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Abstract—Conventional beam tracing can be used for solving global illumination problems. It is an efficient algorithm and performs

very well when implemented on the GPU. This allows us to apply the algorithm in a novel way to the problem of radio wave

propagation. The simulation of radio waves is conceptually analogous to the problem of light transport. We use a custom, parallel

rasterization pipeline for creation and evaluation of the beams. We implement a subset of a standard 3D rasterization pipeline entirely

on the GPU, supporting 2D and 3D frame buffers for output. Our algorithm can provide a detailed description of complex radio channel

characteristics like propagation losses and the spread of arriving signals over time (delay spread). Those are essential for the planning

of communication systems required by mobile network operators. For validation, we compare our simulation results with

measurements from a real-world network. Furthermore, we account for characteristics of different propagation environments and

estimate the influence of unknown components like traffic or vegetation by adapting model parameters to measurements.

Index Terms—Ray tracing, rendering, electromagnetic propagation.

Ç

1 INTRODUCTION

GLOBAL illumination deals with the propagation of light.
It provides the basis for various image synthesis

algorithms and leads to convincing, realistic results due to
its physical correctness. Important propagation phenomena
are reflection and refraction. Effective and efficient algo-
rithms for solving the global illumination problem are long
known [1]. Typical algorithms are often based on ray
tracing techniques.

Visible light occupies only a small fraction of the
electromagnetic spectrum. The propagation of waves in
other frequency ranges like those of sound or radio waves
behave similar to the propagation of light. Waves propagate
as fronts and spread in different directions when interacting
with obstacles. However, since wavelengths of sound and
radio are in size similar to the environment (up to several
meters), the effect of waves bending around corners
(diffraction) becomes important. Telecommunications sys-
tems, for instance, use carrier frequencies with wavelengths
ranging from several meters to kilometers. Noticeable
delays or echoes are produced when multiple wave fronts
with different travel times due to multiple propagation
paths arrive at the same location. This effect is recorded in
so-called delay spread histograms.

In this paper, we present three main contributions. 1) A
subset of a rasterization pipeline has been implemented
purely in software on the CUDA platform.We did this, since

the OpenGL pipeline does not offer the flexibility needed to
compute the 3D delay spread histograms. The presented
pipeline can target arbitrary 2D and 3D frame buffer objects.
2) We developed a novel method for the efficient computa-
tion of complex radio channel characteristics by combining
concepts of both electromagnetic principles and computer
graphics. We apply and extend common principles of
computer graphics, such as beam tracing, rasterization, and
general-purpose GPU programming to simulate effects like
diffraction that have a significant influence on the propaga-
tion behavior of radio waves. 3) We present a scheme for
adapting model parameters from real-world measurements
to account for characteristics of different propagation
environments and to estimate the influence of unknown
components like traffic or vegetation.

We target the propagation of radio waves of common
mobile communication systems, which are in the range of
several hundred megahertz up to a few gigahertz. The
knowledge of detailed radio channel characteristics is an
essential requirement in the design of future communication
systems. Multiple propagation paths give rise to signal
fluctuations and additional propagation losses. A receiver
has to deal with the arrival of signals coming from multiple
directions which are spread over time. The so-called delay
spread is, therefore, of great interest in order to provide
lower and upper bounds for the lengths of incoming signals
to avoid intersymbol interference.

Both global illumination and radio wave propagation
algorithms often rely on ray tracing techniques. However,
high-quality solutions often come at the cost of excessively
high computation times. The prediction of the propagation
behavior of radio waves in a common urban scenario
can take from minutes up to hours. Excessive computation
times still prevent the large-scale deployment of exact
propagation algorithms in the wireless communications
community since a huge number of computations are
required for the simulation of radio networks.

Thus, reducing the computation time of radio wave
propagation simulations is an important topic, whichwewill
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discuss in this work. We show how to compute the delay
spread histogram in an efficient and accurate manner, which
was not possible before. We obtain a significant speedup by
the following concept. Rather than tracing individual rays,
the use of beams has the advantage that less undersampling
occurs, since the beams represent a continuous bundle of
propagation rays, which was also noted by Lehnert [2].
Furthermore, we implemented the algorithm on the NVIDIA
CUDA platform, since our algorithm is highly parallel in
nature, and thus, can utilize massively parallel compute
platforms. There are a number of similar technologies
emerging, apart from CUDA. For example, the Larrabee
platform is conceptually similar as shown in [3]. On that
particular system, the OpenGL pipeline is done entirely in
software. Our approach uses a similar technique, imple-
menting a subset of a standard rasterization pipeline.

The basic idea of our algorithm is to generate beams that
emanate from a radiation source, and split those beams by a
rasterization step, recursively creating new secondary
beams. Beams are evaluated by a second rasterization step,
which produces a 2D field strength map and a 3D delay
spread map. All raster operations are implemented solely in
CUDA, utilizing the parallel nature of the platform.

Common input data for radio wave propagation algo-
rithms are a building database where a building is usually
described by its polygonal outline and one height value for
the roof. We refer to this description as 2.5D. The building
heights actually influence the wave propagation, since
visibility is determined according to the height of the
transmitter. The restriction to two dimensions is a common
abstraction in wave propagation simulations, and helps to
reduce the computational complexity by a large amount.
However, this model also has some obvious drawbacks. For
this assumption to be correct, the geometry of the urban
terrain has to be more or less planar. Predictions in
mountainous regions will most likely be wrong. Also, this
approach makes it impossible to simulate multistory build-
ings in an indoor scenario.

