraction, natural language processing, and data
mining techniques, with amplitudes scaled appropriately, e.g., based
on suitable probabilistic models. On the other hand, different shapes
and amplitudes for the query footprint can be used to express dif-
ferent search goals, e.g., any information about events within ten
miles of a given location, versus events within say 30 miles but
with higher scores for closer results, as illustrated in Figure 1.2.
Our main contributions in this paper are as follows:

• We discuss and formally study the query processing problem
in geographic web search engines. The problem is also rele-
vant in more traditional information retrieval systems, e.g.,
when searching a set of news articles or other reports for
events relating to a given area.

• We describe several efficient algorithms for query processing
in geographic search engines.

• We integrate the algorithms into an existing high-performance
query processor for a scalable search engine, and evaluate
them on a large web crawl and queries derived from a real
query trace. Our results show that even under the fairly gen-
eral framework adopted in this paper, geographic search que-
ries can be evaluated in a highly efficient manner and in some
cases as fast as the corresponding text-only queries.

The query processor that we use and adapt to geographic search
queries was built by Xiaohui Long, and earlier versions were used
in [26, 27]. It supports variants of all the optimizations described
in Subsection 1.4. Since we do do not consider pruning techniques
in this paper, this feature was disabled.

In the next section, we describe the data sets that we collected and
discuss the resulting challenges in terms of data and memory sizes.
Section 3 proposes a sequence of query processing algorithms, and
Section 4 reports on our experimental evaluation. Related work
is discussed in Section 5, and finally we provide some concluding
remarks.

2. DATA SETS
We now briefly describe the data sets acquired for our system and
our experimental setup, and discuss the resulting performance chal-
lenges.

Documents: We crawled about 31 million distinct pages from the
de domain in April 2004, using seed pages from Yahoo’s German
portal. One issue in German pages are Umlauts which HTML can
represent in multiple ways; these were normalized in a preprocess-
ing step. Apart from the personal background of some of the team
members, we chose the de domain for two reasons. First, it seemed
the right size both geographically and in terms of number of pages.
It is quite dense with about 7.8 million registered domains within
the relatively small area of Germany. A second reason was the
easy availability of geographic databases that can be used for ex-
tracting and matching geographic terms.

We retrieved the whois entries for all 680, 000 de domains in
our crawl; many of the 7.8 million registered domains do not ac-
tually have a live web server. We also obtained other databases to
map telephone area codes, city and village names, and zip codes to
coordinates. We used this data to perform geo coding on our doc-
ument collection, by extracting geographic terms, matching them
with the databases, and mapping them to a set of geographic loca-
tions and regions (with appropriate amplitudes that express the de-
gree of relevance of the page); more details are given in [30]. Note

that the geo extraction and matching steps are at least somewhat
language- and country-specific, and benefit from an understanding
of language, administrative geography, and conventions for refer-
ring to geographic entities.

After geo extraction and matching, about 17 million of the 31 mil-
lion pages had non-empty footprints based on page content, with
an average compressed size of 144 bytes per footprint. After geo
propagation across site and link structure more than 28.4 million
pages had non-empty footprints.

Index Construction: In large search engines, documents are typi-
cally partitioned over a number of machines, with each machine re-
ceiving between a few million up to maybe 50 million pages. Each
machine builds an index on its subset and then performs query pro-
cessing on this index in a largely independent fashion. We experi-
mented with several different collection sizes; most of the reported
results are for a set of about 3.9 million pages on one machine,
selected from the 17 million pages with non-empty footprints ob-
tained after geo matching. The resulting inverted index had a size
of more than 10 GB total. Thus, the inverted index typically does
not fit into memory.

We also assume that in many cases, the complete set of document
footprints may not fit into main memory, especially given that a
good part of the memory is taken up by other performance-critical
tasks such as inverted list caching. However, most footprints can
be reasonably approximated by a few bounding rectangles, which
consume less than 15 bytes per footprint on average after compres-
sion and may often fit into memory. Thus, in our query processing
problem, the inverted lists are on disk but efficiently retrievable via
scans. Bounding rectangles and spatial data structures based on
them are mostly main-memory based (though this is not absolutely
needed), but the precise footprints that must eventually be fetched
at least for some pages to compute precise scores are on disk under
several different data layouts.

Queries: Realistic query data is extremely important for meaning-
ful experiments. Since it was impossible to get actual query traces
from existing local search engines, we decided to mine an older
publicly available AltaVista query log of several million queries for
geographical queries. To do this, we ran our geo extraction code
on the queries instead of pages, to identify any queries that refer
to cities or villages in Germany. The output of this step was then
manually cleaned over several days to remove queries that were
clearly not geographical in nature (e.g., numerous queries such as
“halle berry pictures” were not considered relevant to the German
city named Halle), resulting in about 10,000 high-quality geogra-
phic queries. We then replaced the city names in these queries with
footprints of varying diameter and shape around the city coordi-
nates and kept the other search terms in textual form. (We note that
with this approach, we are essentially simulating a possible inter-
face for a geographic search engine that analyzes queries to identify
queries with geographic meaning.) The resulting set of query foot-
prints is quite different from that obtained by generating footprints
at random or according to the footprint distribution of the pages.

