

Efficient ray shooting and hidden surface removal

Citation for published version (APA):
Berg, de, M. T., Halperin, D., Overmars, M. H., Snoeyink, J., & Kreveld, van, M. J. (1991). Efficient ray shooting
and hidden surface removal. (Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9128). Utrecht
University.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/f63143c0-b30c-4479-9f32-63649edbe2b3

Efficient Ray Shooting and

Hidden Surface Removal

M. de Berg, D. Halperin, M. Overmars, J. Snoeyink

M. van Kreveld

RUU-CS-91-28

July 1991

Utrecht University

Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : ... + 31 - 30 - 531454

Efficient Ray Shooting and

Hidden Surface Removal

M. de Berg, D. Halperin, M. Overmars, J. Snoeyink

M. van Kreveld

Technical Report RUU-CS-91-28

July 1991

Department of Computer Science

Utrecht University

P.O.Box 80.089

3508 TB Utrecht

The Netherlands

ISSN: 0924-3275

M. de Bergt

Efficient Ray Shooting and

Hidden Surface Removal*

D. Halperint M. Overmarst J. Snoeyinkt§

M. van Kreveldt

Abstract

In this paper we study the ray shooting problem for three special classes

of polyhedral objects in space: axis-parallel polyhedra, curtains (unbounded

polygons with three edges, two of which are parallel to the z-axis and extend

downward to minus infinity) and fat horizontal triangles (triangles parallel

to the xy-plane whose angles are greater than some fixed constant). For

all three problems structures are presented using O(n2+£) preprocessing, for

any fixed e > 0, with o (log n) query time. We also study the general ray

shooting problem in an arbitrary set of (possibly intersecting) triangles. Here

we present a structure that uses O(n4+£) preprocessing and has a query time

of O(logn).

As an application of the ray shooting structure for curtains we show that

the view of a set of (non-intersecting) polyhedra with n edges in total can be

computed in O(n1+£vk) time, where k is the size of the output, for any fixed

e > o. This is the first output-sensitive algorithm for this problem that does

not need a depth-order on the faces of the polyhedra.

1 Introduction

The ray shooting problem is to preprocess a set of objects such that the first object

hit by a query ray can be determined efficiently. This problem (also called the ray

tracing problem) is an important problem in computer graphics. To compute the

shading information that is necessary to render a realistic picture of a scene, one

can trace rays from the view point until they hit an object, trace the deflected rays,

·This research was supported by the ESPRIT Basic Research Action No. 3075 (project AL

COM). The first and third author were also supported by the Dutch Organization for Scientific

Research (N.W.O.).

tDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The

Netherlands.

lDepartment of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
SOn leave from the Department of Computer Science of the University of British Columbia.

1

etcetera, to see if a light source can be reached. Since this ray tracing operation

has to be performed many times, it is natural to preprocess the objects in order to

speed up the tracing process.

For this reason the ray shooting problem is one of the more widely studied

problems in computational geometry. In the plane this has led to many efficient

solutions, both for general scenes (where the objects are arbitrary line segments

[1, 10, 17, 21] or curved segments [3]) and for special cases (such as ray shooting

inside a simple polygon [5, 8]).

In 3-dimensional space, however, the ray shooting problem is still far from re

solved. When the origin of the query ray is fixed and the objects are the faces of

a polyhedral terrain, then an efficient solution exists [12]. For arbitrary query rays,

we know of only three results in the literature.

The first result is due to Schmitt, Miiller and Leister [25]; they show that a

set of axis-parallel polyhedra in space can be preprocessed into a data structure of

size O(n3 polylog n) such that a query takes O(log3 n) time. They also present an

O(n polylog n) size structure with O(nO.695
) query time.

The second result is by Chazelle et al. [7]. They have shown how to preprocess

a polyhedral terrain into a structure of size O(n2+E) such that ray shooting queries

take O(log2 n) time.

Finally, there is a result by Pellegrini [23], who gives a structure for ray shooting

in a set of non-intersecting triangles. His structures uses O(n5+E
) preprocessing, and

it has O(log n) query timet.

