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Abstract. We propose a class of strongly efficient rare-event simulation estimators for random
walks and compound Poisson processes with a regularly varying increment/jump-size dis-
tribution in a general large deviations regime.Our estimator is based on an importance sampling
strategy that hinges on a recently established heavy-tailed sample-path large deviations result.
The newestimators are straightforward to implement and can beused to systematically evaluate
the probability of a wide range of rare events with bounded relative error. They are “universal”
in the sense that a single importance sampling scheme applies to a very general class of rare
events that arise in heavy-tailed systems. In particular, our estimators can deal with rare events
that are caused by multiple big jumps (therefore, beyond the usual principle of a single big
jump) as well as multidimensional processes such as the buffer content process of a queueing
network. We illustrate the versatility of our approach with several applications that arise in
the context of mathematical finance, actuarial science, and queueing theory.
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1. Introduction
In this paper, we develop a strongly efficient importance sampling scheme for computing rare-event probabilities
involving path functionals of heavy-tailed random walks and compound Poisson processes in a general large de-
viations regime. Heavy-tailed distributions play an important role in many man-made stochastic systems. For ex-
ample, they accurately model inputs to computer and communications networks (see, e.g., Foss et al. [20]), and they
are an essential component of the description of many financial risk processes (see, e.g., Embrechts et al. [17]).

We focus on stochastic processes with a regularly varying increment/jump-size distribution. The estimators
produced with our sampling scheme are straightforward to implement and can be used to estimate the
likelihood of a wide range of rare events with bounded relative error. In particular, such a single sampling
scheme applies to a very general class of rare events whose occurrence is caused by one or several components
in the system that exhibit extreme behavior, whereas the rest of the system is operating in “normal” cir-
cumstances (therefore, beyond the usual principle of a single big jump). In particular, our results apply to
a large class of continuous functionals of multiple random walks and compound Poisson processes.

Our estimators are based on importance sampling, a Monte Carlo technique that consists of biasing the nominal
distribution of the underlying process to induce the rare event of interest. The estimator is obtained by weighting each
sample by the corresponding likelihood ratio to obtain unbiased estimators. Our goal is to find biasing techniques
leading to estimators that have a bounded coefficient of variation uniformly, as the probability of the event of interest
tends to zero in a suitable large deviations regime. A brief review of importance sampling and the notion of strong
efficiency will be given later in this paper; for a more in-depth discussion, see Asmussen and Glynn [1].

The construction of our sampling scheme is driven by recently developed large deviations results in Rhee
et al. [27] for regularly varying Lévy processes. Specifically, let X(t), t≥ 0, be a one-dimensional compensated
compound Poisson process with unit arrival rate and a positive jump distribution W that is regularly varying
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at infinity (see Definition 1). Define X̄n � {X̄n(t)}t∈[0,1] with X̄n(t) � X(nt)/n. For a measurable set A⊆D satisfying
a specific topological property, the large deviations results derived in Rhee et al. [27] establish that P(X̄n ∈A) �
Θ((nP(W ≥ n))l

∗

), where precise details can be found in Section 2. In practice, exact estimates are often
demanded. Hence, we design a sampling scheme for rare events that take the form P(X̄n ∈A). We illustrate our
approach with several applications that arise in mathematical finance, actuarial science, and queueing theory.

To contextualize our contribution, let us provide a review of the theory and methods that are standard in
rare-event simulation settings similar to those studied in this paper.

In the context of stochastic processes with light-tailed characteristics, such as random walks with increments
possessing a finite moment generating function in a neighborhood of the origin, large deviations theory can be
used to bias the process of interest in order to induce the occurrence of the rare event in question. In fact, it is
well known that for a conventional type of proof of the asymptotic lower bound in large deviations analysis,
one can extract an exponential change of measure that can sometimes be proved to be efficient (for coun-
terexamples, see, e.g., Glasserman and Kou [21] and Glasserman and Wang [22]). By connecting the design of
efficient importance sampling estimators with a game-theoretic formulation, Dupuis et al. [16] and Dupuis and
Wang [12, 13] provide the foundations for the use of large deviations theory in the construction and analysis of
provably efficient rare-event simulation estimators. Moreover, a weakly efficient “universal” sampler has been
proposed by Dupuis and Wang [14] for a general class of hitting sets in arbitrary Jackson network topologies.
Examples of additional recent papers are Boxma et al. [10] and Torrisi [31].

The setting of stochastic processes with heavy-tailed increments brings up additional challenges compared
with its light-tailed counterpart discussed in the previous paragraph. These challenges were exposed in
Asmussen et al. [2]. First of all, typically, the asymptotic conditional distribution of any particular increment given the
rare event of interest converges to the underlying nominal distribution. Intuitively, if a rare event is caused by a large
jump that may occur in a single “unlucky” increment out of many possible alternatives, then the chance that any
specific increment is precisely the unlucky one is, naturally, small. So any particular increment is likely to
behave “normally,” and therefore, in contrast to the light-tailed setting, there is no direct way in which one
might attempt to bias a particular increment in order to stir the process toward the rare event of interest.

Moreover, as pointed out in Asmussen et al. [2], the asymptotic description of the most likely way in which
a rare event may occur, for example, as a result of the presence of a single large jump, does not lead to a valid
change of measure for importance sampling because it is possible that several large jumps (or no large jump at
all) might actually produce the event of interest under the nominal dynamics of the system. In other words,
the natural biasing mechanism induced by directly approximating the zero-variance importance sampling
distribution in the heavy-tailed setting assigns zero probability to events that are possible under the nominal
dynamics leading to an ill-defined likelihood ratio.

The use of state-dependent importance sampling provides a way to deal with these difficulties. In Blanchet
and Glynn [4], the authors explain how approximating Doob’s h-transform can lead to a feasible change of
measure that produces a strongly efficient importance sampling estimator in the setting of first-passage-time
probabilities for one-dimensional random walks. A Lyapunov technique was introduced for the analysis of
state-dependent importance sampling estimators. But the direct approximation of Doob’s h-transform might
be difficult to implement in higher dimensions because of both sampling implementation challenges and the
evaluation of normalizing constants.

In the setting of one-dimensional compound sums of independent and identically distributed (i.i.d.) reg-
ularly varying random variables, Dupuis et al. [15] produced a state-dependent change of measure whose
normalizing constant is straightforward to implement. Their idea can be described as follows: each increment
is sampled by either the original measure or—with small probability, which is a design parameter—a different
measure, which is essentially the original measure conditional on exhibiting a large jump. The advantage of
the mixture samplers is that implementation challenges and the evaluation of normalizing constants can often
be addressed by choosing a suitable set of parameters.

Under the setting where the time horizon is growing in large and moderate deviation schemes, Blanchet and
Liu [5] show how to use Lyapunov inequalities to address the parameter selection while enforcing a bounded
relative error. A key step in the methodology is the construction of a suitable Lyapunov function (for an
example of the technique in multidimensional settings, see Blanchet and Liu [6]). Blanchet and Liu [5] suggest
using the type of fluid analysis that is prevalent in the large deviations literature of heavy-tailed stochastic
processes (see, e.g., Foss and Korshunov [18, 19]). However, the construction of the Lyapunov function and the
verification of the Lyapunov inequality becomes highly nontrivial in settings involving multiple jumps and the
presence of boundaries that are common in queueing systems; for an example of the types of complications
which arise in queueing settings, see Blanchet et al. [7].
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The idea of using mixtures (for literature on simulation of heavy-tailed random walks from other per-
spectives, such as Markov chain Monte Carlo (MCMC) and cross-entropy, see, e.g., Gudmundsson and Hult
[23], Botev et al. [9], and the references therein), suggested in Dupuis et al. [15], is also used here. But whereas
Dupuis et al. [15] treats a particular one-dimensional setting involving a rare event that is caused by a single
big jump during a bounded time horizon, our setting is more general. We allow for a wide range of events,
which might be caused by multiple jumps during a growing time horizon in a large deviations scaling.

Recall that we are interested in estimating P(X̄n ∈A). The concept behind our sampling scheme can be
described as follows. On the basis of the large deviations results derived in Rhee et al. [27], we construct first
an auxiliary set Bγ that is closely related to the optimization problem given by (1). Then, given a fixed mixture
probability parameter w∈ (0, 1), we generate the sample path of X̄n under the nominal measure. And with
probability 1 − w, we generate the sample path of X̄n under the measure Qγ( · )≜P( · | X̄n ∈B

γ). Finally, as a
consequence of applying the importance sampling technique, we scale our samplers with a suitable likeli-
hood ratio given as in (5). It should be noted that the set A can be as general as in the setting of Rhee et al.
[27]. Therefore, our methodological contribution in this paper addresses precisely those types of difficulties
mentioned in the previous paragraphs, such as dealing with events that are caused by multiple jumps, working
with time scales of order 2(n), avoiding the evaluation of normalizing constants, and bypassing the verification
of Lyapunov inequalities. The advantages of our sampling scheme are that the new estimators are strongly
efficient and straightforward to implement. Moreover, they are “universal” in the sense that a single im-
portance sampling scheme applies to a very general class of rare events involving multiple jumps that arise in
heavy-tailed systems. As a final remark, it should be mentioned that constructing the auxiliary set Bγ requires
choosing a set of suitable parameters γ whose existence is guaranteed by the topological property we impose
on A. Hence, one of the main challenges is to select the set of parameters specifically for each application.

Our mathematical contributions in this paper can be summarized as follows.
• We propose a simulation algorithm for estimating the rare-event probability of X̄n ∈A, together with

a sampling scheme for X̄n ∈ · given X̄n ∈B
γ, which is based on a rejection sampling with an unconditional

acceptance probability bounded away from zero as n→∞.
• By showing the existence of the parameter γ, we prove the strong efficiency of our sampling scheme under

a very general setting (see Assumption 2).
• We showcase the versatility of the algorithm by illustrating the implementation of the proposed sampling

scheme to the rare events that arise in finance, actuarial science, and queueing theory.
• In the application to queueing networks in particular (see Section 6), we show that the tail index of the rare-

event probability—which usually exhibit a complex boundary behavior as a result of the nonlinear nature of the
associated Skorokhod mapping—can be determined by solving knapsack problem with nonlinear constraints.

The rest of the paper is organized as follows. Section 2 deals with basic background and notations required
to state our contributions. Section 3 introduces our estimators and describes the main result. Applications and
numerical implementations are discussed in Sections 4–6. All the proofs of results presented in this paper are
given in Section 7.

2. Notations and Preliminaries
This section is split into two parts. The first discusses general notions that will be employed in this paper. The
second reviews recently developed results involving large deviations for regularly varying Lévy processes and
random walks.

2.1. Notations

We start with a summary of notations that will be employed in this paper. Let Z+ denote the set of non-
negative integers, and let R+ denote the set of nonnegative real numbers. Let A° and A− denote the interior and
the closure of A, respectively. Let (D[0,1],R, d) be the metric space of real-valued right-continuous with left limits
functions on [0, 1], denoted by D � D[0,1],R, equipped with the Skorokhod J1 metric on D that is defined
by d(x, y) � infλ∈Λ‖λ − id‖∞ ∨ ‖x ◦λ − y‖∞, x, y∈D, where id denotes the identity mapping, ‖ · ‖∞ denotes the
uniform metric (i.e., ‖x‖∞ ≜ supt∈[0,1] |x(t)|), and Λ denotes the set of all strictly increasing, continuous bijections
from [0, 1] to itself. Let Dk denote the k-fold product space of D. Let Dk

↑
denote the subset of functions in Dk that

are nonnegative and nondecreasing in each coordinate. When it comes to the tail indices of a regularly varying
distribution, we use β (or βi in the multidimensional case) for the right tail and α for the left tail. Let Dl denote
the subspace of D consisting of nondecreasing step functions vanishing at time 0 with l jumps, and let D<l∗

denote the subspace of D consisting of nondecreasing step functions vanishing at 0 with at most l − 1 jumps
(i.e., D<l∗ � ∪ l≤l∗−1Dl). Define D<(l∗

1
,. . . ,l∗

d
)≜∪ (l1, . . . ,ld)∈I<(l∗

1
, . . . , l∗

d
)
∏d

i�1Dli, where I<(l∗
1
,. . . ,l∗

d
)≜{(l1, . . . , ld)∈Z

d
+\{(l

∗
1, . . . , l

∗
d)} |
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((l1, . . . , ld)≤((l∗1, . . . , l
∗
d)}, and ((l1, . . . , ld)≜ (β1−1)l1+ . . .+(βd−1)ld. Define a partial order 3 on Zd

+ such that
(l1, . . . , ld)3(m1, . . . ,md) if and only if C(l1,. . . ,ld)⊊C(m1, . . . ,md), where C(l1,. . . ,ld)≜∪d

i�1D
i−1 ×D<li ×Dd−i. Define

J ( j1,. . . ,jd)≜{(l1, . . . , ld)∈Z
d
+\I< ( j1, . . . ,jd) | (m1, . . . ,md)3(l1, . . . , ld) implies (m1, . . . ,md)∈ I< ( j1,. . . ,jd)}. To get familiar with the

notation, an illustration of I<(l1 ∗,. . . ,ld ∗), J(l1 ∗, . . . ,ld ∗), and the partial order 3 is given in Figure 1. Let Dl−; l+ denote the
subspace of the Skorokhod space consisting of step functions vanishing at the origin with exactly l− downward
jumps and l+ upward jumps, and define

D<l∗−; l
∗
+
≜ ⋃

(l−,l+)∈I< l∗− ; l∗
+

Dl− ; l+,

where I<l∗− ; l∗+ ≜ {(l−, l+) ∈Z
2
+\{(l

∗
−, l

∗
+)} | (α − 1)l− + (β − 1)l+ ≤ (α − 1)l∗− + (β − 1)l∗+}.