An alternative would have been to randomly assign footprints to
queries from a query log. A simple example illustrates the prob-
lems that would arise form using such synthesized data in our ex-
periments. The Oktoberfest is a famous festival in Munich, and
geographic searches for Oktoberfest in connection with Mu-
nich are thus quite frequent. For the same reason, there are many
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web pages about the Oktoberfest in Munich, leading to numer-
ous results for such a query. In synthesized data, a search for
Oktoberfestmight be combined with a random query footprint,
say in Berlin, and the query would retrieve far fewer results. Thus,
such synthesized queries might traverse a much smaller part of the
spatial and textual data structures, making the measured times un-
realistic.

3. QUERY PROCESSING ALGORITHMS
We now present our query processing algorithms. Recall that a doc-
ument consists of a set of terms and a document footprint, while a
query consists of a set of terms and a query footprint. Our goal
is to compute the exact score of every document that (i) contains
all query terms and (ii) whose footprint has a non-empty intersec-
tion with the query footprint. We assume that the inverted index
and document footprints do not fit completely in memory. In or-
der to compute a document’s exact score, we thus have to access
secondary storage to retrieve its complete footprint and all corre-
sponding entries from inverted lists.

In our algorithms, we model locations in Germany through a 1024×
1024 regular grid, with each tile corresponding to an area of about
700×1000 meters. Note that this grid model is only applied for the
purpose of spatial selectivity during data access. It does not restrict
the ability of the ranking function to model smaller distance (e.g.,
a cafe 50 meters from a location could still be ranked higher than a
cafe 200 meters away). That is, the actual footprint resolution can
be much finer. Furthermore, footprints can be modeled in many
ways, e.g., as bitmaps, as polygons, or using various other approxi-
mations. In fact, one of the main advantages of our approach is that
it allows an implementation of geographic web search while treat-
ing the implementation of footprints and geographic score func-
tions as a black-box.

3.1 Naive Algorithms
We now first present two fairly straightforward algorithms that we
consider as baseline solutions, discuss their shortcomings, and then
later present more optimized solutions.

Text-First Baseline: This algorithm first filters results according to
textual search terms and thereafter according to geography. Thus,
it first accesses the inverted index, as in a standard search engine,
retrieving a sorted list of the docIDs (and associated data) of docu-
ments that contain all query terms. Next, it retrieves all footprints of
these documents. Footprints are arranged on disk sorted by docID,
and a reasonable disk access policy is used to fetch them: footprints
close to each other are fetched in a single access, while larger gaps
between footprints on disk are traversed via a forward seek.

Note that in the context of a DAAT text query processor, the various
steps in fact overlap. The inverted index access results in a sorted
stream of docIDs for documents that contain all query terms, which
is directly fed into the retrieval of document footprints, and precise
scores are computed as soon as footprints arrive from disk.

Geo-First Baseline: This algorithm uses a spatial data structure to
decrease the number of footprints fetched from disk. In particular,
footprints are approximated by MBRs, that (together with their cor-
responding docIDs) are kept in a small (memory-resident) R∗-tree.
As before, the actual footprints are stored on disk, sorted by docID.
The algorithm first accesses the R∗-tree to obtain the docIDs of all
documents whose footprint is likely to intersect the query footprint.
It sorts the docIDs, and then filters them by using the inverted in-

dex. Finally, it fetches the remaining footprints from disk, in order
to score documents precisely.

3.2 Discussion
Experimental results are provided in Section 4, but we can already
discuss some potential problems with the naive algorithms at this
point and outline possible solutions.

Non-blocking Spatial Filters: An advantage of the first algorithm
is that both inverted lists and footprints are organized by docID.
Data in our DAAT query processor thus can flow between spatial
and textual operators without intermediate storage. In the second
algorithm, on the other hand, footprint MBRs are organized in a
spatial manner. Thus, the inverted index access can only start after
all output from the R∗-tree has been produced. (A similar issue
arises if the access order is reversed.) There are however conditions
under which the first algorithm performs worse. Assume the first
algorithm is confronted with a query consisting of common terms.
Without a filter and with footprints organized by docID, it will fetch
say 5% of all footprints, a task almost as expensive as sequentially
scanning all footprints entirely.