Hence, for a more general framework, we plan to extend
the method to 3D beam tracing. The extension to 3D leads to
new challenges. Especially traversing the scene geometry,
producing a continuous reflection and diffraction field, and
the more complex rasterization are interesting problems.
Some of these problems have already been solved in
computer graphics, e.g., in the work by Overbeck et al. [4].

Thepresentedwork is an extension of our paper presented
at the EGPGV [5]. Compared to our previous work, we have
improved the performance of the rasterization and beam
splitting process, added a method to optimize the propaga-
tion parameters from measurements, and added another
real-world scenario, namely, a setup of three base stations in
the city of Ilmenau with accurate measurements.

The remainder of this paper is organized as follows: After
reviewing previous work on global illumination and radio
wave propagation in Section 2, we give an overview of our
algorithm in Section 3.We then present details of our parallel
rasterization, how reflected and diffracted beams are gener-
ated and traced, and how the attenuation of the electro-
magnetic radiation is finally derived in Section 4. After that,
we introduce a scheme for adapting model parameters by
formulating a constraint least-squares problem in order to
minimize the mean-squared error between predicted and

measureddata in Section 5.We finally give adetailed analysis
of performance and accuracy in Section 6, and conclude the
paper in Section 7.

2 RELATED WORK

Classical ray tracing was introduced by Whitted [6]. Since
then it has been successfully applied and extended in
numerous publications in order to compute global illumina-
tion effects based on geometrical optics. There are various
publications that focus on mapping global illumination
algorithms onto the GPU, which include, but are not limited
to, Horn et al. [7], Carr et al. [8], and Dachsbacher et al. [9].
Global illumination techniques have been used for different
problems before, e.g., for sound rendering. Notable here are
theworks of Tsingos et al. [10], [11] andFunkhouser et al. [12].

Global illumination and radio wave propagation are
essentially the same problem statement, although they differ
slightly in the kind of optical effects that are simulated.
Diffraction and interference, for example, are usually left out
of global illumination, due to the subtlety of the effect. But
some works like Stam [13] and Tsingos et al. [10] do
incorporate these effects. However, the basic rendering
equation, as formulated by Kajiya [1], still holds for radio
wave propagation and can be used almost as is.

The theoretical foundation of radio wave propagation
can be found in the book of Rappaport [14], whereas the
COST 273 report [15] gives a more recent overview on radio
propagation models and algorithms. In literature, it is very
common to distinguish between stochastic (empirical)
channel models and deterministic propagation algorithms.
Well-known examples of empirical models are the work of
Hata [16] and Ikegami et al. [17]. They propose to model the
radio propagation phenomena by approximating the actual
propagation loss (path loss) by parameterized functions.
Hata determined the values of the parameters by conduct-
ing extensive measurement campaigns. Ikegami et al.
extended Hata’s work by analyzing the dependence of
approximate equations with respect to height gain, street
width, propagation distance, and radio frequency. Such
empirical models are typically characterized by short
evaluation time but are prone to huge prediction errors
and perform especially poor in heterogeneous propagation
environments like historically grown cities [18].

Therefore, most deterministic algorithms for predicting
radio signal strength rely on the computation of actual
propagation paths due towave guiding effects like reflection,
diffraction, and scattering. Ikegami et al. [19] showed that ray
tracing is also an excellent technique for estimating radio
propagation losses. Based on ray tracing algorithms, Schau-
bach et al. [20], Schmitz and Kobbelt [21], and Kim et al. [22]
state that their predicted path loss values were generally
within 4-8 dB of themeasured path loss. Such predictions are
considered to be of very high accuracy.

The idea of ray tracing can be extended to the concept
of beams, which are a continuum of rays. Beam tracing
was introduced by Heckbert and Hanrahan [23]. It reduces
intersection tests, as well as overcomes sampling pro-
blems, since ray samples tend to become too sparse or too
dense. Many more works have been published in this area,
which also concentrated on real-time rendering [4], or
nongraphical applications such as audio rendering. Two
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examples for this are the works by Funkhouser et al. [12]
and Chandak et al. [24].

However, our approach takes the beam tracing idea to a
different level of applications, not simulating light, but the
radiation of different radio frequency bands. In combina-
tion with our novel data structures and an efficient
implementation using general-purpose GPU programming,
this allows us to calculate both field attenuation and delay
spread at the same time. This is done with high accuracy
and in a speed not possible before. Similar to our approach
is the work by Rajkumar et al. [25], who also used a form of
beam tracing for wave propagation, but determines
visibility differently. Similarly, Fortune presented a beam
tracing approach for indoor wave propagation [26].

Furthermore, Rick et al. presented a GPU-based approach
to radio wave propagation in Catrein et al. [27] and Rick and
Mathar [28]. They trace propagation paths in a discrete
fashion by repeated rasterization of line-of-sight regions. By
restricting computations to the strongest path only, propaga-
tion predictions are delivered at interactive rates. However,
since only the mean-received signal strength is computed,
multipath effects, which are an essential requirement for
delay spread estimations, are completely neglected. This is
not the case with our algorithm. Besides basic propagation
losses, advanced channel characteristics like the delay
spread are computed at a considerably reduced runtime.