Given nonnegative sequences of real numbers xn and yn, we write xn � 2(yn), xn � o(yn) and xn � Θ(yn) if
lim supn→∞ xn/yn <∞, limn→∞ xn/yn � 0, and 0< lim infn→∞xn/yn ≤ lim supn→∞

xn/yn <∞, respectively. Given
two R-valued functions f and g, we write f } g if there exists c ∈R such that f � cg. For x � (x1, . . . , xk),
y � (y1, . . . , yk) ∈R

k, we write x≤ y if xi ≤ yi for all i∈ {1, . . . , k}. Let the cardinality of S be denoted by |S| or #S.
Finally, let #(S, k) and 3(S, k) denote the set of all k-combinations and k-permutations of a set S, respectively.
Note that |#(S, k)| � |S|

k( ) and |3(S, k)| � |#(S, k)| · k!.
To describe the efficiency of a rare-event simulation algorithm, we adopt a widely applied criterion, which requires

that the relative mean squared error of the associated estimator is appropriately controlled. To be more precise,
suppose that we are interested in a sequence of rare events An, which becomes more and more rare as n→∞. For
each n∈Z+, let Ln be an unbiased estimator of the rare-event probability ηn� P(An). Note that Ln is said to be
strongly efficient if EL2n � 2(η2n). In particular, strong efficiency implies that the number of simulation runs
required to estimate the target probability to a given relative accuracy is bounded with respect to (w.r.t.) n.

2.2. Preliminaries

As we will see, the simulation algorithm that we propose in this paper is constructed based on the asymptotic
behavior of rare-event probabilities; therefore we review some recently developed large deviations results for
scaled Lévy processes with heavy-tailed Lévy measures, introduced in Rhee et al. [27]. To begin with, we give
the definition of regularly varying functions/random variables.

Definition 1. A positive function f is called regularly varying (at infinity) with index β if f (x) � xβL(x), where L is
a slowly varying function (i.e., limx→∞ L(cx)/L(x) � 1 for all c> 0). Moreover, a random variable X is said to be
regularly varying at infinity and minus infinity with index β if P(X≥ x) and P(X≤ −x) are regularly varying with
index β, respectively.

Now, let X be a Lévy process with Lévy measure ν, where ν is spectrally positive and regularly varying
(at infinity) with index −β < −1. Let X̄n ≜ {X(nt)/n}t∈[0,1] denote the associated scaled process. Let νlβ denote

the restriction of l-fold product measure of νβ to {x∈Rl
+ : x1 ≥ x2 ≥ . . . ≥ xl}, where νβ(x,∞)≜ x−β. For l≥ 1, define

a (Borel) measure Cl( · )≜E[νlβ{y∈ (0,∞)l |
∑l

i�1 yi1[Ui,1]∈ · }], where Ui, i≥ 1 are i.i.d. uniformly distributed on
[0, 1]. Note that Cl is concentrated on Dl (i.e., Cl(Dl) � 1). Moreover, we make the convention that C0 is the Dirac
measure concentrated on the zero function. The following result is useful in designing an efficient algorithm for rare
events involving one-dimensional scaled processes. Throughout the rest of this paper, all measurable sets are
understood to be Borel measurable.

Figure 1. (Color online) An example of important notations introduced in Section 2.1. For (β1 − 1)/(β2 − 1) � 2 and
(l∗1, l

∗
2) � (2, 2), we mark the elements in I<(l1∗,l2∗) and J(l∗

1
,l∗
2
) with squares and circles, respectively. Moreover, the shaded area

contains all those points (l1, l2) such that (l∗1, l
∗
2)3(l1, l2).
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Result 1 (Theorem 3.1 of Rhee et al. [27]). Suppose that A is a measurable set. If A is bounded away from D<l∗—that
is, d(A,D<l∗)> 0, where l∗ ≜min{l∈Z+ |Dl ∩A≠ ∅}<∞—then we have that

Cl∗ (A°) ≤ lim inf
n→∞

P(X̄n ∈A)

(nν[n,∞))l
∗ ≤ lim sup

n→∞

P(X̄n ∈A)

(nν[n,∞))l
∗ ≤Cl∗(A

−).

As one can see in Section 6, some applications can be interpreted as sample-path rare events in a multidimensional
setting. Therefore, it is particularly interesting to consider large deviations results for multidimensional processes.
Let X(1), . . . ,X(d) be independent centered one-dimensional Lévy processes with spectrally positive Lévy mea-
sures ν1( · ), . . . , νd( · ), respectively, where each νi is regularly varying with index −βi < −1 at infinity. Moreover,
for the finite product of metric spaces, we use the maximum metric; that is, we use dS1×⋯×Sd((x1, . . . , xd),

(y1, . . . , yd))≜maxi�1,. . . ,d dSi(xi, yi) for the product S1 ×⋯× Sd of metric spaces (Si, dSi). Finally, for (l1, . . . , ld) ∈Z
d
+,

we define Cl1 ×⋯×Cld( · ) (which is concentrated on ∏d
i�1Dli) as the product measure of Cli( · )≜E[νliβi

{y∈(0,∞)li |
∑li

j�1yj1[Uj,1]∈ · }]. Result 2 states a large deviations result for d-dimensional process X̄n(t)≜(X(1)(nt)/n, ... ,

X(d)(nt)/n) for t∈[0,1].

Result 2 (Theorem 3.6 of Rhee et al. [27]). Suppose that A is measurable. If A is bounded away from D<(l∗
1
, . . . ,l∗

d
), where

(l∗1, . . . , l
∗
d) � arg min

(l1,. . . ,ld)∈Z
d
+,∏

d
i�1

Dli
∩A≠∅

((l1, . . . , ld) (1)

and ((l1, . . . , ld) � (β1 − 1)l1 + . . . + (βd − 1)ld, then we have that

Cl∗
1
×⋯×Cl∗

d
(A°) ≤ lim inf

n→∞

P(X̄n ∈A)

∏d
i�1(nνi[n,∞))l

∗
i

≤ lim sup
n→∞

P(X̄n ∈A)

∏d
i�1(nνi[n,∞))l

∗
i

≤Cl∗
1
×⋯×Cl∗

d
(A−).

Note that the assumption that A is bounded away from D<(l∗
1
,. . . ,l∗

d
) guarantees the uniqueness of (l∗1, . . . , l

∗
d).

Finally, we conclude this section with an extension of Result 2, which will be useful in constructing an efficient
simulation algorithm for heavy-tailed random walks. Let Sk, k≥ 0, be a random walk; set S̄n(t) � S⌊nt⌋/n, t≥ 0;
and define S̄n � {S̄n(t), t∈ [0, 1]}. Let ν

l
β be as defined above. Similarly, let νmα denote the restriction of m-fold

product measure of να to {x∈Rm
+ : x1 ≥ x2 ≥ . . . ≥ xm}, where να(x,∞)≜ x−α. Let C0,0( · )≜ δ0( · ) be the Dirac

measure concentrated on the zero function. For each (l−, l+) ∈Z
2
+\{(0, 0)}, define a measure (which is con-

centrated on Dl− ; l+) Cl−; l+( · )≜E[νl−α × νl+β {(x, y) ∈ (0,∞)l− × (0,∞)l+ :
∑l+

i�1 yi1[Vi,1] −
∑l−

i�1xi1[Ui ,1]∈ · }], where Ui’s
and Vi’s are i.i.d. uniform on [0, 1].

Result 3. Suppose that P(S1 ≤ −x) is regularly varying with index −α and P(S1 ≥ x) is regularly varying with index −β. Let
A be a measurable set bounded away from D<l∗− ; l

∗
+
, where

(l∗−, l
∗
+) � argmin

(l− ,l+)∈Z2
+ ,Dl− ; l+∩A≠∅

(α − 1)l− + (β − 1)l+. (2)

Then,

Cl∗−; l
∗
+
(A°) ≤ lim inf

n→∞

P(S̄n ∈A)

(nP(S1 ≤ −n))l
∗
−(nP(S1 ≥ n)))l

∗
+

≤ lim sup
n→∞

P(S̄n ∈A)

(nP(S1 ≤ −n))l∗− (nP(S1 ≥ n)))l
∗
+

≤Cl∗− ; l
∗
+
(A−).

3. Main Results
In this section, we present our main results. Although the large deviations results reviewed in Section 2 are
stated for Lévy processes, we focus on compensated compound Poisson process for simulation purposes. Let
X denote a d-dimensional compensated compound Poisson process, and recall that X̄n is the scaled process
with X̄n(t) � X(nt)/n, t∈ [0, 1]. For a measurable set A∈Dd, we are interested in estimating the probability of the
event An ≜ {X̄n ∈ A}, when n is large. Note that, in view of the law of large numbers, one can expect that
P(X̄n ∈ A)→ 0 for A’s that are bounded away from the zero function, and hence, An’s are rare events for large
n’s. In Section 3.1, we first illustrate the idea of our algorithm in the special case for d � 1, where the notations
are simpler. In Section 3.2, we extend this result to general d.
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3.1. The One-Dimensional Case

Let {X(t)}t≥0 be a one-dimensional compensated compound Poisson process with i.i.d. jump sizes {W(k)}k≥1.

That is, X(t) �
∑N(t)

k�1W(k) − λtEW(1), where {N(t)}t≥0 is a Poisson process with arrival rate λ, and let X̄n ≜

{X(nt)/n}t∈[0,1] denote the associated scaled process. Moreover, let P(W(1)> x) be regularly varying of index
−β<−1. The following assumption is essential for analyzing the asymptotic behavior of the rare-event
probability and, hence, deriving the strong efficiency of our estimator.

Assumption 1. Let A be a measurable set inD.We assume that A is bounded away fromD<l∗ ,where l
∗�min{l∈Z+ |Dl∩A≠∅}

denotes the minimal number of upward jumps of a step function in A. Moreover, assume that Cl∗(A°)>0.

Remark 1. As one can see in Sections 4–6, one of the typical settings that arises in applications is that the set A can
be written as a finite combination of unions and intersections of F−1

1 (A1), . . . ,F
−1
m (Am), where each Fi : D→ Si is

a continuous function, and all sets Ai are subsets of a general topological space Si. If we denote this operation of
taking unions and intersections byΨ (i.e.,A � Ψ ( F−1

1 (A1), . . . , F
−1
m (Am))), then it holds thatΨ(F−1

1 (A1°), ... , F
−1
m (Am°))⊆

A°⊆A⊆A−⊆Ψ(F−1
1 (A−

1 ), ... , F
−1
m (A−

m)). Hence, Cl∗(A°)>0 holds if T̂−1
l ∗ (Ψ( F−1

1 (A1°), ... , F
−1
m (Am°))) has a positive Leb-

esque measure, where T̂j : Ŝj→Dj is defined by T̂j(x,u) ≜
∑j

i�1xi1[ui ,1] for j∈Z+, and Ŝj ≜ {(x,u) ∈ R
j
+ × [0,1]j |

x1≥⋯≥xj, 0,1, u1, . . . ,uj are distinct}. Analogously, one can derive a sufficient condition for Cl∗
1
×⋯× Cl∗

d
(A°)>0

(see Assumption 2).

Remark 2. There are several examples that satisfy Assumption 1. For instance, considering A � {ξ ∈D[0,1] : ξ(1) ≥ a}
corresponds to estimating the rare-event probability P(X(n) ≥ an). Another application that fits into this framework
is the ruin probability of an insurance company, where reinsurance policy is taken into account. For details of this
application, we refer to Section 4. Finally, for one ofmany examples ofA in themultidimensional setting, we refer to
Section 6, where the workload in a queueing network is considered.

