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We study the problem of processing subgraph queries on a database that consists of a set of
graphs. The answer to a subgraph query is the set of graphs in the database that are supergraphs
of the query. In this article, we propose an efficient index, FG*-index, to solve this problem.

The cost of processing a subgraph query using most existing indexes mainly consists of two
parts, the index probing cost and the candidate verification cost. Index probing is to find the

query in the index, or to find the graphs from which we can generate a candidate answer set for
the query. Candidate verification is to test whether each graph in the candidate set is indeed a
supergraph of the query. We design FG*-index to minimize these two costs as follows.

FG*-index consists of three components: the FG-index, the feature-index, and the FAQ-index.
First, the FG-index employs the concept of Frequent subGraph (FG) to allow the set of queries
that are FGs to be answered without candidate verification. We call this set of queries FG-queries.
We can enlarge the set of FG-queries so that more queries can be answered without candidate
verification; however, a larger set of FG-queries implies a larger FG-index and hence the index
probing cost also increases. We propose the feature-index to reduce the index probing cost. The
feature-index uses features to filter false results that are matched in the FG-index, so that we can
quickly find the truly matching graphs for a query. For processing non-FG-queries, we propose the
FAQ-index, which is dynamically constructed from the set of Frequently Asked non-FG-Queries
(FAQs). Using the FAQ-index, verification is not required for processing FAQs and only a small
number of candidates needs to be verified for processing non-FG-queries that are not frequently
asked. Finally, a comprehensive set of experiments verifies that query processing using FG*-index
is up to orders of magnitude more efficient than state-of-the-art indexes and it is also more scalable.
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1. INTRODUCTION

Graph is a powerful tool for representing and understanding objects and their re-
lationships in various application domains. In recent years, graph databases have
become more in use and the volume of graph data increases rapidly. However, the
performance of query processing on graph databases is still inadequate due to the
high complexity of processing graph data. As a result, it is important to develop
efficient algorithms for processing queries on graph databases.

Existing research has been conducted mainly on two types of graph databases.
The first type consists of very large graphs, such as the Web graph and social
networks. Typical querying tasks for such graph databases include finding the best
connection between a given set of query nodes [Faloutsos et al. 2004; Koren et al.
2006; Tong and Faloutsos 2006] and finding subgraphs that match a given query
pattern [Güting 1994; Holder et al. 1994; Tong et al. 2007].

The second type is a database that consists of a large set of small graphs such
as chemical compounds. This type of databases is especially popular in scientific
domains such as chemistry [James et al. 2003] and bio-informatics [Huan et al.
2004]. Typical queries for this type of databases include subgraph queries and
similarity queries. A subgraph query retrieves all the graphs in the database that
are supergraphs of a given query graph [Shasha et al. 2002; Yan et al. 2005a; He and
Singh 2006; Jiang et al. 2007; Williams et al. 2007; Zhang et al. 2007; Cheng et al.
2007; Zhao et al. 2007], while a similarity query retrieves all the graphs that are
structurally similar to a given query graph [Yan et al. 2005b; He and Singh 2006;
Jiang et al. 2007; Williams et al. 2007]. These two types of queries have a wide
range of applications such as motif discovery in 3D protein structures, pathway
discovery in protein interaction graphs, drug design, schema matching, correlation
discovery in graph databases [Ke et al. 2007; 2008], and many more.

In this article, we propose an efficient index to process subgraph queries in a
database that consists of a set of small graphs. In most of the existing work, a
similarity query is processed by evaluating the set of relaxed graphs of the query
graph using the index for processing subgraph queries. Thus, our work can also be
extended to handle similarity queries in a similar way.

Let D be a graph database that consists of a set of graphs. The processing of a
subgraph query is described as follows: given a graph q, retrieve all graphs g ∈ D
such that g is a supergraph of q. Processing a subgraph query is a fundamental
operation for querying graph databases. However, due to the diversity of graphs,
a subgraph query is in general very complex, since any part (i.e., any subgraph) of
the query graph is a predicate that needs to be satisfied in the query evaluation.
Processing the query by a sequential scan on D to check whether q is a subgraph
of each g ∈ D is infeasible, since subgraph isomorphism testing is known as an
NP-complete problem [Cook 1971].

In recent years, many efficient indexes [Shasha et al. 2002; Yan et al. 2005a; He
and Singh 2006; Jiang et al. 2007; Zhang et al. 2007; Zhao et al. 2007] have been
proposed to process subgraph queries on graph databases. Query processing using
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these indexes has the following two main steps: filtering and candidate verification.
First, filtering uses the index to eliminate part of the false results and to produce
a candidate answer set. Then, candidate verification tests whether each candidate
is indeed a supergraph of the query. Since the candidate answer set is in general
much smaller than the entire graph database, query processing using the indexes is
significantly more efficient than the sequential scan approach.

As pointed out by the authors of the above-mentioned indexes, the cost of can-
didate verification is the dominating factor in the cost of processing a subgraph
query. Therefore, the indexes aim at reducing the candidate set as much as possible.
However, due to the high complexity of subgraph isomorphism testing, candidate
verification is still the most expensive part in processing a subgraph query since
the size of the candidate answer set is at least that of the exact answer set.

Among the existing indexes, GDIndex [Williams et al. 2007] is an exception that
does not require candidate verification. However, GDIndex is designed mainly for
processing databases that contain relatively smaller graphs.

The recently proposed FG-index [Cheng et al. 2007] makes an advance in handling
the expensive candidate verification process. FG-index is an index defined based on
the concept of Frequent subGraphs (FGs) [Inokuchi et al. 2000]. An FG is a graph
that is a subgraph of at least (σ · |D|) graphs in D, where σ (0 ≤ σ ≤ 1) is a pre-
defined threshold. Since the set of FGs can be large, Cheng et al. define the notion
of δ-Tolerance Closed FGs (δ-TCFGs) to cluster the FGs and to organize them into
levels. FG-index is then built as a tree-structured index, so that the search space
of the index probing is effectively reduced. The parameter δ determines the size of
a cluster and hence controls the size of the index at each level.

FG-index classifies queries into two categories: FG-queries and non-FG-queries,
which are queries that are FGs and not FGs, respectively. The main advantage
of FG-index over other existing indexes is that no candidate verification is needed
for processing FG-queries. For processing non-FG-queries, FG-index is also able to
obtain a small candidate answer set to reduce the cost of candidate verification.

There is a problem in FG-index inherited from the concept of FGs. In order to
answer a larger set of queries without candidate verification, a small σ should be
used to build the index. However, a smaller σ implies a larger index and hence
a higher index probing cost. In the index probing process, we need to match the
query with the indexed graphs and each matching involves a subgraph isomorphism
test. Thus, although the candidate verification cost is lowered, the index probing
cost may become too high.

In this article, we address this problem by incorporating a feature-based search
strategy into FG-index. We compute a set of features and build an index, called the
feature-index, on the features. Since features possess the structural information of
the indexed graphs, the feature-index can find a matching graph quickly without
processing many false results, thereby effectively reducing the number of subgraph
isomorphism tests performed in the index probing process. As a result, we are able
to use a small σ to process a large set of queries without candidate verification and
with a low index probing cost.

In addition to the improvement in the index probing efficiency, our work makes
another advance over FG-index. Using FG-index, the size of the candidate set for a
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Fig. 2. The Underlying Principle of Query Processing using FG*-Index

non-FG-query is at best close to (σ · |D|), since the candidate set is generated from
the indexed graphs, which are FGs. We eliminate this bound on the candidate set
size for processing non-FG-queries. The candidate set size can now be smaller than
the answer set size and even zero (i.e., no candidate verification).

We achieve this by proposing a new index, called the FAQ-index. We model the
set of all queries as a stream and define the notion of Frequently Asked non-FG-
Queries (FAQs) within a sliding window. Then, the FAQ-index is constructed on
the set of FAQs and is dynamically updated for each window slide. When a query
is an FAQ, the FAQ-index answers the query without any candidate verification.
When the query is not an FAQ, the FAQ-index is able to obtain a subset of the
answer set and to generate only a small number of candidates for verification.

We incorporate the FG-index, the feature-index and the FAQ-index coherently
into a unified index framework, called FG*-index. Figure 2 depicts the underlying
principle of processing a query q using FG*-index, where the counterpart using
FG-index is shown in Figure 1. Using FG-index, non-FG-queries must go through
candidate verification. In FG*-index, we first employ the feature-index to improve
the efficiency of the index probing process. Then, non-FG-queries are answered
efficiently using the FAQ-index.

We verify the performance of FG*-index with a comprehensive set of experiments.
We demonstrate that the use of the feature-index significantly improves the index
probing efficiency, while the use of the FAQ-index significantly reduces the cost
of candidate verification. We also show that FG*-index significantly outperforms
FG-index with a series of comparisons between the two indexes. In addition, we
compare FG*-index with two other state-of-the-art graph indexes, gIndex [Yan
et al. 2005a] and C-tree [He and Singh 2006]. The results show that FG*-index
is up to orders of magnitude faster and consumes significantly less memory than
gIndex and C-tree. We further show that FG*-index is much more scalable than
gIndex and C-tree when we increase the database size as well as the graph density.

Although efficient query processing is the primary objective of this work, efficient
index construction and update maintenance are also important concerns. We show
that the index construction cost depends mainly on the parameter σ, or equivalently
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the number of FGs. Smaller σ results in faster query processing, but higher index
construction cost. However, we find that when σ increases, query performance
degrades only slightly but the performance of the index construction improves ex-
ponentially. Thus, we can build the index with a smaller σ if the index can be
built during system idle time or if query performance is critical. Otherwise, we can
build the index with a relatively larger σ, which still achieves very impressive query
performance according to our extensive experimental results, especially compared
with the other indexes. We also suggest guidelines to set σ, as well as δ and other
parameters used in the index, based on the experimental results.

For index maintenance, we propose a batch-update strategy that builds an aux-
iliary FG*-index to process queries on the set of updated graphs and rebuilds the
entire index only when the update overhead becomes more expensive than rebuild-
ing the index. This method is simple and can handle frequent database updates.
Finally, we verify the efficiency of our update strategy with a set of experiments.

Organization. The rest of the article is organized as follows. Section 2 defines the
preliminary concepts. Section 3 presents FG-index. Section 4 conducts a detailed
analysis on FG-index, identifying its merits as well as its limitations. Section 5
proposes FG*-index, discussing in detail both the feature-index and the FAQ-index.
Section 6 discusses the update of FG*-index. Section 7 reports the experimental
results. Section 8 discusses the related work and Section 9 gives the conclusion.

2. PRELIMINARIES

For simplicity in presentation, we restrict our discussion to undirected, labelled
connected graphs. However, our index and query processing algorithms apply in
the same way to directed graphs. In this article, we simply call an undirected,
labelled connected graph a graph.

A graph g is defined as a 4-tuple (V, E, L, l), where V is the set of vertices, E is
the set of edges, L is the set of labels and l is a labelling function that maps each
vertex or edge to a label in L. We define the size of a graph g as the number of
edges in g, denoted as size(g) = |E(g)|.

Given a set of graphs G, a distinct edge in G is defined as a 3-tuple, (lu, le, lv),
where le is the label of an edge (u, v) in a graph g ∈ G, and lu and lv are the labels
of vertices u and v in g. Given a distinct edge e and a graph g in G, we define the
count of e in g, denoted as count(e, g), as the number of occurrences of e in g.

Given two graphs, g = (V, E, L, l) and g′ = (V ′, E′, L′, l′), a subgraph isomor-
phism from g to g′ is an injective function h: V → V ′, such that ∀(u, v) ∈ E,
(h(u), h(v)) ∈ E′, l(u) = l′(h(u)), l(v) = l′(h(v)), and l(u, v) = l′(h(u), h(v)).

A graph g is called a subgraph of another graph g′ (or g′ is a supergraph of g),
denoted as g ⊆ g′ (or g′ ⊇ g), if there exists a subgraph isomorphism from g to g′.
We call g a proper subgraph of g′, denoted as g ⊂ g′, if g ⊆ g′ and g + g′.

2.1 Frequent Subgraphs

Let D be a graph database that consists of a set of graphs. Given a graph f , the
frequency of f in D, denoted as freq(f), is defined as the number of graphs in D
that are supergraphs of f ; that is, freq(f) = |{g : g ∈ D, g ⊇ f}|. A graph f is
called a Frequent subGraph (FG) [Inokuchi et al. 2000] if freq(f) ≥ (σ · |D|), where
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σ (0 ≤ σ ≤ 1) is a pre-defined minimum frequency threshold.
Let F be the set of all FGs that are mined from D. A graph f is called a

Maximal Frequent subGraph (MFG) [Huan et al. 2004] if f ∈ F and ∄f ′ ∈ F such
that f ′ ⊃ f . A graph f is called a Closed Frequent subGraph (CFG) [Yan and Han
2003] if f ∈ F and ∄f ′ ∈ F such that f ′ ⊃ f and freq(f ′) = freq(f).

Example 2.1. Figure 3 shows 14 FGs, f1, . . . , f14, mined from a graph database,
where a, b, c represent three distinct edges (note that a distinct edge represents a
unique tuple consisting of the labels of an edge and its incident vertices). Figure 4
organizes the FGs according to their size and represents each FG as a node, where
the number following “:” is the frequency of the FG. (The number on an edge in
Figure 4 is to be introduced later in other examples in this article.)