3 OVERVIEW

Our approach rapidly and accurately computes two
important aspects of radio wave propagation at arbitrary
points in the scene: the average field strength and a delay
spread histogram.

The algorithm consists of two parts: First, it builds a
beam hierarchy that describes the propagation of the
electromagnetic radiation, and second, it evaluates the
radio field properties based on this beam hierarchy.

The tracing algorithm relies on a small rendering pipeline
similar to OpenGL, but implemented in CUDA, to determine
the split positions inside of each beam. For efficiency,
unnecessary geometry is clipped away by the use of a
quadtree that is intersectedwith thebeam.Thepseudocodeof
the tracing algorithm is as follows:

1. Build scene geometry quadtree

2. Trace initial beams from source

1 Clip scene against beam using quadtree

2 Split beam according to visible geometry

3 Generate reflected, refracted and

diffracted beams

4 Update signal time and attenuation for beam

5 Trace recursively

The evaluation of the generated beams also uses a
simplified rasterization pipeline, which accumulates the
beam attenuation and the delay into 2D and 3D frame
buffers, respectively. The pseudocode of the evaluation
algorithm using the information computed in step 2.4 in the
previous listing is thus:

1. Iterate over all beams

1 Rasterize beam attenuation into 2D array

2 Rasterize beam delay into 3D histogram

4 THE ALGORITHM

4.1 Parallelized Rasterization

The following sections describe the beam tracing algorithm,
which heavily relies on our rasterization engine. It is a subset
of a standard rendering pipeline and is implemented in
CUDA.Thepipeline consists of transformation, clipping, and
rasterization steps. All steps are implemented in software
only, and are fully parallelized. The advantage of implement-
ing our own rendering pipeline, instead of using, e.g.,
OpenGL, is the increased flexibility. Our engine supports
frame buffers of arbitrary size, both 2D and 3D. Especially,
the latter property allows us to efficiently generate delay
spread histograms for every point in the scene. With the
advent of many-core architectures on GPUs, which are
replacing fixed-function graphics pipelines, implementing
rendering pipelines in software is again becoming an
interesting topic. Hardware such as the Intel Larrabee
platform implements rasterization not in hardware anymore,
but performs it in software. This gives increased control over
the details of the implementation of the rasterization pipeline
and is why we decided to investigate this in more detail.

We have implemented two rasterization algorithms so far
to test their performance on massively parallel platforms.
One employs a simple scan line conversion. The other
algorithm uses half-space rasterization, as described by
Pineda [29]. Both algorithms have their advantages and
disadvantages concerning code complexity and perfor-
mance. In our experiments, the half-space rasterization
algorithm turned out to be about twice as fast, which is why
we used it in the final evaluation.

4.1.1 Scan Line Rasterization

Manyof the earliermethods of converting a polygon to pixels
are methods based on scan line conversion. Our implemen-
tation is based on the scan line rasterization algorithm by
Heckbert [30]. The algorithm divides the rasterization task
into horizontal scan lines using increments from line to
line to adjust the start and end point of the raster line. The
increments are updated on the fly at each vertex of the
boundary. There are two increments dl and dr for the left and
the right side of the polygon boundary.

This on the spot updating of the parameters is not well
suited for massively parallel platforms like GPUs. It results
in lots of additional randommemory accesses, slowing down
the execution time considerably.

Instead of this, we decided to precompute the events
where a new vertex is encountered and put all necessary
rasterization parameters per polygon into an array. This can
then be laid out nicely aligned so that memory access
becomes sequential and coherent over all threads. More-
over, we store the four increment parameters in 2D textures,
since it is the fastest way to access memory on current
GPUs. Texture memory is usually the only memory on a
GPU equipped with a small cache to buffer access to it. So,
we just store for each vertex encountered which of the
increment variables has to be updated, as well as the new
scan line start and end position. The parallelization of the
algorithm can happen both inside of a single scan line as
well as over several scan lines at once, up to the next vertex
event. For coherent memory accesses that are well aligned
between all threads, we use a simple tiling mechanism that
covers the polygon.
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4.1.2 Half-Space Rasterization

A somewhat more advanced algorithm uses half-space
classification to determine if a pixel lies inside or outside of
the triangle. Such algorithms were introduced first by
Pineda [29], but many more and newer variations of this
exist. The advantage lies in the more efficient parallelization
of these algorithms, since the half-space tests can be
performed for a large number of pixels in parallel. Another
advantage is that when whole pixel blocks are processed,
trivial accept and reject cases can be used, to perform the
rasterization even faster. Only blocks that are partially
covered by the triangle need closer inspection.

However, this class of algorithms comes with a some-
what higher computational cost. More registers are needed
for storing variables and temporary results. This means not
as many threads can be launched as with the scan line
algorithm. But as we will show in the next section, it still
pays off, since this class of algorithms seems to fit the GPU
model better than scan-line-based algorithms.