In this paper we improve these results, and we also obtain new results for other

classes of objects.

First, we consider ray shooting in axis-parallel polyhedra. In this case it is possi

ble to obtain O(log5 n) query time after O(n2+E) preprocessing, by using the recently

developed recursive partition trees of Chazelle et al. [9] instead of the conjugation

trees of Dobkin and Edelsbrunner [14] in the second structure of [25]. (In fact, any

thing between near-linear storage and roughly O(fo) query time and near-quadratic

storage and polylogarithmic query time is possible.) We take a different approach

and obtain a structure using the same amount of preprocessing time and space,

namely O(n2+E), but with a query time of only O(log2 n). The solution extends

to polyhedra with faces having only 9 different inclinations. The query time then

becomes O(g2log2 n), while the amount of preprocessing remains O(n2+E). An inter

esting subproblem that we solve is the stabbing-counting problem for axis-parallel

faces. We show that after O(n2+E) preprocessing it is possible to count in O(log n)

time the number of faces intersected by a query line. We also show how to solve

1 Pellegrini's solution in [23] is incomplete. An improved and corrected result can be found in

[24]. We have recently learned that Agarwal and Sharir [2] also study the general ray shooting

problem, and give an O(nl+c) preprocessing, O(n4 / 5) query time solution. Finally, we note that

Pellegrini [24] has obtained results on ray shooting in axis-parallel polyhedra, which are similar to
the results of this paper.

2

the ray shooting problem for axis-parallel polyhedra in (log n) time after O(n2+e)

preprocessing using yet another method; this method, however, is much more com

plicated.

The second class of objects we consider is the class of curtains. A curtain is an

unbounded polygon in space with three edges, two of which are parallel to the z-axis

and extend to minus infinity. Thus the polygon can be viewed as an infinite curtain

hanging from the third, bounded, edge. Our solution uses O(n2+e) preprocessing

and has O(log n) query time. If we hang curtains from the edges of a polyhedral

terrain, then by ray shooting in this set of non-intersecting curtains we can obtain

the answer to the ray shooting query in the terrain. Furthermore, we allow curtains

to intersect; thus, curtains can be considered as a generalization of a polyhedral

terrain. Notice that the query time we achieve is better than that achieved for

terrains in [7], while the amount of preprocessing is the same.

Thirdly, we study the ray shooting problem in a set of fat horizontal triangles,

i.e., a set of triangles that are parallel to the xy-plane in which all angles of the

triangles are greater than some fixed constant. Again, an O(n2+e) preprocessing,

O(log n) query time structure is given.

After studying these special cases, we return to the general ray shooting problem.

It is shown how ray shooting queries in an arbitrary set of (possibly intersecting)

triangles can be answered in O(log n) time after O(nHe) preprocessing.

Another basic problem in computer graphics is the hidden surface removal prob

lem: Given a set of objects in space (typically non-intersecting polyhedra), compute

which parts of the polyhedra can be seen by an observer standing at a given view

point. More precisely, we want to compute the visibility map of the scene, i.e., the

subdivision of the viewing plane into maximally connected regions such that in each

region exactly one face of a polyhedron is visible or no face at all is visible. Until

very recently, no output-sensitive algorithm (algorithms whose complexity depends

not only on n, the total number of edges of the polyhedra, but also on k, the com

plexity of the visibility map) was known for this problem except when there is a

known depth order on the faces. Since cyclic overlap can occur at many places a

depth order does not always exist. Furthermore, even if there is no cyclic overlap

it is hard to compute a valid depth order. (See [6] for an initial study of these

problems.) Hence, the restriction to scenes for which there is a known depth order

is a severe one. De Berg and Overmars [13] have shown that a depth order is not

necessary to obtain an output-sensitive algorithm if the polyhedra are axis-parallel.

Using some of their ideas we give the first output-sensitive hidden surface removal

algorithm for arbitrary (non-intersecting) polyhedra. Our algorithm uses the ray

shooting structure for curtains. It runs in O(n He v'k) time. Thus it is quasi-optimal

for very small (near-constant) values of k as well as for very large (near-quadratic)

values of k.