Among the FGs, f8, f9 and f14 are MFGs since they have no proper supergraphs.
All the FGs, except f12 and f13, are CFGs. The FGs f12 and f13 are not CFGs
because they have a supergraph f14 which has the same frequency.
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Table I. Notations Used Throughout
Symbol Description

D the graph database

size(g) the number of edges in a graph g

count(e, g) the number of occurrences of a distinct edge e in g

freq(f) the number of graphs in D that are supergraphs of a graph f

σ the minimum frequency threshold (0 ≤ σ ≤ 1)

F the set of all FGs mined from D w.r.t. σ

q a query graph

Dq the answer set of a query q (the set of supergraphs of q in D)

δ the frequency tolerance factor (0 ≤ δ ≤ 1)

T the set of δ-TCFGs mined from D

� a total order defined on F by Definition 3.5

CLOS(ft) the closure of a δ-TCFG ft

GA[i] the i-th entry of the GA of an IGI or an IFI

IDA(e, n, m) the m-edge ID-array in the size-n ID-entry of a distinct edge e

Cq the candidate answer set of a query q

Fu
l

the feature set that contains all FGs of size between [l, u]

w the number of time units in a sliding window W

NFAQ the number of FAQs in a sliding window

M the size of the available memory

Ddel the set of deleted graphs from D

Dnew the set of new graphs added to D

2.2 Subgraph Queries

A subgraph query, or simply a query, is a graph that has at least one edge. Pro-
cessing a query with a single vertex is trivial and thus not discussed.

The query processing problem we tackle in this article is stated as follows. Given
a graph database D and a query q, retrieve all g ∈ D such that g is a supergraph of
q. The answer set of a query q is denoted as Dq = {g: g ∈ D, g ⊇ q}.

Given a minimum frequency threshold σ, a query q is called an FG-query with
respect to σ if |Dq| ≥ (σ · |D|), since freq(q) = |Dq| ≥ (σ · |D|) and hence q is an
FG. If |Dq| < (σ · |D|), then q is a non-FG-query with respect to σ.

Table 2.2 gives the notations used throughout this article.

3. FG-INDEX

In this section, we present FG-index [Cheng et al. 2007]. We first define the notion
of δ-tolerance CFGs, which forms the core of FG-index. Then, we discuss the
construction of FG-index and query processing using FG-index.

3.1 δ-Tolerance Closed Frequent Subgraphs

FG-index is a tree-structured index built on the set of FGs, F . We define the
notion of δ-tolerance CFGs (δ-TCFGs) to cluster the FGs in F so that they can
be organized into levels. The notion of δ-TCFGs also allows us to flexibly tune the
size of the index at each level by adjusting the value of δ.

We define the notion of δ-TCFG as follows.

Definition 3.1. (δ-Tolerance CFG) A graph, f ∈ F , is a δ-Tolerance CFG (δ-
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TCFG) if and only if ∄f ′ ∈ F such that f ′ ⊃ f and freq(f ′) ≥ ((1 − δ) · freq(f)),
where δ (0 ≤ δ ≤ 1) is a pre-defined frequency tolerance factor.

We can define CFGs and MFGs by δ-TCFGs as follows.

Lemma 3.2. A graph f is a CFG if and only if f is a 0-TCFG. A graph f is an
MFG if and only if f is a 1-TCFG.

Corollary 3.3. Let Tδ be the set of δ-TCFGs, FC be the set of CFGs, and FM

be the set of MFGs. Then, FM ⊆ Tδ ⊆ FC .

Corollary 3.3 gives the upper bound and the lower bound on the size of Tδ. The
following example illustrates the concept of δ-TCFGs.

Example 3.4. Consider the 14 FGs in Figure 4. The number on each edge is
computed as de = (1−freq(fi)/freq(fj)), where fi is the smallest proper supergraph
of fj that has the greatest frequency. According to Definition 3.1, fj is a δ-TCFG
iff de > δ. Let δ = 0.04. Then, the set of 0.04-TCFGs is {f1, f4, f5, f8, f9, f14}, i.e.,
the set of bold nodes in Figure 4. For example, f1 is a 0.04-TCFG since f1 does not
have a proper supergraph that has a frequency greater than ((1−0.04)×163) ≈ 156.
The FG f6 is not a 0.04-TCFG since we have freq(f9) > ((1 − 0.04)× freq(f6)).

The set of 1-TCFGs, i.e., the set of MFGs, is {f8, f9, f14}; while the set of 0-
TCFGs, i.e., the set of CFGs, contains all FGs except f12 and f13.

From now on, we use the lighter notation T to represent Tδ when δ is clear in
the context. To create clusters from F based on T , we need to find the connection
between the graphs in T and those in (F − T ). We establish this connection by
defining the closure of a δ-TCFG.

To define the closure of a δ-TCFG, we need to first define a total order on F .
We assign a unique number, num(f), to each graph f ∈ F . Then, we define the
total order on F as follows.

Definition 3.5. (Graph Set Order) A graph set order � on F is a total order
defined as follows. Let f1,f2∈F , f1 � f2 if one of the following statements is true.

(1) size(f1) < size(f2).

(2) size(f1) = size(f2) and freq(f1) > freq(f2).

(3) size(f1) = size(f2), freq(f1) = freq(f2), and num(f1) ≤ num(f2).

We further define f1 ≺ f2 if f1 � f2 and f1 6= f2.

Based on the graph set order, we now define the notion of the closest δ-TCFG
supergraph to build the connection of the graphs in T and those in (F − T ).

Definition 3.6. (Closest δ-TCFG Supergraph) Given ft ∈ T and f ∈ (F − T ),
ft is called the closest δ-TCFG supergraph of f if ft ⊃ f and ∄f ′

t ∈ T such that
f ′

t ⊃ f and f ′
t ≺ ft.

Lemma 3.7. For each f ∈ (F − T ), the closest δ-TCFG supergraph of f exists
and is unique.

Proof. We first prove the existence of f ’s closest δ-TCFG supergraph. If
f ∈ (F − T ) does not have any supergraph in T , then f itself must be an MFG.
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According to Corollary 3.3, all MFGs are δ-TCFGs. Therefore, we have f ∈ T ,
which contradicts the assumption that f ∈ (F − T ).

The uniqueness of f ’s closest δ-TCFG supergraph follows directly from Defini-
tions 3.5 and 3.6.

Based on Definition 3.6 and Lemma 3.7, we can assign to each δ-TCFG, ft ∈ T ,
with a cluster of FGs whose closest δ-TCFG supergraph is ft. We define this cluster
of FGs as the closure of a δ-TCFG as follows.

Definition 3.8. (Closure of a δ-TCFG) Given ft ∈ T , the closure of ft is defined
as CLOS (ft) = {f : ft is the closest δ-TCFG supergraph of f}.

Based on the graph set order, Lemma 3.7 ensures that a query q ∈ (F − T ) must
have a unique closest δ-TCFG supergraph, ft, and q can be located in the closure
of ft. We illustrate the concept of closure by the following example.

Example 3.9. Referring to Figures 3 and 4, the set of FGs is ordered according
to the graph set order �, where num(fi) = i. We have f1 ≺ f4 since size(f1) <
size(f4); while for f1 and f2 which are of the same size, f1 ≺ f2 since freq(f1) >
freq(f2). When δ = 0.04, f14 is the closest δ-TCFG supergraph of f7, f10, f11, f12

and f13; in other words, CLOS (f14) = {f7, f10, f11, f12, f13}.

3.2 Framework of FG-Index

Before we present FG-index, we first give the framework of FG-index as follows.

(1) Index Construction. The construction of FG-index consists of two major
steps. The first step is to mine F , which can be done by using an existing
FG-mining algorithm [Inokuchi et al. 2000; Yan and Han 2002]. Note that Df

of each f ∈ F is also obtained by the FG-mining process. The second step is
to compute T from F and then build the index based on T .

FG-index consists of two parts: the core FG-index and the edge-index. We
briefly describe each of them as follows.

The core FG-index is a tree-structured index. The root of the tree is an inverted-
index constructed on the set T . Then, a child inverted-index is built on the
closure of each f ∈ T . If a closure is too large, a local set of δ-TCFGs is
computed from the closure. In this way, we construct the tree recursively. We
keep the root of the core FG-index in the main memory and other nodes on the
disk. We also associate Df with each indexed FG f .

The core FG-index is built on the set of FGs and hence is not able to answer
those non-FG-queries that do not have an edge in any of the FGs. To pro-
cess these queries, we build another index, called the edge-index, on the set
of infrequent distinct edges1 in D. For each infrequent distinct edge e in the
edge-index, we also associate De with e.

(2) Query Processing. Given a query q, we first search q in the core FG-index. If q
is a δ-TCFG, we directly retrieve q and Dq from the inverted-index at the root
of the core FG-index. Otherwise, we first find q’s closest δ-TCFG supergraph,

1A distinct edge can be regarded as a graph with only one edge.
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f . Then, the index constructed on the closure of f is loaded from the disk to
locate q and Dq.
If q cannot be found in the core FG-index, then q is a non-FG-query. In this
case, we use the core FG-index to find a set of q’s subgraphs and retrieve Df

for each of these subgraphs f . If q consists of any infrequent distinct edges, we
also retrieve De from the edge-index for each infrequent distinct edge e in q.
Then, we compute Cq as the intersection of all the “Df”s and all the “De”s.
Finally, we obtain Dq by verifying whether each g ∈ Cq is a supergraph of q.

3.3 Index Construction

We now present the structure of FG-index and algorithm for constructing FG-index.

3.3.1 Structure of FG-Index. We first define the structure of FG-index. The
edge-index is a simple hashtable that keeps the set of infrequent distinct edges. For
the edge e in each non-empty hash slot, we also link De to the slot.

The core FG-index is a multi-level index tree, where a node in the tree is an
Inverted-Graph-Index (IGI ) constructed on a cluster of FGs. The structure of an
IGI is formally defined as follows.

Definition 3.10. (Inverted-Graph-Index ) Given a set of graphs G, an Inverted-
Graph-Index (IGI ) constructed on G consists of the following components:

—An array, called the Graph Array (GA), stores G.

—An array, called the Edge Array (EA), stores the set of distinct edges in G.

—Each distinct edge e in the EA is associated with a set of IDs of the graphs that
contain e. The set of IDs is organized as follows.
—The IDs are first organized by the size of the graphs. The IDs of the graphs

that are of size n are grouped together in an entry, called a size-n ID-entry.
—Within each size-n ID-entry, the IDs are further organized by the number of

occurrences of e in each of the graphs. The IDs of the graphs that have m
occurrences of e are grouped together in an array, called an m-edge ID-array.

We assign the ID of a graph as the position that the graph is stored in the GA.
For example, the graph stored in the i-th entry of the GA, denoted as GA[i], is given
the ID “i”. We also denote the m-edge ID-array in the size-n ID-entry of a distinct
edge e in the EA as IDA(e, n, m). We use the following example to illustrate the
structure of an IGI.

Example 3.11. Referring to the FGs in Figures 3 and 4, let δ = 0.04, then
T = {f1, f4, f5, f8, f9, f14}. Figure 5 shows the corresponding IGI constructed on
T . For example, the size-3 ID-entry of the distinct edge c has two ID-arrays: the
1-edge ID-array, denoted as IDA(c, 3, 1), containing one ID “4”, and the 2-edge
ID-array, denoted as IDA(c, 3, 2), containing one ID “5”. The two IDs correspond
to f8 and f9 in GA[4] and GA[5], respectively.

As shown in Figure 3, f9 is of size 3, count(a, f9) = 1 and count(c, f9) = 2. In
the IGI shown in Figure 5, f9 is stored in GA[5]. Thus, we have the ID “5” in
IDA(a, 3, 1) and IDA(c, 3, 2).

We now describe the structure of the core FG-index. A conceptual view of the
core FG-index is shown in Figure 6. The root of the core FG-index, or simply called
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Algorithm 1 BuildIndex

Input: D, σ and δ.
Output: FG-index.

1. F ← MineFG(D, σ);
2. T ← ComputeTCFG(F , δ);
3. BuildCoreFGindex(T ,F , |T |);
4. BuildEdgeIndex(D, σ);

the root IGI, is an IGI constructed on T . Then, for each fi ∈ T , if CLOS (fi) 6= ∅,
a child IGI is constructed on CLOS(fi). However, if the size of CLOS (fi) is larger
than the size of T , a local set of δ-TCFGs, TCLOS(fi), is computed from CLOS (fi)
(using a smaller δ). The child IGI is then constructed on TCLOS(fi) instead of
CLOS (fi). Thus, when the child IGI is loaded into the main memory, the memory
consumption is guaranteed to at most double the size of the root IGI. Then, for
each fij ∈ TCLOS(fi), a child IGI is constructed on CLOS (fij) and so on recursively.