We design a simulation algorithm that estimates the probability of An ≜ {X̄n ∈ A} efficiently, based on an im-
portance sampling strategy. To construct an importance distribution, we introduce a constant γ> 0 and define
B
γ
n ≜ {X̄n ∈B

γ}, where Bγ ≜ {ξ | #{t | ξ(t) − ξ(t−)>γ} ≥ l∗}. In the construction of our rare-event simulation algorithm,
we will take advantage of the fact that one can always choose γ so that B

γ
n is sufficiently “close” to An. The specific

choice of γ will be further discussed later in Sections 4–6 for concrete examples. Let Qγ( · )≜P( · |B
γ
n) denote the

conditional distribution given X̄n ∈ Bγ. One should notice that dQγ/dP � P(B
γ
n)

−1
1B

γ
n
. Moreover, by the Fubini–

Tonelli theorem, a closed-form expression for P(B
γ
n) is given by

P(Bγ
n) � 1 − exp

{
−λnP(W(1)> nγ)

}∑l ∗−1

j�0

(λn) j

j!
P(W(1)>nγ) j. (3)

From (3), one should recognize that B
γ
n can be interpreted as the event of a Poisson distributed random variable

with rate λnP(W(1)>γn) crossing the level l∗. Now, let w ∈ (0, 1) be arbitrary but fixed. We propose an
importance distribution Qγ,w that is absolutely continuous w.r.t. P and is given by

Qγ,w( · )≜wP( · ) + (1 − w)Qγ( · ). (4)

We give here an algorithm for generating the sample path of X̄n under the probability measure Qγ( · ). Because

{X̄n ∈B
γ}⊆ {N(n) ≥ l∗}, we observe that Qγ(X̄n ∈ · ) � P(B

γ
n)

−1P(X̄n ∈ · ,B
γ
n) �

∑∞
m�l ∗ hm P(X̄n ∈ · |B

γ
n,N(n) � m),

where hm � hm(n)≜P(B
γ
n,N(n) � m)/P(B

γ
n) satisfies

∑
m≥l ∗ hm � 1. Hence, it remains to discuss sampling from

P(X̄n ∈ · |B
γ
n,N(n) � m). It turns out that we can proceed a rejection sampling, where drawing from the

proposal distribution can be achieved as follows: first, sample {bk}k≤l ∗ uniformly from #({1, . . . ,m}, l∗); then,
sample each W(bk), k≤ l∗, conditional on W(bk)>nγ; and finally, sample W(m′), m′ ≤ m, m′

∉ {bk}k≤l ∗, under the
nominal measure. Note that the target density ftarget;m, defined by

ftarget;m (w1, . . . ,wm)dw1⋯ dwm ≜P(W(1)∈w1 + dw1, . . . ,W(m) ∈wm + dwm |Bγ
n,N(n) � m),

can be bounded by Mm fproposal;m (w1, . . . ,wm), where

ftarget;m(w1, . . . ,wm)}
1

P(B
γ
n |N(n) � m)

∏
m

j�1

d

dwj
P(W ( j) ≤wj)1B

γ
n
(w1, . . . ,wm),

fproposal;m(w1, . . . ,wm) �
1

m

l∗

( )
P(W(1)> nγ)l∗

∏
m

j�1

d

dwj
P(W ( j) ≤wj)

∑

(b1, . . . ,bl∗ )∈

#({1,. . . ,m},l∗)

1{W(bk)>nγ,∀k≤l∗},
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and hence, Mm � Mm(n)≜ m
l∗

( )
P(W(1)> nγ)l

∗
P(B

γ
n |N(n) � m)−1. Now, it is natural to accept (W(1), . . . ,W(m))

with probability a(W(1), . . . ,W(m)) �
(
#{i ∈ {1, . . . ,m} | W(i)> nγ}

l∗

)
−1. Finally, we are able to formulate the pseudocode

for generating X̄n under Qγ in Algorithm 1. Moreover, we show in Proposition 1 that the expected running
time of Algorithm 1 is uniformly bounded from above w.r.t. n.

Proposition 1. Let Talg1(n) denote the expected running time of Algorithm 1. Under the condition that W(1) is regularly
varying of index −β< −1, we have that Talg1(n) �

∑
m≥l∗ hm(n)Mm(n) is uniformly bounded from above w.r.t. n (i.e.,

maxn≥0 Talg1(n)<∞).

In view of the observations we made so far, we propose an estimator Zn for P(An) that is given by

Zn � 1An

dP

dQγ,w

�
1An

w + 1−w
P(B

γ
n)
1B

γ
n

. (5)

Intuitively, an importance sampling technique is used to get more samples from the interesting region by
sampling from a distribution that overweights the important region. Based on this, the choice of B

γ
n can be

“justified” because B
γ
n is mimicking the asymptotic behavior of the probability of interest. However, as one can

see in the proof of strong efficiency (see Theorem 2), we should analyze the second moment of our estimator to
avoid “backfire,” yielding an estimator with larger or even infinite variance. It turns out that this intuition can
be made rigorous by applying Result 1. We end this section with a theorem regarding to the strong efficiency
of our estimator.

Theorem 1. Under Assumption 1, there exists a γ> 0 such that the estimator constructed in (5) is strongly efficient for
estimating P(An).

Remark 3. Note that, under Assumption 1, there exists r> 0 such that d(A,D<l ∗)> r. One sufficient way to make Zn

in (5) strongly efficient is to choose γ such that Z∌ ⌈r/γ⌉ ≥ l∗ + 1. Sometimes, finding r can be application specific,
though generally r is the smallest size a big jump needs to take to make the rare event happen, and physical
intuition—which can be obtained from solving the large-deviations problem—is helpful in making an educational
guess on r. For more details about finding r as well as choosing γ we refer to Sections 4–6.

3.2. Extension to General d

In this section, we extend the results in Section 3.1 to the case with general d. To be precise, let
X≜ (X(1), . . . ,X(d)) be a superposition of d independent compensated compound Poisson processes with upward

jumps, where {N(i)(t)} is a Poisson process with arrival rate λi, and X(i)(t) �
∑N(i)(t)

k�1 W(i)(k) − λitEW
(i)(1).

Moreover, let P(X(i)(1)> x) be regularly varying of index −βi < −1 at infinity. Finally, let X̄n denote the
corresponding scaled process. As we can see in Result 2, the large deviations results for P(X̄n ∈A) depend
heavily on the value of ((l∗1, . . . , l

∗
d), where (l∗1, . . . , l

∗
d) is as defined in (1). However, for c ∈R, the grid

(l1, . . . , ld)∈Z
d
+ satisfying ((l1, . . . , ld) � c is not unique, in general. Therefore, assuming A being bounded away

from ∏d
i�1D<li is not sufficient for our purposes. The following assumption, which is slightly different from

Assumption 1, corresponds to the extension of Result 1 to Result 2.

Algorithm 1 (Generating the Sample Path of X̄n Under Qγ)

1: sample m~ hm ⊳ m � m′ with probability hm′ � P(N(n) � m′ |B
γ
n)

2: R← true
3: while R � true do
4: sample {bk}k≤l∗ ~unif (#({1, . . . ,m}, k)) ⊳ uniform distribution on #({1, . . . ,m}, k)
5: for i∈ {bk}k≤l∗ do
6: sample W(i)~W(1) |W(1)> nγ
7: for i ∉ {bk}k≤l∗ do
8: sample W(i)~W(1)
9: c← # { j∈ {1, . . . ,m} |W ( j)>nγ}; a← c

l∗

( )−1
; sample u~uniform[0, 1]; R← true

10: if u< a then
11: R← false

return X̄ n
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Assumption 2. Let A be a measurable set. Assume that A is bounded away from D<(l∗
1
,. . . ,l∗

d
), where (l

∗
1, . . . , l

∗
d) is the unique

solution of the minimization problem given by (1). Moreover, assume that Cl∗
1
×⋯×Cl∗

d
(A°)> 0.

If the solution to (1) is not unique, we may partition A. As in Section 3.1, we focus now on constructing the
auxiliary set Bγ for the importance distribution. DefineAn ≜ {X̄n ∈A} and B

γ
n ≜ {X̄n ∈B

γ}. As one can see in the proof
of Theorem 2, the ability to control the probability of An ∩ (B

γ
n)

c should be taken into account in choosing the
auxiliary set Bγ. In the one-dimensional case, letting Bγ mimic the optimal path leading to the rare event makes us
capable of controlling the relative error of our estimator. By “mimicking the optimal path,” we mean that the
minimal number of jumps l∗ that are needed forDl ∗ ∩A≠ ∅ is used as parameter in the construction of Bγ. However,
the same strategy would fail in the multidimensional case, because the rare event can be reached through other
feasible but not necessarily optimal paths. Thus, we require a more complicated construction of Bγ.

Definition 2. Let A be a measurable set in Dd, and let (l∗1, . . . , l
∗
d) denote the unique solution to (1). Let γ∈Rd with

γi > 0 for all i∈ {1, . . . , d}, and define

Bγ ≜ ⋃
(l1, . . . ,ld)∈J(l∗

1
, . . . , l∗

d
)

Bγ; l, (6)

where Bγ; l is the set of càdlàg functions on Rd that have at least li number of jumps with sizes larger than γi in
its ith coordinate; that is, Bγ; l ≜ {(ξ(1), . . . , ξ(d)) ∈Dd | #{t | ξ(i)(t) − ξ(i)(t−)>γi} ≥ li, ∀i∈ {1, . . . , d}}.

Remark 4. Note that the cardinality of J(l∗
1
,. . . ,l∗

d
) is finite. To design a strongly efficient simulation algorithm for

estimating P(An), we will take advantages of an important property of J(l∗
1
, . . . ,l∗

d
). That is, for all ξ ∈A with A being

bounded away fromD<(l∗
1
, . . . ,l∗

d
), there exists (l1, . . . , ld) ∈ J(l∗

1
,. . . ,l∗

d
) such that the path of ξ in its ith coordinate is bounded

away from D<l∗i
for every i∈ {1, . . . , d}.

Let Qγ( · )≜P( · |B
γ
n) and let Qγ,w be as defined in (4); following the same strategy as in Section 3.1, we propose

an estimator that takes the same form as in (5). Before turning to the efficiency analysis of our estimator, we
summarize the findings above in Algorithm 2.

To complete our algorithm, we need to discuss the computation of P(B
γ
n) as well as the strategy of sampling

from the conditional distribution Qγ( · ). Because Bγ constructed in Definition 2 is the union of Bγ; l with
l � (l1, . . . , ld) ∈ J(l∗

1
,. . . ,l∗

d
), by the inclusion-exclusion principle, it is sufficient to discuss computing the probability of

sets of the form ⋂(l1,. . . ,ld)∈I B
γ; l, where I is a finite collection of elements inZd

+. It turns out that the probability of such
a set can be computed similarly as in Section 3.1. From this observation, we give the following proposition.

Proposition 2. The probability of B
γ
n is equal to

∑|J(l∗
1
, . . . , l∗

d
) |

k�1

(−1)k−1
∑

|I|�k
I⊆ J(l∗

1
, . . . , l∗

d
)

∏
d

i�1

(
1 − exp

{
− λinP(W

(i)(1)> nγi)
} ∑l̂i; I−1

j�0

(λin)
j

j!
P(W(i)(1)> nγi)

j

)
,

where l̂i; I ≜max(l1, . . . ,ld)∈I li.

Remark 5. It should be mentioned that the complexity of computing P(B
γ
n) can be reduced rapidly in the case,

where, for example, one is able to take a smaller (in the sense of cardinality) set than J(l∗
1
, . . . ,l∗

d
) (see, e.g., Corollary 1

and Sections 5 and 6).

Algorithm 2 (Efficient Sampling of P(X̄n ∈A))
1: sample u~uniform[0, 1] ⊳ uniform distribution on [0, 1]
2: sample X̄n ~P(X̄n ∈ · |X̄n ∈B

γ)
3: if u<w then
4: sample X̄n ~P(X̄n ∈ · )
5: if X̄n ∈A then
6: L← [w + (1 − w)1B

γ
n
/P(B

γ
n)]

−1

7: else
8: L← 0

return L
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As in Section 3.1, we now discuss generating the sample path of X̄n under Qγ in the next step. To begin with, we
need the following lemma, which shows that Bγ can be decomposed into finitely many disjoint sets.

Lemma 1. Let Bγ; l(i, j)≜ {ξ ∈Dd | #{t | ξ(i)(t) − ξ(i)(t−)>γi} ≥ (l( j))i}. Let the elements in J(l∗
1
, . . . ,l∗

d
), denoted by

l(1), . . . , l(|J(l∗
1
, . . . ,l∗

d
) |), be ordered so that (l(1))d ≤⋯≤ (l(|J(l∗

1
, . . . , l∗

d
) |))d. Define

∆Bγ; l(i, j)≜Bγ; l(i, j)\ ⋃
j−1

m�1

Bγ; l(i,m)

( )
, i∈ {1, . . . , d − 1}. (7)

Then we have that

Bγ � ⋃
|J(l∗

1
, . . . , l∗

d
) |

m1�1

⋃
m1

m2�1

⋯ ⋃
md−2

md−1�1

⋂
d−1

i�1

∆Bγ; l(i,mi)

( )
∩Bγ; l(d, 1)

( )
.

Lemma 1 shows that Bγ can be decomposed into finitely many disjoint sets. This implies that

Qγ(X̄n ∈ · ) �
∑|J(l∗
1
, . . . , l∗

d
) |

m1�1

∑m1

m2�1

⋯
∑md−2

md−1�1

h1;m1,. . . ,md−1
P(X̄n ∈ · |X̄n ∈B

γ(m1, . . . ,md−1)),

where

Bγ(m1, . . . ,md−1)≜ ⋂
d−1

i�1

∆Bγ; l(i,mi)

( )
∩Bγ; l(d, 1),

and h1;m1, . . . ,md−1
≜P(X̄n ∈B

γ(m1, . . . ,md−1))P(X̄n ∈B
γ)−1 satisfying

∑|J(l∗
1
, . . . , l∗

d
) |

m1�1

∑m1

m2

⋯
∑md−2

md−1

h1;m1,. . . ,md−1
� 1.

Hence, it remains to design a sampling scheme for generating the sample path of X̄n under P( · | X̄n ∈

Bγ(m1, . . . ,md−1)) (for details about generating multidimensional discrete random numbers, see, e.g., Hu and
Cui [25]). Because of the special structure of Bγ(m1, . . . ,md−1), we are able to generate X̄n

(1), . . . ,X̄n
(d) in-

dependently under P( · | X̄n ∈B
γ(m1, . . . ,md−1)). To see this, first note that sampling X̄n

(d) is trivial because of

the discussion in Section 3.1. Define ľ(mi; i)≜minξ∈∆Bγ; l(i,mi) #{t | ξ(t) − ξ(t−)>γi)} and l̂(mi; i)≜maxξ∈∆Bγ; l(i,mi)

#{t | ξ(t) − ξ(t−)>γi)} for i∈ {1, . . . , d − 1}. By (7), we have that

P(X̄n
(i)
∈ · |X̄n ∈B

γ(m1, . . . ,md−1)) �
∑∞

qi�ľ(mi ; i)

h2; qi P(X̄n
(i)
∈ · | ∆Bγ; l(i,mi),N

(i)(n) � qi),

where h2; qi ≜P(∆Bγ; l(i,mi),N
(i)(n) � qi)/P(∆B

γ; l(i,mi)) satisfies
∑

qi≥ľ(mi ; i)
h2; qi � 1. Note that

P(∆Bγ; l(i,mi),N
(i)(n) � qi) � e−λin

(λn)qi

qi!