3

2 Ray shooting

In this section we study four versions of the ray shooting problem: ray shooting

in axis-parallel polyhedra, in curtains, in fat horizontal triangles and, finally, the

general case of arbitrary (possibly intersecting) triangles. We will first describe data

structures that have an 0(log2 n) query time. Then we show how the query time

can be reduced to O(log n), without changing the asymptotic preprocessing time.

Before we proceed, it is convenient to introduce some notation and to state a

technical lemma that we use repeatedly. This lemma allows us to build recursive

data structures in an efficient way.

Lemma 1 Let c > 0 be a constant, let r be some sufficiently large parameter, and

let S(n) = 0(r2n2+e
) + 0(r2)S(;-) where S(O(I)) = 0(1). Then S(n) = 0(r2n2+e

).

Here r being sufficiently large means that r is larger than some constant which

depends on c and the constants involved in the recurrence itself. The (inductive)

proof of this lemma is straightforward and therefore omitted. Note that r can be

a function of n, for example r = n6 for some 6 > O. This lemma (and also some

variations of it) will be used in connection with the following result of Matousek [19]

on cuttings of sets of hyperplanes. Define a (~)-cutting of a set S of hyperplanes

in d-space to be a subdivision of d-space into simplices such that any simplex is

intersected by at most ;:- of the hyperplanes in S. The size of the cutting is the

number of simplices in the cutting.

Lemma 2 (Matousek [19]) Given a set S of n hyperplanes in d-space, there ex

ists a (~)-cutting 3(S) of size O(rd). Moreover, such a cutting can be computed

deterministically in time 0(nrd
- 1) for r < n l - 6 •

In the remainder of this section the query ray is denoted by p. The point p =
(PX,PII'PZ) is the starting point of p and l(p) denotes the line containing p. The

projection of an object 0 onto the xy-plane is denoted o. Finally, we say that a

segment e in space, also called a rod, passes above a rod e' iff en e' f=. 0 and 'at

this intersection point' e has greater z-coordinate. The notion of 'passing above' is

defined similarly for lines with respect to rods, rays with respect to lines, etcetera.

2.1 Axis-parallel polyhedra

Let S be a set of axis-parallel polyhedra with n edges in total and let F be the set

of faces of the polyhedra in S. We want to find the first face that is hit by some

(not necessarily axis-parallel) query ray p. To this end we split F into three subsets,

FI , F2 and F3 , that contain the faces parallel to the yz-plane, the xz-plane and the

xy-plane. For each subset we build a separate structure. A query is performed in

all three structures; of the (at most) three faces we find we then select the one that

is intersected first. Next we show how to preprocess Ft for efficient ray shooting; F2

and F3 can be handled in the same way.

4

Because a face I in Fl is parallel to the yz-plane, I has one specific x-coordinate,

denoted Ix. The first level of the data structure is just a balanced binary tree T

storing the x-coordinates of the faces in increasing order from left to right in its

leaves. With each node h in this tree we associate a structure that can answer the

following query on the set Ft of faces that are stored in the subtree rooted at h:

'Given a query line 1, does it stab at least one of the faces in Ft ?'.

Before we turn our attention to the implementation of the associated structures,

let us describe how to use this structure to answer a ray shooting query. Assume

w.l.o.g. that p is directed to the right, i.e., in the positive x-direction. If the

search path of Px (the x-coordinate of the starting point of p) in T turns right at

the root of T, then p cannot stab any face in the left subtree, so we only have to

search recursively in the right subtree. If the search path turns left, then we search

recursively in the left subtree. If we find an answer in the left subtree then this will

be the answer to the ray shooting query. If p misses all faces in the left subtree

then we also have to search in the right subtree. But in that case we know that

the starting point of p lies to the left of all faces in the right subtree. Therefore the

search can be done as follows. Starting at the right child of the root, we walk down

the tree. Using the associated structures we test if the left subtree of the current

node contains at least one face that is stabbed by l(p) (and, hence, by p); if this is

the case then we turn to the left, otherwise we turn to the right. The search will end

in the leaf that contains the answer to the ray shooting query (or we find out that p

misses all faces). The query algorithm visits at most two nodes at every level of the

tree. So after O(log n) queries in associated structures we have found the answer to

the ray shooting query.