4.1.3 Performance Evaluation

The advantage of the scan line rasterization is that the
algorithm is rather simple and small. Thus, it uses relatively
few registers, which are an important and valuable resource
on current GPUs. For example, NVIDIA GeForce GPUs
usually have either 8,192 or 16,384 scalar registers available
per multiprocessor. This limits either the amount of usable
registers, or the number of threads that can be launched
concurrently on a multiprocessor. The more threads can be
launched, the higher the utilization of the GPU. However,
the scan-line-based rasterization algorithm needs a pre-
processing step to compute the vertex events and their
respective parameters. This leads to reduced performance
compared with the half-space rasterization algorithm.

Block-based algorithms like the half-space test tend to
map better to the GPU architecture. Current GPUs and
GPU-based compute APIs use a grid computing approach
(e.g., NVIDIA CUDA or OpenCL [31], [32]). A grid consists

of blocks, which, in turn, consist of discrete threads. Blocks
can be 1D, 2D, or 3D, which can be used to easily access
thread-specific data in memory.

We performed a thorough benchmarking of both raster-
ization algorithms, by testing them with a variety of block
and grid configurations. This is shown in Fig. 2, where it can
be seen that the half-space algorithm clearly outperforms the
scan line algorithm by more than a factor of two. We plotted
the 10 best grid configurations, which for both algorithms are
very close together. The block sizes are often 16 or 32, which
is natural for CUDA devices, since the multiprocessors
contain so-called half-warps of size 16which run in lock step,
i.e., threads in those blocks have to run exactly the same
instructions. So, it is very useful to group threads in sizes of
16 or 32 together that perform locally similar code paths,
which is the case if they rasterize neighboring pixels.

It is still a great challenge to implement a high-
performance rasterization engine. Our own implementation
is still at least one order of magnitude slower than the one
found on current graphics hardware. But we consider our
pipeline to be experimental anyway, since it supports even
3D frame buffers and everything is reprogrammable.

4.2 Beam Tracing

A beam in 2D is defined as a quadrilateral. It represents a
bundle of rays emanating from an edge, which might be
degenerate in the case of a point radiation source, in which
case the beam is equivalent to a triangle. Each beam carries
information about signal travel time, for later evaluation of
the path loss and delay spread. Our algorithm generates
recursively a beam hierarchy, beginning at a radiation
source. Beams are reflected, refracted, and also diffracted at
surface boundaries. A beam might be infinite at one end, if
it does not intersect any geometry at all, or it might be finite,
if it intersects the geometry of the scene.

The beam is constructed from four edges (compare
Fig. 3). The two edges e1 and e2 form the beam cone. If the
beam is created due to a reflection on a building wall, then
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Fig. 1. Visual result for the Munich scenario, marking the measurement
route.

Fig. 2. Performance of the 10 best grid configurations for each
rasterization algorithm. The top graphs represent the scan line raster-
ization algorithm, while the bottom graphs represent the half-space
rasterization.



it has another edge i that coincides with the wall. We call
this the image plane of the beam. This will actually be the
image plane of the viewing frustum during the beam
splitting step. The last edge lies virtually at infinity for
beams that do not get split, or it coincides with a part of a
wall for beams that have hit some part of the geometry.

4.2.1 Clipping Geometry against the Beam

Our approach makes use of two primary data structures. A
quadtree for accelerating the intersection of beams with the
scene geometry, and the beamhierarchy, which describes the
propagation paths the electromagnetic radiation may take.

When a beam is formed, it has to be intersected with the
scene geometry in order to recursively spawn new beams
that, in turn, will form reflected and transmitted beams. The
first step of the intersection is done by enumerating all
quadtree nodes that the beam overlaps with. This helps to
cull away all unnecessary geometry from the computation.
Only geometry from overlapping quadtree nodes is used in
the following beam splitting process.

4.2.2 Splitting the Beam

For fast and easy splitting of the beam into new subbeams,
we simply render the geometry contained in the beam into a
2D frame buffer, containing IDs for the geometric faces and
an associated depth buffer. Since beams tend to become
very thin after a small number of interactions, only few
faces have to be rasterized.

When the faces that are hit have been identified, one has to

compute exact intersection points of the beam with the wall.

Given a beam as in Fig. 3, we have a ray r ¼ oþ �d from the

beam origin o ¼ ðxo; yoÞwith direction d ¼ ðxd; ydÞ to the first

rasterized intersection point of the beam with a face, and

finally, the face f ¼ fa; bg with points a ¼ ðxa; yaÞ and

b ¼ ðxb; ybÞ. We can now compute the intersection point

p ¼ ðx; yÞT , by solving the two following equations:

x y 1

xo yo 1

xo þ xd yo þ yd 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0; ð1Þ

x y 1

xa ya 1

xb yb 1
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�

�

�

�

�

�

�

�

�

¼ 0: ð2Þ

We ensure that the resulting intersection point lies on the
face being intersected, by clamping the newly created beam
to the end points of the face being tested.

4.2.3 Generating Reflected and Diffracted Beams

If a certain recursion depth is not yet reached, we recursively
generate reflected and diffracted beams, leading to a beam
tree. The reflected beam is very easily constructed by
mirroring the beam origin at the wall that the old beam
has hit. This is shown in Fig. 4. The new beam originates
from a virtual source that is constructed by simply mirroring
the source of the parent beam at the reflecting face.

Diffraction beams are constructed at silhouette edges of
the geometry for every parent beam that has been split at
one such edge. The diffraction beam spans the area between
the shadow boundary of the parent beam and the back-
facing part of the silhouette, see Fig. 5.