∑l̂(mi ; i)∧qi

i�ľ(mi ; i)

qi
i

( )
P(W(i)(1)> nγ)iP(W(i)(1) ≤ nγ)qi−i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Therefore, it suffices to consider sampling X̄n
(i) under P( · |∆Bγ; l(i,mi),N

(i)(n) � qi). Again, we can proceed using
a similar approach as in Section 3.1: sample {bk}k≤l uniformly from #({1, . . . , qi}, ľ(mi; i)); sample each W(i)(bk),
k≤ qi, conditional on W(i)(bk)> nγi; sample W(i)(q′i ), q

′

i ≤ qi, and q′i ∉ {bk}k≤l ∗, under the nominal measure; and
accept (W(i)(1), . . . ,W(i)(qi)) with probability

a(W(i)(1), . . . ,W(i)(qi)) �
#{ j∈ {1, . . . , qi} |W

(i) ( j)>nγi}

ľ(mi; i)

( )
−1

1{#{j∈{1,. . . ,qi} |W(i) ( j)>nγi}≤ l̂(mi ; i)}
.

Finally, we are able to give the pseudocode of this sampling scheme in Algorithm 3. For its expected running
time, an analogous result to Proposition 1 is formulated in Proposition 3.
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Proposition 3. Let Talg3(n) denote the expected running time of Algorithm 3. Under the assumption that W(i)(1) is regularly
varying of index −βi < −1 for all i∈ {1, . . . , d}, we have that Talg3(n) is uniformly bounded from above w.r.t. n (i.e.,
maxn≥0Talg3(n)<∞).

The discussion above shows that sampling from the conditional distributionQγ( · ) is tractable. As we mentioned
in the introduction, our estimator is straightforward to implement. Moreover, its strong efficiency, which is for-
mulated in Theorem 2, can be proved based on Lemma 2. Moreover, we state in Theorem 2 that our estimator is
strongly efficient. Without introducing any new notations, we formulate a corollary to address a special case where it
is sufficient to consider a smaller (in the sense of cardinality) set than J(l∗

1
,. . . ,l∗

d
), as in Definition 2. Note that Corollary 1

can be shown by following similar arguments as in the proofs of Lemma 2 and Theorem 2; thus the proof is omitted.

Theorem 2. Let B
γ
n ≜ {X̄n ∈B

γ}, where Bγ is as defined in (6). Under Assumption 2, there exists γ such that the estimator
given by (5) is strongly efficient for estimating P(An).

Corollary 1. Along with Assumption 2,we assume additionally that there exists an index set I ⊆ J(l∗
1
, . . . ,l∗

d
) and r> 0 such that for

every ξ ∈A, there exists (l1, . . . , ld) ∈ I satisfying d(ξ,C(l1, . . . ,ld)) ≥ r. Set J̃(l∗
1
,. . . ,l∗

d
) � I\∆I, where (l1, . . . , ld) ∈∆I if and only if

• (l1, . . . , ld) ∈ I satisfies that ((l1, . . . , ld)> 2((l∗1, . . . , l
∗
d), and

• for every (l′1, . . . , l
′

d) ∈ I\{(l1, . . . , ld)}, we have that ((l1, . . . , ld)≠((l′1, . . . , l
′

d).
Setting B

γ
n � {X̄n ∈B

γ} with Bγ ≜∪(l1,. . . ,ld)∈ J̃(l∗
1
, . . . , l∗

d
)
Bγ; l, there exists γ such that the estimator given by (5) is strongly

efficient for estimating P(An).

Remark 6. Even though our simulation algorithm is constructed in the context of Poisson processes with positive
jump distributions, it can be easily generalized to the case where the jump distributions are regularly varying at
both −∞ and ∞ (for details, see the proof of theorem 3.5 in Rhee et al. [27] and the references therein).

Remark 7. We end this section with a final remark to point out the connection between the one-dimensional case
and the multidimensional case. That is, if we set d � 1, then Assumption 2 coincides with Assumption 1, and no
additional conditions are imposed on the set A. Moreover, the auxiliary sets Bγ in both cases are essentially the
same. Thus, Theorem 2 can be considered as a special case of Theorem 1.

3.3. Extension to Random Walks

Let Sk, k≥ 0 be a centered random walk with increments {Yk}k≥1. Let P(Y1 ≤ −x) be regularly varying with
index −α, and let P(Y1 ≥ x) be regularly varying with index −β. Define S̄n(t)≜ S⌊nt⌋/n, t≥ 0. In this subsection,
we want to design an efficient simulation algorithm for estimating the probability of S̄n ∈A. As in Sections 3.1
and 3.2, we make the following assumption for the set A.

Assumption 3. Assume that A is a measurable set bounded away from D<l∗− ; l
∗
+
, where (l∗−, l

∗
+) is the unique solution of (2).

Moreover, assume that Cl∗−,l
∗
+
(A°)> 0.

Algorithm 3 (Generating the Sample Path of X̄n
(1), . . . , X̄n

(d) Under Qγ)

1: sample (m1, . . . ,md−1)~ h1;m1, . . . ,md−1

2: for i � 1 to d do
3: sample qi ~ h2; qi; R← true
4: while R � true do
5: sample {bk}k≤ľ(mi; i)

~unif
(
#
(
{1, . . . , qi}, ľ(mi; i)

))
6: for j∈ {bk}k≤ľ(mi; i)

do

7: sample W(i) ( j)~W(i)(1) | W(i)(1)> nγi

8: for j ∉ {bk}k≤ľ(mi ; i)
do

9: sample W(i) ( j)~W(i)(1)
10: c← #{ j∈ {1, . . . , qi} | W(i) ( j)> nγi}; a← 0

11: if c< l̂(mi; i) then

12: a←
(

c
ľ(mi; i)

)
−1

13: sample u~uniform[0, 1]; R← true
14: if u< a then
15: R← false

return X̄n
(1), . . . ,X̄n

(d)
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Then, we construct the auxiliary set Bγ as follows.

Definition 3. Let (l∗−, l
∗
+) denote the unique solution to (2), and let

Jl∗− ; l∗+ ≜
{
(l−, l+) ∈Z

2
+\I<l∗−; l∗+

∣∣ (m−,m+)3(l−, l+) implies (m−,m+) ∈ I<l∗−; l∗+

}
,

where I<l∗− ; l∗+ ≜ {(l−, l+) ∈Z
2
+\{(l

∗
−, l

∗
+)} | (α − 1)l− + (β − 1)l+ ≤ (α − 1)l∗− + (β − 1)l∗+}. For γ− > 0 and γ+ > 0, define

Bγ ≜ ⋃
(l−,l+) ∈ Jl∗− ; l∗

+

Bγ; l∗− ; l
∗
+ , (8)

where Bγ; l∗− ; l
∗
+ ≜ {ξ∈D | #{t | ξ(t−) − ξ(t)>γ−} ≥ l∗−, #{t | ξ(t) − ξ(t−)>γ+} ≥ l∗+}.

Defining An ≜ {S̄n ∈A} and B
γ
n ≜ {S̄n ∈B

γ}, we propose an estimator for P(S̄n ∈A) that is given by (5). Note that,
computing P(S̄n ∈B

γ), as well as generating the sample path S̄n under Qγ, can be achieved by following similar
strategies as in Sections 3.1 and 3.2. Hence, the details are omitted (for examples, see Sections 4 and Section 5). We
state the strong efficiency of our estimator in the following theorem without giving the proof, because it is
analogous to the proof of Theorem 2.

Theorem 3. Let B
γ
n ≜ {X̄n ∈B

γ}, where Bγ is as defined in (8). Under Assumption 3, there exists γ− and γ+ such that the
estimator given by (5) is strongly efficient for estimating P(An).

With the results presented in this section, we are able to apply our general simulation algorithm to three ex-
amples in the next sections. These examples can be found in the applications of mathematical finance, actuarial
science, and queueing networks.

4. An Application to Finite-Time Ruin Probabilities
4.1. Problem Settings

Let Sk, k≥ 0, be a centered random walk with increments {Yk}k≥1. Moreover, let P(Y1 > x) be regularly varying
at infinity with index −β. For c≥ 0, define An ≜ {max0≤k≤nYk ≤ nb, max0≤k≤nSk − ck≥ na}. Additionally, we make
a technical assumption that a/b ∉Z. We are interested in computing P(An). This probability is particularly
interesting because it is related to, for example, insurance, where huge claims may be reinsured and therefore
are irrelevant in the sense of estimating the finite-time ruin probability of an insurance company.

4.2. Large Deviations Results

The rare-event probability can be estimated efficiently using the technique introduced in Section 3. To see this,
define A≜ {ξ ∈D : supt∈[0,1][ξ(t) − ct] ≥ a; supt∈[0,1][ξ(t) − ξ(t−)] ≤ b} and S̄n ≜ {S̄n(t)}t∈[0,1], where S̄n(t) � S⌊nt⌋/n

for t≥ 0. Note that P(An) � P(S̄n ∈A). Set l
∗ � ⌈a/b⌉. Intuitively, l∗ should be the key parameter, as it takes at

least l∗ jumps of size b to cross level a. This intuition has been made rigorous by Rhee et al. [27, section 5.1],
where the authors show that A is bounded away from D<l ∗ , and hence, P(An) � Θ(nl

∗

P(S1 ≥ n)l
∗

).

4.3. Construction of Bγ

We set Bγ � {ξ∈D | #{t | ξ(t) − ξ(t−)>γ} ≥ l∗} and B
γ
n � {S̄n ∈B

γ} � {#{k ∈ {1, . . . ,n} | Yk > nγ} ≥ l∗}, where γ is the
parameter that needs to be tuned. For the completeness of our algorithm, we give a closed-form expression for
P(B

γ
n). Let p denote the probability of P(Y1 >γn); then we have that

P(Bγ
n) �

∑n

i�l ∗

(
n

i

)
pi(1 − p)n−i � 1 −

∑l ∗−1

i�0

(
n

i

)
pi(1 − p)n−i, (9)

where the latter representation in (9) is for numerical purposes.

4.4. Choice of g

As we mentioned in Remark 3, a strategy of choosing the parameters γ needs to be discussed in the next step.
From the proof of Theorem 2, it is sufficient to select γ such that P

(
An ∩

(
B
γ
n

)
c
)
� o

(
P
(
An

)
2
)
. We propose to select

γ such that (a − (l∗ − 1)b)/γ ∉Z+ and that

a − (l∗ − 1)b

γ

⌈ ⌉
> l∗ + 1. (10)
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In view of Theorem 3, it is sufficient to show that A∩ (Bγ)c is bounded away from D<2l ∗+1 with γ satisfying (10).
To see this, choose θ with d(θ,D<2l ∗+1)< r. This implies that there exists ξ ∈D<2l ∗+1 satisfying d(θ, ξ)< r and ξ(t) �∑2l ∗

j�1xj1[uj,1](t). In particular, there exists a homeomorphism λ : [0, 1]→ [0, 1] satisfying ‖λ − id ‖∞ ∨ ‖ ξ ◦λ − θ ‖∞ < r.

Hence, for θ∈A, using the identity ξ ◦λ � θ + (ξ ◦λ − θ), we conclude that the following holds:
1. xj < b + 2r for every j∈ {1, . . . , 2l∗}, and
2. there exists t′ such that

∑
uj≤1 xj ≥

∑
uj≤λ(t′) xj > a − 2r.

To see this, note that ξ ◦λ(t) �
∑2l ∗

j�1xj1[uj ,1](λ(t)) � θ + (ξ ◦λ − θ) and ‖ξ ◦λ − θ‖∞ < r. By the fact that supt∈[0,1] ·

[θ(t) − θ(t−)] ≤ b, conclusion 1 follows. Moreover, by the fact that supt∈[0,1][θ(t) − ct] ≥ a, there exists t′ such that
ξ ◦λ(t′) �

∑
uj≤λ(t′) xj > a − 2r, and hence, conclusion 2 is obtained. This implies that

∑
j≥l ∗ xj > a − 2r−

(l∗ − 1)(b + 2r). Moreover, for θ ∈ (Bγ)c, every jump of ξ should be bounded by γ + 2r after having l∗ − 1 jumps
with sizes bigger than b. Because γ satisfies (10) and a is not a multiple of b, we obtain the result by choosing
r small.

4.5. Sampling from Qγ

Summarizing the discussion from previous paragraphs, we are able to propose a strongly efficient estimator
for P(An) that is given by (5). As the last ingredient of our simulation algorithm, a strategy of sampling from
Qγ( · )

(
� P

(
· |B

γ
n

))
needs to be discussed. We use a similar strategy as in Algorithm 3 and formulate the

pseudocode in Algorithm 4.

