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Abstract—In this paper, a new hybrid classification method using
both range profile (RP) and time-frequency image is proposed.
The time-frequency image is obtained using the short-time Fourier
transform before calculating the RP and this image is used
for classification. 2-Dimensional Principal Components Analysis
(2DPCA) is used to further compress the time-frequency image and to
derive useful features from the image. The proposed method achieves
a higher correct classification ratio than existing methods, especially
when the signal-to-noise ratio is low.
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1. INTRODUCTION

Radar target recognition is an important military challenge. Among
the information from a typical radar signal, the range profile (RP)
can be used to classify objects [1–7]. The RP shows the radar cross
section (RCS) distribution of a target along the radial distance, which
can provide information on the position and scattering strength of
the targets scattering centers at that aspect (Fig. 1) [8–10]. A 1-
dimensional classifier using the RP is suitable for real-time target
recognition because it is relatively fast and is not influenced by the
targets motion [11]. Compared to other classifiers based on scattering
centers [12] or inverse synthetic aperture radar images [13–16], RP has
the advantage of the computing time, memory space, and simplicity.
However, because the RP is obtained by taking the absolute value
of the range-compressed radar signal, the phase information which
contains useful information is excluded [11]. In addition, when the
signal-to-noise ratio (SNR) is low, classification accuracy is degraded
considerably [11] due to the contamination of the RP by the noise.

The phase of the range-compressed radar signal contains useful
information about the target. Thus, the time-frequency image (TFI)
constructed using the phase information of the range-compressed
signal can provide effective features of each target and can improve
the correct classification ratio Pc if used in combination with the
RP [17]. Therefore, we propose a target recognition method that uses
a combination of the RP and TFI. The RP is normalized to achieve
level invariance and shifted using correlation to achieve translational
invariance. Then, training data yielding high correlation values with a
test RP are selected in descending order of correlation. The simple
short-time Fourier transform (STFT) is used to construct TFIs of
the selected RPs, which are then used identify the unknown target.
2DPCA [18] is used to compress the TFI and extract the features and
a simple nearest-neighbor classifier classifies the compressed image.
In experiments using data obtained by measuring six scale models in
a compact range, the combination of the TFI and the RP improves
classification accuracy considerably when the SNR is low.

2. METHODS

2.1. Time Frequency (TF) Method

The TF method is used to represent the power distribution of frequency
over time [19]. In this paper Short-Time Fourier Transform (STFT)
which is easily implemented by the simple fast Fourier transform (FT)
is used as the TF method. Input signal s(t) at time τ is transformed
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Figure 1. Sample RP. Figure 2. Sample TFI using
STFT.

by STFT [19]:

STFT(t, ω) =
∫ ∞

−∞
s(τ)γ∗(τ − t)e−jωτdτ, (1)

where γ denotes the window function (in this paper, a Hamming
window), t is the time, ω is the frequency. The discrete version of (1)
is (2):

STFT[m,n] =
L−1∑

k=0

s[k]γ[k −m]e−
2πnk

L , (2)

where s[k] is the range-compressed complex signal, m is the sampled
time, n is the sampled frequency, k is the time index, L is the window
length. The RP can be calculated by taking the absolute value of s[k]
(Fig. 1). A Sample TFI is denoted in Fig. 2.

2.2. 2DPCA and Feature Extraction

TFI is inappropriate for classification because it contains a significant
amount of redundant information. Therefore, 2DPCA is applied to
reduce the redundancy and to extract useful features. Compared
to conventional PCA, 2DPCA requires less memory, is faster, and
provides more accurate classification [18].

Let A denote the m-by-n image data and X denote a projection
axis, then projected feature vector Y is

Y = AX (3)

Given M training images, the jth training image is denoted by an m-
by-n matrix Aj (j = 1, 2, . . . , M), the average image of all training
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samples is Ā, and the image covariance (scatter) matrix is defined by

Gt =
1
M

M∑

j=1

(
Aj − Ā

)T (
Aj − Ā

)
(4)

Then, X is a projection axis that maximizes the generalized total
scatter criterion [18] defined by

J(X) = XTGtX (5)

The optimal projection axis Xopt is the eigenvector of Gt

corresponding to the largest eigenvalue. A set of projection
axes X1, . . . ,Xd, can be chose, which are orthonormal constraints
that maximize the criterion J(X). X1, . . . ,Xd, are orthonormal
eigenvectors of Gt corresponding to the d largest eigenvalues. and

XD = [X1 . . .Xd] (6)

XD can be used to extract the feature matrix B of the image:

B = AXD = [Y1 . . .Yd] (7)

The result of PCA is a vector but the result of 2DPCA is an m-by-d
matrix. d is specified by the user.