According to the Geometrical Theory of Diffraction [33],
diffracted rays are produced by incident rays which hit
edges, corners, or vertices of boundary surfaces. Diffracted
wave fronts can enter the shadow regions of the objects that
are the point of diffraction. The electromagnetic field is
assigned to diffracted rays similarly to reflected or trans-
mitted rays. The initial value of the field on a diffracted ray is
obtained by multiplying the field of the incident ray by a
diffraction coefficient. The actual values are determined by
the incident direction and the diffraction direction, wave-
length, and physical properties (material) of the media at the
point of diffraction.
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Fig. 3. A beam is defined by four edges. The two edges e1 and e2 form a
quadrilateral whose baseline i we call the image plane of the beam. The
point o is the (virtual) origin of the beam. A ray r ¼ oþ �d is constructed
through the image plane and intersected with the face fa; bg which was
identified in the beam frame buffer.

Fig. 4. (a) A beam is created and intersected with the geometry. (b) The beam is split into child beams, according to the intersections. (c) Reflection
edges are identified, and the old beam origin is reflected at those edges, constructing reflected beams. (d) In the same manner, diffraction beams are
generated at silhouette edges.



Ray tracing algorithms for radio wave propagation
commonly model diffraction effects by tracing a multitude
of rays into the respective diffraction cones. This fits well
into the concept of beams, see Fig. 5.

Note that the beam tree contains two different kinds of
beams. At every even-numbered level in the tree (starting at
level 0), it contains a beam that was spawned by means of
reflection or diffraction. These beams are evaluated later if
and only if they are a leaf in the tree. If, on the other hand,
they have child beams, they have been split. On the odd
levels of the tree, there are only beams that were produced
by the splitting algorithm. These beams have to be
evaluated always, since they contain sufficient visibility
information to represent a valid part of the propagation
path. This gives a simple rule for the second part of the
algorithm, where the beams are evaluated and the path loss
is computed, see Fig. 6 for an illustration.

4.3 Beam Evaluation

4.3.1 Computing the Attenuation

From global illumination, we know the Bidirectional
Reflectance Distribution Function (BRDF) denoted by the
symbol fr. It also exists in the context of radio wave
propagation. However, measured BRDFs for wavelengths
on the order of centimeters are not known. But many objects
and materials in this frequency spectrum are of specular
nature anyhow, as stated by Rappaport [14]. So, we just
need to have a scene-specific extinction coefficient, which
can be estimated or guessed from sparse measurements.

For radio wave propagation simulations, usually, the
path loss is computed, which is the attenuation of the
signal. The most simple model for this is the free space
model, which expresses the path loss in decibels:

Lfp ¼ 10n log10 dþ C: ð3Þ

For the path loss exponent n ¼ 2 and the system loss constant
C ¼ 0, we get the same attenuation (� � 1

d2
) that is known

from global illumination for the attenuation of the flux
density with the distance to the light source. In Section 4.3.2,
we will further explain how to use this information to
compute the final path loss at a specific point.

Our method currently does not support the computation
of small-scale (spatial) fading effects due to multipath
propagation. This effect is also called destructive interference
and ismostoftenmodeled togetherwith temporal small-scale
fading effects, as described by Rappaport [14]. Although
constructive and destructive interference of multipath
propagationcouldprobablybeapproximatedbyourmethod,
we did not pursue this any further. It depends on the base

frequency and the bandwidth of the channel used. In most
systems, both spatial as well as time-varying small-scale
fading will be simulated by statistical methods, on top of
conventional propagation simulations such as ours. Further-
more, the geometric model underlying the simulation would
need to be much more complex, including cars, scattering
objects, such as trees, and possible much more detailed
building models. This will be in most cases prohibitively
expensive, both in terms of computational complexity aswell
as in resources needed to create the model.

4.3.2 Evaluating the Beam Hierarchy

After the beam tree has been generated, it has to be
evaluated, to generate the final signal strength image, and
to compute the delay spread histogram. This is done by
traversing the beam tree and rasterizing each beam,
accumulating the results in two buffers. See Fig. 6 for an
illustration of the beam tree. Only beams that were created
in a split step and those that are leaves of the tree will be
rendered and contribute to the final field strength.

The first buffer is a 2D buffer that accumulates the signal
strength, and the second buffer is a 3D buffer that contains
the delay spread histogram. The algorithm rasterizes each
beam and computes the attenuation and the travel time
inside of it. The attenuation is used for computing the final
signal strength, and it propagates through the beam
hierarchy and through each beam with the accumulated
distance from the radiation source.

Given the setB of all beams of the beam tree that lead to an
individual beam b, we compute the path loss LpðxÞ of a point
x 2 b. We accumulate the BRDFs fr for each reflection and
also take the length of the propagation path into account. It is
defined by the distance from x to the transmitter origin to
(equivalent to the 1

d2
from global illumination). Hence, the

path loss is then defined as

LpðxÞ ¼

Q

bi2B
f i
r

jx� toj
2
: ð4Þ

This value can be written directly into a 2D array or
frame buffer, using efficient polygon rasterization, imple-
mented on the CUDA device. The accumulated path loss is
computed by simply summing all beams into the 2D buffer.