We are left with the following subproblem: Preprocess a set of axis-parallel faces

that are parallel to the yz-plane-Iet's call this set A-to decide efficiently whether

a query line stabs at least one of the faces. In fact, a more general structure will be

presented: instead of telling us if at least one face is stabbed, it answers stabbing

counting queries, i.e., it can tell us exactly how many faces are stabbed.

Consider a face lEA. A bottom edge of I is an edge that bounds I from below,

and a top edge is an edge that bounds I from above. For any line 1 that stabs f,
we know that the number of bottom edges of f above which 1 passes is one greater

than the number of top edges of f above which I passes. Similarly, a line I' that

does not stab I passes above an equal number of bottom and top edges. This leads

to the following observation. Let u(l, A) be the number of faces in A stabbed by a

line 1. Let E~ and E~ be the set of bottom and top edges of the faces in A, and let

</>(/, E~) and </>(1, E~) be the number of bottom and top edges passing below 1.

Observation 1 u(1, A) = 4>(1, E~) - 4>(/, E~)

Our strategy will be to store the sets E~ and E~ such that 4>(1, E~) and </>(1, E~) can

be computed efficiently. Consider the set E~ of bottom edges; E~ can be handled in

the same way. Recall that to pass above an edge e E E~, the projection 1 of I onto

5

the xy-plane has to intersect the projection e of e. If this is the case then 1 passes

either above or below e. To distinguish between these two cases we project 1 and e

onto the xz-plane; the projection 1 of I is a line and the projection e of e is a point.

Now 1 passes above e if and only if e E 1-, where 1- is the half-plane below 1.
This leads to the following structure. Let ~ = {e leE E~} be the set of

projections of edges in E~ onto the xy-plane. For an edge e let e* denote its dual,

which is a double wedge, and let W = {e* leE E~}. (We use the standard duality

transform, described for example by Edelsbrunner [16], that maps points to lines

and vice versa.) Let 3(W) be a (~)-cutting for the lines that define the double

wedges in W, where l' is a parameter to be determined later. For a cell c in 3(W),

let W1(c) be the subset of double wedges that fully contain c and let W2(c) be the

subset of double wedges that partially cover c. Since 3(W) is a (~)-cutting we

know that IW2 (c)1 ~ ~ for each cell c, where n = IWI. Our structure can be seen

as a tree of branching degree 0(1'2). The root of this tree stores the subdivision

3(W), preprocessed for point location queries using e.g. Kirkpatricks method [18].

Furthermore, for each cell c in 3(W) the set of points {e I e* E W1(c)} is stored,

preprocessed for half planar range counting as described in [9]. This half planar range

counting structure uses 0(IW1 (c)1210g IW1(c)l) preprocessing time and 0(IWl(C)12)
space and it allows us to count the number of points in {e I e* E W 1(c)} below a

query line in O(log n) time. Finally, the 0(1'2) children of the root correspond to

recursi vely defined structures on the set W2 (c).

Next it is described how to count the number of edges in E~ passing below a query

line 1 with this structure. First 1*, the dual of the projection of 1 onto the xy-plane,

is located in the subdivision 3(W) that is stored at the root of the structure. Let c

be the cell containing 1*. Then we perform a query with 1-, the half-plane below the

projection of 1 onto the xz-plane, in the half planar range counting structure that

stores {e I e* E W1(c)}. This gives us the number of edges in {e I e* E W1 (c)} that

pass below 1. However, {e I e* E W 2(c)} can contain edges that pass below 1 as well,

so we recurse in the child of the root corresponding to cell c. This way we compute

</>(1, E~). A similar structure allows us to count </>(1, E~). Using Observation 1 we

obtain:

Theorem 1 Stabbing-counting queries in a set of axis-parallel faces with n edges in

total can be performed in time O(log n) with a structure that uses O(n2+~) prepro

cessing time and space, for any fixed c > o.