3.3.2 Constructing FG-Index. The algorithm for constructing FG-index, BuildIn-
dex, is presented as Algorithm 1. The algorithm first invokes MineFG to mine F
from D with respect to σ. Then, ComputeTCFG is invoked to compute T from F
with respect to δ. Finally, BuildCoreFGindex and BuildEdgeIndex are invoked to
construct the core FG-index and the edge-index. We omit the details of the pro-
cedure MineFG, which can be any existing FG-mining algorithm [Inokuchi et al.
2000; Yan and Han 2002], but we discuss the other three procedures as follows.
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Procedure 2 ComputeTCFG(Fthis , δ)

1. Sort Fthis s.t. ∀f1, f2 ∈ Fthis , f1 is ordered before f2 if f1 ≺ f2;
2. Tthis ← Fthis ;
3. Let Ti be the set of FGs in Tthis that consist of i edges;
4. for each i = 1, 2, . . . do

5. for each f ∈ Ti do

6. for each f ′ ∈ Ti+1 do

7. if (f ⊂ f ′)
8. if (freq(f ′) ≥ (1− δ) · freq(f))
9. Tthis ← Tthis − {f};
10. break; /∗ go to Line 5 ∗/

11. Return Tthis ;

Procedure 3 BuildCoreFGindex(Tthis ,Fthis , N)

1. Create an empty IGI, with an empty GA and an empty EA;
2. for each ft ∈ Tthis do

3. Store ft in the first free entry in the GA;
4. for each distinct edge e in ft do

5. if (e is not in the EA)
6. Add e to the EA;
7. Add the ID of ft to IDA(e, size(ft), count(e, ft));
8. if(Fthis 6= Tthis)
9. for each f ∈ (Fthis − Tthis) do

10. Find f ’s closest δ-TCFG supergraph, ft;
11. Add f to CLOS(ft);
12. for each ft ∈ Tthis do

13. if(CLOS(ft) 6= ∅)
14. if(|CLOS(ft)| ≥ N)
15. TCLOS(ft) ← ComputeTCFG(CLOS(ft), δ);
16. BuildCoreFGindex(TCLOS(ft),CLOS(ft), N);
17. else

18. BuildCoreFGindex(CLOS(ft),CLOS(ft), N);

Procedure 4 BuildEdgeIndex(D, σ)

1. Create an empty edge-index;
2. for each distinct edge e that appears in less than σ|D| graphs do

3. Add e and De to the edge-index;

ComputeTCFG, as shown in Procedure 2, first sorts the set of input FGs Fthis

(note that the sorting does not involve any expensive graph operation). Based
on the order defined by ≺, the first supergraph f ′ of a graph f found in Fthis

has the greatest frequency among all other supergraphs of f . Thus, if freq(f ′) <
((1−δ)·freq(f)), then ∀f ′′ ⊃ f , freq(f ′′) ≤ freq(f ′) < ((1−δ)·freq(f)). This implies
that, to check whether f is a δ-TCFG, we only need to find the first supergraph
of f that has one more edge than f (Lines 6-10). If the first supergraph of f , f ′,
is found and freq(f ′) ≥ ((1 − δ) · freq(f)) (Lines 7-8), then f is not a δ-TCFG by
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Definition 3.1. Thus, f is removed from Tthis (Line 9). Otherwise, f is a δ-TCFG.
BuildCoreFGindex, as shown in Procedure 3, recursively constructs the core FG-

index as follows. We first build an IGI on Tthis (Lines 2-7). For each ft ∈ Tthis ,
we store ft in the GA in the order that ft is processed. For each distinct edge e in
ft, if e is not in the EA, we add e to the EA. Then, the ID of ft is added to the
end of the array IDA(e, size(ft), count(e, ft)). Since the ID of ft is assigned as the
position in the GA where ft is stored, the IDs in each ID-array are automatically
sorted. We use a hashtable to access each distinct edge in the EA.

After we build the IGI on Tthis , Line 8 checks if Tthis is the closure of a δ-
TCFG. If Tthis is the closure of a δ-TCFG, i.e., Tthis = Fthis , then we do not
need to construct any child IGI. Otherwise, Tthis is a set of δ-TCFGs and Lines
9-11 compute the closure for each ft ∈ Tthis . We can use the IGI built on Tthis

to find the closest δ-TCFG supergraph of a graph (Line 10) efficiently, which will
be discussed in Algorithm 5 when we process a query using the IGI. Finally, Lines
12-18 recursively call BuildCoreFGindex to construct the child IGI on the closure
of each ft ∈ Tthis . If the closure of some ft is still too large, ComputeTCFG is first
called to construct a nested set of δ-TCFGs on CLOS (ft), using a smaller δ.

BuildEdgeIndex, as shown in Procedure 4, adds each infrequent distinct edge in
D to the edge-index. The set of infrequent distinct edges can be obtained freely
from the FG-mining process. These edges are also accessed via the same hashtable
used for the EA, where a flag is used to indicate whether or not an edge is frequent.

3.3.3 Memory and Disk Residence. We keep the root IGI and the edge-index in
the main memory, and we store all the other parts of FG-index on the disk.

The Df for each indexed graph f is stored on the disk. Given two graphs f and
f ′, if f ⊃ f ′, then (Df ∩ Df ′) = Df . Thus, we do not want to store the duplicate
graphs in Df and Df ′ . We remove the duplicates as follows. For each f ∈ T , we
organize the FGs in CLOS(f) as a tree. The root of the tree is f and the parent
of a node in the tree is the first supergraph (as ordered by ≺) of the node. This
supergraph can be found efficiently using the child IGI that is built on CLOS (f).
Then, we only keep (Dfc

− Dfp
) at each node fc, where fp is the parent of fc.

Thus, only Df is exact, while the duplicate graphs in Df ′ , where f ′ ∈ CLOS (f),
are removed and can be recovered by traversing from f ′ up to the root f .

3.4 Query Processing using FG-index

The processing of a query q using FG-index is classified into two cases: when q is
an FG-query and when q is a non-FG-query.

3.4.1 Processing FG-Queries. When q is an FG-query, Algorithm 5 invokes Pro-
cedure 6 to process q recursively, starting at the root IGI. Let E be the set of distinct
edges in q. ProcFGQbyIGI checks only those graphs that contain all edges in E.
It starts with the graphs that have the same size as q (Line 2) until a supergraph
of q is found (Lines 9-14).

Let i be the size of the graphs that are indexed in thisIGI. For each e ∈ E,
ProcFGQbyIGI first obtains K(e), which is the set of IDs of the graphs that are of
size i and have at least count(e, q) occurrences of e (Lines 5-6). The IDs in each K(e)
are sorted in ascending order. Then, the “K(e)”s for all e ∈ E are intersected to
find a supergraph for q. Let f be the first supergraph of q, whose ID is obtained by
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Algorithm 5 ProcFGQ

Input: The core FG-index and a query q.
Output: Dq.

1. Return ProcFGQbyIGI(The root IGI, q);

Procedure 6 ProcFGQbyIGI(thisIGI , q)

1. Let E be the set of distinct edges in q;
2. for each i = size(q), size(q) + 1, . . . do

3. for each e ∈ E do

4. Create an empty set, K(e);
5. for each j ≥ count(e, q) do

6. Access IDA(e, i, j) in thisIGI and copy the IDs in IDA(e, i, j) to K(e);
7. Sort K(e) in ascending order;
8. Intersect K(e), ∀e ∈ E, until an ID, k, is obtained;
9. if(f in GA[k] of thisIGI is a supergraph of q)
10. if(f = q)
11. Return Df ;
12. else

13. Load f ’s child IGI, childIGI, into the main memory;
14. Return ProcFGQbyIGI(childIGI , q);
15. else

16. Go to Line 8 and continue the intersection;
17. Return ∅;

the intersection (Lines 8-9). According to the order in which each graph is added to
the GA, f must be either q or the closest δ-TCFG supergraph of q. Thus, we either
output Dq (Line 11), or continue to find q by recursively invoking ProcFGQbyIGI
to process on f ’s child IGI (Lines 13-14). If the intersection of the “K(e)” is an
empty set or if no supergraph of q is found for the current i, we increment i (Line
2) and continue a new round of iteration to search for a supergraph of q. Finally,
Line 17 shows a terminating condition, which indicates that q is not an FG-query
and we process q by Algorithm 7 in Section 3.4.2.

The efficiency of the intersection of the “K(e)”s depends on the size of each K(e).
The IDs in each K(e) belong to a local set of δ-TCFGs that are of a specific size
and contain at least count(e, q) occurrences of e. Thus, the size of K(e) is small,
because the size of the whole set of δ-TCFGs is small as controlled by δ.

The following example illustrates the processing of an FG-query by Algorithm 5.

Example 3.12. Referring to the IGI in Example 3.11, let q = f11. We demon-
strate how Dq is obtained by ProcFGQbyIGI. Since size(f11) = 3, we start from the
Size-3 ID-entries, that is, i = 3. Since IDA(a, 3, j) is empty, for j ≥ count(a, f11) =
2, we have K(a) = ∅, which implies that the intersection of K(a) and K(b) will
also be an empty set. Therefore, ProcFGQbyIGI directly proceeds to i = 4 in Line
2. We first copy the ID “6” from IDA(a, 4, 3) to K(a). Since count(b, f11) = 1, we
also copy the ID “6” from IDA(b, 4, 1) to K(b). Then, intersecting K(a) and K(b)
gives “6”. Since f14 in GA[6] is a supergraph of f11 (in fact, the closest δ-TCFG
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Algorithm 7 ProcNonFGQ

Input: FG-index, and a query q.
Output: Dq.

1. Create an empty set, S;
2. Let E be the set of frequent distinct edges of q;
3. for each i = size(q)− 1, size(q)− 2, . . . , 1 do

4. Create an empty set, K;
5. for each e ∈ E do

6. for each j = 1, . . . , count(e, q) do

7. if(IDA(e, i, j) is not empty)
8. Copy the IDs in IDA(e, i, j) to K;
9. Sort K in descending order and remove the duplicate IDs;
10. for each ID, k, in K do

11. if(f in GA[k] has edges in E and f ⊂ q)
12. S ← (S ∪ {Df});
13. Remove all distinct edges of f from E;
14. Go to Line 15 if E becomes empty;
15. for each infrequent distinct edge, e, in q do

16. S ← (S ∪ {De});
17. Cq ← (

⋂
s∈S s);

18. Return Dq ← {g : g ∈ Cq, g ⊇ q};

supergraph of f11), Line 14 invokes ProcFGQbyIGI to process on the child IGI of
f14. The recursive call finally returns Df11

(details omitted).

3.4.2 Processing Non-FG-Queries. When ProcFGQ returns an empty set, then
q is a non-FG-query. In this case, Algorithm 7 is used to obtain Dq. The algorithm
ProcNonFGQ consists of two parts: Lines 2-14 check the set of frequent distinct
edges E (if any) in q, while Lines 15-16 handle the set of infrequent distinct edges
(if any). In Line 1, ProcNonFGQ assigns an empty set S, which is used to hold
the answer sets of q’s subgraphs. Intersecting the answer sets in S then gives the
candidate set of q, Cq, in Line 17.

First, in Lines 2-14, ProcNonFGQ uses the core FG-index to find a set of sub-
graphs of q that are indexed. Then, for each subgraph f found, Df is retrieved
and included into S. Then, in Lines 15-16, ProcNonFGQ retrieves De for each
infrequent distinct edge e of q from the edge-index and includes De into S. Finally,
in Lines 17-18, ProcNonFGQ generates Cq by intersecting all ID sets (i.e., Df or
De) in S, and verifies each candidate in Cq to give Dq.

We now explain how to search for the subgraphs of q that are indexed in FG-
index. Unlike the search for the supergraph of q in Procedure 6, the search for
subgraphs moves in the reverse direction starting with the graphs that have one
fewer edge than q (Line 3). Then, the IDs of the graphs are copied to a set K and
sorted in descending order (Lines 4-9), since for graphs of the same size, a graph f
with a larger ID implies that f has a smaller frequency and hence a smaller Df .

For each ID in K, Lines 10-11 perform a subgraph isomorphism test between f
and q to ensure that f is a subgraph of q before using Df to produce Dq. This
process can be costly since K contains all potential subgraphs of q. To reduce the
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number of subgraph isomorphism tests in this step, we obtain only a small set of
maximal FG subgraphs of q. Here, f is a maximal FG subgraph of q iff f ∈ F and
∄f ′ ⊃ f such that f ′ ⊂ q. Using the maximal FG subgraphs of q is more effective
in reducing the size of Cq because the answer set of a maximal FG subgraph is
smaller than that of a non-maximal FG subgraph of q. However, we do not obtain
all maximal FG subgraphs of q in the index but stop the search when all edges in E
are covered (Lines 11-14), since obtaining all those missing maximal FG subgraphs
does not further reduce the size of Cq substantially.

4. THE ANATOMY OF FG-INDEX: MERITS AND LIMITATIONS

In this section, we present a detailed analysis of the efficiency of query processing
using FG-index. We identify the merits of using FG-index and also discuss the
limitations. Then, in Section 5, we propose FG*-index to address the limitations.

Let Cq be the candidate answer set of processing a query q. Let Tsearch be the
index probing time, TI/O be the disk I/O time of fetching each candidate graph
from the disk, and Tverify be the candidate verification time.

The response time of processing q using a graph index is given as follows:

Tresponse = (Tsearch + |Cq| × TI/O + |Cq| × Tverify ) . (1)

Since candidate verification involves the expensive operation of subgraph isomor-
phism testing, (|Cq| × Tverify ) usually dominates Tresponse . Most existing indexes
[Shasha et al. 2002; Yan et al. 2005a; He and Singh 2006; Jiang et al. 2007; Zhang
et al. 2007] aim to reduce |Cq| as much as possible. Thus, the optimal Tresponse of
using these indexes is when Cq = Dq:

Tresponse = (Tsearch + |Dq| × TI/O + |Dq| × Tverify) . (2)

4.1 Merits of FG-Index

The major advantage of using FG-index over existing indexes is its efficiency for
processing FG-queries. When q is an FG, using FG-index obtains Dq directly
without any candidate verification. Thus, the response time is given as follows:

Tresponse = (Tsearch + |Dq| × TI/O ) . (3)

Equation (3) is a significant reduction from Equation (2), because we completely
remove the dominating factor, (|Cq| ×Tverify ), from Tresponse . We remark that the
cost of retrieving the answer set from the disk, i.e., (|Dq| × TI/O ), is inevitable
unless the main memory is large enough to store the whole database.

4.2 Limitations of FG-Index

Although FG-index is a significant improvement over existing indexes, there is a
condition that must be satisfied in order to achieve the response time defined by
Equation (3); that is, the queries must be FGs with respect to σ. This becomes a
limitation in using FG-index.

To include more queries into the category of FGs, FG-index should use a small
σ. However, a small σ produces a large number of FGs, which in turn gives rise
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to a large index. Although the concept of δ-TCFG partitions the large indexing
space into many smaller spaces at different levels, the search space can still be large
when the number of FGs is large. The large search space leads to more subgraph
isomorphism tests (Line 9 of Procedure 6) performed in the process of finding q’s
closest δ-TCFG supergraph. As a result, Tsearch is substantially increased.

Thus, the setting of σ becomes a limitation of FG-index in achieving the best
query performance, as stated below:

—When σ is small, more queries can be answered by FG-index without candidate
verification. The response time for processing the FG-queries is given by Equation
(3), but Tsearch can be large.

—When σ is large, Tsearch is small but the best response time for processing most
queries is given by Equation (2).