4.5. Numerical Results

Finally, we investigate our algorithm numerically based on a concrete example. Let Y1 � Y′

1 − EY′

1, where
P(Y′

1 > t) � (1/t)β. In Table 1, we select c � 0.05, w � 0.05 (for a heuristic of the choice of w and its impact on the
empirical performance, see Section 5) and summarize the estimated probability and the level of precision (ratio
between the radius of the 95% confidence interval and the estimated value) for different combinations of n, β, a,
b, and c (based on 106 samples). We observe that, for different values of β, a, and b, the precision stays roughly
constant as n grows. This confirms our theoretical results.

5. An Application in Barrier Option Pricing
In this section, we consider an application that arises in the context of financial mathematics; in particular, we
consider a down-in barrier option (see section 11.3 in Tankov and Cont [30]).

5.1. Problem Settings

Let Sk, k≥ 0, be a centered random walk with increments {Yk}k≥1. Let P(Y1 ≤−x) be regularly varying with
index −α, and let P(Y1 ≥ x) be regularly varying with index −β. Let a, b, and c be positive real numbers. We
provide a strongly efficient estimator for the probability of An ≜ {Sn ≥ bn, min0≤k≤nSk + ck≤−an}, which can be
interpreted as the chance of exercising a down-in barrier option. This application is interesting because, as we
will see, the large deviations behavior of P(An) is caused by two large jumps.

5.2. Large Deviations Results

Define A≜ {ξ∈D : ξ(1) ≥ b, inf 0≤t≤1ξ(t) + ct≤−a}. Obviously, we have that (l∗−, l
∗
+) � (1, 1), where (l∗−, l

∗
+) denotes

the solution to (2). To verify the topological property of A, we define m,π1 :D→R by m(ξ) � inf0≤t≤1{ξ(t) + ct},
and π1(ξ) � ξ(1). Note that F, π1, and m are continuous; therefore F−1(A) � m−1(−∞, −a]∩π−1

1 [b,∞) is a closed

Algorithm 4
1: R← true
2: while R � true do
3: sample (i1, . . . , il∗) uniformly from #({1, . . . ,n}, l∗)
4: for j∈ {i1, . . . , il∗} do
5: sample Yj ~Y1 |γn<Y1 ≤ bn
6: for j ∉ {i1, . . . , il∗} do
7: sample Yj ~Y1

8: sample u~uniform[0, 1]; c← #{m ∈ {1, . . . ,n} | γn<Y1 ≤ bn}; a← c
l∗)( ; R← true

9: if u< a−1 then
10: R← false

return (Y1, . . . ,Yn)
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set. By adapting the results in Rhee et al. 27, section 5.2, it can be shown that, for any arbitrary i≥ 0, Di; 0 and D0; i

are bounded away from m−1(−∞, −a] and π−1
1 [b,∞), respectively. Hence, A is bounded away from D<1; 1.

Applying Result 3, we obtain that P(X̄n ∈A) � Θ(n2P(S1 ≥n)P(S1 ≤ n)).

5.3. Construction of Bγ

Now we are in the framework of Theorem 3. Note that by Definition 3 we have J1; 1 � {(1, 1), (l, 0), (0,m)}, where
l � min{l′ ∈Z+ | (l

′ − 1)(β − 1)> (α − 1)} and m � min{m′ ∈Z+ | (m′ − 1)(α − 1)> (β − 1)}. However, adapting the
idea behind Corollary 1 together with the fact that A is bounded away from both Di; 0 and D0; i, it is sufficient to
consider J̃1; 1 � {(1, 1)}. Hence, we can set Bγ �

{
ξ ∈D

∣∣ #{t
∣∣ ξ(t−) − ξ(t)>γ−

}
≥ 1, #

{
t
∣∣ ξ(t) − ξ(t−)>γ+

}
≥ 1

}
. As we

mentioned in the introduction, it is possible that estimators may be crafted specifically for the events of
interest to obtain (up to constant factors) better performance. Because at least one downward jump should
happen before upward jumps, without introducing new notations, we can modify Bγ such that Bγ �{{
ξ∈D

∣∣ ∃ t1 < t2 : ξ(t
−
1 ) − ξ(t1)>γ−, ξ(t2) − ξ(t−2 )>γ+

}}
. This implies that B

γ
n �

{{
∃ i< j : Yi < −γ−n, Yj >γ+n

}}
.

By straightforward computation, we obtain that P(B
γ
n) � 1 − p2(1 − p1)

n/(p2 − p1) + p1 (1 − p2)
n/(p2 − p1), where

p1 ≜P(Y1 >γ+n) and p2 ≜P(Y1<−γ−n).

5.4. Choice of γ− and γ+

We discuss here the strategy of choosing the parameters γ− and γ+. From the proof of Theorem 2, it is

sufficient to select γ−, γ+ such that P(An ∩ (B
γ
n)

c) � o(P(An)
2). Hence, we propose to choose γ− and γ+ such that

((a + b)/γ+, a/γ−) ∉Z
2
+ and that

min (α − 1) +
a + b

γ+

⌈ ⌉
(β − 1),

a

γ−

⌈ ⌉
(α − 1) + (β − 1)

{ }
> 2(α + β − 2). (11)

Without loss of generality, we assume that ⌈a/γ−⌉(α − 1) + (β − 1) is the unique minimum of (11). It suffices to
prove that A∩ (Bγ)c is bounded away from D<⌈a/γ2⌉; 1

. To show that ∪ (l−,l+)D<l−; l+ with l− ≤ ⌈a/γ2⌉ − 1 is bounded

away from A∩ (Bγ)c, choose θ with d(θ, ∪ (l−,l+)D<l−; l+)< r. This implies that there exists ξ∈ ∪ (l−,l+)D<l−; l+

satisfying d(θ, ξ)< r, where ξ �
∑l+

k�1xk1[uk ,1](t) −
∑l−

k�1yk1[vk ,1](t). In particular, there exists homeomorphism
λ : [0, 1]→ [0, 1] satisfying

| | λ − id | |∞ ∨ | | ξ ◦λ − θ | |∞ < r. (12)

Using (12) and the identity ξ ◦λ � θ + (ξ ◦λ − θ), we conclude that, for θ ∈ (Bγ)c and t∈ [0, 1], at least one of the
following holds:

• xk ≤γ+ + 2r for every uk ≥ t; or
• yk ≤γ− + 2r for every vk < t.
For θ ∈m−1(−∞, −a], by (12), there exists t′ such that

∑
uj≤λ(t′)

xj −
∑

vj≤λ(t′)

yj < −a + 3r. (13)

Moreover, we can assume that yj ≤γ− + 2r for j satisfying vj ≤λ(t′). Otherwise, xj is bounded by γ+ + 2r for j

satisfying vj >λ(t′). By choosing r sufficiently small, this leads to a contradiction: that θ ∈π−1
1 [b,∞), and

⌈a/γ−⌉(α − 1) + (β − 1) is the minimum of (11). Hence, (13) implies that (⌈a/γ−⌉ − 1)(γ− + 2r)> a − 3r. Because
(⌈a/γ−⌉ − 1)γ− < a, choosing r sufficiently small, we obtain the result. Similarly, it can be can shown that
A∩ (Bγ)c is bounded away from ∪ (l− ,l+)D<l−; l+ for l+ ≤ ⌈(a + b)/γ+⌉ − 1.

Table 1. Estimated rare-event probability and level of precision for the application as described in Section 4.

EstPr n � 80 n � 100 n � 200

Pr β � 1.5 β � 2.0 β � 1.5 β � 2.0 β � 1.5 β � 2.0

a � 2, b � 1.2 1.171× 10−3 3.904× 10−5 1.043× 10−3 2.361× 10−5 6.316× 10−4 5.167× 10−6

(l∗ � 2) 2.053× 10−2 3.133× 10−2 2.057× 10−2 3.376× 10−2 2.130× 10−2 3.975× 10−2

a � 4, b � 1.2 5.099× 10−7 3.778× 10−10 3.860× 10−7 1.592× 10−10 1.326× 10−7 8.911× 10−12

(l∗ � 4) 1.799× 10−2 2.278× 10−2 1.761× 10−2 2.366× 10−2 1.717× 10−2 2.780× 10−2

a � 2, b � 0.3 1.635× 10−10 1.147× 10−12 1.795× 10−10 3.983× 10−13 1.202× 10−10 6.775× 10−15

(l∗ � 7) 6.441× 10−2 1.662× 10−2 5.456× 10−2 1.635× 10−2 3.535× 10−2 1.826× 10−2
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5.5. Sampling from Qγ

As in Section 4, a strategy of sampling from Qγ( · ) needs to be discussed. Even though Bγ is modified to obtain
smaller relative error, a similar strategy as in Algorithm 3 can be used here. Hence we omit the details.

5.6. Numerical Results

We end this section with some numerical investigations. First let Y1 � Y′

1 − EY′

1, where Y′

1 is a random variable

with density function fY that is given by fY � 1
3

1
y

( )
β
1(1,∞) (y) +

1
3 − 1

y

( )
α
1(−∞,−1) (y) +

1
61[−1,1] (y). We apply our

algorithm to estimate P(Sn ≥ bn,min0≤k≤n Sk ≤ −an) with a � 2 and b � 1.5. In Figure 2, we plot the precision of the
estimated probability against the parameter w for different values of n. We observe that the estimated probabilities
become more precise as w decreases. This heuristic suggests the upper bound we derive in (28), where the latter
term in (28) is the order of o (P(An)

2), as long as w is strictly positive. From this observation, we choose w � 0.05
for all numerical investigation presented in this paper. In Table 2, we compare the estimated rare-event
probability and precision w.r.t. different values of n, α and β. We observe that the precision stays roughly constant
as n increases for different combinations of α and β, which suggests the strong efficiency of our estimator.

Next, we make a comparison between the algorithms developed in this paper and in Gudmundsson and
Hult [23], where a simulation algorithm is designed for estimating P(Sn ≥ bn) from an MCMC perspective. First
note that, instead of unbiased estimators, MCMC algorithms give us only consistent estimators. Furthermore,
note that the event {Sn ≥ bn} is a special case of the event studied in this section with a � 0. Here, we consider
Y1 with density function fY (y) � 2(x + 1)−3. In Table 3, we present the estimated rare-event probability, the
level of precision, the computational time (in seconds), and the normalized workload—that is, the (estimated)
standard deviation multiplied by the computational time divided by the sample mean—produced by the two
algorithms, based on 106 samples. Note that our algorithm typically outperforms the MCMC algorithm in
terms of computational time—especially as n increases—while producing slightly larger coefficient variation
compared with the MCMC algorithm. Overall, our algorithm seems to be more efficient for larger values of n,
whereas MCMC seems to be more efficient for small values of n in terms of normalized workload. This can be
explained by the fact that our estimator is state independent (i.e., the increments of the random walk Sn can be
updated simultaneously). On the other hand, in the MCMC case, the algorithm needs a burn-in period to
converge, and the increments have to be simulated following a specific order. Moreover, updating the value of,
say, Yk relies on the values of Y1, . . . ,Yk−1,Yk+1, . . . ,Yn to run an MCMC algorithm. It may be noted that the
range of probabilities examined in Table 3 is smaller than the typical range of practical interest in applications.
For example, insurance companies (according to the Solvency II Directive) are suggested to have a capital

Figure 2. (Color online) A plot of the precision of the estimators discussed in Section 5 w.r.t. w for different values of n.
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reserve corresponding to bankruptcy events in the order of a 0.5% likelihood (on an annual basis). Nevertheless,
when model uncertainty is taken into account, considering bankrupcy probability of the putative (assumed) parametric
model in the range of likelihood that is considerably smaller than nominal values suggested by regulation may be
necessary. For example, calibrating any distribution of claims with a degree of precision corresponding to a bankrupt
probability of 0.5% in a nonparametric way is practically impossible because one would need (as a result of the
central limit theorem) millions of observations on an annual basis. In such a case, an additional safety margin
should be added to the capital requirement to account for model error, as discussed in Blanchet et al. [8] (see
section 9.2.1). That is, one may have to consider the range of likelihood in the order of 10−4 ~ 10−5 for the
putative parametric model to ensure the 0.005 likelihood for the true claims. Note that our importance
sampling algorithm seems to be comparable or preferable to the MCMC algorithm in this range.

Table 2. Estimated rare-event probability and level of precision for the application as described in Section 5.

Est
Pr n � 250 n � 500 n � 750 n � 1, 000 n � 1, 250 n � 1, 500

α � 2, β � 1.5 3.913× 10−7 1.370× 10−7 6.992× 10−8 4.539× 10−8 3.305× 10−8 2.471× 10−8

0.043 0.043 0.044 0.044 0.044 0.044

α � 1.8, β � 1.7 3.322× 10−7 1.154× 10−7 6.040× 10−8 3.840× 10−8 2.870× 10−8 2.225× 10−8

0.037 0.037 0.038 0.038 0.038 0.037

α � 2.3, β � 2 1.923× 10−9 4.004× 10−10 1.491× 10−10 7.601× 10−11 4.632× 10−11 3.072× 10−11

0.053 0.053 0.054 0.054 0.054 0.054

α � 2.7, β � 1.8 6.838× 10−10 1.121× 10−10 4.092× 10−11 2.079× 10−11 1.105× 10−11 6.896× 10−12

0.068 0.070 0.070 0.069 0.071 0.071

Figure 3. (Color online) An illustration of two different sample paths of workload processes (under the setting of Example 1),
whose associated input processes have the same form as in (18).
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6. An Application to Queueing Networks
In this section, an application to queueing networks is considered. More specifically, the probability of the
number of customers in a subset of the system crossing a high level is estimated. Although some particular
cases exist that allow for an explicit analysis (see, e.g., section 13 in Dębicki and Mandjes [11]), it is hard to
come up with exact results for the distribution of the workload process in general. Hence, implementing our
algorithm in such a context is particularly interesting.