Proof: The correctness of the approach follows from the discussion above. It re

mains to analyze the query time and the preprocessing. To compute </>(1, E~) we first

perform a point location in the subdivision 3(W) associated with the root, taking

O(log 1') time. Then we perform a half planar range query, which costs O(log n)
time, and then we recurse. Hence, the query time Q(n) satisfies the recurrence

Q(n) = O(logr) + O(logn) + Q(~). The preprocessing time S(n) can be seen to

satisfy S(n) = 0(r2n2 10gn) + 0(r2)S(~). The query time and the bounds on the

6

preprocessing (use Lemma 1) follow if we set r = n~1 for a sufficiently small e;' > o.
o

Let us now return to our original ray shooting problem. Recall that we have a

balanced binary tree on the x-coordinates of the faces. At every node 8 we have

an associated structure for stabbing-counting queries on the set of faces whose x

coordinate is stored in the subtree rooted at 8. To answer a ray shooting query we

have to perform stabbing-counting queries in O(log n) associated structures. Using

the structure of Theorem 1 for the associated structures we obtain:

Theorem 2 Ray shooting queries in a set of axis-parallel polyhedra with n edges in

total can be performed in time O(log2 n) with a structure that uses O(n 2+~) prepro

cessing time and space, for any fixed e; > o.

This result can be generalized to polyhedra whose faces have g different inclinations.

To this end, we partion the set F of faces of the polyhedra into 9 subsets FI, ... , Fg ,

one for each inclination. For each subset we build a separate structure. Consider

the faces in some subset Fi , and assume w.l.o.g. that these faces are parallel to

the yz-plane. The main structure is a tree on the x-coordinates of the faces, and

the secondary structure is a structure for stabbing counting queries. Hence, the

structure is similar to the structure for axis-parallel faces; the only difference is that

the structure for stabbing-counting queries now consists of 9 -1 'substructures', one

for each possible orientation of the edges. (Notice that the edges that are stored in

some stabbing-counting structure are the intersection of a face in Fi and some other

face, and, hence, they have only 9 -1 different orientations.) Each such substructure

is identical to the stabbing-counting structure described above for the axis-parallel

case. Thus, stabbing counting queries now take O(g log n) time, and ray shooting

queries in Fi take O(g log2 n) time. To answer a ray shooting query, we search the

subsets Fi separately; the answer to the ray shooting query is easily computed from

the sub answers in O(g) time. This results in a total query time of O(g210g2 n). Since

each edge is present in exactly two structures (one for each face that is incident to

it), the preprocessing time and space are independent of 9 and remain 0 (n 2+~).

Theorem 3 Ray shooting queries in a set of polyhedra with n edges in total whose

faces have 9 different inclinations can be performed in time 0(g210g2 n) with a struc

ture that uses O(n2+~) preprocessing time and space, for any (fixed) e; > o.

Remark: As was already noted in the introduction, it is possible to get a trade

off between query and preprocessing time, by using the recursive partition trees

of Chazelle et al. [9] in the method of Schmitt et al. [25]. More precisely, it is

possible to achieve O(n1+t: / foi) query time using O(m1+~) preprocessing, for any

n < m < n 2. It should also be noted that these bounds lead to an improvement

over Pellegrini's result on batched ray shooting for axis-parallel polyhedra [23].

7

2.2 Curtains

A curtain is an unbounded polygon in space with three edges, two of which are

parallel to the z-axis and extend to z = -00. Thus the polygon can be seen as

an infinitely long curtain hanging from the third (bounded) edge, which we call its

top edge. Observe that two curtains can intersect each other. Let S be a set of n

such curtains. We want to preprocess S for ray shooting queries. As in the case

of axis-parallel polyhedra we first reduce the problem to a stabbing problem: 'Does

a given line intersect at least one curtain?' (This time, however, we are unable to

compute the exact number of curtains stabbed by the line. In fact, if we could devise

a structure for stabbing-counting queries in a set of curtains, it would allow us to

solve the ray shooting problem for an arbitrary set of triangles efficiently.)