In order to unblock the spatial selection, one can use a simple
memory-based table of footprint MBRs sorted by docID, instead
of the R∗-tree, to filter disk accesses for footprint data. (MBRs for
footprints can be stored in much less space than actual footprints.)
This results in a non-blocking spatial filter. However, its perfor-
mance degrades much more drastically than the R∗-tree’s, if the
MBRs grow beyond memory size. As an added benefit, this allows
varying the order of operators (textual first, or spatial first, or in-
terleaved) on a query-by-query basis. This is common practice in
database systems and DAAT textual query processors, where the
most selective filter (rarest keyword in the case of text) is applied
first in order to reduce the problem size.

Toeprints: There is a significant problem with this simplistic use
of footprint MBRs. If a document contains the city names “Berlin”
and “Munich”, it is bounded by a mostly empty MBR of several
hundred miles squared. The existence of many such large MBRs
seriously impacts the effectiveness of the spatial structures. For this
reason, we will propose to partition each footprint into a small num-
ber of disjoint sub-footprints, called toeprints,2 and corresponding
MBRs of more limited size; see Figure 3.1 for an example.

Figure 3.1: A footprint and its MBR (left) and the resulting toeprints
with MBRs (right).

We tested several different algorithms for splitting footprints into
toeprints. Initially, we generated toeprints via a simple recursive
partitioning algorithm that stops when (i) no toeprint MBR has a
side length larger than some threshold s0, and (ii) no toeprint MBR
larger than some threshold s1 < s0 is more than x% empty. By

2toeprint /n./ A footprint of especially small size.
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choosing s0, s1, and x, we vary size and numbers of the gener-
ated toeprints. The resulting toeprints and their MBRs can now be
treated as individual objects in our spatial structures and on disk,
identified by a toeprint ID. A separate in-memory table can map
toeprint IDs to the docIDs of the corresponding pages. During
query processing, we first compute separate geographic scores for
each toeprint, and later combine the scores of toeprints that belong
to the same document.

Note that this imposes a subtle condition on the geographic score
function g(fD, fq). One must be able to compute the total score
by separately computing the score for each toeprint that is inter-
secting the query footprint. This condition appears to hold for all
geographic ranking functions we have considered. (Formally, us-
ing the definitions in Subsection 1.3, if footprint fD is partitioned
into disjoint subsets (toeprints) fD,1 and fD,2, then we require that
g(fD, fq) = h(g(fD,1, fq), g(fD,2, fq)) for some function h()
with h(x, 0) = h(0, x) = x for all x.)

Data Layout on Disk: Since we have to compute a precise score
for every document in the result set, a large number of document
footprints have to be fetched from disk for queries with (i) com-
mon search terms and (ii) a query footprint intersecting a densely
populated area. For a higher efficiency in these cases, we need
a better data layout on disk. Instead of organizing footprints by
docID, we store toeprints, and cluster them in a spatial manner. In
particular, we propose arranging the toeprint data on disk accord-
ing to a two-dimensional space-filling curve (see [17, 36] for back-
ground). We experimented with two different continuous curves,
the so-called Peano and Hilbert orderings. Note that a toeprint can
be intersected several times by the curve, since toeprints have a
spatial extension. In this case, we assign the toeprint to the part
of the curve that takes the longest route through the toeprint. To
each toeprint, we assign a toeprint ID by enumerating the toeprints
along the curve, and then store all toeprints on disk sorted by this
toeprint ID. This layout greatly improves performance by replacing
many forward seeks with a few sequential scans. (We also experi-
mented with disk-resident R∗-trees but observed much better disk
throughput for space-filling curves.)

3.3 Improved Algorithms
In the following, we use the above ideas to derive several improved
algorithms. All algorithms use toeprints instead of footprints, and
toeprints are laid out on disk according to a space-filling curve. We
also use simple grid-based spatial data structures in memory; these
could be replaced by R∗-trees with roughly the same performance.

3.3.1 k-Sweep Algorithm
The main idea of the first improved algorithm is to retrieve all re-
quired toeprint data through a fixed number k of contiguous scans
from disk. In particular, we build a grid-based spatial structure
in memory that contains for each tile in a 1024 × 1024 domain
a list of m toeprint ID intervals. For example, for m = 2 a tile
T might have two intervals [3476, 3500] and [23400, 31000] that
indicate that all toeprints that intersect this tile have toeprint IDs
in the ranges [3476, 3500] and [23400, 31000]. In the case of a
1024×1024 grid, including about 50% empty tiles, the entire aux-
iliary structure can be stored in a few MB. This could be reduced
as needed by compressing the data or choosing slightly larger tiles
(without changing the resolution of the actual footprint data).