6.1. Model Description and Preliminaries

To be specific, we consider a d-dimensional stochastic fluid model. Suppose that jobs arrive to the ith station in
the network according to a Poisson process with unit rate, which is denoted by {N(i)(t)}t≥0 and independent of
{N ( j)} for j≠ i. Moreover, the kth arrival of the ith station brings a job of size W(i)(k). We are assuming that
{W(k)≜ (W(1)(k), . . . ,W(d)(k))T}k≥1 is a sequence of i.i.d. positive random vectors and that {W(k)}k≥1 is in-
dependent of {N(t)}t≥0. Therefore, the total amount of external work that arrives to the ith station up to time t

is given by J(i)(t) �
∑N(i)(t)

k�1 W(i)(k). Now, assume that the workload at the ith station is processed as a fluid by the
server at a rate ri and that a proportion Qij ≥ 0 of the fluid processed by the ith station is routed to the jth
server. Moreover, we assume that Q is a substochastic matrix with Qii � 0 and that Qn

→ 0 as n→∞. The
dynamics of the model are expressed formally by the so-called Skorokhod map (for details, see Skorokhod [28,
29]; see also, e.g., Harrison and Reiman [24]), that is defined in terms of a pair of processes (Z,Y) satisfying
a stochastic differential equation that we shall describe now. Let R � (I −Q)T, r � (r1, . . . , rd)

T, X(t)≜ J(t) − Rrt,
and Z(i)(t) denote the workload of the ith station at time t. For a given Z(i)(0), we have that

dZ(t) � dX(t) + RdY(t), (14)

where Y( · ) encodes the minimal amount of pushing required to keep Z( · ) nonnegative. To describe how to
characterize the solution (Z,Y) to (14), we need to introduce some notations. Let ψ : Dd

→Dd
↑
with ψ(x)≜

inf
{
w ∈Dd

↑

∣∣ x + Rw≥ 0
}
; that is, ψ(i)(x)(t)≜ inf

{
w(i)(t) ∈R

∣∣w∈Dd
↑
, x + Rw≥ 0

}
for all i and t, and φ : Dd

→Dd

with φ(x)≜ x + Rψ(x). The following results summarize useful properties and characterizations of the Skorokhod
mappings ψ and φ, as well as the workload process Z(t).

Result 4 (Theorems 14.2.1, 14.2.5, and 14.2.7 ofWhitt [32]). The mappingsψ andφ are well defined for all x ∈Dd.Moreover,
ψ and φ are Lipschitz continuous w.r.t. both the uniform metric and the Skorokhod J1 metric. If Y(t)≜ψ(X)(t) and
Z(t)≜φ(X)(t), then (Y(t),Z(t)) solve the Skorokhod problem given by (14).

Result 5 (Lemma 14.3.3, Corollary 14.3.4, and Corollary 14.3.5 of Whitt [32]). Let x∈Dd. For the discontinuity points of
ψ(x) (denoted by Disc(ψ(x))) and φ(x), we have that Disc(ψ(x))∪Disc(φ(x)) � Disc(x). Moreover, if x has only positive
jumps, then ψ(x) is continuous, and φ(x)(t) − φ(x)(t−) � x(t) − x(t−).

Table 3. Estimated rare-event probability, level of precision, and computational time for estimating P(Sn ≥ bn) using the
algorithms introduced in this paper and in Gudmundsson and Hult [23].

Est
Pr
Time (s)
NW

n � 5 n � 20 n � 200 n � 1,000

MCMC IS MCMC IS MCMC IS MCMC IS

b � 20 5.340× 10−4 5.286× 10−4 1.375× 10−4 1.369× 10−4 1.384× 10−5 1.384× 10−5 2.770× 10−6 2.769× 10−6

0.587× 10−3 1.020× 10−3 0.636× 10−3 1.060× 10−3 0.645× 10−3 1.071× 10−3 0.644× 10−3 1.073× 10−3

25.5 19.6 67.9 21.5 561.0 44.4 3,686.8 145.0
7.633 10.196 22.046 11.624 184.488 24.267 1,211.854 79.370

b � 150 8.962× 10−6 8.958× 10−6 2.250× 10−6 2.250× 10−6 2.252× 10−7 2.252× 10−7 4.505× 10−8 4.503× 10−8

2.052× 10−4 8.287× 10−4 2.239× 10−4 8.331× 10−4 2.289× 10−4 8.353× 10−4 2.289× 10−4 8.370× 10−4

24.8 17.1 63.1 19.9 545.7 43.7 3687.0 146.4
2.594 7.227 7.204 8.468 63.712 18.633 430.399 62.543

b � 1,000 2.002× 10−7 2.001× 10−7 5.008× 10−8 5.005× 10−8 5.009× 10−9 5.011× 10−9 1.002× 10−9 1.002× 10−9

0.796× 10−5 8.051× 10−4 0.848× 10−5 8.068× 10−4 0.851× 10−5 8.042× 10−4 0.881× 10−5 8.052× 10−4

27.8 17.5 65.9 20.4 577.4 45.5 4,011.9 149.7
1.130 7.206 2.854 8.384 25.070 18.684 180.317 61.482
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Result 6 (Theorem 14.2.2 ofWhitt [32]). The regulator map y � ψ(x) can be characterized as the unique fixed point of the map
πx,Q :D

d
↑
→Dd

↑
, where πx,Q(w)(t)≜max{0, sups∈[0, t] Q

Tw(s) − x(s)}.

Result 7 (Consequence of Theorem 4.1 of Ramasubramanian [26]). Let ∆∈Dd be a nondecreasing function such that
∆(0) ≥ 0. Then, for x ∈Dd, we have that ψ(x) ≥ψ(x + ∆), φ(x) ≤φ(x + ∆), and φ(x)(t2) − φ(x)(t1) ≤φ(x + ∆)(t1) −
φ(x + ∆)(t2) for any 0≤ t1 ≤ t2 ≤ 1.

Finally, we assume that the right tail ofW(i)(1) is regularly varying with index −βi and that the stability condition
holds (i.e., R−1ρ< r, where ρ≜EJ(1)). Let Z̄n(t)≜Z(nt)/n and X̄n(t)≜X(nt)/n. Let c ∈ {0, 1}d be a binary vector, and
let )c denote the index set encoded by c (i.e., j∈)c if cj � 1). Set Z̄n(t)≜Z(nt)/n and X̄n(t)≜X(nt)/n. Define
lc : R

d
→R by lc(x) � cTx, and define π1 : D

d
→Rd by π1(ξ) � ξ(1). Moreover, let F≜ lc ◦π1 ◦φ. We are interested

in estimating the probability of P(cTZ̄n(1) ≥ a). By theorem 14.2.6(iii) of Whitt [32], we have that Z̄n � φ(X̄n), and
hence it holds that, for a> 0 and A≜ {ξ ∈D : F(ξ) ≥ a},

P
(
cTZ̄n(1) ≥ a

)
� P

(
F(X̄n) ≥ a

)
� P

(
X̄n ∈A

)
. (15)

6.2. Large Deviations Results

To obtain the large deviations asymptotics for the rare-event probability as in (15), we proceed as follows.
• To determine the tail index of the rare-event probability, we study first the optimization problem given

by (1) and transform it into a (nonstandard) knapsack problem with nonlinear constraints (see (21) and
Proposition 4).

• Under a certain assumption (see Assumption 4), we show that A, as defined in (15), is bounded away from
D<(l∗

1
,. . . ,l∗

d
), where l∗1, . . . , l

∗
d is the optimal solution to the knapsack problem derived in the first step.

• Finally, we derive a large deviations result for P(X̄n∈A) by applying Result 2.
We start with the optimization problem given by (1). Because X(t) is, in general, not a compensated

compound Poisson process but one with certain drift, it is convenient to consider a slightly different problem,
which is given by

argmin
(l1, . . . ,ld)∈Z

d
+ ,∏

d
i�1

Lli
(µi)∩A≠∅

((l1, . . . , ld), (16)

where µ≜EX(1) � ρ − Rr, r′ � r − R−1ρ> 0, because of the stability condition, and Lli(µi)≜ {ξ |∃ξ′ ∈Dli : ξ(t) �
ξ′(t) + µit � ξ′(t) − (Rr′)it}. Define E0 ≜

{
(l1, . . . , ld)∈Z

d
+

∣∣ li � 0, ∀i∈)c

}
and E1 ≜ {ei | i∈)c}, where ei denotes the

unit vector with entries 0 except for the ith coordinate. By Result 5, instead of (16), we can solve two separate
problems that are given by

argmin
(l1,. . . ,ld)∈E0,∏d

i�1
Lli

(µi)∩A≠∅

((l1, . . . , ld), and argmin
(l1, . . . ,ld)∈E1,∏d

i�1
Lli

(µi)∩A≠∅

((l1, . . . , ld). (17)

Note that the latter problem in (17) can be solved easily by considering mini∈)c
βi − 1; therefore we focus on the

first problem in (17). Let ) be a subset of ()c)
c. Moreover, let θ∈D1, and let ξ∈Dd be such that

ξ(i)(t) �
−(Rr′)it, t∈ [0, 1] for i ∉),

θ(i) − (Rr′)it, t ∈ [0, 1] for i∈).

{
(18)

A necessary and sufficient condition for the existence of ξ ∈A is given in the following proposition.

Proposition 4. Let )⊆ ()c)
c. Moreover, let {r∗i }i ∉) be such that

r∗i � max

{
r′i −

∑
j≠i

Qjir
′

j +
∑
j≠i
j ∉)

Qjir
∗
j , 0

}
for i ∉). (19)

Define

∂z ())≜
∑
i∈)c

(
r∗i − r′i +

∑
j≠i

Qjir
′

j −
∑

j≠i,
j ∉)

Qjir
∗
j

)
. (20)

If ∂z ())≠ a, then there exists ξ satisfying (18) and cTφ(ξ)(1) ≥ a if and only if ∂z ())> a. Additionally, if )1 ⊆

)2 ⊆ ()c)
c, then we have that ∂z ()1) ≤ ∂z ()2).
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We give a sketch of the proof and refer to Section 7 for details. Note that ∂z ()) given by (20) is the increasing rate
of the subset (c of the workload process, whose associated input process does not have any jumps but starts with
sufficiently large initial value. Based on this observation, a ξ can be constructed for the “if” part of the first
statement. For the “only if” part, suppose that there is a ξ satisfying cTφ(ξ)(1) ≥ a. By Result 7, enlarging the size of
jumps in ξ will preserve the fact that cTφ(ξ)(1) ≥ a. Hence, we can construct a new ξ, such that

• the associated workload process φ(ξ) is piecewise linear between two neighboring discontinuity points, and
• the increasing rate of cTφ(ξ) is always smaller than or equal to ∂z ()) given by (20).

Remark 8. Note that (19) can be written in a matrix notation that is given by r∗�max{((I−QT)r′)
∉)+(Q∉))

Tr∗,0}�
max{(Rr−ρ)

∉)+(Q∉))
Tr∗, 0}, where (Rr−ρ)

∉) andQ∉) denote the vector andmatrix, respectively, with the ith row
and column being removed for all i∈). Using the Banach fixed point theorem, we obtain that r∗� limn→∞π

n(0),
where πn≜π ◦πn−1 and π(x)≜max{(Rr−ρ)

∉)+(Q∉))
Tx,0}.

Define E) ≜ {(l1, . . . , ld) ∈E
′

0 | ∂z()(l1, . . . ,ld))> a}, where E′

0≜E0∩{(l1, . . . , ld)∈Z
d
+ | li∈{0,1},∀i∉)c}, and ∂z()(l1, . . . ,ld))

is as defined in (20), with )(l1, . . . ,ld) denoting the index set encoded by (l1, . . . , ld)∈E
′

0. By Proposition 4, we conclude
that the first problem in (17) is equivalent to

argmin
(l1,. . . ,ld)∈E)

((l1, . . . , ld). (21)

Thanks to the last statement of Proposition 4, it is unnecessary to check every (l1, . . . , ld) ∈E) for solving (21).
However, the optimization problem formulated in (21) is a nonstandard knapsack problem with nonlinear
constraints. In the following example, we consider a specific fluid network and illustrate how to solve (21)
using Proposition 4.

Example 1. Consider the fluid network given by ρ � (0.8 0.8 1)T, r � (1 1 2.5)T, and

Q �
0 0.1 0.8
0.1 0 0.8
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

We are interested in the probability of the rare event that the third station crosses the level na at time n for
large n (i.e., )c � {3}). It is easy to check that the stability condition holds. By an easy computation, we obtain
that ∂z({1, 2}) � 0.1 and ∂z({1}) � ∂z({2}) � 0.02. For a � 0.05, the optimal solution to (21) is given by (1, 1, 0).

Suppose that we have solved (21). To obtain the large deviations results, the following technical assumption
needs to be made.

Assumption 4. Assume that (21) satisfies the conditions as follows.
(a) The optimization problem given by (21) has a unique solution.
(b) For every )⊆ ()c)

c, it holds that ∂z ())≠ a.
( c) Let (l∗1, . . . , l

∗
d) denote the optimal solution to (21). We assume that ((l∗1, . . . , l

∗
d)<mini∈)c

βi − 1.