Another limitation of FG-index is on the processing of non-FG-queries. In order
to reduce the candidate verification cost, FG-index generates Cq by intersecting the
answer sets of the maximal FG subgraphs of q. Thus, Cq is close to (σ · |D|) since
the frequency of the maximal FG subgraphs is at least (σ · |D|). However, Dq can
be much smaller than (σ · |D|) since q is a non-FG-query. Therefore, for processing
non-FG-queries, the Cq obtained by FG-index may be much larger than Dq.

5. FG*-INDEX

In Section 4, we identify two limitations of FG-index, one related to the index
probing cost and another related to the candidate verification cost. In this section,
we propose our solution, FG*-index, to both of the limitations. FG*-index consists
of FG-index as well as two new indexes: the feature-index and the FAQ-index.

The feature-index is used to lower the index probing cost by reducing the number
of subgraph isomorphism tests performed in the index probing process, even when
the number of FGs is large.

The FAQ-index totally avoids candidate verification for processing frequently
asked non-FG-queries. For processing those non-FG-queries that are not frequently
asked, the FAQ-index improves the query performance in either of the following two
ways: (1) the FAQ-index obtains a large subset of the answer set and thus only a
small number of candidates need to be verified; or (2) the FAQ-index generates a
small candidate set that is close to the answer set.

5.1 The Feature-Index

We process a query q using FG-index by intersecting the IDs of the size-i (i ≥
size(q)) graphs that contain the edges in q. When the number of indexed graphs
is large or the database is dense, this edge-based intersection may return a large
number of matches, because edges lose most of the structural information of the
graphs. Since each match needs to be verified by a subgraph isomorphism test,
Tsearch is significantly increased as a result.

Our solution to this problem is to adopt a feature-based search strategy. We first
define a set of features and then build an index on the features.

5.1.1 Feature Selection. The selection of features can rely on domain expert
knowledge. However, considering that domain expert knowledge may not always be
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available, we provide a way to select the features without domain expert knowledge.
To facilitate the index probing process, a desirable set of features should satisfy

the following criteria. First, the features should possess the structural information
of their supergraphs that are indexed. Second, the number of features cannot be
large; otherwise, the search for the features of a query is itself too expensive. Third,
it should be efficient to compute the features.

A suitable feature that satisfies the first criterion is the subgraphs of the graphs
indexed in FG-index. However, it cannot meet the second criterion if all the sub-
graphs are used as features. Thus, we use only part of the subgraphs and define
the feature set as Fu

l = {fe : fe ∈ F , l ≤ size(fe) ≤ u}. We set l = 2 in Fu
l , since

the size-1 FGs are just frequent edges. The choice of u determines the first two
criteria but also presents a dilemma: u should be set larger so that the features
can possess more structural information of their supergraphs, but a larger u also
means a larger number of features. However, u can be easily determined by running
a few test sets. Our experiments show that, compared with the edge-based index
probing, the search efficiency is already significantly improved for a value of u as
small as 4. The last criterion for selecting the features is also satisfied since Fu

l is
obtained freely from F , which is used to build FG-index.

Another benefit of selecting Fu
l as the feature set is that it makes the index partic-

ularly efficient for answering queries that are small structures, which are commonly
found in many applications [Williams et al. 2007].

5.1.2 The Structure of the Feature-Index. The feature-index consists of the fol-
lowing two components: the Feature Hash Index (FHI ) and a set of Inverted-
Feature-Indexes (IFIs).

The FHI is a simple hashtable that keeps the set of features. The hash key of a
feature is computed from the canonical label [Williams et al. 2007] of the feature.
If there are more than one feature being hashed into the same hashtable slot, the
collision is handled by chaining. We compute the canonical label of a feature from
the adjacency list of the feature.

Each feature fe in the FHI is also associated with Dfe
. Therefore, if a query q is

a feature, its answer set can be directly retrieved using the FHI.
The structure of an IFI is defined as follows.

Definition 5.1. (Inverted-Feature-Index ) Given a set of graphs G and a set of
features Fe, an Inverted-Feature-Index (IFI ) on G and Fe is defined as follows:

—An array, called the Graph Array (GA), stores G.

—An array, called the Feature Array (FA), stores Fe.

—Each feature fe in the FA is associated with a set of IDs of the graphs in G that
are supergraphs of fe. The IDs are organized by the size of the graphs. The IDs
of the graphs that are of size n are stored together in an array, called the size-n
ID-array of fe.

Recall from Definition 3.10 that each IGI in FG-index is built on a set of graphs
G. Thus, we construct an IFI on G and Fu

l to improve the index probing efficiency.
We keep Fu

l in the FHI and store it in the main memory, while each IFI is resident
in the memory or on the disk according to their respective IGI. The construction
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Fig. 7. The Inverted-Feature-Index of Example 5.2

of an IFI is similar to that of an IGI as shown in Lines 1-7 of Procedure 3; thus,
we omit the details here. An example of an IFI is shown as follows.

Example 5.2. Referring to the FGs in Figures 3 and 4, for the purpose of il-
lustration, we choose the feature set F2

2 = {f4, f5, f6, f7} and we set δ = 0, i.e.,
T = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f14}. Figure 7 shows an IFI constructed
on T and F2

2 , where we omit {f1, f2, f3, f4, f5, f6, f7} from the GA for clarity. Note
that the IFI and the IGI of FG-index share the same GA.

In Figure 7, the size-3 ID-array of the feature f4 has three IDs, {1, 3, 4}, which
correspond to the three size-3 supergraphs of f4, {f8, f10, f11}, in GA[1], GA[3] and
GA[4], respectively.

We do not build an IFI for every IGI in FG-index, since an IFI is used to reduce
the number of subgraph isomorphism tests performed in the index probing process
when the IGI is large. Thus, we only build an IFI for the IGI at an intermediate
node in the core FG-index, since these IGIs are usually large (otherwise they will
not have child IGIs). The IGIs at a leaf node of the core FG-index are small; thus,
no IFI is needed for the IGI at a leaf node.

5.1.3 Query Processing Using the Feature-Index. We now discuss query process-
ing using the feature-index, for both FG-queries and non-FG-queries. As shown in
Algorithm 8, we process a query according to its size. If size(q) < l, we process q
using FG-index since the size of the features is at least l. If the size of q falls within
the size range of a feature, i.e., [l, u], we can directly retrieve Dq using the FHI if q
is an FG. But if q is not an FG, FG-index is used to answer q. We will discuss how
to improve the efficiency of processing non-FG-queries later using the FAQ-index.

When the size of q is greater than u, we first find a set of features that are
subgraphs of q. For the purpose of facilitating index probing, we only need the set
of maximal features of q, defined as Fq = {fe : fe ⊂ q, fe ∈ Fu

l , ∄f ′
e ∈ Fu

l s.t. f ′
e ⊃ fe

and f ′
e ⊂ q}, since the maximal features contain the structural information of their

subgraph features. Thus, we can enumerate the size-u subgraphs of q and then the
size-(u − 1) subgraphs, and so on until we find all the maximal features.

However, the number of maximal features can still be large, especially because
all the size-u subgraphs of q are maximal features of q. Therefore, we find a repre-
sentative set of maximal features that contain all distinct edges of q. We compute
this representative set by enumerating the features of q starting from the size-u
features. Let E be the set of distinct edges in q. For each feature fe enumerated,
we remove all distinct edges in fe from E. We add fe to Fq and continue the
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Algorithm 8 FProcQ

Input: FG-index, the feature-index, and a query q.
Output: Dq.

1. if(size(q) < l)
2. Process q using FG-index;
3. else if(l ≤ size(q) ≤ u)
4. Search q in the FHI;
5. Return Dq if q is found, otherwise process q using FG-index;
6. else if(size(q) > u)
7. Find a set of maximal features of q, Fq, using the FHI;
8. Dq ← FProcFGQ(q, Fq);
9. if(Dq 6= ∅)
10. Return Dq ;
11. else

12. Return FProcNonFGQ(q, Fq);

Procedure 9 FProcFGQ(q, Fq)

1. for each i = size(q), size(q) + 1, . . ., do

2. Intersect the size-i ID-arrays of all fe ∈ Fq until an ID, k, is obtained;
3. if(f in GA[k] is a supergraph of q)
4. Return Df if f = q, otherwise search q using f ’s child IGI and IFI (if any);
5. else

6. Go to Line 2 and continue the intersection;
7. Return ∅;

Procedure 10 FProcNonFGQ(q, Fq)

1. Create an empty set, S;
2. for each i = size(q)− 1, size(q)− 2, . . . , u + 1 do

3. for each unique ID, k, in the size-i ID-arrays of all fe ∈ Fq do

4. if(f in GA[k] is a subgraph of q)
5. S ← (S ∪ {Df});
6. Remove any fe, whose size-i ID-array contains k, from Fq;
7. Go to Line 11 if Fq becomes empty;
8. if(Fq 6= ∅)
9. for each fe ∈ Fq do

10. S ← (S ∪ {Dfe});
11. for each infrequent distinct edge, e, in q do

12. Obtain De from the edge-index in FG-index;
13. S ← (S ∪ {De});
14. Cq ← (

⋂
s∈S

s);
15. Return Dq ← {g : g ∈ Cq, g ⊇ q};

enumeration, until E becomes empty. Thus, we stop when all edges in E (i.e., q)
are covered, since obtaining all those missing maximal features does not further
improve the filtering power much (Line 3 of Procedure 9) but increases the cost of
the intersection since we need to process more features (Line 2 of Procedure 9).
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After we obtain Fq, we invoke FProcFGQ, as shown in Procedure 9, that uses
the IFI to process q. We intersect the size-i ID-array of each feature fe ∈ Fq,
starting from i = size(q) and upwards. The first supergraph of q obtained by the
intersection is either q, in which case we return Dq directly, or q’s closest δ-TCFG
supergraph, in which case we recursively invoke FProcFGQ, or ProcFGQbyIGI (as
in Procedure 6), to process q.

If q is not found by FProcFGQ, Line 7 of Procedure 9 returns an empty set
to Algorithm 8, which then invokes FProcNonFGQ in Procedure 10 to process
q. The algorithm is very similar to ProcNonFGQ in Algorithm 7; thus, we omit
the detailed description here due to the space limit. However, FProcNonFGQ is
far more efficient than ProcNonFGQ since we are now using features rather than
simple edges. In addition, the ID-arrays of the features are also more efficient to
access than are the IDAs of the edges.

Example 5.3. Referring to the IFI in Example 5.2, let q = f11. We demonstrate
how the use of the feature-index can improve the index probing efficiency.

According to the settings of Example 5.2, T = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10,
f11, f14}. If we use the IGI, we will use the ID-entries of the edges a and b to search
for q. Thus, we will first check whether f10 is q and then whether f11 is q, since
both f10 and f11 contain the edges a and b.

However, if we use the IFI, we intersect the ID-arrays of the features f4 and f7,
which gives f11 directly. Thus, f10 is skipped since its ID is not in the ID-array of
f7, i.e., f10 is not a supergraph of f7. In reality, when the index is much bigger, a
significantly larger number of false results can be pruned using the IFI.

5.1.4 The Advantages of Using the Feature-Index. The feature-index improves
the index probing of FG-index, or reduces Tsearch , in the following two ways.

First, the size-i ID-array of a maximal feature of q is much smaller than the total
size of IDA(e, i, j), ∀j ≥ count(e, q), of an edge e. This is apparent since an edge
has far more supergraphs than a feature. Thus, the intersection using the IFI is
more efficient than using the IGI. Moreover, using the IGI requires us to first collect
the set of IDs from the “IDA(e, i, j)”s and then sort the IDs, while the ID-arrays
in the IFI are sorted already.

Second, features possess much more structural information about q and its super-
graphs than do the simple edges of q. There can be a large number of graphs that
contain the edges of q but are not the supergraphs of q. In contrast, the number of
graphs that contain the set of maximal features of q but are not the supergraphs
of q is much smaller. Therefore, using the IFI significantly reduces the number of
subgraph isomorphism tests required in the index probing process.

5.2 The FAQ-Index

The use of the feature-index significantly reduces the index probing cost; however,
the dominating factor in the cost of processing non-FG-queries is the candidate
verification cost. We propose an index built on a set of Frequently Asked non-FG-
Queries (FAQs), called the FAQ-index, to improve the performance of processing
non-FG-queries (i.e., both FAQs and non-FAQs). We remark that the FAQ-index
is not simply caching for handling exact-matching queries, but is an index that is
mainly designed for processing non-exact-matching queries.
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5.2.1 Definition of FAQ. Before we define the notion of FAQs, we first define a
sliding window model [Golab and Özsu 2003] in a stream of queries. We need the
sliding window model because the set of all queries asked in the whole history is too
large for building an index. Thus, the sliding window model allows us to control
the size of the index to be built. In addition, the model also enables us to index
the more recently asked queries, which are more likely to be asked again according
to the principle of temporal locality. We define the sliding window as follows.

Definition 5.4. (Time Unit and Sliding Window) Let S be a stream of non-FG-
queries. A time unit, ti, is an excerpt of S. A sliding window is a fixed number of
successive time units in S, where the window slides forward for every incoming time
unit. Let tτ be the current time unit. The current window is W = 〈tτ−w+1, . . . , tτ 〉,
where w is the number of time units in W .

In the real case, both non-FG-queries and FG-queries come together in the
stream. Since FG-queries can be answered without candidate verification, we only
focus on non-FG-queries. In the rest of Section 5.2, all queries refer to non-FG-
queries. We now define FAQ.

Definition 5.5. (Frequently Asked Queries) Let freq(q, t) be the frequency of a
query q within a time unit t, i.e., the number of times q is asked within t. Let
T k = 〈tτ−k+1, . . . , tτ 〉 be the k most recent time units in W = 〈tτ−w+1, . . . , tτ 〉,
where 1 ≤ k ≤ w. The average frequency of q in T k is defined as follows:

avgFreq(q, T k) =

∑τ
i=τ−k+1 freq(q, ti)

k
.