Given a query, the system first fetches the interval information for
all tiles intersecting the query footprint, and then computes up to

k ≥ m larger intervals called sweeps that cover the union of the
intervals of these tiles. Due to the characteristics of space filling
curves, each interval is usually fairly small and intervals of neigh-
boring tiles overlap each other substantially. As a result, the k gen-
erated sweeps are much smaller than the total toeprint data. The
system next fetches all needed toeprint data from disk, by means
of k highly efficient scans. The IDs of the encountered toeprints
are then translated into docIDs and sorted. Using the sorted list of
docIDs, we then access the inverted index to filter out documents
containing the textual query terms. Finally we evaluate the geo-
graphic score between the query footprint and the remaining doc-
uments and their footprints. The algorithm can be summarized as
follows:

k-Sweep Algorithm:

(1) Retrieve the toeprint ID intervals of all tiles intersecting the
query footprint.

(2) Perform up to k sweeps on disk, to fetch all toeprints in the
union of intervals from Step (1).

(3) Sort the docIDs of the toeprints retrieved in Step (2) and ac-
cess the inverted index to filter these docIDs.

(4) Compute the geo scores for the remaining docIDs using the
toeprints retrieved in Step (2).

One limitation of this algorithm is that it fetches the complete data
of all toeprints that intersect the query footprint (plus other close-
by toeprints), without first filtering by query terms. Note that this
is necessary since our simple spatial data structure does not contain
the actual docIDs for toeprints intersecting the tile. Storing a list
of docIDs in each tile would significantly increase the size of the
structure as most docIDs would appear in multiple tiles. Thus, we
have to first access the toeprint data on disk to obtain candidate
docIDs that can be filtered through the inverted index.

3.3.2 Tile Index Algorithm
This algorithm addresses the limitations of k-Sweep. It also uses
a simple grid-based spatial structure, but also stores for each tile a
complete list of all toeprint IDs that intersect the tile. The result-
ing increase in the size of the data structure is addressed by using
fewer tiles, say 256 × 256 or less instead of 1024 × 1024, and by
compressing the lists in the tiles. More precisely, lists are Golomb-
encoded [44]. We also exploit the fact that neighboring tiles have
many common toeprint IDs. In addition, we have a table that trans-
lates toeprint IDs to their location on disk and to their document
ID. (This table could also contain toeprint MBRs, but we found
that this has only a very small benefit.) We note that these tables
could in fact be stored on disk with fairly small overhead if they do
not fit in memory.

This setup allows the new algorithm to first filter docIDs through
the inverted index before fetching the toeprint data, and thus de-
creases the amount of toeprint data fetched from disk. Since toe-
prints are clustered along the space-filling curve, the decrease in
cost will be less than one might expect from the decrease in the
number of toeprints that are needed (There is only little benefit in
skipping over a few KB on disk). The algorithm can be summarized
as follows:

Tile Index Algorithm:

(1) Retrieve and sort the docIDs of all toeprints that are listed in
any of the tiles intersecting the query footprint.
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(2) Access the inverted index to filter the docIDs and correspond-
ing toeprint IDs.

(3) Retrieve the toeprints of all remaining toeprint IDs in an ef-
ficient sweep over the toeprint data, using both scans and
forward seeks, and compute geographic scores as toeprints
are retrieved.

3.3.3 Space-Filling Inverted Index
All algorithms so far have treated the inverted index as a black box,
and the inverted index lookups essentially result in complete traver-
sals of the inverted lists of the query terms. As we show later, in
many cases the total running time of our algorithms is dominated by
the textual component of query processing. Thus, to further speed
up query processing, we need to reorganize the inverted index it-
self, and in particular the postings of each inverted list, according
to spatial criteria.

One basic insight is that inverted lists are ordered by docID, but
that we can assign docIDs to pages in whatever way we choose.
(For example, it has been proposed to assign docIDs based on the
Pagerank values of the pages, to place pages with high Pagerank at
the beginning of the inverted lists [26].) So why not assign docIDs
“along a space-filling curve”? In this case, only the geographically
relevant chunks of the inverted lists have to be read instead of the
entire list.

The simplest approach is to use the toeprint ID, which was as-
signed based on the space-filling curve, as the docID. If a docu-
ment has several toeprints, we can simply process the document
several times under different docIDs when building the inverted in-
dex. As before, we also have a table that maps toeprint IDs to
docIDs; this allows us to eliminate duplicates and to combine the
geographic scores of toeprints belonging to the same document.
Note that this may significantly increase the size of the inverted in-
dex, typically by a factor of 2 to 6 depending on the settings, and
that this approach might not be appropriate for collections with too
many geographic markers per document. The inverted index is typ-
ically much larger than the entire footprint data; thus this approach
is only a good trade-off if we have enough space and if the textual
component of query processing makes up a significant part of the
total cost.