By Result 2, Assumption 4(c) implies that the objective value of the first problem in (17) is strictly less than the
objective value of the latter one in (17), and hence the optimal solution (l∗1, . . . , l

∗
d) to (21) solves (16). In view of this

observation, the rare event is caused by multiple large jumps. Throughout the rest of this section, we assume that
Assumption 4 holds. We end this subsection with a large deviations result for P (X̄n ∈A) � P(cTZ̄n(1) ≥ a), which is
formulated in the following proposition.

Proposition 5. Suppose that Assumption 4 holds. Let F be as defined in (15). Then A � F−1[a,∞) is bounded away from
∪(l1, . . . ,ld)∈I< (l∗

1
, . . . , l∗

d
)
∏d

i�1Lli(µi), where (l
∗
1, . . . , l

∗
d) denotes the unique optimal solution of (21). Moreover, we have that

Cl1 ∗ ×⋯×Cl∗
d
((F−1[a,∞))°) ≤ lim inf

n→∞

P(X̄n ∈A)

∏d
i�1(nνi[n,∞))l

∗
i

≤ lim sup
n→∞

P(X̄n ∈A)

∏d
i�1(nνi[n,∞))l

∗
i

≤Cl∗
1
×⋯×Cl∗

d
(F−1[a,∞)).

6.3. Simulation

Again, we are in the setting of Theorem 2. To be able to discuss the choice of J(l∗
1
, . . . ,l∗

d
) and the parameter γ in

a more precise context, let us consider the stochastic fluid network introduced in Example 1.

Chen et al.: Efficient Rare-Event Simulation for Multiple Jump Events
936 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 919–942, © 2019 INFORMS



Example 1 (Continued). Recall that, for a � 0.05, the optimal solution of (16) is given by β1 + β2 − 2 if we assume that
β1 + β2 − 2< β3 − 1. Moreover, it can be easily shown that A is bounded away from both D<i ×D0 ×D0 and
D0 ×D<j ×D0. Combining this with ((1, 1, 1)> 2((1, 1, 0), as well as Corollary 1, it is sufficient to take
J̃(l∗

1
,. . . ,l∗

d
) � {(1, 1, 0), (0, 0, 1)}. This implies that

Bγ
n �

{
#
{
k
∣∣W(i)(k)> nγi, k≤N(i)(n)

}
≥ 1, i∈ {1, 2}

}
⋃

{
#
{
k
∣∣W(3)(k)> nγ3, k≤N(3)(n)

}
≥ 1

}
,

and hence (B
γ
n)

c � {∃i∈ {1, 2} : W(i)(k) ≤ nγi, ∀k≤N(i)(n)}∩ {W(3)(k) ≤nγ3, ∀k≤N(3)(n)}. We choose γ such that
P(An ∩ (B

γ
n)

c) � o (P(An)
2). To begin with, we assume, without loss of generality, that β3 − 1≤ 2(β1 + β2 − 2);

otherwise, we can simply set J(l∗
1
, . . . ,l∗

d
) � {(1, 1, 0)}, because ((0, 0, 1)> 2((1, 1, 0). Now the parameter γ3 can be

chosen such that ⌈ 1
20/γ3⌉(β3 − 1)> 2(β1 + β2 − 2). For the choice of γ1, we observe that the job arriving at the

second station can have an arbitrarily large size. Hence, it is sufficient to consider the inequality
∂z({1, 2})t

′ + ∂z({2})(1 − t′)> a, where ∂z({1, 2}) � 0.1 and ∂z({2}) � 0.02. Solving the inequality, we obtain that
t′ < 3/8. This simply means that the workload process of the third station cannot exceed the level a at time 1 if
we keep both the first and the second stations overloaded less than 3/8 of the time. Because the workload
process of the first station decays at rate 1/10, one can choose γ1 such that ⌈ 3

80/γ1⌉(β1 − 1) + (β2 − 1)>

2(β1 + β2 − 2). Analogously, it is sufficient to set γ2 such that (β1 − 1) + ⌈ 3
80/γ2⌉(β2 − 1)> 2(β1 + β2 − 2).

We give a closed-form expression for P(B
γ
n). We assume that {W(i)(k)}1≤i≤d are mutually independent; therefore

we have that

P ((Bγ
n)

c) � P (∃i∈ {1, 2} : W(i)(k) ≤nγi, ∀k≤N(i)(n))P (W(3)(k) ≤ nγ3, ∀k≤N(3)(n))

�

[
1 −∏

2

i�1

(1 − P (W(i)(k) ≤ nγi, ∀k≤N(i)(n)))

]
P (W(3)(k) ≤nγ3, ∀k≤N(3)(n)).

Conditional on N(i)(n), we obtain P(W(i)(k) ≤ nγi, ∀k≤N(i)(n)) � exp {−n(1− P(W(i)(1) ≤nγi))}. Summarizing the
findings from above, we are able to propose a strongly efficient estimator for P(An) that is given by (5).
Moreover, Algorithm 3 can be used to sample from Qγ. To see this, we decompose B

γ
n into two disjoint sets,

B
γ
n(1) and B

γ
n(2), that are given by B

γ
n(1)≜ {#{k |W(3)(k)>nγ3, k≤N(3)(n)} ≥ 1} and

Bγ
n(2)≜ {#{W(i)(k)>nγi, k≤N(i)(n)} ≥ 1,∀i∈ {1, 2}}∩ {W(3)(k) ≤ nγ3, ∀1≤ k≤N(3)(n)},

respectively. Using Algorithm 3, the sample path of X̄n
(1),X̄n

(2),X̄n
(3) can be simulated independently on both

B
γ
n(1) and B

γ
n(2). We present the numerical results based on 20,000 samples in Table 4. We choose W(i)(1) such

that P(W(i)(1)> t) � (tr,i/t)
βi and tr,i � ρi(βi − 1)/βi for i∈ {1, 2, 3}. As one can see, the numerical results suggest

again what our theory predicts.

7. Proofs
In this section, we provide proofs of the results presented in this paper.

Proof of Proposition 1. Recall that the expected running time of the rejection sampling (see Algorithm 1), which is

used to generate the jumps of X̄n, is given by Ml �
l
l ∗

( )
P(W(1)> nγ)l

∗

P(B
γ
n |N(n) � l)−1. Hence, for the expected

running time of Algorithm 1, denoted by Talg1(n), we have that

Talg1(n) �
∑
l≥l ∗

hlMl � P(B
γ
n)

−1
∑
l≥l ∗

P(B
γ
n |N(n) � l)P(N(n) � l)Ml

� P(B
γ
n)

−1
∑
l≥l ∗

P(N(n) � l)
l

l∗

( )
P(W(1)> nγ)l

∗

�
nl

∗

(λP(W(1)> nγ))l
∗

P(B
γ
n)

e−λn
∑
l≥l ∗

(λn)l−l
∗

(l − l∗)!
�
nl

∗

(λP(W(1)> nγ))l
∗

P(B
γ
n)

.

Recall that B
γ
n ≜ {X̄n ∈B

γ}, where Bγ ≜ {ξ | #{t | ξ(t) − ξ(t−)>γ} ≥ l∗}. Noting that B
γ
n is bounded away from D<l ∗ and

l∗ � min{l∈Z+|Dl ∩B
γ
n}, by Result 1, we obtain that lim sup n→∞

Talg1(n) ≤ nl
∗

(λP(W(1)> nγ))l
∗

P(B
γ
n)

−1 ≤
Cl ∗ ((B

γ)°)−1 <∞. □

Chen et al.: Efficient Rare-Event Simulation for Multiple Jump Events
Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 919–942, © 2019 INFORMS 937



Proof of Proposition 2. Let Bγ be as in (6), and let I ⊆ J(l∗
1
,. . . ,l∗

d
). Define B

γ; l
I ≜

⋂
(l1, . . . ,ld)∈I B

γ; l. By the inclusion–exclusion
principle, we have that

P(X̄n ∈B
γ) �

∑| J(l∗
1
, . . . , l∗

d
) |

k�1

(−1)k−1
∑

|I|�k, I⊆ J(l∗
1
, . . . , l∗

d
)

P (X̄n ∈B
γ; l
I ). (22)

Moreover, for any finite collection I of elements in Zd
+ with I⊆ J(l∗

1
, . . . ,l∗

d
), we have that

B
γ; l
I �⋂

d

i�1

⋂
(l1,. . . ,ld)∈I

{(ξ(1), . . . , ξ(d))
∣∣ #{t

∣∣ ξ(i)(t) − ξ(i)(t−)>γi} ≥ li}

�⋂
d

i�1

{
(ξ(1), . . . , ξ(d))

∣∣ #{t
∣∣ ξ(i)(t) − ξ(i)(t−)>γi} ≥ l̂i;I

}
, (23)

where l̂i;I ≜max(l1, . . . ,ld)∈I li. Because X̄n
(1), . . . ,X̄n

(d) are independent processes, we obtain that

P(B
γ; l
I ) � ∏

d

i�1

1 − exp

{
− λinP(W

(i)(1)> nγi)

} ∑l̂i; I−1

j�0

(λin)
j

j!
P(W(i)(1)> nγi)

j

( )
. □

Proof of Lemma 1. Recall that Bγ; l(i, j)≜ {ξ∈Dd | #{t
∣∣ ξ(i)(t) − ξ(i)(t−)>γi} ≥ (l( j))i}. Hence, we have that

Bγ � ⋃
|J(l∗

1
, . . . , l∗

d
) |

j�1

⋂
d

i�1

Bγ;l(i, j) � ⋃
|J(l∗

1
, . . . , l∗

d
) |

j�1

(
Bγ;l(1, j)∩ ⋂

d

i�2

Bγ;l(i, j)

)
. (24)

By definition, ∆Bγ;l(i, j)≜Bγ;l(i, j)\
(
∪

j−1
m�1B

γ;l(i,m)
)
. Therefore, we have that

Bγ;l(i, j) � ⋃
j

mi�1

∆Bγ;l(i, j). (25)

Plugging (25) into (24), we obtain that

Bγ � ⋃
|J(l∗

1
, . . . , l∗

d
) |

j�1

((
⋃
j

m1�1

∆Bγ;l(1,m1)

)
∩ ⋂

d

i�2

Bγ; l(i, j)

)

� ⋃
|J(l∗

1
, . . . , l∗

d
) |

m1�1

(
⋃

|J(l∗
1
, . . . , l∗

d
) |

j�m1

(
∆Bγ;l(1,m1)∩ ⋂

d

i�2

Bγ;l(i, j)

))

� ⋃
|J(l∗

1
, . . . , l∗

d
) |

m1�1

(
∆Bγ;l(1,m1)∩

(
⋃
m1

j�1

⋂
d

i�2

Bγ;l(i, j)

))
.

Table 4. Estimated rare-event probability and level of precision for the application as described in Section 6.3.

Est
Pr n � 1,200 n � 1,600 n � 2,000 n � 2,400

β1 � 1.5, β2 � 1.5, β3 � 2.2 7.719× 10−2 6.228× 10−2 4.541× 10−2 3.973× 10−2

0.045 0.058 0.057 0.057
Est
Pr n � 800 n � 1, 200 n � 1, 600 n � 2, 000

β1 � 2.5, β2 � 2.3, β3 � 4 2.894× 10−2 1.686× 10−2 6.153× 10−3 2.023× 10−3

0.325 0.404 0.445 0.448
Est
Pr n � 600 n � 1, 000 n � 1, 400 n � 1, 800

β1 � 2.2, β2 � 2.9, β3 � 4.5 5.139× 10−2 1.858× 10−2 9.987× 10−3 1.028× 10−3

0.249 0.347 0.351 0.377
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Applying the same procedure to ∪
m1

j�1∩d
i�2B

γ;l(i, j), we obtain that

Bγ � ⋃
|J(l∗

1
, . . . , l∗

d
) |

m1�1

⋃
m1

m2�1

(
∆Bγ;l(1,m1)∩∆Bγ;l(2,m2)∩

(
⋃
m2

j�1

⋂
d

i�3

Bγ;l(i, j)

))
.

Iterating the same procedure d − 1 times, we obtain that

Bγ � ⋃
|J(l∗

1
, . . . , l∗

d
) |

m1�1

⋃
m1

m2�1

⋯ ⋃
md−2

md−1�1

((
⋂
d−1

i�1

∆Bγ;l(i,mi)

)
∩

(
⋃
md−1

j�1

Bγ;l(d, j)

))
. (26)

Because l(1), . . . , l(|J(l∗
1
,. . . ,l∗

d
) |) are ordered such that (l(1))d ≤⋯≤ (l(|J(l∗

1
, . . . , l∗

d
) |))d, we obtain that

⋃
md−1

j�1

Bγ;l(d, j) � Bγ;l(d, 1). (27)

Plugging (27) into (26), we obtain that

Bγ � ⋃
|J(l∗

1
, . . . , l∗

d
) |

m1�1

⋃
m1

m2�1

⋯ ⋃
md−2

md−1�1

((
⋂
d−1

i�1

∆Bγ;l(i,mi)

)
∩Bγ;l(d, 1)

)
. □

Proof of Theorem 2. For the second moment of Z (under the change of measure), we have that

EQγ,w[Z2
n] � E[Zn] � E [Zn1B

γ
n
] + E [Zn1(B

γ
n)

c] ≤
1

1 − w
P(An ∩Bγ

n)P(B
γ
n) +

1

w
P(An ∩ (Bγ

n)
c)

≤
1

1 − w
P(An)P(B

γ
n) +

1

w
P(An ∩ (Bγ

n)
c).