We define the maximum average frequency (maxAvgFreq) of q in W as follows:

maxAvgFreq(q, W ) = MAX {avgFreq(q, T k) : 1 ≤ k ≤ w}.

Let Q(W ) be the set of all queries in W . The set of Frequently Asked Queries
(FAQs) in W is defined as the first N

FAQ
queries in Q(W ) that have the highest

values of maxAvgFreq, where N
FAQ

(0 ≤ N
FAQ

≤ |Q(W )|) is a pre-defined threshold.

We define the average frequency for a query in the window, since the query may
have low frequency in some time units but high frequency in others. In addition, we
favor the more recent time units since the older units are expiring. We compute the
average frequency for a query over each k most recent time units, for 1 ≤ k ≤ w, and
take the maximum, which is then used to determine whether the query is an FAQ.
We discuss how we set the threshold N

FAQ
later when we construct the FAQ-index.

Definition 5.5 works well when the frequency at which queries of each size are
asked is roughly equal. However, when the queries of a certain size are asked much
less frequently than the queries of other sizes, the queries of that size may mostly
be non-FAQs and discarded. Discarding these queries, especially the largest and
smallest queries, is not desirable according to the following two lemmas.

Lemma 5.6. Given a query q and two FAQs q1 and q2, where q1 ⊂ q2 ⊂ q, then
Dq ⊆ Dq2

⊆ Dq1
.

Lemma 5.7. Given a query q and two FAQs q3 and q4, where q3 ⊃ q4 ⊃ q, then
Dq ⊇ Dq4

⊇ Dq3
.
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Lemma 5.6 implies that we can estimate Cq by either Dq1
or Dq2

. However, if
both q1 and q2 are indexed, then we take Cq = Dq2

since Dq2
is smaller and closer

to Dq.
Now, suppose that we also have q3 indexed. Then, we can obtain Cq = (Dq2

−Dq3
),

since Dq3
⊆ Dq. However, if we have a smaller supergraph of q, say q4, we can obtain

an even smaller Cq = (Dq2
−Dq4

). Therefore, keeping FAQs of every size can better
improve the query performance since a query can be of any size.

Since we determine the FAQs by ranking the maxAvgFreq values, we propose a
normalization on the maxAvgFreq of the queries, as given by Definition 5.8.

Definition 5.8. (Normalized maxAvgFreq) Let AVG-maxAvgFreq(i) be the aver-
age maxAvgFreq of all queries in W that are of size i. The normalized maxAvgFreq
of q in W is defined as follows:

maxAvgFreq∗(q, W ) = maxAvgFreq(q, W ) ∗
MAX {AVG-maxAvgFreq(i) : ∀i}

AVG-maxAvgFreq(size(q))
.

By substituting the normalized maxAvgFreq into Definition 5.5, queries of each
size now have an equal probability to be selected as FAQs or discarded. We will
further demonstrate the effect of taking this normalization by our experiments.

5.2.2 Construction and Query Processing of the FAQ-Index. The FAQ-index
consists of the following two components: the FAQ Hash Index (QHI ) and the
Inverted-FAQ-Index (IQI ).

The QHI is the same as the FHI except that the QHI is built on the set of FAQs.
The IQI is an IGI (see Definition 3.10) defined on a set of FAQs. However, we do not
include all the FAQs in the IQI, since the IQI needs to be updated incrementally for
each window slide and hence updating the IQI for all FAQs can be expensive. Note
that unlike the update on the graph database, the update on a stream of queries is
much more frequent and the amount of changes to the FAQ-index is much greater
than that to FG-index due to a database update. Therefore, we only build a single
IQI for the FAQs. We limit the number of FAQs to be the number of graphs indexed
by the largest IGI at any leaf node of the core FG-index, so that searching a query
in the IQI can be as efficient as in an IGI. When the number of FAQs exceeds this
limit, we discard the FAQs that have smaller maxAvgFreq values.

The FAQ-index is used to improve the efficiency of processing non-FG queries as
follows. First, an incoming query in the stream is hashed to match with the FAQs
in the QHI. If the query is found in the QHI, the answer set is retrieved directly
without any candidate verification. If the query is not an FAQ, we use the IQI to
find its subgraphs and supergraphs that are FAQs. Then, Lemmas 5.6 and 5.7 are
applied to obtain the candidate set. The algorithm of query processing using the
FAQ-index is shown in Algorithm 11. Since the IQI shares the same structure as the
IGI, Lines 5-6 of Algorithm 11 are processed in a similar way as we process the IGI
in Procedure 6 and Algorithm 7. We omit the details but point out the difference
as follows. Line 5 of Algorithm 11 is processed in the same way as Algorithm 7
except that we skip Lines 15-16 and Line 18 of Algorithm 7, and from Line 14 we go
to Line 17 instead of to Line 15. Line 6 of Algorithm 11 is processed as Procedure
6 except that we replace Lines 10-14 of Procedure 6 by computing the union of Df

for each supergraph f of q obtained by the intersection in Line 8 of Procedure 6.
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Algorithm 11 QProcNonFGQ

Input: The FAQ-index, and a query q.
Output: Dq.

1. Search q in the QHI;
2. if(q is in the QHI)
3. Return Dq;
4. else

5. Use the IQI to generate Cq from q’s subgraphs that are FAQs;
6. Use the IQI to obtain D′

q, which is the union of
the answer sets of q’s supergraphs that are FAQs;

7. Return Dq ← D
′

q ∪ {g : g ∈ (Cq −D
′

q), g ⊇ q};

5.2.3 Parameter Settings and Maintenance of the FAQ-Index. Before discussing
the maintenance of the FAQ-index, we first need to determine the number of time
units w in the window and the length of each time unit.

Let M be the size of the available memory. We use (wM/(w + 1)) memory for
the sliding window and the remaining M/(w + 1) memory as a buffer to keep the
incoming queries from the stream. The length of a time unit is defined as the length
of time that is needed to fill the M/(w + 1) memory with the incoming queries.
The threshold N

FAQ
in Definition 5.5 is set as the total number of FAQs that the

(wM/(w + 1)) memory is able to hold.
The following example illustrates how we set the parameters.

Example 5.9. Suppose that we have M = 110 MB of available memory and the
number of time units in the window is 10, i.e., w = 10. Then, we have 100 MB
of memory for the sliding window and 10 MB for the buffer to keep the incoming
queries. The length of a time unit is the time needed to fill the 10 MB buffer with
the incoming queries. Assume that the 100 MB of memory is able to hold 1000
FAQs. Then, N

FAQ
= 1000.

Finally, we discuss the maintenance of the FAQ-index. For each distinct incoming
query in the stream, we keep the query in the QHI, where the memory to hold the
query is assigned from the buffer of M/(w + 1) memory. When the M/(w + 1)
memory is used up, we re-compute the FAQs as defined in Definition 5.5. Those
queries that are not FAQs are deleted from the QHI until M/(w + 1) memory is
released for the buffer to hold the incoming queries. Then, the old IQI is deleted
and a new IQI is constructed from the set of FAQs in the current window.

5.3 Query Processing using FG*-Index

FG*-index consists of the following three components: FG-index, the feature-index
and the FAQ-index. We have discussed how to use each of the components to
process a query. Now, we combine the three components to process a query, as
shown in Algorithm 12.

The algorithm ProcessQuery processes q according to the size of q. First, if the
size of q is smaller than that of the smallest feature, we use FG-index to process
q. However, if q is not an FG, then we use the FAQ-index instead of FG-index to
process q, since FG-index generates a large candidate set for non-FG-queries.
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Algorithm 12 ProcessQuery

Input: FG*-index, and a query q.
Output: Dq.

1. if(size(q) < l)
2. Invoke ProcFGQ to use FG-index to process q;
3. if(q is not found by ProcFGQ)
4. Invoke QProcNonFGQ to use the FAQ-index to process q;
5. else if(l ≤ size(q) ≤ u)
6. if(q is a feature in the FHI)
7. Return Dq ;
8. else /∗ q is not an FG ∗/

9. Invoke QProcNonFGQ to use the FAQ-index to process q;
10. else if(size(q) > u)
11. if(q is an FAQ in the QHI)
12. Return Dq ;
13. else

14. Invoke FProcFGQ to use the feature-index to process q;
15. if(q is not found by FProcFGQ)
16. Invoke QProcNonFGQ to use the FAQ-index to process q,

and invoke FProcNonFGQ to use the feature-index to refine Cq;

If the size of q is within the size range of features, we first check if q is a feature
using the FHI. If q is not a feature, then it must be a non-FG-query. Thus, the
FAQ-index is used to process q.

If the size of q is greater than that of the largest feature, then we first check
whether q is an FAQ using the QHI, since large-sized queries are more likely to be
non-FG-queries. If q is not an FAQ, then we process q using the feature-index. If q
is not found by the feature-index, then q must be a non-FG-query and we use the
IQI to answer q. We also invoke FProcNonFGQ to refine Cq using the feature-index.

5.4 Query Performance Improvement of FG*-Index

In Section 4, we give the query response time of FG-index in Equation (3) for
processing FG-queries and in Equation (1) for non-FG-queries. We now give the
response time of FG*-index by comparing with that of FG-index.

For processing FG-queries using FG*-index, if q is a feature, then the response
time is given as follows:

Tresponse = (|Dq| × TI/O ) . (4)

We do not include the index probing time in Equation (4) because the time taken
to find q in the FHI by hashing q is negligible.

If q is not a feature, then the response time of FG*-index is given as follows:

Tresponse = (T∗
search + |Dq| × TI/O ) . (5)

T∗
search in Equation (5) is significantly smaller than Tsearch in Equation (3),

because using the feature-index significantly reduces the number of subgraph iso-
morphism tests in the index probing process.
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For processing non-FG-queries, if q is an FAQ, then the response time of FG*-
index is given by Equation (4), because q is answered using the QHI and the QHI
has the same structure as the FHI.

If q is not an FAQ, then the response time of FG*-index is given as follows:

Tresponse = (T∗
search + |Dq| × TI/O + |C∗

q | × Tverify) . (6)

If we have indexed the supergraphs of q in the IQI, then we can obtain a subset
D′

q ⊂ Dq. Thus, |C∗
q | = |(Cq −D′

q)|, which is usually very small. Otherwise, the C∗
q

obtained using the IQI and the IFI is also much smaller than the Cq obtained by
FG-index as given in Equation (1).

Overall, the use of the feature-index and the FAQ-index in FG*-index improves
the performance of FG-index for processing both FG-queries and non-FG-queries,
which we verify by extensive experiments in Section 7.

6. UPDATE OF FG*-INDEX

In this section, we propose an efficient algorithm for updating FG*-index when the
graph database is updated.

[Cheng et al. 2007] briefly discusses how to update FG-index incrementally for
each graph added to or deleted from the database, which can be extended to update
FG*-index. However, this update algorithm is not efficient for the following reasons.
Let g be the graph to be updated. First, this algorithm requires the enumeration of
every subgraph g′ ⊆ g, which can be costly especially when g is large, even though
some pruning can be performed. Second, the update requires the ID of g to be
inserted into or removed from Df for every subgraph f of g in the index, which
involves many disk I/Os since Df is stored on the disk. Third, processing update
on one graph at a time is inefficient and may severely slow down query processing,
especially when updates are frequent and queries are asked frequently.

We propose a different strategy for updating the index. Instead of updating the
index for each graph each time, we devise an algorithm that updates the index for
a batch of graphs each time. The update is divided into two parts: handling deleted
graphs and handling new graphs.

We first discuss the handling of deleted graphs. We do not update FG*-index for
each deleted graph but keep all currently deleted graphs in a set, Ddel . Then, for
each query q, after we obtain Dq using FG*-index, we compute (Dq −Ddel) as the
final answer set. The set subtraction is efficient since it is operated on graph IDs;
but the question is: when do we update the index for the deleted graphs? We use
a simple mechanism here: when the set subtraction time is longer than the query
processing time using FG*-index, we rebuild the index from scratch on (D−Ddel).

Next, we discuss the handling of new graphs that are added to the database.
Again, we do not update FG*-index for each new graph but keep all new graphs
in a set, Dnew . For each query q, we first obtain Dq using FG*-index. Then, we
perform candidate verification for each graph in Dnew against q. Finally, (Dq∪{g ∈
Dnew : g ⊇ q}) is returned as the answer set.

The question again is: when do we update the index for the newly added graphs?
We cannot simply rebuild FG*-index when verifying the graphs in Dnew is more
costly than query processing using FG*-index, because candidate verification is far
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more costly than set subtraction. Obviously, we do not want to rebuild the entire
FG*-index too frequently because it is costly. We devise a solution as follows.

When the time for candidate verification on Dnew is longer than the query pro-
cessing time using FG*-index, we build a new FG*-index on Dnew with the same
setting of the parameters, except that we disable the FAQ-index to avoid duplicate
processing of the same query. We call this new FG*-index the auxiliary FG*-index.
If the auxiliary FG*-index already exists, we delete it and build a new one on Dnew

and the set of graphs on which the old auxiliary FG*-index was built. We then
empty Dnew to keep new added graphs. Now, we process each query with both
FG*-index and the auxiliary FG*-index, as well as performing candidate verifica-
tion on Dnew if more new graphs are just added. The answer set for a query q is
(Dq ∪ D′

q ∪ {g ∈ Dnew : g ⊇ q}), where Dq and D′
q are the answer sets returned by

FG*-index and the auxiliary FG*-index, respectively.
We adopt the following strategies for handling newly added graphs:

(1) When the time for candidate verification on Dnew is longer than the query
processing time using FG*-index, we rebuild the auxiliary FG*-index.

(2) When the accumulated time of constructing the auxiliary FG*-indexes is longer
than the construction time of the current FG*-index, we rebuild the FG*-index.