This idea can be used in combination with either the k-Sweep or
the Tile Index algorithm. The only change in the algorithm is in the
inverted index access, and even this change is “under the hood” of
the system: When the toeprint IDs retrieved in Step (1) of Tile Index
(or Step (2) of k-Sweep) are fed into the inverted index in sorted
order, the access to the inverted list is much more efficient than
before, since most relevant postings are in one or few areas of the
inverted list. Our DAAT-style text query processor automatically
adapts to this scenario by skipping over large parts of the inverted
lists with irrelevant postings.

4. EXPERIMENTAL EVALUATION
We now present the result of our experimental evaluation. We ran
experiments on several different collection sizes; unless stated oth-
erwise the following results are for a set of about 3.9 million web
pages, all of which had non-empty footprints. The resulting size
of the inverted index was about 10.1 GB, while the footprints or
toeprints had a total size of around 560 to over 700 MB (depending
on the toeprint partitioning). We used a Hilbert space-filling curve
to lay out toeprint and inverted index data.

Experiments were run on a 3.2 GHz Pentium-4 with a 320 GB
Western Digital 3200JD hard disk. Memory was restricted to 512
MB, of which 256MB was used for inverted list caching. We ran
all results on 100 randomly selected queries, with varying query
footprint sizes. We did not allow concurrent execution of multi-
ple queries in our experiments; doing so would produce further
slight improvements in query throughput. The numbers reported
here also do not include caching of toeprint data in main memory.
However, experiments showed an additional moderate reduction in
execution time if a small fraction of toeprints are cached.

4.1 Comparison of All Algorithms
We start with a high-level overview of the observed average exe-
cution time per query, shown in Table 4.1. We see that executing
just the textual part of the query using the inverted index takes about
0.33 seconds. Adding geographic query processing in a naive man-
ner, as done in the Text-First and Geo-First algorithms, results in
a large increase in processing time. Text-First performs worst, as
there is no way to skip any significant parts of the footprint data;
the resulting cost is similar to that of simply scanning the entire
footprint data (we observed about 50 MB/s speed for a sequential
read). Geo-First performs slightly better due to its ability to skip
part of the footprint data for highly selective queries.

Algorithm Time per Query

Text Only 0.33

Text-First 11.18
Geo-First 6.47

1-Sweep 1.61
3-Sweep 0.67
4-Sweep 0.61

Tile Index (8x8) 0.47
Tile Index (16x16) 0.42

Space-Filling Inverted Index (basic) 0.35
Space-Filling Inverted Index (improved) 0.34

Table 4.1: Overview of execution times for various algorithms, on
query footprints of size 10 × 10.

The other three algorithms, k-Sweep, Tile Index, and Space-Filling
Inverted Index, perform significantly better and achieve process-
ing times approaching that of the simple text query. (We note that
our implementation is not yet completely optimized and there is
no reason why the time for text-only should be considered a lower
bound. Also, concurrent processing of queries would result in ad-
ditional improvements for both text-only and geo queries.) In the
following, we analyze the performance of these three algorithms in
more detail and explain how the behavior varies based on different
parameter settings.

4.2 Detailed Results for k-Sweep
We now first provide some more detailed results for the k-Sweep
Algorithm. In Figure 4.1 we show results for k equal to 1, 2, 3,
and 4. For each k, we consider three different settings of s0, s1,
and x for generating toeprints from footprints, resulting on average
in 4.12, 5.76, and 6.6 toeprints per original footprint, respectively.
As we see, performance is much better for 3 and 4 sweeps than for
k = 1. Performance also increases when we partition footprints
into a larger number of smaller toeprints, averaging to slightly more
than 0.5 seconds per query under the best setting.

As shown in Table 4.2, this is also reflected in the total amount of
data fetched from disk, which is much higher for k = 1. We also
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Figure 4.1: Average query execution time for k-Sweep with k =

1, 2, 3, 4 and with three different parameter settings for generating toe-
prints.

see that the amount of toeprint data read also decreases slightly
with smaller toeprints, even though the total size of the toeprint
data structures on disk increases slightly.

Number of Sweeps 1:1.411 split 1:1.548 split 1:6.02

One Sweep 61.3 58.6 51.6
Two Sweeps 21.6 17.0 16.2
Three Sweeps 15.2 10.8 10.2
Four Sweeps 12.1 9.8 8.3

Table 4.2: Megabytes of toeprint data fetched per query.

As we observed, our simple toeprint partitioning heuristic resulted
in a fairly large number of toeprints per footprint on average. To
decrease this number, we experimented with several smarter parti-
tioning schemes, in particular one scheme that partitioned toeprints
based on the characteristics of the underlying space-filling curve.
Thus, this heuristic attempts to generate toeprints that do not inter-
sect several far away parts of the space-filling curve. The results of
this improved scheme are shown in Figure 4.2.

Figure 4.2: Average query execution time for k-Sweep with improved
toeprint partitioning heuristic.