2.3. Classifier

A simple nearest neighbor classifier is used to classify B obtained
using 2DPCA. The distance between two arbitrary feature matrixes
Bi = [Y(i)

1 ,Y(i)
2 , . . . ,Y(i)

d ] and Bj = [Y(j)
1 ,Y(j)

2 , . . . ,Y(j)
d ] is defined by

d(Bi,Bj) =
d∑

k=1

∥∥∥Y(i)
k −Y(j)

k

∥∥∥ , (8)

where ‖Y(i)
k −Y(j)

k ‖ denotes the Euclidean distance between the two
principal component vectors Y(i)

k and Y(j)
k . Then, the class of an

unknown target image Bu compressed using 2DPCA is determined
by

î = min
i

d(Bu,Bi), (9)

where Bi is a training image that belongs to the ith target.
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3. CLASSIFICATION PROCEDURE

The proposed method (Fig. 3) consists of a training phase and a test
phase. In the training phase, RCS data of the training target are
collected in the compact range. RPs are constructed from the measured
data using the absolute value of the range compressed data obtained
by a simple inverse FT (IFT). TFIs are constructed using (1) and
(2) and compressed using 2DPCA. In the test phase, RCS data of
the real target in flight are collected and RPs are calculated by the
same procedure. Then, RPs in the training database are coarsely
sifted using the maximum correlation for all shifts of the test RP.
Note that, whenever calculating the correlation between the test RP
and the training RP, the test RP must be shifted one by one to find
the maximum correlation. Because this step consumes much time, it
is conducted in frequency domain using the convolution theorem as
follows:

maxcor = max{|IFT [FT [RP1]FT [RP2]∗]|} (10)

In this step, TFIs corresponding to RPs which yield highest r% (sifting
ratio) of maxcors among the total training RPs are selected and the
rest are discarded. If r = 0%, only RPs are used as a feature vector,

Figure 3. Procedure used in proposed method.
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and if r = 100%, only TFIs are used as a feature vector. In this step,
the locations of maxcor for all selected TFIs are stored to construct test
TFIs that are invariant to translation. In the classification, the range
compressed test data are shifted by the stored shift of each training
TFI and the test TFI is constructed for each of the chosen TFIs, the
final decision is made based on (9).

4. EXPERIMENTAL RESULTS

An experiment was conducted to measure the RCS data in a compact
range using scale models of six aircraft F4, F14, F16, F114, F22, and
Mig29. The size of scale models is 1m. The frequency varied from
8.3 to 12.3 GHz, and the bandwidth was 4 GHz. (3.75 cm resolution)
in 0.01 GHz increments, yielding 401 point stepped frequency samples.
Aspect angles range from 0 to +30◦ in 0.5◦ increments. Therefore, 61
samples were obtained for each target and the total size of the data
set was 61 × 6 = 366. In classification, the 366 samples were divided
into a training set and a test set. The training set was constructed
by uniformly sampling the aspect angle per every 1◦. Therefore,
30×6 = 180 samples were used to construct the training database and
the remaining 186 samples were used for classification. To simulate
the effect of noise, additive white Gaussian noise was added to the
measured RCS data to achieve the desired SNR. The classification was
performed 100 times for each SNR and the average Pc was used as the
classification result.

Table 1. Confusion matrix 1: SNR = 0 dB, 2DPCA dimension = 2,
r = 10% Pc = 91.94%.

F4 F14 F16 F117 F22 Mig29

F4 30 1 0 0 0 0

F14 0 28 0 0 1 2

F16 0 1 28 0 0 2

F117 0 0 0 31 0 0

F22 0 0 0 0 31 0

Mig29 3 4 1 0 0 23

In constructing TFIs using the range compressed data, the 40-
point Hamming window was used with the number of overlap equal
to 39 points for each neighboring time sample. Then, each 40-point
set of windowed data was zero-padded to 50 points and fast Fourier
transform (FFT) was conducted to construct the TFI for each time
shift.
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Table 2. Confusion matrix 2: SNR = 5 dB, 2DPCA dimension = 2,
r = 10% Pc = 98.39%.

F4 F14 F16 F117 F22 Mig29

F4 30 1 0 0 0 0

F14 0 31 0 0 0 0

F16 1 0 30 0 0 0

F117 0 0 0 31 0 0

F22 0 0 0 0 31 0

Mig29 0 1 0 0 0 30

Classifications were performed for various SNRs and for each SNR,
the effect of sifting ratio r was tested using r = 0% (RP only), 10%,
30%, 50%, and 100% (TFI only). In addition, the effect of the 2DPCA
dimension d on the classification was tested using d = 2, 3, and 5.
Sample confusion matrix denoted in Table 1, Table 2. Pc increased in
proportion to SNR (Figs. 4–6). At SNR > 10 dB, Pcs for all r values
differed by 2%. However, at SNR = 0 dB, the Pcs obtained by proposed
method with r = 10%, 30%, and 50% were much higher than those
with r = 0% (RP only) and 100% (TFI only). This demonstrates the
efficiency of the proposed method. Pcs decreased as d increased: this
decrease is due to the data redundancy.

Figure 4. Pc versus SNR. 2DPCA-dimension = 2.
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Figure 5. Pc versus SNR. 2DPCA-dimension = 3.

Figure 6. Pc versus SNR. 2DPCA-dimension = 5.

5. CONCLUSION

In this paper, a new target classification scheme based on the RP
and TFI was proposed. This scheme has both level-invariance
and translational-invariance. This hybrid method correctly classifies
targets more often than methods that use only RP or TFI, especially
when SNR is low. The optimum value of r is dependent on the
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classification scenarios. Thus, further investigation must be conducted
to determine the optimum r. In addition, 2DPCA was demonstrated
to be very suitable for extracting the features of the TFI. However,
Pcs were degraded due to the redundancy when the dimension of
the compressed feature increased. The proposed method using a
combination of two methods can be extended to include other efficient
radar signatures such as inverse synthetic aperture radar, natural
frequency, and jet engine modulation.
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