(28)

Combining this with Lemma 2, we obtain the strong efficiency of our estimator. □

Lemma 2. Let Bγ be as defined in (6).Under Assumption 2, we have that P(X̄n ∈B
γ) � 2(P(X̄n ∈A)).Moreover, there exists

γ such that P(X̄n ∈A∩ (Bγ)c) � o(P(X̄n ∈A)
2).

Proof of Lemma 2. First, note that P(X̄n ∈B
γ) � 2(P(X̄n ∈A)) follows immediately from Result 2. It remains to show

the existence of γ such that P(X̄n ∈A∩ (Bγ)c) � o (P(X̄n ∈A)
2). Because A is bounded away from D<(l∗

1
, . . . ,l∗

d
) by as-

sumption, there exists r such that d
(
A,D<(l∗

1
, . . . ,l∗

d
)

)
≥ r. On the one hand, from Rhee et al. [27], we have that

A⊆

{
(ξ(1), . . . , ξ(d)) ∃(l1, . . . , ld) ∈ J(l∗

1
,. . . ,l∗

d
) : d(ξ

(i),D<li) ≥ r, ∀i∈ {1, . . . , d}
}
.

∣∣∣ (29)

On the other hand, we have that

(Bγ)c �

{
(ξ(1), . . . , ξ(d))

∣∣∣∀(l1, . . . , ld)∈ J(l∗
1
, . . . ,l∗

d
) :∃i : #{t

∣∣ ξ(i)(t) − ξ(i)(t−)>γi} ≤ li − 1

}
. (30)

Let ξ � (ξ(1), . . . , ξ(d)) ∈A∩ (Bγ)c be a step function in the set ∏d
i�1Dl′

i
. By (28), there exists (l1, . . . , ld) ∈ J(l∗

1
,. . . ,l∗

d
)

such that ξ(i) �
∑li+mi

j�1 c(i)j 1
[t(i)j ,1]

, mi ∈Z+, and d(ξ(i),D<li) ≥ r for all i∈ {1, . . . , d} with li ≠ 0. Combining d
(
ξ(i),D<l′i

)
≥ r

with the fact that ξ(i) �
∑li−1

j�1 c
(i)
j 1

[t(i)j ,1]
∈D<li, we conclude that

∑li+mi

j�li

c(i)j ≥ d
∑li+mi

j�1

c(k)j 1
[t(i)
j
,1]
,
∑li−1

j�1

c(i)j 1
[t(i)
j
,1]

( )
≥ r, (31)

or in other words, the sum of the mi + 1-smallest jump is bounded from below by r for each ξ(i) of {ξ(i)}i∈{1, . . . ,d}
satisfying li ≠ 0. Combining (30) with (31), as well as choosing γk sufficiently small, there exists at least one
k ∈ {1, . . . , d} such that the smallest jump of ξ(k) is bounded from below by r′ > 0 for an arbitrary but fixed mk.
Repeating the same procedure as described above, we can construct (m1, . . . ,md) for every (l1, . . . , ld) ∈ J(l∗

1
,. . . ,l∗

d
)

such that the optimization problem given by

argmin
(l1, . . . ,ld)∈Z

d
+ ,∏

d
i�1

Dli
∩A∩(Bγ)c≠∅

((l1, . . . , ld) (32)
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has a unique solution (l∗∗1 , . . . , l
∗∗
d ) satisfying ((l∗∗1 , . . . , l

∗∗
d )> 2((l∗1, . . . , l

∗
d). We denote this specific choice of

(m1, . . . ,md) for every (l1, . . . , ld) ∈ J(l∗
1
,. . . ,l∗

d
) by

{
m(l1, . . . , ld)

}
(l1,. . . ,ld)∈J(l∗

1
, . . . , l∗

d
)
. It should be noted that the existence and

the uniqueness of (l∗∗1 , . . . , l
∗∗
d ) can be guaranteed by enlarging the set A (because we are looking for an upper

bound for P(X̄n ∈A∩ (Bγ)c)), together with choosing the corresponding γi sufficiently small. Therefore, it
remains to show that, under the chosen γ, the set A∩ (Bγ)c is bounded away from D<(l∗∗

1
,. . . ,l∗∗

d
). Select ξ satisfying

d(ξ,D<(l∗∗
1
, . . . ,l∗∗

d
))< δ, and hence, there exists θ ∈D<(l∗∗

1
,. . . ,l∗∗

d
) such that d(ξ,θ)< δ. On the one hand, combining

d(ξ,θ)< δ with (29), there exists (l1, . . . , ld) ∈ J(l∗
1
, . . . ,l∗

d
) such that d(θ(i),D<li)> r − δ for all i∈ {1, . . . , d}. Hence, we

have that θ(i) �
∑li+mi

j�1 c(i)j 1
[t(i)j ,1]

, mi ∈Z+, satisfying

∑li+mi

j�li

c(i)j ≥ d
∑li+mi

j�1

c(k)j 1
[t(i)j ,1]

,
∑li−1

j�1

c(i)j 1
[t(i)j ,1]

( )
≥ r − δ (33)

for all i∈ {1, . . . , d} with li ≠ 0. On the other hand, there exist homeomorphisms {λi}i∈{1,. . . ,d} such that

‖λi − id ‖∞ ∨ ‖θ(i)
◦λi − ξ(i) ‖∞ < δ for all i∈ {1, . . . , d}. (34)

Combining (34) with (30), we conclude the existence of at least one i∈ {1, . . . , d} such that

#{t | ξ(i)(t) − ξ(i)(t−)>γi − δ} ≤ li − 1. (35)

Because θ∈D<(l∗∗
1
, . . . ,l∗∗

d
), we have that

mi ≤ (m(l1, . . . , ld))i − 1 (36)

for all i∈ {1, . . . , d} with li ≠ 0. Finally, by (33), (35) and the choice of γ, we conclude that choosing δ sufficiently
small leads to a contradiction of (36). □

Proof of Proposition 4. We derive a necessary and sufficient condition for cTφ(ξ)(1) ≥ a with ξ (18).
For the “only if” part, suppose that ∂z ())> a. Let (v1, . . . , vd) ∈R

d
+, δ ∈ (0, 1), and ξ be such that

ξ(i)(t) �
−(Rr′)it, t∈ [0, 1] for i ∉),

vi1[δ,1](t) − (Rr′)it, t∈ [0, 1] for i∈).

{

Obviously, ξ satisfies (18). For t∈ [0, δ), by Result 6, the regulator process yξ ≜ψ(ξ) should satisfy the fixed

point equation that is given by y(i)ξ (t) � max
{
0, sups∈[0,t]

∑
j≠iQjiyξ

( j)(s) + (Rr′)is
}
for all i∈ {1, . . . , d}. Using the fact

that r′ > 0, we obtain that yξ(t) � r′t for t ∈ [0, δ). For t∈ [δ, 1], again by Result 6, it holds that

y(i)ξ (t) � max 0, −vi + sup
s∈[0,t]

r′is +
∑
j≠i

Qji (y
( j)
ξ (s) − r′j s)

{ }
, for all i∈), (37)

and

y(i)ξ (t) � max {0, sups∈[0,t]

r′i s +
∑
j∈)

Qji (y
( j)
ξ (s) − r′j s) +

∑
j≠i
j∉)

Qji (y
( j)
ξ (s) − r′j s)}, for all i ∉). (38)

Because {vi}i∈) are nonnegative, by Result 5 we conclude that yξ(s) and r′i s +
∑

j≠iQji (y
( j)
ξ (s) − r′js) are continuous

in s on [0, 1]. Using the Bolzano–Weierstrass theorem, there exists a set of sufficiently large {vi}i∈) (depending

on yξ) such that y(i)ξ (t) � y(i)ξ (δ) � r′iδ for i∈). Plugging this into (37) along with setting y(i)ξ (t) � r′iδ + r∗i (t − δ) for
i ∉), t∈ [δ, 1], we obtain that

r′iδ + r∗i (t − δ) � max{0, sups∈[0,t]

r′i s +
∑
j∈)

Qji (y
( j)
ξ (s) − r′j s) +

∑
j≠i
j∉)

Qji (y
( j)
ξ (s) − r′js)}

� max {r′iδ, r′iδ +max
s∈[δ,t]

r′i (s − δ) −
∑
j≠i

Qjir
′

j (s − δ) +
∑
j≠i
j∉)

Qjir
∗
j (s − δ)} for i∈). (39)
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Note that (39) is solved by r∗i satisfying (19). Moreover, by a straightforward computation, for the workload
process zξ ≜φ(ξ), we obtain that cTzξ(1) � ∂z ())(1 − δ). Because by assumption ∂z ())> a, we can choose δ such
that cTzξ(1) ≥ a.

For the other direction of the proof, suppose that cTφ(ξ)(1) ≥ a for some ξ satisfying (18). Let the jump sizes and
the associated jump times of ξ be denoted by {ui}i∈) and {ti}i∈), respectively. First we shouldmention that, by Result 7,
enlarging {ui}i∈)will preserve the fact that cTφ(ξ)(1) ≥ a. Moreover, let d1 <⋯< dm denote the discontinuity points of ξ
withm≤ |)| and define)i ≜ {k | tk ≤ di} for every i∈ {1, . . . ,m}. Now observe that yξ(t) � r′t, t∈ [0, d1). Hence, we have
that z′ξ(t) � 0≤ ∂z ()) for t∈ [0, d1). For yξ(t), t∈ [d1, d2), we can easily check that

y(i)ξ (t) �
r′id1, for all i∈)1,

r′id1 + r∗,1i (t − d1), for all i ∉)1,

{

by taking sufficiently large {ui}i∈)1
, where r∗,1i � max{r′i −

∑
j≠i Qjir

′

j +
∑

j≠i
j∉)1

Qjir
∗,1
j , 0} for i ∉)1. Because )1 ⊆), by

Result 7 and (19), we conclude that z′ξ(t) ≤ ∂z ()) for t ∈ [d1, d2). Defining )1
′ ≜)1 ∪ {k | r∗,1k � 0}, we consider yξ(t)

for t∈ [d2, d3). Following a similar argument as above, we claim that

y(i)ξ (t) �

r′id1 for all i∈)′

1,

r′id1 + r∗,1i (d2 − d1) for all i∈)2\)
′

1,

r′id1 + r∗,1i (d2 − d1) + r∗,2i (t − d2) for all i ∉)′

1 ⋃)2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

for sufficiently large {ui}i∈)1∪)2
, where r∗,2i � max{r′i −

∑
j≠iQjir

′

j +
∑

j≠i, j∉)′

1
∪)2

Qjir
∗,2
j , 0} for i ∉)′

1 ∪)2. Consider the
fixed point equation that is given by

r̃i
∗,2 � max {r′i −∑

j≠i

Qjir
′

j +
∑
j≠i

j∉)1∪)2

Qjir̃j
∗,2, 0}, for i ∉)1 ⋃)2. (40)

Because )1 ⊆)1 ∪)2, by Result 7, we obtain that r̃ k
∗,2 � 0 for every k ∈)1

′\)1. By making the convention that
r∗,2k � 0 for k ∈)1

′\)1, we claim that r∗,2i � r̃i
∗,2 for i ∉)1 ∪)2. Because )1 ∪)2 ⊆), by Result 7, (40), and (19), we

conclude that z′ξ(t) ≤ ∂z ()) for t∈ [d2, d3). Iterating the same procedure m more times, we can construct a ξ (by
taking {ui}i∈) sufficiently large) such that zξ is piecewise linear between neighboring discontinuity points.
Moreover, the increasing rate of zξ is less than ∂z ()) (i.e., z

′

ξ(t) ≤ ∂z ()) for t∈ [0, 1]). Therefore, we obtain that
∂z ())> a. The last statement of Proposition 4 is a consequence of Result 7. □

Proof of Proposition 5. Let the unique optimal solution of (21) be denoted by (l∗1, . . . , l
∗
d). To prove thatA is bounded

away from∪(l1,. . . ,ld)∈(< l∗
1
, . . . , l∗

d

∏d
i�1Lli(µi), it is sufficient to show that A � F−1[a,∞) is bounded away from∏d

i�1Lli(µi)

for all (l1, . . . , ld) ∈(<l∗
1
,. . . ,l∗

d
. To begin with, let (l1, . . . , ld) ∈(<l∗

1
, . . . ,l∗

d
. Under Assumption 4, we have that ∂z(()< a,

where j∈( if and only if lj ≠ 0. Applying a similar approach as in the proof of Proposition 4, it can be shown that

F
(
∏d

i�1Lli(µi)
)
⊆ (−∞, ∂z(()]. This implies that there exists δ> 0 satisfying

d F ∏
d

i�1

Lli(µi)

( )
, [a,∞)

( )
> δ. (41)

Moreover, by Result 4, we conclude that the mapping F as composition of Lipschitz continuous mappings (for
continuity of π1, see, e.g., theorem 12.5 in Billingsley [3]) is again Lipschitz continuous. Let KF denote the

Lipschitz constant of F. Combining this with (41), we conclude that d
(
∏d

i�1Lli(µi), F
−1([a,∞))

)
> δ/KF; hence the

second statement is obtained by applying Result 2. □
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