For a fair comparison, these numbers have to be compared to the
leftmost group of results in Figure 4.1, which has 4.12 toeprints
per footprint. Note however that our real motivation for this better
partitioning scheme lies in the other two algorithms, which benefit
more significantly as we will see. In addition to Hilbert, we also

experimented with another space-filling curve, the Peano Curve,
but results are very similar.

4.3 Results for Tile Index

Figure 4.3: Performance of Tile Index for different grid resolutions
and query footprint sizes, for a 1 : 6.6 split ratio.

Next, we looked at the performance of the Tile Index algorithm as
we vary the resolution of the grid and the query footprint sizes. As
we see in Figure 4.3, using a slightly coarser granularity for the res-
olution of the tile index results in better execution time. Moreover,
it also results in less space for the tile index (not shown in the fig-
ure), which is reduced from 196 to about 121 MB uncompressed, or
about a third of these sizes in compressed form. As discussed, the
tile index does not actually have to reside in main memory, though
it is slightly advantageous. The tile index size is also significantly
reduced when we use the improved toeprint partitioning heuristic.
We also see from Figure 4.3 that query cost increases significantly
for larger query footprint sizes since more toeprint data has to be
fetched.

4.4 Results for Space-Filling Inverted Index

Figure 4.4: Performance of Space-Filling Inverted Index for different
grid resolutions and query footprint sizes, with improved partitioning
heuristic and 1 : 4.11 split ratio.

Next, we looked at the performance of the Space-Filling Inverted
Index algorithm for different query footprint sizes and different grid
resolutions (we implemented the algorithm based on Tile Index, but
could have also used k-Sweep with similar results). We see simi-
lar behavior, but overall performance is slightly better. This is also
shown by the comparison of Tile Index and Space-Filling Inverted
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Index in Figure 4.5, where all algorithms use a 16×16 grid resolu-
tion. We see that use of the improved partitioning heuristic results
in better performance particularly for larger query footprint sizes.
The reason is that the better heuristic results in a much smaller in-
verted index: with 1 : 6.02 ratio, our inverted index balloons to
more than 60 GB size, while the 1 : 3.01 ratio results in an in-
verted index of “only” a 30 GB. This improved inverted list caching
as well as locality of disk accesses. Note that for a 10 × 10 query
footprint size, performance is almost identical to that of simple text
queries, while for larger sizes we are still a factor of 3 to 6 away.

Figure 4.5: Performance of Tile Index and Space-Filling Inverted In-
dex with basic and improved partitioning heuristic, for different query
footprint sizes.

5. RELATED WORK
We now give an overview of related work in several areas. Many
of the references have already been discussed earlier, and thus we
keep the description brief.

5.1 Search Engines and Query Processing
For background on indexing and query execution in IR and search
engines, we refer to [3, 4, 44], and for parallel search architecture
to [7, 24, 39]. In particular, [44] provides extensive coverage of
indexing, index compression, and basic query execution with term-
based ranking functions.

Several recent papers deal with caching in search engines, includ-
ing list caching [22, 40, 27] and result caching [28, 24, 25, 40,
45]. The performance of inverted list compression schemes is stud-
ied in [41, 34, 33, 44]. In particular [41] shows that sloppy but fast
schemes tend to outperform more complicated ones in practice. Ex-
perimental results in [23] show the performance benefits of DAAT
query processing. Recent papers explore top-k ranking schemes
based on pruning rather than full traversals of inverted lists; see,
e.g., [2, 10, 14, 15, 26, 37].

Recent work in [16] addresses query processing in the case where
each page is associated with one or more numeric values, such as
price and weight on an e-commerce site, and users specify a range
on these values in addition to keywords. The main difference to
our work is that [16] assumes only point data, while our footprints
have an extension and are often not even contiguous; this signif-
icantly complicates the problem. Also, while [16] allows several
attributes (dimensions), their algorithm does not use a true multi-
dimensional data structure but scans all elements between the lower
and upper bound along one of the dimensions. Similar to our work,

they extend an existing high-performance DAAT-style text query
processor with non-textual constraints while preserving the basic
architecture and data flow.

5.2 Geographic Web Search Engines
Google and Yahoo have introduced local search products that ap-
pear to focus on retrieval of commercial information, such as stores
and restaurants. They seem to make heavy use of yellow page busi-
ness directories, but exact algorithms are not publicized. Users
first retrieve entries for local businesses that satisfy certain key-
words, and can then retrieve other pages about these businesses
(e.g., restaurant reviews). The Swiss search.ch engine [38] is more
similar to our approach. The Geosearch system [18] is a small aca-
demic prototype, with geo coding based on [12]. A more detailed
description of the geographic search engine prototype used in this
paper appears in [30].