To reduce the ray shooting problem to a stabbing problem we would like to

impose an order on the curtains. Since they can intersect, however, it seems hard

to obtain such an order in an efficient way. Fortunately, the cuttings that we have

used before are also useful in this respect. Project the curtains onto the xy-plane,

obtaining a set S of segments. Construct a (~)-cutting 3(5) for the lines that

contain the segments in S, where r is some sufficiently large constant. For a cell C in

3(S), let S(c) be the set of curtains whose projections intersect c. (More precisely,

we restrict our attention to that part of each curtain that projects onto c.) The

main structure is a tree T of degree O(r2
). With the root we associate 3(5) and

for each cell c we have an associated structure that can tell us whether at least one

curtain in S(c) is stabbed by some query line. Furthermore, every child of the root

corresponds to a recursively defined structure for some set S (c).
A query in this structure is performed in much the same way as in the axis

parallel case. The projection p of the query ray intersects O(r2) cells Cll C2, .. • , Ct

of 3(S) that are stored at the root of T; the cells are numbered according to the

order in which they are intersected by p. See Figure 1. We recursively find the

first curtain in S (Cl) that is hit. If there is such a curtain, then this must be the

answer to the query. If none of the curtains is intersected, then we do the following.

Using the associated structures we test if p stabs at least one curtain in S(C2), if not

we test S(C3), etcetera, until we find the first cell Ci such that p stabs at least one

curtain in S(Ci). This set contains the answer, so we recurse in the corresponding

child of the root. This process is repeated until we reach the leaf of T that contains

the answer. The reason that we treat Cl separately is that p does not cut completely

through Cll so we cannot replace p by l(p) inside Cl. However, when none of the

curtains in S(Cl) is intersected, then this problem will not occur again. From this

it follows that at each level of our tree we visit only O(r2) nodes. Since the depth

of the tree is O(logr n) and we chose r to be a constant, it follows that we perform

O(log n) queries in associated structures in total.

What remains is to devise a structure for the stabbing problem: 'Does a query

line 1 stab at least one curtain in some set A?' This structure is closely related to

8

p

Figure 1: The tree corresponding to a cutting.

the structure for stabbing-counting queries in axis-parallel faces that was described

in Section 2.1. We project the curtains in A onto the xy-plane, resulting in a set

A of segments, and dualize this set to obtain a set W of double wedges. Next

we construct a (!t)-cutting 3(W) for the lines defining the double wedges in W.

The structure that stores A is a tree of degree O((r')2). With the root we store

the subdivision 3(W), preprocessed for point location queries, and each child of

the root corresponds to a recursively defined structure for the set A2(C) of curtains

whose corresponding double wedges cross the cell c. For each cell c we also store a

structure that can test if a query line stabs at least one of the curtains in Al (c), the

set of curtains corresponding to double wedges that fully contain c. This structure

is defined as follows. Because we know that the projection of a query line that visits

c intersects the projection of each curtain in Al (c), we can extend the top edges of

these curtains to full lines. Now a query line 1 stabs none of the curtains if and only

if it passes above all these lines. This can be tested in O(log n) time after O(n2+E
)

preprocessing, for any c > 0, see [7]. We thus can test if a query line stabs at least

one curtain in A in time O(log n) after O(n2+~) preprocessing, for any c > 0, if we

set r' = n~' for an appropriate value of c' and apply Lemma 1. This concludes the

description of the associated structure of our main tree.

Summarizing, the ray shooting structure consists of three levels. The first level

recursively imposes an ordering on the curtains and thus reduces the shooting queries

to stabbing queries. The second level is used to filter out the curtains that are

9

intersected in the projection so that the top edges can be extended to lines. The

third level then answers the stabbing queries for these extended curtains. We have

to perform O(log n) stabbing queries to find the answer to the ray shooting query.

Since the stabbing queries take O(log n) time and the depth of the trees on the

second level is constant, the total query time is O(log2 n). Using Lemma 1 once

more, the preprocessing time of the structure is seen to be O(n2+~) for a, by this

time fairly large, e > 0 that can still be chosen arbitrarily small.

Theorem 4 Ray shooting queries in a set of n curtains can be performed in time

O(log2n) with a structure that uses O(n2+~) preprocessing time and space, for any

fixed e > O.