4.3.3 Computing the Delay Spread

The path loss and the delay spread are computed at the
same time. We use a 3D array for collecting the histogram.
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Fig. 5. (a) Diffraction beam in blue and (b) propagation path due to
diffraction at building edge in green.

Fig. 6. The beam tree structure. Only the bold boxes will be actually
rendered in the final rasterization step.



Every column in this array represents a discrete delay
spread histogram for the given 2D position. When we
evaluate (i.e., rasterize) a beam, we compute for each pixel
the distance d ¼ jx� toj the signal has traveled so far from
its virtual source to. This can be mapped to a traveling time,
which is approximately t ¼ d � c, where c � 299 � 106 m

s
,

depending on the optical density of the material. This is
then mapped to one of the bins of the histogram and the
path loss is added to that bin. Accumulating over all beams
gives an accurate estimation of the delay spread at this
specific point of the scene.

In our implementation, the user can specify all relevant
simulation parameters, such as the maximum recursion
depth, the transmitter and receiver position, and resolution
of the resulting simulation. Feedback is given on the spot and
is often interactive, depending on the scene complexity and
number of reflections and diffractions. The evaluation of the
delay spread is obviously instantaneous for a static transmit-
ter and a moving receiver, and allows the user to intuitively
explore the temporal spreading characteristics of the signal.

5 MODEL PARAMETER ADAPTION

The modeling of urban propagation environments often
consists of polygonal building outlines with one height
value per building, the so-called 2.5D description. Other
influencing factors like building material, roof style, texture,
or vegetation are typically not included in the description of
the urban models since the acquisition of this information is
either very expensive or sometimes simply not available.
However, a city with modern skyscrapers that consist
predominantly of glass fronts and flat roof tops will
certainly exhibit a different attenuation behavior than a
small town with pitched roofs and fronts made of concrete.

In literature, it is, therefore, quite common to adapt
propagation models to different types of environments. A
qualitative description of a propagation environment
would, for instance, consist of a classification into rural or
urban, or by building density and street widths. However,
such coarse grain classification usually reflects typical
propagation characteristics very poorly. Therefore, we use
an implicit description by adapting model parameters to
different environments by calibration from real-world
measurements. Thus, we model unknown components of
the propagation environment like traffic or vegetation by
introducing variable coefficients (model parameters) into
our path loss calculation.

Since the logarithm does not change the basic behavior of
a function, and therefore, preserves the minimum, we
choose to optimize the logarithm of the path loss (4). Hence,
the product in the numerator is transformed to a sum which
can be expressed easily in matrix notation. The linear
system is set up as

C
1

d�

Y

N

i¼1

fi ! 1 logC � � log dþ
X

N

i¼1

log fi: ð5Þ

We can than formulate the adaption of model para-
meters as a constrained least-squares problem in order to
minimize the mean-squared error between predicted and
measured data:

min
x

F xð Þj jj j22 ¼ min
x

X

i

F 2
i xð Þ; ð6Þ

such that

F xð Þ ¼ M � x� d; ð7Þ

A � x � b; ð8Þ

B � x ¼ c: ð9Þ

Each row of the matrix M corresponds to one measure-
ment location, whereas the columns are formed by the beams
that reach the respective location, like travel distance of each
arriving path and number of reflections and diffractions. The
basic structure of M is depicted in Fig. 7 and is discussed in
more details in the last paragraph of this section.

The vector d contains the measured path loss at each
location; hence, the optimal parameter vector x̂ minimizes
the mean-squared error between the predicted and mea-
sured path loss with respect to the constraints (8) and
additionally satisfying the equality constraints (9). Using the
constraints, we can incorporate expert knowledge on the
propagation phenomena into the optimization problem,
e.g., the path loss coefficient � is known to be in the range
between two and five, for free space propagation and inside
densely populated cities, respectively. The optimal x̂ can
then be calculated by common solver algorithms like Gauss-
Newton or Levenberg-Marquardt [34].

To the best of our knowledge, previous approaches to
the adaption of model parameters from ray paths like the
one of Mathar et al. [35] have been restricted to optimiza-
tion of the strongest ray paths, only. First, they adapt their
model parameters to best match their least attenuated ray
path at each receiver location based on an initial parameter
vector. Then, they cyclically iterate between the computa-
tion of the strongest ray paths and corresponding para-
meter estimation because changes in the model parameters
can result in different strongest paths in the next iteration.
They fail to provide a strict proof for convergence of their
alternating approach; however, they claim to achieve good
results in practice after two or three iterations. Obviously,
this procedure heavily depends on the initial parameter
vector and is not guaranteed to find the global optimum
because the optimization algorithm has no access to the
information of all incoming ray paths, in a case with
multiple strong propagation paths.

Our approach does not depend on an alternation
between path computation and parameter estimation. We
directly incorporate all paths from the beam hierarchy into
the parameter estimation by binary encoding all existing
paths. Hence, we can provide a closed form for the
optimization algorithm and thereby inheriting all properties
of the optimization procedure at hand. The method to
incorporate the binary encoding in the optimization matrix
M (cf. Fig. 7) is described below. For ease of understanding,
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Fig. 7. Each row of the optimization matrix corresponds to one
measurement location. Each column is formed by the travel distance
and number of reflections and diffractions of the arriving beams at the
respective location.



we describe the procedure only for the reflection effect.
However, the concept is, of course, not limited to propaga-
tion paths based on reflection only but can easily be
extended to support paths that are due to diffraction or
other propagation phenomena.