A number of researchers have studied the problem of extracting
geographic information from web pages. McCurley [32] intro-
duced the notion of geo coding and describes geographic indicators
found in pages, such as zip codes or town names. Subsequent work
in [8, 12, 1, 30] proposed additional techniques, including use of
hyperlinks and site structure.

An alternative to geo extraction is a Semantic Web approach [13] or
the use of HTML meta tags [6, 11]. Our work here does not depend
on whether footprints are created through automatic extraction or
other approaches, but does assume footprints to be based on co-
ordinates rather than a partition of space into states, counties etc.
Note that, as observed, e.g., in [30], the physical locations of web
servers are of very limited relevance in geographic search, since in
many domains much of the content is served by a few large hosting
companies.

5.3 Geo Search Query Processing
The definition of geographic query processing in this paper is based
on the setup described by us in [30], which also sketched a first very
simple geographic query processing algorithm that assumes that
all footprint data fits in main memory. Thus, for larger data sets,
pages would have to be distributed over several machines, or lossy
compression could be applied to decrease the size of the footprints.

Recent work in [42] provides a high level discussion of geographic
query processing as part of the SPIRIT project; see also [21] for
background. While related, there are several important differences
to our work here. First, [42] is focused on retrieving documents in
the result set of a query involving textual terms and locations, but
does not provide an approach for ranking. Location is modeled on
a fairly coarse granularity, with no footprints or other mechanisms
for refining and ranking results. Experiments in [42] are performed
on a fairly small data set. In contrast, our focus is more on the com-
bination of system and algorithmic issues that arise in a geographic
query processor when scaling to very large data sets and high query
load.

Another recent paper [31] discusses possible structures for geogra-
phic indexing and query processing, including inverted indexes and
R∗-trees, and proposes future work in this direction, but does not
propose any concrete algorithms. Work in [43] discusses a frame-
work for merging different types of rankings, including term-based
and (geographic) distance-based rankings, with proposed solutions
based on techniques from computational geometry.
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Very recently, and concurrent with our work, Zhou et al. [46] have
proposed algorithms for geographic query processing under a setup
similar to ours. In particular, they also perform ranking as a combi-
nation of a term-based and a geographic score, and look at methods
to combine inverted indexes with spatial data structures. However,
[46] define the geographic score with respect to footprints’ MBRs.
In our case, it can refer to arbitrarily complex shaped footprints that
can even have different amplitudes for different coordinates; MBRs
are used for indexing only. The footprint representations used in
our work are about 4-5 times larger than those in [46], whose ex-
periments show fast query execution on a somewhat smaller data
set of about 200, 000 geo-coded pages (almost 4 million in our
case). This difference in size and number, allows [46] to main-
tain all data needed to compute geo-scores in main memory, while
our method frequently fetches footprints from disk. It would be
interesting to see how both approaches compare under the same
experimental setup.

5.4 Spatial Index Structures and GIS
There is a vast amount of research on spatial data structures; see,
e.g., the survey by Gaede and Günther in [17]. In particular, our
algorithms employ spatial data organizations based on R∗-tree [5],
grid files [35], and space-filling curves - see [17, 36] and the refer-
ences therein.

A geographic search engine may appear similar to a Geographic In-
formation System (GIS) [20] where documents are objects in space
with additional non-spatial attributes (the words they contain). A
geographic search could be interpreted as a GIS query: “for this re-
gion, find all objects (documents) that fulfill some constraint on the
query terms”. However, there are significant differences between
the performance characteristics of GIS and web search engines that
make the former unsuitable for a scalable geographic search engine
that answers millions of queries per day on terabyte text collections.
GIS are designed for scenarios quite different from geographic web
search. There are two straightforward ways a GIS could be adapted
for geographic web search. In the first, every term is assigned a
layer. All documents that contain the term are indexed as geogra-
phic object in the term’s layer. Queries are performed by intersect-
ing range queries on the layers for all query terms. The range is
given by the query footprint. This approach would follow standard
GIS practice, as objects of different nature (e.g., rivers, roads) are
usually stored in different layers. However, GIS usually do not sup-
port the necessary number of tens or hundreds of thousands of lay-
ers needed in our case (the number of somewhat common search
terms). The second approach of employing a GIS, retrieving all
documents from within the query region and later checking their
non-geographic properties, fails as well. In this case, we would
store the footprints of all documents as geographic objects in a sin-
gle layer of the GIS, and then (i) use a range query to retrieve all
documents whose footprints intersect the query range, followed by
(ii) a filter step that removes those documents that do not contain
all query terms. Thus, the GIS query returns unordered document
IDs, and textual processing is limited to basic filtering. However,
in a geographic web search context, the amount of textual data is at
least one order of magnitude larger than the spatial data, making use
of an optimized text index structure crucial for performance. More-
over, GIS make assumptions that do not hold for geographic search.
They assume space to be relatively sparsely populated with objects,
while geo-coded documents can be very dense. Thousands of doc-
ument footprints may intersect in one location, say, within large
cities. Also, objects stored in a GIS only have a single position,
while documents may be associated with multiple non-contiguous

areas, introducing the problem of duplicates. In summary, we con-
tend that significant changes in GIS system architecture would be
needed in order to make them suitable for geographic search.