We set the first condition based on the reason that rebuilding the auxiliary FG*-
index on the newly added graphs is much more efficient than rebuilding the FG*-
index from scratch on the entire database. This is simply because the number of
newly added graphs is far smaller than the number of graphs in the original graph
database D; otherwise, the database should have been updated as triggered by the
second condition.

The second condition is met when the overall overheads on building all the aux-
iliary FG*-indexes become greater than rebuilding the index from scratch. Note
that the total update cost should be counted into the query processing cost, since
if update can be done off-line, we can simply rebuild the index for every database
update. Therefore, we need to control the overall cost spent on the update. Note
that rebuilding FG*-index from the new database is of approximately the same cost
as building the FG*-index from the old database, because the number of updated
graphs is relatively small compared with the size of the database. Thus, the second
condition triggers the index to be rebuilt when the overall time spent on building
the auxiliary FG*-indexes becomes greater than rebuilding the index.

Note that the above two types of database update are not processed separately.
Rather, at any time we may have both deleted graphs and new graphs. Thus, the
answer set of a query q is (Dq ∪ D′

q ∪ {g ∈ Dnew : g ⊇ q} − Ddel).
The efficiency of our batch-update algorithm depends on two factors: the effi-

ciency of mining the set of FGs and that of building the index structures from
the FGs. The latter is efficient since our index does not require a set of FGs of
low support, for which the index construction cost is very efficient as verified by
our experiments. This is true even when the database becomes large, because the
number of FGs remains roughly the same for the same σ, which is evidenced from
frequent pattern mining from data streams [Manku and Motwani 2002; Yu et al.
2004; Cheng et al. 2008b; 2008c]. The former, i.e., mining FGs, is also efficient
when the database size is small to moderate, because we do not require a set of
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Table II. Characteristics of Datasets and Query Sets
Number Range Average Range Average Num. of Num. of

of of graph graph of density distinct distinct
graphs size size density edges nodes

DAIDS 10K 1−217 27.40 0.009−1.0 0.10 221 51

Dcancer 10K−100K 1−252 19.95 0.008−1.0 0.14 303 63

Dden0 .1 10K 31−68 50.49 0.06−0.15 0.10 220 20

Dden0 .2 10K 31−68 50.49 0.17−0.26 0.20 220 20

Dden0 .3 10K 31−68 50.49 0.27−0.38 0.32 220 20

Dden0 .4 10K 31−68 50.49 0.37−0.50 0.43 220 20

Dden0 .5 10K 31−68 50.49 0.48−0.62 0.54 220 20

QAIDS-1 100K 1−24 14.16 0.08−1.0 0.15 221 51

QAIDS-2 100K 1−24 14.77 0.08−1.0 0.14 221 51

QFG 100K 1−21 13.47 0.09−1.0 0.15 303 63

Qnon-FG 100K 2−23 15.67 0.08−1.0 0.13 303 63

Qmixed 100K 1−23 15.12 0.08−1.0 0.14 303 63

Qden0 .x 100K 1−8 3.80 0.29−1.0 0.59 220 20

FGs of low support. However, when the database becomes very large, then the
cost of mining FGs from scratch can be costly. In this case, we need incrementally
update the set of FGs.

The problem of incrementally updating the set of FGs is very similar to the
problem of incrementally maintaining the set of FGs in a data stream (we can
use a sliding window with variable size when there is deletion). We can apply
the concepts for incrementally maintaining frequent itemsets in a data stream to
design an efficient algorithm for updating the FGs, which is our on-going work. At
the current stage, however, when we do not have an algorithm for incrementally
maintaining the set of FGs, our index is more suitable for static environments, or
for the dynamic environments in which the database size is small to moderate.

7. PERFORMANCE EVALUATION

We evaluate the query performance using FG*-index by comparing with FG-index
[Cheng et al. 2007], as well as two other state-of-the-art graph indexes, gIndex [Yan
et al. 2005a] and C-tree [He and Singh 2006]. We run all experiments on an AMD
Opteron 248 with 2GB RAM, running Linux 64-bit.

7.1 Datasets and Query Sets

We use the following datasets and query sets as shown in Table II, where datasets
are represented as Dx and query sets as Qy.

Among the datasets, DAIDS and Dcancer are real datasets. DAIDS is the AIDS
antiviral screen dataset, which is provided by [Yan et al. 2005a]. Since DAIDS has
only 10K graphs, we use six Dcancer datasets of size from 10K to 100K to perform a
scalability test. We obtain the Dcancer datasets from the National Cancer Institute
database2, where more detailed characteristics of the data can be found.

We notice that the density of most graphs in the real datasets is relatively low;

2http://cactus.nci.nih.gov/ncidb2/download.html.
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Fig. 8. The Effects of σ and δ on the Index Construction

thus, we use the synthetic graph data generator3 [Cheng et al. 2007] to generate
five datasets Dden0 .x , by varying the average graph density from 0.1 to 0.5.

The queries in QAIDS-1 and QAIDS-2 are randomly selected from 400K subgraphs
of the graphs in the dataset DAIDS . The queries in QFG , Qnon-FG and Qmixed are
randomly selected from 430K subgraphs of the graphs in Dcancer . Qden0 .x represents
five sets of query sets, in which the queries are randomly selected from up to 4.8M
subgraphs of the graphs in the corresponding Dden0 .x . The query sets are also
further classified into FG-, non-FG-, and mixed-type- queries; we give this detail
until we use the respective query sets.

7.2 Sensitivity Analysis on the Parameters of FG*-Index

We first test the effects of the parameters, σ and δ, as well as the feature-index and
the FAQ-index, on the performance of FG*-index. We also provide guidelines on
how to set the parameters in FG*-index. We use the dataset DAIDS .

7.2.1 The Effects of σ and δ. We test σ from 0.1 to 0.01 and δ from 0 to 1. We
use gSpan [Yan and Han 2002] to mine the set of FGs for each σ. We construct
FG*-index, where the feature set used to construct the feature-index is F7

2 . We
disable the FAQ-index in FG*-index so that the effect of σ can be clearly revealed.
We will test the effect of σ using the FAQ-index in Section 7.3.1. We also note that
δ is automatically adjusted in the FAQ-index.

Figure 8 shows the index construction time and the number of δ-TCFGs. The
construction time includes the time taken by gSpan to mine the FGs; but we also
report the FG-mining time in Figure 8(a), which dominates the total index con-
struction time in most cases. We omit δ between 0.3 and 1 because the number
of 0.3-TCFGs is very close to that of 1-TCFGs, as shown in Figure 8(b). Figure
8(b) also shows that the number of δ-TCFGs at a value of δ as small as 0.1 is al-
ready significantly smaller than the number of FGs, which is the top line in Figure
8(b). Figure 8(a) shows that it is very efficient to construct the index except for
σ smaller than 0.03, after which the indexing time increases almost exponentially.
The increase in the indexing time is mainly due to the rapid increase in the number
of FGs when σ becomes smaller than 0.03, as shown in Figure 8(b).

Figure 8(c) reports the size of the FG*-indexes on the disk, for each σ and each
δ. The raw dataset DAIDS requires 4.8 MB of space on the disk. The indexes

3http://www.cse.ust.hk/graphgen/.
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Table III. Peak Memory Consumption (MB) of the Index Construction

σ 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

0 ≤ δ ≤ 1 8 8 8 9 9 10 11 16 29 108

at σ ≥ 0.03 are about 2-3 times larger than the raw dataset, but the indexes at
σ < 0.03 are much larger. We emphasize that the index size depends mainly on the
number of FGs as shown in Figure 8(b), rather than on the size of the raw dataset.
For different values of δ, the index size is the largest when δ = 0, because most of
the FGs indexed are 0-TCFGs and hence the duplicate graphs in the answer sets
of most FGs are not removed since they are δ-TCFGs (see details in Section 3.3.3).

Finally, Table III lists the peak memory consumption of constructing the indexes
for each σ. The increase in the memory consumption is due to the increase in the
number of FGs when σ becomes smaller. However, for the different values of δ,
the memory consumption remains unchanged, because all FGs are loaded into the
main memory for constructing FG*-index.

For query processing, we aim to test the performance of processing both FG-
queries and non-FG-queries. We use QAIDS-1 because the answer set of the queries
in QAIDS-1 has a size ranging from 50 to 8222; thus, a query in QAIDS-1 can be
either an FG-query or a non-FG-query with respect to σ (0.01 ≤ σ ≤ 0.1).

Figure 9(a) reports the average response time of processing a query for QAIDS-1 .
In contrast to the index construction, the result shows that a smaller σ gives a
shorter response time in query processing. The decrease in the response time can
be explained by the decrease in the size of the candidate set reported in Figure 9(d).
Although Figure 9(c) reveals an increase in the number of subgraph isomorphism
tests performed in the index probing process, the combined cost of index probing
and candidate verification still decreases when σ is smaller.

Figure 9(a) shows that the variation in δ does not have much effect on the query
response time. However, Figure 9(b) shows that the memory consumption is sig-
nificantly increased when δ = 0 and σ is small. The increase in the memory con-
sumption can be explained by Figure 8(b), which shows that the set of 0-TCFGs
is much larger than that of the other δ-TCFGs. As a result, the root IGI that is
built on the set of 0-TCFGs is also larger.

Overall, the query performance of FG*-index is only slightly degraded when σ
becomes larger and still very impressive even for the largest σ. Considering the
index construction cost, a moderate σ seems to be the best choice. For example,
when σ = 0.05, the index construction cost is only slightly higher than that of
σ = 0.1, while the query response time is only slightly longer than that of σ = 0.01
but the memory consumption is much lower. Therefore, we can build FG*-index
at a moderate σ in most cases and at a small σ only when query response time is
critical. On the other hand, the value of δ does not have a significant effect on index
construction and query processing, except that the memory consumption increases
considerably when δ = 0. We further discuss how to find the optimal values of the
two parameters in Section 7.2.4.

7.2.2 The Effect of the Feature-Index. We now show how the use of the feature-
index improves the index probing efficiency, by comparing with FG-index. We
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Fig. 9. The Effects of σ and δ on Query Performance

Table IV. The Effect of the Feature-Index on the Index Construction
FG-index FG*-index FG-index FG*-index

(0.1) (0.1) (0.01) (0.01)

Indexing time (sec) 10.20 10.21 − 10.27 1108 1111 − 1430

Memory consumption (MB) 9 10 − 11 103 104 − 110

Index size on disk (MB) 2 5 − 7 40 44 − 64

disable the FAQ-index in FG*-index, so that the improvement comes only from the
feature-index. We set δ = 0.1 and report the two extreme values of σ tested in
Section 7.2.1, i.e., σ = 0.1 and σ = 0.01. For each σ, we construct five feature-
indexes from the feature sets F4

2 , F5
2 , F6

2 , F7
2 , and F8

2 , which are represented in
Figure 10 as [2, 4], [2, 5], [2, 6], [2, 7], and [2, 8], respectively.

Table IV reports the index construction time (including FG-mining time, which
is 10.19 and 628.1 sec for σ = 0.1 and 0.01), the peak memory consumption, and
the size of the indexes on the disk. To save space, we report the results of FG*-
index as a range, since the range is small and the increase is linear when u increases
from 4 to 8, where u is the upper bound of the size of a feature. The results show
that constructing FG*-index is almost as efficient as constructing FG-index. The
indexing time of FG*-index is almost not changed for σ = 0.1, because we have
only 455 FGs and hence the size of the feature sets is also small. The memory
consumption is increased only slightly. However, there is a greater increase in both
the indexing time and memory consumption for σ = 0.01, because about 60K FGs
are used to build FG*-index. The size of the index on the disk increases by at most
20 MB due to the feature-index.

For evaluation of the query performance, we use QAIDS-1 for the same reason as
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Fig. 10. Query Performance of the Feature-Index

we give in Section 7.2.1. We record the following four metrics: the average number
of subgraph isomorphism tests performed in the index probing process per query,
the average size of the candidate set per query, the average response time per query,
and the peak memory consumption. The results are reported in Figures 10(a-d).

Figure 10(a) shows that, for σ = 0.01, the number of subgraph isomorphism
tests performed in the index probing process using FG-index is very large, while
that using FG*-index is significantly reduced due to the use of the feature-index.

For σ = 0.1, the number of subgraph isomorphism tests using FG-index is the
smallest since only 455 FGs are indexed. However, Figure 10(b) reveals that, for
σ = 0.1, the size of the candidate set using FG-index is very large, because σ is large
and hence most queries are non-FG-queries. Thus, index probing using FG-index
at σ = 0.1 is fast but the candidate verification is very costly.

From Figure 10(b), we see that using the feature-index also reduces the candidate
set size. However, for σ = 0.01, the candidate set size of FG*-index is smaller than
that of FG-index only when F7

2 and F8
2 are used to build the feature-index. This

is because, in our implementation, we simply use the feature subgraphs of a query,
rather than the maximal FG subgraphs, to obtain the candidate set; while we
mainly rely on the FAQ-index to obtain a small candidate set.

Figure 10(c) verifies that using the feature-index indeed speeds up the query
processing significantly. We also find that using FG-index at σ = 0.01 is slower
than that at σ = 0.1, which can be explained by the high index probing cost when
σ = 0.01. However, when the feature-index is used, we can use a smaller σ to build
FG*-index to reduce the index probing cost and at the same time obtain a small
candidate set. The figure also shows that the feature-indexes built on F6

2 and F7
2

achieve the best response time. Thus, it shows that when too few features are used,
the index probing performance is not improved; but when too many features are
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Table V. The Effect of Normalization of maxAvgFreq
Index Candidate Total Total Memory

probing cost set size response time update time consumption

Normalized 155 181 1379 sec 9 sec 36 MB

Non-normalized 156 198 1606 sec 22 sec 44 MB

used, finding the features themselves becomes too costly.
Figure 10(d) shows that FG*-index consumes about 15 to 25 MB more memory

than FG-index, as u increases from 4 to 8. The increase in the memory consumption
is due to the use of the feature-index. However, we emphasize that the increase in
memory consumption is not relative, but solely depends on the number of features,
which should not be too large as too many features will have a counter effect on
the index probing performance as verified by both Figures 10 (a) and (c).