Let R be the maximum recursion level of the reflection
and N the maximum number of arriving paths. Each row of
M is then of the form (without the leading constant):

log d1 �1;1 . . . �1;R . . . log dN�N;1 . . . �N;R

� �

; ð10Þ

where �i;j is a binary encoding such that

�i;j ¼
1; if path i has j or more reflections;

0; otherwise:

�

ð11Þ

Hence, we use the �i;js to switch certain parts of the
matrix M on or off, so to speak, thereby providing the
required uniform input matrix for the optimization algo-
rithms while still supporting a varying number of arriving
paths for each receiver location.

With this method, we have calculated the optimal
parameter vectors for the widely known Munich data set
from the COST 231 project which contains a 3D model of
Munich downtown and three measurement routes. Fig. 8
shows the shape of the optimal parameter vectors for each
measurement path separately. Although, the curves differ
slightly in scale, they agree on the overall shape. The
standard deviation between the optimal parameter vectors
of route 1 and route 2, respectively, lies between 3 and 4
when compared to the optimal parameters of route 3.
Therefore, we have chosen the parameter vector of the third
measurement route for the actual computation of path loss.
The adaption of model parameters to the third measure-
ment route results in a very good agreement of prediction
and measurement for the remaining measurement routes.
When using these parameters, we achieve standard devia-
tions between 6 and 8 dB for all three routes.

6 EVALUATION

In this section, we will take a look at the two most important
properties of our algorithm. First, we analyze the space and
time complexity, and second, we evaluate the accuracy,
compared to real-world measurements and other works.

6.1 Complexity and Performance

The performance of the algorithm depends on several
parameters. First of all, the complexity of the scene geometry
influences the beam splitting algorithm. It is vital to our
algorithm that this visibility computation is done on the
GPU, since it takes up most of the time in our algorithm. An
important aspect of this is finding out the optimum
configuration for the chosen platform. In our case, the
dimensions of the computing grid on the CUDA device had
to be optimized. Experiments showed that for this algorithm,
128 threads are the optimal grid size on current devices.

However, the number of recursive reflection and diffrac-
tion steps also influences the complexity of the algorithm. In
the beginning, we create only one beam in a certain
direction, but with every split and reflection, it will spawn
a number of additional beams, thus letting the number of
beams grow exponentially in the worst case. However,
beams tend to get very thin after a few reflections so that on
levels near the bottom of the beam tree, there will be only a
few children per beam.

Because of this, the size of the beam hierarchy becomes
linear in the number of considered interactions, as can be
seen in Fig. 9, and also depends on the spatial resolution of
the frame buffer, which can be defined by the user in m per
pixel. The evaluation itself is a simple polygon rasterization
and has been implemented using CUDA. We chose not to
use OpenGL here, because it does not allow to render easily
into a 3D texture, which is necessary for the delay spread
histogram computation.

In the Munich scenario (see Fig. 1), there are approxi-
mately 80,000 vertices for the buildings. This is a reasonably
complex scene, which is computed in several minutes on
normal ray tracers for radio wave propagation (e.g.,
Schmitz and Kobbelt [21]). Our algorithm computes the
scene in less than 3 seconds, even with complex recursive
interactions. The machine used in this case was a Core2Duo
with 2.4 GHz and a NVIDIA GeForce 8800 Ultra.

On the other hand, the diffracted beams are usually much
broader, often with an opening angle > 90�. This leads to
muchmore spawned rays. However, it is often not necessary
to do more than one or two diffraction steps, because the
signal strength is attenuated very fast by diffraction. Thus, it
is more important to create a propagation path that diffracts
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Fig. 8. Optimal parameter vectors for each measurement route.
Fig. 9. Performance of our algorithm for varying levels of recursive
interactions. Complexity grows approximately linearly.



only once into a street, where reflection will carry on to
propagate the signal.

6.2 Accuracy

For the evaluation with measured data, we use two
different data sets. The first one is the above mentioned
Munich data set from the COST 231 project. The second is
the data set of the city of Ilmenau, as described by Schneider
et al. [37]. This scenario contains measurements for three
different base stations with highly accurate and detailed
measurement samples. The actual measurement data had to
be averaged and sampled down to our simulation grid’s
resolution, which is 5 m. We chose this particular resolu-
tion, to be able to compare the Munich and Ilmenau
scenarios. The former comes with measured data with 5 m
resolution. So, using a higher resolution of the simulation
grid provides no benefits. Hence, we also use the same
resolution on the Ilmenau data set. Memory and time
requirements obviously grow proportionally to the grid
resolution (i.e., linearly in the number of pixels).

In all our experiments, we used the parameter optimi-
zation method described in Section 5. For any simulation
method, a way of setting the simulation parameters needs
to be used to provide sensible results. This can be done
by educated guesses, or by our method, using sparse

measurements and our optimization framework. Not using
either will lead to completely wrong results. The advantage
of our method is that measurements lead to more correct
results and the computed parameters are valid for different
variations of a scenario. For all rasterization tasks, we used
the half-space rasterization algorithm, as described in
Section 4.1.2. The recursion depth for the beam tracing
was fixed to four reflections for all scenarios.