6. CONCLUSION
In this paper we have studied efficient query processing in geo-
graphic web search engines. We discussed a general framework
for ranking search results based on a combination of textual and
spatial criteria, and proposed several algorithms for efficiently exe-
cuting ranked queries on very large collections. We integrated our
algorithms into an existing high-performance search engine query
processor and evaluated them on a large data set and realistic geo-
graphic queries. Our results show that in many cases geographic
query processing can be performed at about the same level of effi-
ciency as text-only queries.

There are a number of open problems that we plan to address. Mod-
erate improvements in performance should be obtainable by further
tuning of our implementation. Beyond these optimizations, we plan
to study pruning techniques for geographic search engines that can
produce top-k results without computing the precise scores of all
documents in the result set. Such techniques could combine early
termination approaches from search engines with the use of approx-
imate (lossy-compressed) footprint data. Finally, we plan to study
parallel geographic query processing on clusters of machines. In
this case, it may be preferable to assign documents to participat-
ing nodes not at random, as commonly done by standard search
engines, but based on an appropriate partitioning of the underlying
geographic domain.
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[20] R. H. Güting. An introduction to spatial database systems. VLDB
Journal, 3(4):357–399, 1994.

[21] C. B. Jones, A. I. Abdelmoty, D. Finch, G. Fu, and S. Vaid. The
spirit spatial search engine: Architecture, ontologies and spatial
indexing. In Proc. 3rd Int. Conf. on Geographic Information
Science, pages 125–139, October 2004.

[22] B. T. Jonsson, M. J. Franklin, and D. Srivastava. Interaction of query
evaluation and buffer management for information retrieval. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data, pages
118–129, June 1998.

[23] M. Kaszkiel, J. Zobel, and R. Sacks-Davis. Efficient passage ranking
for document databases. ACM Transactions on Information Systems
(TOIS), 17(4):406–439, October 1999.

[24] R. Lempel and S. Moran. Optimizing result prefetching in web
search engines with segmented indices. In Proc. of the 28th Int.
Conf. on Very Large Data Bases (VLDB), August 2002.

[25] R. Lempel and S. Moran. Predictive caching and prefetching of
query results in search engines. In Proc. of the 12th Int. World Wide
Web Conference, pages 19–28, 2003.

[26] X. Long and T. Suel. Optimized query execution in large search
engines with global page ordering. In Proc. of the 29th Int. Conf. on
Very Large Data Bases (VLDB), September 2003.

[27] X. Long and T. Suel. Three-level caching for efficient query
processing in large web search engines. In Proc. of the 14th Int.
World Wide Web Conference, May 2005.

[28] E. Markatos. On caching search engine query results. In 5th Int. Web
Caching and Content Delivery Workshop, May 2000.

[29] A. Markowetz, T. Brinkhoff, and B. Seeger. Exploiting the internet
as a geospatial database. In Workshop on Next Generation
Geospatial Information, October 2003. (Also presented at the 3rd
Int. Workshop on Web Dynamics at WWW13, May 2004.)

[30] A. Markowetz, Y.-Y. Chen, T. Suel, X. Long, and B. Seeger. Design
and implementation of a geographic search engine. In 8th Int.
Workshop on the Web and Databases (WebDB), June 2005.

[31] B. Martins, M. Silva, and L. Andrade. Indexing and ranking in geoir
systems. In Proc. of the 2nd Int. Workshop on Geo-IR (GIR),
November 2005.

[32] K. McCurley. Geospatial mapping and navigation of the web. In
Proc. of the 10th Int. World Wide Web Conference, pages 221–229,
May 2001.

[33] A. Moffat and J. Zobel. Self-indexing inverted files for fast text
retrieval. ACM Transactions on Information Systems, pages
349–379, October 1996.

[34] G. Navarro, E. de Moura, M. Neubert, N. Ziviani, and
R. Baeza-Yates. Adding compression to block addressing inverted
indexes. Information Retrieval, pages 49–77, July 2000.

[35] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An
adaptable, symmetric multikey file structure. ACM Transactions on
Database Systems, 9(1):38–71, March 1984.

[36] C. Ohm, G. Klump, and H. Kriegel. Xz-ordering: A space-filling
curve for objects with spatial extension. In Proc. of the 6th Int.
Symp. on Advances in Spatial Databases, pages 75–90, July 1999.

[37] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval
with frequency-sorted indexes. Journal of the American Society for
Information Science, 47(10):749–764, May 1996.
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