2.3 Fat horizontal triangles

We call a triangle fat if all its internal angles are greater than some fixed constant 8.

Fat horizontal triangles, that is, triangles parallel to the xy-plane, have the following

important property.

Observation 2 There exists a set of slopes V of constant size, such that, for each

vertex v of any fat horizontal triangle t, it is possible to split t into at most two

(non-empty) triangles with a segment incident to v whose slope is in V.

The size of V is inversely proportional to the minimum angle 8 of the triangles.

For example, we can take the set V = {i8/2 : 0 ~ i < 41r/fJ}. Let S be a set

of n fat horizontal triangles. The property stated above enables us to decompose

each triangle t E S into at most four triangles t1, t 2, t3 and t4 such that each ti

has two edges whose slopes are in V: Pick any vertex of t and split t according

to Observation 2 using some segment s. Split the two resulting triangles from the

vertices opposite s, see Figure 2. This clearly results in four triangles that each have

D

Figure 2: Splitting a fat triangle using segments with slope in V.

two edges with slope in V. We call these edges the fixed edges of the triangles. Next

we partition the set of 4n triangles thus obtained into \V\2 subsets S1, ... , SI'P12 ; two

triangles are in the same subset if and only if the two fixed edges of one triangle

10

are parallel to the two fixed edges of the other triangle. For each Si a separate

structure is built. A query is performed in all structures and the final answer to the

ray shooting query is easily computed from the \1)\2 'subanswers' that are found.

Consider one subset Si. Assume w.l.o.g. that each triangle t E Si has one edge

that is parallel to the x-axis, and one edge that is parallel to the y-axis. Assume that

the triangles lie above (i.e. in the positive y-direction of) the edge that is parallel

to the x-axis; the triangles that lie below this edge are treated separately. For a

triangle t, we call the edge that is parallel to the x-axis its bottom edge, the edge

that is parallel to the y-axis its vertical edge, and its third edge, which does not have

a fixed slope, its top edge. The idea of the structure is as follows. First we select

all triangles t such that l(p) passes in the y-direction above the line containing the

bottom edge of t. Once we know that l(p) passes above the bottom edge of these

triangles, we can as well extend them to y = -00. In other words, we can regard

each triangle t as a curtain hanging from its top edge into the negative y-direction

(which is the direction of its vertical edge). Thus, if we can find all triangles whose

bottom edges pass below a query line efficiently, we can use the structure developed

in the previous section.

How do we find these triangles quickly, and, equally important, in a small number

of groups? Here we use the fact that all bottom edges are parallel to the x-axis. So

the idea that was used in the axis-parallel case applies: we project the set E~; of

bottom edges of the triangles in Si onto the yz-plane, giving a set E~; of points. A

line 1 passes above the line containing a bottom edge e E E~; if and only if e E [-,

where e and [are the projections of e and I onto the yz-plane, and [- denotes the

half-plane below 1 (i.e. in the negative y-direction of 1). To find all points e E [- for a

query line 1 we can use the same technique that we have used before: we dualize the

set of points E~i' and construct a (~)-cutting 3((E~.)*) for the resulting set (E~.)*

of lines. The subdivision 3((E~J*), preprocessed for point location, is stored at the

root of our main structure, which is an O(r2)-ary tree. For each cell c of 3((E~.)*)

we have an associated structure on the set of triangles that correspond to the lines

below c, and we recursively store the at most ~ lines that intersect c. The associated

structure is a ray shooting structure, as described in the previous section, on the

set of curtains hanging from the top edges of the triangles into negative y-direction.

Choosing r to be nt:' for an appropriately small c' > 0, we get the triangles for

which the bottom line passes below l(p) in a constant (dependent of c') number

of groups. Thus the total query time will be the same as the query time for the

curtains, which is O(log2 n) by Theorem 4. Using the fact that the ray shooting

structure for curtains uses O(n2+t:) preprocessing, the preprocessing can be done in

time O(n2+t:) for any (slightly larger) c > 0, see Lemma 1.