7.2.3 The Effect of the FAQ-Index. We now test how the use of the FAQ-index
improves the performance of processing non-FG-queries. We set σ = 0.01 and
δ = 0.1 for both FG*-index and FG-index, and the feature-index of FG*-index is
constructed on F7

2 .
Since the FAQ-index is constructed on the set of non-FG-queries, we use the

query set QAIDS-2 , which consists of only queries with an answer set size at most
99 < (σ × 10K) = 100. The query set QAIDS-2 is modeled as a stream prepared
as follows. The stream is made up of 100 blocks and each block consists of 1K
queries. Each block has some queries that are repeated from the previous block.
The number of repetitions follows a Poisson distribution with 100 as the mean.

We test the effects of the normalization of maxAvgFreq defined in Definition 5.8,
the total available memory for the FAQ-index, and the length of a time unit in a
sliding window in terms of memory size (or simply the unit length). If we set the
unit length to be 1 MB, the length of the time unit is the time needed to fill 1 MB
of memory with incoming queries.

We first examine the effect of the normalization. The total available memory for
the FAQ-index is set to 8 MB and the unit length to 1 MB. We record the following
five metrics of query performance: the average number of subgraph isomorphism
tests performed in the index probing process per query, the average size of the
candidate set per query, the total elapsed time for processing all 100K queries
(including dynamically updating the FAQ-index), the total time for dynamically
updating the FAQ-index, and the peak memory consumption.

Table V shows that the normalization indeed improves the query performance.
In particular, the candidate set size is reduced, which verifies Lemmas 5.6 and 5.7
and, as a result, the query response time is also reduced by about 16.5%.

We now test the available memory for the FAQ-index from 8 MB to 512 MB.
At the same time, we test four unit lengths, 1 MB, 2 MB, 4 MB and 8 MB, which
are represented as “FG*-index (i MB)” in this experiment, where i = 1, 2, 4 and 8.
Equivalently, we also test the effect of the number of units in a sliding window (i.e.,
w), since the number of units is equal to (“available memory”/“unit length”). We
report the results in Figures 11(a-d). Since the memory consumption is consistently
35-40 MB greater than the available memory for the FAQ-index, we omit the details.
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Fig. 11. Performance of the FAQ-Index

Figures 11 (a) and (b) show that both the index probing cost and the candidate
set size are significantly reduced when more memory is available for the FAQ-index,
except when the available memory increases from 256 MB to 512 MB. The results
explain the speed-up of query processing when the available memory increases from
8 MB to 256 MB, as shown in Figure 11(c).

We observe from Figures 11(a-c) that the results remain almost unchanged when
the available memory increases from 256 MB to 512 MB. This is because all the
queries are kept in the QHI when the available memory is slightly larger than 256
MB. Although more available memory allows us to keep more FAQs and answer
queries that are FAQs directly using the QHI, we remark that not all queries are
FAQs and the performance improvement shown in Figure 11 does not come only
from the use of the QHI. When a query is asked the first time, it is not an FAQ and
cannot be answered using the QHI. For processing such queries, the performance
improvement comes from the use of the IQI. In the query set tested, we allow 10%
of the queries to be repeated in each block of the query stream as to test the effect
of the QHI, while the rest of the queries are processed using the IQI.

Although the query response time is not improved further when the available
memory increases from 256 MB to 512 MB, the time taken to update the FAQ-
index increases. This is particularly obvious for FG*-index (1 MB), since the up-
date becomes more frequent when the unit length decreases. Thus, the result also
explains why FG*-index (1 MB) is the slowest in Figure 11(c).

Table VI gives the performance comparison of FG-index, FG*-index without the
FAQ-index, and the full FG*-index. We report the results of FG*-index (4 MB)
with 256 MB of available memory for the FAQ-index.

The results show that using the FAQ-index even further improves the index prob-
ing efficiency. The size of the candidate set is also significantly reduced. On average,
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Table VI. Performance Improvement made by the FAQ-Index

Index Candidate Response time Memory
probing cost set size per query consumption

FG-index 726 196 34.83 msec 15 MB

FG*-index (no FAQ) 148 210 15.94 msec 27 MB

FG*-index 85 94 7.69 msec 291 MB

query processing using FG*-index is five times faster than using FG-index, and two
times faster than using FG*-index without the FAQ-index. Note that the larger
memory consumption of FG*-index does not imply that FG*-index is not scal-
able, because the memory consumption is not relative but depends on the absolute
available memory assigned for the FAQ-index. In addition, it is acceptable to use
(291-27)=264 MB of memory to double the speed of query processing, because 264
MB of memory is commonly affordable today. Moreover, we will show in Section
7.3 that other indexes consume significantly more memory than FG*-index.

7.2.4 Guidelines on Setting the Parameters of FG*-Index. We have tested the
effects of the following parameters on the performance of FG*-index: (1) σ; (2)
δ; (3) u; (4) the available memory; and (5) the unit length. Based on the results
obtained, we provide the following guidelines on setting the parameters.

First, the results show that the smaller the value of σ, the shorter the query
response time (Figure 9(a)), but the longer the index construction time (Figure
8(a)). However, it is not entirely true that when the value of σ is smaller, the query
response time will always be shorter. The advantage of using a smaller σ is to
reduce the size of the candidate set as shown in Figure 9(d); however, Figure 9(c)
shows that the index probing cost increases when σ decreases. Therefore, there is a
point at which the response time will become longer, when the increase in the index
probing cost is greater than the reduction in the candidate verification cost. Thus,
the optimal value of σ can be found if query response time is critical. However, if
we take into account both the index construction cost and the query performance,
Figures 8 and 9 show that a moderate value of σ is actually a better choice. We
further demonstrate that FG*-index at a moderate σ achieves orders of magnitude
better query performance than other indexes in Section 7.3.

Second, Figures 8 and 9 show that the values of δ do not significantly affect the
index construction cost and the query response time, but the memory consump-
tion is doubled when δ decreases from 0.1 to 0. Therefore, the choice of δ is not
very critical as far as δ is not too close to 0 and a recommendation based on the
experimental results is to set δ ≥ 0.1.

Third, Figure 10(a) shows that the index probing cost first decreases and then
increases when u increases, implying that there is an optimal u in reducing the
index probing cost. However, Figure 10(b) shows that the candidate verification
cost decreases when u increases. Thus, we need to consider both the index probing
cost and the candidate verification cost in setting u. We can set u slightly larger
than 2 and increase u until the index probing cost starts to increase. Then, we
start to consider the candidate verification cost as well when we further increase u.
Since the number of FGs increases quickly when u becomes larger, usually there are
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only a few tests needed. More importantly, the results in Figure 10 show that the
FG*-indexes built on the different feature-sets are all very efficient, which means
that these values of u are all sub-optimal.

Lastly, the available memory for the FAQ-index depends on the memory available
in the system in which the queries are evaluated. However, we remark that an
amount of memory as small as 8 MB can already improve the response time from
15.94 msec to 13.78 msec (about 16%), and 256 MB of memory can reduce the
response time to only 7.69 msec (two times). The unit length affects the update
cost of the FAQ-index and hence it should not be too small. However, the optimal
length of a unit depends on the query workload. From our experimental results as
shown in Figures 11(c) and 11(d), setting the length of a unit to be at least 4 MB
only incurs a small update cost on the total response time.

In conclusion, our results show that the query performance of FG*-index is very
impressive for a wide range of parameters tested and the index construction is
also very efficient except for σ ≤ 0.02. More importantly, we show in the follow-
ing experiments that, compared with other state-of-the-art indexes, FG*-index is
significantly more robust and scalable.

7.3 Scalability Tests

We now compare FG*-index with gIndex and C-tree, as well as FG-index, through
two scalability experiments by varying the database size and the graph density.

7.3.1 Scalability Test on Database Size. We first assess the performance of the
indexes at different database sizes. We use the dataset Dcancer by varying the size
from 10K graphs to 100K graphs.

For both FG*-index and FG-index, we set δ = 0.1 and test two values of σ,
σ = 0.05 and σ = 0.01. For FG*-index, we use F7

2 to construct the feature-index,
and set the available memory for the FAQ-index to be 256MB and the unit length
to be 4MB. The settings of gIndex and C-tree are the default values suggested in
their papers.

Figure 12 reports the experimental results of constructing each of the indexes.
Figure 12(a) shows that the indexing time of FG*-index and FG-index at σ = 0.01
is much longer (due to the large number of FGs) than that of the others. However,
constructing both FG*-index and FG-index at σ = 0.05 is very quick. Constructing
C-tree is the quickest but the construction uses much more memory as shown in
Figure 12(b), while gIndex cannot be built for databases that have more than 10K
graphs. Thus, taking both the indexing time and the memory consumption into
account, FG*-index and FG-index at σ = 0.05 are the most efficient to construct
and the figures also show that their construction costs increase only slightly as the
database size increases.

Figure 12(c) shows that the size of the indexes on the disk increases linearly when
the database size increases. The result also shows that FG*-index and FG-index
are the largest when σ = 0.01 but the smallest when σ = 0.05. The result thus
shows that, with the increase in the database size, the index size of FG*-index and
FG-index also depends mainly on the value of σ, or more precisely, on the number
of FGs. When the database size increases, the index size increases linearly because
the answer set size of the FGs increases.
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Fig. 12. The Effect of Database Size on Index Construction
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Fig. 13. Performance of Processing FG-Queries
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Fig. 14. Performance of Processing non-FG-Queries

To test the query performance, we prepare three sets of queries, QFG , Qnon-FG

and Qmixed , as shown in Table II. With respect to σ = 0.01, QFG consists of
only FG-queries, Qnon-FG consists of only non-FG-queries, and Qmixed consists
of a mixture of FG-queries and non-FG-queries. The purpose for using the three
types of queries is to test whether FG*-index is efficient for all types of queries. In
Figures 13 to 15, we report the following three metrics: the average response time
per query, the peak memory consumption, and the average size of the candidate
set of a query.

The results are very clear: FG*-index at both σ = 0.05 and σ = 0.01 achieves
remarkable performance improvement as compared with the other indexes. The fig-
ures show that FG*-index is more scalable than gIndex and C-tree. Compared with
gIndex, FG*-index is over two orders of magnitude faster and also consumes signif-
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Fig. 15. Performance of Processing Both FG and Non-FG Queries

icantly less memory, for all types of queries. Compared with C-tree, FG*-index is
two orders of magnitude faster for processing FG-queries and mixed-type queries
and, on average, 60 times faster for processing non-FG-queries. Furthermore, the
difference becomes greater when the database size increases. The memory con-
sumption of C-tree increases quickly and the memory is used up when the database
size is greater than 40K. Compared with FG-index (with respect to the same σ),
FG*-index is also significantly faster, although the improvement is not as obvious
as compared with gIndex and C-tree. On average, FG*-index is from two times to
an order of magnitude faster than FG-index.

The performance improvement of FG*-index can be explained by the size of the
candidate sets obtained by FG*-index and the other indexes, as shown in Figures
13(c), 14(c) and 15(c), in which we also give the average size of the answer set of a
query as a reference.

From the results of this experiment, we conclude that FG*-index is significantly
more efficient than the other indexes for processing both FG-queries and non-FG-
queries, i.e., all types of queries.

Figures 13(b) and 15(b) show that the memory consumption of FG*-index at
σ = 0.05 is slightly higher than that of the other FG*-index and FG-index. This
is because QFG consists of only FG-queries with respect to σ = 0.01, but those
FG-queries that have frequency greater than 0.01|D| but smaller than 0.05|D| are
non-FG-queries with respect to σ = 0.05. Thus, there are both FG-queries and non-
FG-queries in QFG with respect to σ = 0.05. For the same reason, there are more
non-FG-queries in Qmixed with respect to σ = 0.05 than with respect to σ = 0.01.
As a result, more memory is used for the FAQ-index in FG*-index at σ = 0.05 for
processing QFG and Qmixed .

Figures 13 to 15 show that the query performance of FG*-index at σ = 0.05 is
also very impressive and close to that of FG*-index at σ = 0.01. In addition, Figure
12 shows that FG*-index at σ = 0.05 is the most efficient to construct. Therefore,
this set of experiments verifies that the following strategy is not affected by the
change in the database size: we can use FG*-index at a larger σ if it is too costly
to construct FG*-index at a smaller σ.

7.3.2 Scalability Test on Graph Density. As shown in Table II, the average
density of the graphs in both DAIDS and Dcancer is relatively low. Thus, we use
the five datasets, Dden0 .x , by varying the average graph density from 0.1 to 0.5.

We set δ = 0.1 for both FG*-index and FG-index. And we set σ = 0.05 in this

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.



Efficient Query Processing on Graph Databases · 39

0.1 0.2 0.3 0.4 0.5
10

0

10
1

10
2

10
3

10
4

Graph Density

In
de

xi
ng

 T
im

e 
(s

ec
)

gIndex
C−tree
FG−index
FG*−index
FG−mining

(a) Index Construction Time

0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

Graph Density

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B
) gIndex

C−tree
FG−index
FG*−index

(b) Peak Memory Consumption

Fig. 16. The Effect of Graph Density on Index Construction

experiment so that the query processing efficiency does not come from a high index
construction cost. For FG*-index, we use F3

2 to construct the feature-index since
the FGs are smaller graphs, and set the available memory for the FAQ-index to
256 MB and the unit length to 4 MB. The settings of gIndex and C-tree are the
default values suggested in their papers.

Figure 16(a) shows that the index construction time of FG*-index is comparable
to those of FG-index and C-tree, but significantly shorter than that of gIndex.
Figure 16(b) shows that constructing FG*-index consumes significantly less memory
than constructing both gIndex and C-tree. The construction costs of FG*-index,
FG-index and C-tree remain stable over different graph densities. The increase in
the cost of constructing gIndex is due to the rapid increase in the number of graphs
to be indexed, because a graph with a higher density has more subgraphs.