6.2.1 Munich Scenario

Themeasurements of this scenario can be taken as a reference
solution for our algorithm and were taken on three different
routes on street level. We compare the measured data with
our simulation to estimate the quality of the simulation. It has
to be noted that there are many more aspects to radio wave
propagation than only interaction with static geometry.
Especially moving objects, like people or cars, or even the
weather can add significant time-based noise to measure-
ments. This will influence the measurements drastically so
that most other works leave these aspects out of the
simulation and use stochastic methods tomodel these effects
on top of the ray or beam-traced simulation.

In Fig. 10, we show one of the route plots in blue
compared to our simulation in red. One can see that the
overall shape of the curves match, which indicates that
effects based on the scene geometry and its interaction with
the radio waves are matched well by our algorithm. The
higher level fluctuations in the measured signal most
probably stem from dynamic effects which are not included
in our algorithm. An example delay spread plot is shown in
Fig. 11. Note the different spikes that are due to multiple
reflections off of building walls. This will influence how
well the receiver can decipher the transmitted signal, due to
the resulting echoes.

The most common form of comparing radio wave
propagation algorithms is to compute the standard devia-
tion of the errors between the simulation and the measure-
ments. In Table 1, we compare our method to three other
state-of-the-art works. Besides the timings and the accuracy,
it is also most important to compare the features of the
simulation. Although Rick and Mathar [28] are able to run
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Fig. 10. A plot showing the measured results (blue) versus our
simulation (red) for (a) the downtown Munich scenario and (b) the
Ilmenau scenario.

Fig. 11. A simulated delay spread histogram for one receiver position in
the Munich scenario. The multiple peaks represent different propaga-
tions paths, which arise due to reflection and diffraction.



the Munich scenario at interactive rates, their method does
not allow for the computation of reflections. Hence, they are
not able to compute a detailed delay spread, since this relies
on multiple propagation paths, which are due to reflection
and diffraction. It is noteworthy that Rick and Mathar get a
better value for the standard deviation for this specific
scenario. However, their approach has limitations. They are
only able to predict the average signal strength, and
multipath propagation cannot be modeled. Optimally, one
would use their approach to quickly optimize the antenna
positions for best average signal strength, and then, use our
approach to optimize for delay spread characteristics. Wahl
et al. [36] do not compute delay spread, although they state
that it might be incorporated into their approach. However,
this still has to be shown to be a viable option. The results
from Schmitz and Kobbelt [21] are better, but with much
longer computation times. Both the accuracy as well as the
runtime are due to the fact that they use a 3D ray tracer,
which is computationally more expensive, but also models
the given scenario in greater detail than our approach.

6.2.2 Ilmenau Scenario

This particular scenario was created and recorded by the
TU Ilmenau [37] and contains about 380,000 vertices, see
Fig. 12. The measurements contain data for three different
base stations and were sampled very densely. Because of
the fact that we used only a resolution of 5 meters for our
simulation, the measurement data had to be sampled
down. For example, there exist more than 170,000 sample
points for the first base station. We reduced this amount of

data to less than 900 samples by averaging to fit our
simulation resolution.

The geometry of the city already contains some slopes
toward the border of the city model. This can lead to wrong
predictions, since our simulation model so far assumes
relatively flat urban scenarios. This leads to a less accurate
prediction than in the Munich setting, but still comparable
to the earlier presented results from our and other works.
The simulation results can be seen in Table 2 and Fig. 10,
and a visual result in Fig. 12. Although the simulation data
in Fig. 10 match the measured data quite well, one can see
that our approach overestimates the signal strength at some
points. This might be due to landscape geometry, which we
neglect in our 2D approach, or other factors that are not
reflected in our model. Nevertheless, we achieve a standard
deviation between 4.7 and 6.9 dB for the simulation results
compared to the measurements.

7 CONCLUSION

We have shown a fast and accurate algorithm that can
accurately simulate radio wave propagation in urban
environments, including important effects like multipath
propagation due to reflection and diffraction, and predict
the resulting delay spread.

As future work, we would like to implement a full 3D
beam tracer. This leads to a number of interesting, but
difficult questions, but will also solve several restrictions.
Currently, scenes with hills and valleys will not be modeled
very accurately. Our 2D method will predict line-of-sight
paths or wall reflection paths that do not exist in reality.
This already becomes somewhat apparent in the Ilmenau
scenario. Hence, extension to 3D is necessary for the
method to be more general.

However, the beam splitting by rasterization as used in
the presented work will not work anymore when using a
true 3D approach. Also, beams and beam hierarchies can
have nontrivial geometry. Especially, in the case of slightly
curved surfaces, one has to take care that the reflected EM-
field modeled by the beam hierarchy is still continuous. In
2D, this is more easy than in 3D, where the edges of a
reflected beam don’t have to intersect in one point anymore.
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TABLE 1
Comparison of Our Method to Several Other State-of-the-Art Works

Our method supports all important propagation effects and is apart from the work of Schmitz and Kobbelt [21], the only method which simulates the
delay spread.

Fig. 12. The city of Ilmenau scenario, with the propagation result for
base station 1, and the measurement routes in black.

TABLE 2
Results for the City of Ilmenau Scenario
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