Figure 16(a) shows that it takes slightly longer time to build FG*-index and FG-
index at the density of 0.5. This is because considerably more FGs are generated
at the density of 0.5. However, the peak memory consumption is not increased
because building the index consumes less memory than mining the FGs; thus, the
peak memory consumption is taken from mining the FGs, which is relative to the
database size and hence remains stable over different densities.

The size of the indexes on the disk is at most 6 MB larger than that of the
respective database size on the disk, except that of gIndex which grows from 14 to
74 MB when the density increases from 0.1 to 0.4. This result also confirms the
results reported in Figures 16 (a) and (b). We omit the details due to space limits.

To test the query performance, we prepare a set of queries for each of the five
datasets, shown as Qden0 .x in Table II. We randomly select the queries and do
not classify them as FG-queries or non-FG-queries, since gIndex and C-tree do not
distinguish between the two types of queries and we have tested the performance
of FG*-index on different types of queries in Section 7.3.1.

Figures 17(a) and 17(b) show that FG*-index can process a query orders of
magnitude faster than both gIndex and C-tree, and FG*-index also consumes sig-
nificantly less memory. This result can be explained by the size of the candidate
set as shown in Figure 17(c). Note that the candidate set obtained by FG*-index
is even significantly smaller than the answer set because candidate verification is
only needed for non-FG-queries that are not frequently asked.

The figures show that the query performance of the indexes is not degraded when
the density increases. We explain this result as follows. The two main factors that
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Fig. 17. Query Performance on Different Graph Densities

determine the query performance are the index probing cost and the candidate set
size. The index probing cost mainly depends on the number of graphs that are
indexed, which does not change significantly for different densities. The candidate
set size is determined by the answer set of the subgraphs (and also that of the
supergraphs for the FAQ-index in FG*-index) of the query. Since a graph with a
high density has more subgraphs, more subgraphs of the query can be found to give
a small candidate set. This explains why the query performance of the indexes is
actually improved slightly when the density increases.

The performance of FG*-index is the best when the density is 0.1 and 0.2. This
is different from the other indexes because the query sets of these two densities
contain many small-size FG-queries, which can be directly answered by the FHI
in the feature-index. This result highlights another advantage of FG*-index: it is
efficient in processing small-size FG-queries.

7.4 The Effect of Database Updates on FG*-index

Finally, we assess the performance of our update algorithm using the dataset Dcancer

that consists of 20K graphs. We divide the 20K graphs into two databases, namely
the current database and the source database, where each database initially contains
10K graphs. We first build FG*-index on the current database, with σ = 0.05
and other settings being the same as in Section 7.3.1. This FG*-index is called
the current FG*-index. Then, at each step, we randomly select 10 graphs from
the current database and the source database. The graphs are deleted from the
database from which they are selected; however, if the graphs are from the source
database, then they are also added to the current database. In this way, we model
both the insertion and deletion for the current database.

We randomly select 10K queries from Qmixed . After each update of the current
database, we process the 10K queries using the current FG*-index and the auxiliary
structures, which include the auxiliary FG*-index, Ddel and Dnew . This process
continues until we need to rebuild FG*-index from scratch.

At the point when we rebuild a new FG*-index from the new database, about
3.3K new graphs are added and 3K graphs are deleted. We report the experimental
results as follows. During the entire update process, 11 auxiliary FG*-indexes are
built. The time taken to construct each of them is shown in Table VII. The total
time of building these indexes is 15.33 sec, which is longer than the time taken to
build the current FG*-index, which takes 14.52 sec, thereby satisfying Condition
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Table VII. Construction Time (sec) of the 11 Auxiliary FG*-Indexes

1 2 3 4 5 6 7 8 9 10 11

0.81 0.52 0.71 0.95 1.17 1.33 1.49 1.74 1.99 2.19 2.43

(2) in Section 6. The memory required to build these indexes is 2-4 MB.
The total index construction time for the entire update process is 29.43 sec, which

includes the 15.33 sec for building the 11 auxiliary FG*-indexes and 14.10 sec for
rebuilding the new FG*-index from the new database at the end of the update.

The average response time of processing a query using the current FG*-index
and the auxiliary structures is 18.23 msec, including the total index construction
time. However, the result does not show how much the query performance is de-
graded compared with using the FG*-index that is updated whenever the database
is updated. Since it takes too long if we build a new FG*-index for each of the
6.3K graphs that are updated, we use an approximation as follows. We build a new
FG*-index at each of the 11 points when an auxiliary FG*-index is built and use
this FG*-index to process the 10K queries. The response time per query averaged
over the 11 points is 13.75 msec, not including the time to build the FG*-indexes.
Thus, the response time of the batch-update strategy is only (18.23/13.75) = 1.33
times longer than the (approximated) optimal time. We note that the optimal time
does not include the time taken to update the index whenever a graph is inserted
or deleted, which can be expensive especially if the index is large.

Finally, we note that we do not draw comparisons with gIndex, C-tree and FG-
index, because the update is not implemented in the package provided to us by the
authors. Although we are not able to compare with the update-per-graph strategy,
we are convinced that our batch-update strategy is more efficient and practical for
the following reason. In practice, there can be in fact three operations that we
need to process at any time: a query to be processed, a graph to be deleted, and a
graph to be inserted. Our update strategy allows us to first place the graphs to be
updated into Ddel and Dnew , and continue the query processing instantly, rather
than waiting for the update to be completed. This is particularly advantageous
when the update is frequent. On the contrary, if the update is not frequent, we
can even build FG*-index at a smaller σ to optimize the query performance and
perform the update when the system is idle.

8. RELATED WORK

A number of indexes have been proposed for processing subgraph queries. Among
them, GraphGrep [Shasha et al. 2002] is a path-based approach to indexing graph
databases. However, the set of paths in a graph database is huge and hence may
affect the performance of the index. [Yan et al. 2005a] propose gIndex, which
indexes the subgraphs in a database. Since the number of all subgraphs is too
large, a set of discriminative FGs, Fd, is defined and gIndex is then constructed
on Fd. A query q is processed by first generating Cq = (

⋂
f∈Fd∧f⊆q Df ) and then

Dq is obtained by verifying Cq. Another graph-based approach is C-tree [He and
Singh 2006] defined on the notion of graph closure. Each internal node in C-tree is a
closure of its children and each leaf node is a graph in the database. Thus, a closure
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is similar to a minimum bounding rectangle in an R-tree. Searching in C-tree is
also analogous to that of an R-tree, except that the matching is between graphs.
A faster approximate subgraph isomorphism testing is performed between a query
and every internal node; however, the exact subgraph isomorphism testing is still
required for matching a query with every leaf node (i.e., candidate verification).

We are also aware of a number of recent developments in indexing graph databases.
TreePi [Zhang et al. 2007] is an index constructed on a set of discriminative features
selected from a set of frequent subtrees. A query is first partitioned into a set of
features and then matched with the set of indexing features to obtain a candidate
set. TreePi also utilizes the location information of the features in the database
graphs to further refine the candidate set as well as to facilitate the subgraph iso-
morphism testing in the verification step. GString [Jiang et al. 2007] considers the
semantics of the graph structures in the database. A set of basic structures in the
specific domain is selected. Both the graphs and the query are transformed into
strings in terms of the basic structures. Then, an index is built on the strings of
the graphs and query processing is performed as string matching. The use of the
basic structures, instead of using individual nodes and edges, not only improves the
searching efficiency, but also reduces the candidate set size. For both TreePi and
GString, candidate verification is required for processing all queries.

GDIndex [Williams et al. 2007] is an index constructed based on graph decom-
position. No candidate verification is needed using GDIndex. However, the index
is designed for databases that consist of relatively smaller graphs and do not have
a large number of distinct graphs.

[Zhao et al. 2007] use frequent trees as features to build an index. Trees, instead
of graphs, are used as features because they achieve a good tradeoff between feature
size, feature selection cost and pruning power. The features are used for filtering
and to produce a candidate set. Thus, candidate verification is required.

In addition to the above indexes, Daylight [James et al. 2003] and AnMol [Srini-
vasa and Kumar 2003] are indexes for processing molecular structures. DataGuides
[Goldman and Widom 1997], T-index [Milo and Suciu 1999], F&B-index [Kaushik
et al. 2002], D(k)-index [Chen et al. 2003], SIT [Cheng and Ng 2004] and SIT-
Lattice [Ng and Cheng 2007], and FIX [Zhang et al. 2006] are indexes for query
processing on semi-structured data and XML. Most of these indexes are based on
path or subtree structures.

The concept of δ-tolerance is also used in [Cheng et al. 2006; 2008a] to define
concise representations for the sets of frequent patterns and association rules. The
goal of their work is for redundancy removal, while we apply it for graph indexing.

9. CONCLUSIONS

We propose an efficient index, FG*-index, for processing subgraph queries on graph
databases. FG*-index consists of the following three components: FG-index, the
feature-index, and the FAQ-index.

First, FG-index adopts the concept of FGs to classify a large set of queries as
FG-queries, which are answered without candidate verification. As shown by our
experiments, FG-queries are the most expensive queries to process using other
existing indexes due to the large size of the candidate sets.
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Second, the feature-index is employed to reduce the high index probing cost, so
that more FGs can be indexed to allow more queries to be answered without can-
didate verification. In addition, queries that are features can be answered instantly
using the feature-index.

Lastly, the FAQ-index is used to answer frequently asked non-FG-queries without
candidate verification and with negligible index probing cost. If the query is not
frequently asked and not an FG, using the FAQ-index allows us to obtain part of
the answer set and verify only a small number of candidates.

We evaluate the performance of FG*-index with extensive experiments. The
results show that using FG*-index is up to orders of magnitude faster than using
the state-of-the-art indexes, including gIndex [Yan et al. 2005a], C-tree [He and
Singh 2006] and FG-index [Cheng et al. 2007], for processing both FG-queries and
non-FG-queries. FG*-index is also much more scalable than the other indexes.

Finally, we propose a batch-update strategy that enables FG*-index to keep its
query processing efficiency while at the same time handling frequent updates. The
experimental results show that our update strategy achieves query performance
(including the update cost) that is only slightly worse than the optimal query
performance (not including the update cost).
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Güting, R. H. 1994. Graphdb: Modeling and querying graphs in databases. In VLDB. 297–308.

He, H. and Singh, A. K. 2006. Closure-tree: An index structure for graph queries. In ICDE. 38.

Holder, L. B., Cook, D. J., and Djoko, S. 1994. Substucture discovery in the subdue system.
In KDD Workshop. 169–180.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.



44 · James Cheng et al.

Huan, J., Wang, W., Bandyopadhyay, D., Snoeyink, J., Prins, J., and Tropsha, A. 2004.

Mining protein family specific residue packing patterns from protein structure graphs. In
RECOMB. 308–315.

Huan, J., Wang, W., Prins, J., and Yang, J. 2004. Spin: mining maximal frequent subgraphs
from graph databases. In KDD. 581–586.

Inokuchi, A., Washio, T., and Motoda, H. 2000. An apriori-based algorithm for mining frequent
substructures from graph data. In PKDD. 13–23.

James, C. A., Weininger, D., and Delany, J. 2003. Daylight theory manual daylight version
4.82. Daylight Chemical Information Systems, Inc..

Jiang, H., Wang, H., Yu, P. S., and Zhou, S. 2007. Gstring: A novel approach for efficient
search in graph databases. In ICDE. 566–575.

Kaushik, R., Bohannon, P., Naughton, J. F., and Korth, H. F. 2002. Covering indexes for
branching path queries. In SIGMOD Conference. 133–144.

Ke, Y., Cheng, J., and Ng, W. 2007. Correlation search in graph databases. In KDD. 390–399.

Ke, Y., Cheng, J., and Ng, W. 2008. Efficient correlation search from graph databases. To
appear in IEEE Transactions on Knowledge and Data Engineering (TKDE).

Koren, Y., North, S. C., and Volinsky, C. 2006. Measuring and extracting proximity in
networks. In KDD. 245–255.

Manku, G. S. and Motwani, R. 2002. Approximate frequency counts over data streams. In
VLDB. 346–357.

Milo, T. and Suciu, D. 1999. Index structures for path expressions. In ICDT. 277–295.

Ng, W. and Cheng, J. 2007. An efficient index lattice for xml query evaluation. In DASFAA.
753–767.

Shasha, D., Wang, J. T.-L., and Giugno, R. 2002. Algorithmics and applications of tree and
graph searching. In PODS. 39–52.

Srinivasa, S. and Kumar, S. 2003. A platform based on the multi-dimensional data model for
analysis of bio-molecular structures. In VLDB. 975–986.

Tong, H. and Faloutsos, C. 2006. Center-piece subgraphs: problem definition and fast solutions.
In KDD. 404–413.

Tong, H., Faloutsos, C., Gallagher, B., and Eliassi-Rad, T. 2007. Fast best-effort pattern
matching in large attributed graphs. In KDD. 737–746.

Williams, D. W., Huan, J., and Wang, W. 2007. Graph database indexing using structured
graph decomposition. In ICDE. 976–985.

Yan, X. and Han, J. 2002. gspan: Graph-based substructure pattern mining. In ICDM. 721–724.

Yan, X. and Han, J. 2003. Closegraph: mining closed frequent graph patterns. In KDD. 286–295.

Yan, X., Yu, P. S., and Han, J. 2005a. Graph indexing based on discriminative frequent structure
analysis. ACM Trans. Database Syst. 30, 4, 960–993.

Yan, X., Yu, P. S., and Han, J. 2005b. Substructure similarity search in graph databases. In
SIGMOD Conference. 766–777.

Yu, J. X., Chong, Z., Lu, H., and Zhou, A. 2004. False positive or false negative: Mining
frequent itemsets from high speed transactional data streams. In VLDB. 204–215.
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