Theorem 5 Ray shooting queries in a set of n fat horizontal triangles can be per

formed in time O(log2 n) with a structure that uses O(n2+t:) preprocessing time and

space, for any fixed c > 0.

11

Observe that, using the same techniques, it is possible to obtain an alternative

solution for the ray shooting problem in a set of axis-parallel polyhedra. This is

true because each face of an axis-parallel polyhedron can be split into rectangles

whose edges have a fixed orientation. These rectangles can be treated in the same

way as the triangles that have two fixed edges: first select the ones whose bottom

edge passes below the query line, and then treat the rectangles as curtains hanging

from the top edge into the direction of the, in this case two, vertical edges.

2.4 The general case

This section tackles the general ray shooting problem, which is to preprocess a set of

possibly intersecting triangles in space for efficient ray shooting. First, we impose an

ordering on the triangles in the same manner as we did in Section 2.2 for curtains.

Once we have imposed the ordering, the ray shooting problem reduces to a stabbing

problem: 'Does a query line stab at least one triangle of a given set of triangles?'

Let S be a set of n possibly intersecting triangles in space. Project the triangles

in S onto the xy-plane, obtaining a set S. Next, construct a (~)-cutting 3(S) for

the 3n lines containing the edges of the projected triangles, for a sufficiently large

constant r. Associate with each cell c in 3(S) the portions of the projected triangles

that intersect c. For a query ray p we have to test the cells Cb C2, ••. of 3(S) that are

intersected by p, until we find the first Ci that contains a triangle stabbed by p. We

handle the triangles whose projection fully contains c; at this level and we recursively

search in the at most ~ triangles whose projected boundary intersects c;.

This approach leads to two subproblems that we have to solve. Firstly, we have

to be able to decide if a query line stabs at least one triangle of a given set. Secondly,

we have to treat in an efficient manner the triangles whose projection fully contains a

cell c. Observe that the second subproblem did not occur when we studied curtains,

since a curtain projects onto a segment.

The first subproblem can be solved using Pliicker coordinates, as in [23]. To

this end, the lines through the edges of the triangles are oriented and mapped to

hyperplanes in Plucker 5-space, and an (oriented) query line is mapped to a point.

The position of the point-whether it is above, on or below-relative to a hyper

plane determines the 'twist' of the query line-whether it is clockwise, intersecting,

or counterclockwise-with respect to the line corresponding to the hyperplane. See

[7, 26] for more details. Thus, if we consider the arrangement of three hyperplanes

corresponding to the lines through the edges of a triangle, then there are exactly two

cells corresponding to query lines that stab the triangles. One cell corresponds to

lines that are oriented such that they stab the triangle from front to back, and the

other cell corresponds to lines stabbing the triangle from back to front. Hence, point

location with the Pliicker point of the query line in the subdivision of hyperplanes

corresponding to all lines through triangle edges tells us which triangles are stabbed.

Moreover, only the cells of this subdivision that intersect the Plucker hypersurface

12

(the hypersurface containing the images of all lines in 3-space, also called the Grass

man manifold) are of interest. Recently, Aronov and Sharir [4] have shown that the

total complexity of all these cells is O(n410g n). Therefore, the point location can

be done in O(log n) time after O(n4+t:) preprocessing, in the same way as the point

location method for arrangements of hyperplanes, as described by Clarkson [11]:

take a sample R C H of size O(r) such that any cell in the triangulated arrange

ment A(R) is intersected by no more than ~ log r hyperplanes of H, for a sufficiently

large constant r. Because a random sample has this property with high probability,

such a sample can be found in O(nr5
) expected time [11]. Consider a cell in A(R)

and some triangle. If none of the three Plucker hyperplanes that correspond to this

triangle intersect the cell, then we know that either any line whose Plucker point lies

in this cell intersects the triangle, or any such line misses the triangle. If one or more

of the Plucker hyperplanes intersect the cell, then some lines whose Plucker point

is inside the cell intersect the triangle, while other lines miss it. Thus, the question

if at least one triangle is hit by a query line can be answered with the following

tree. The root of the tree stores the cells of the triangulated arrangement A(R)
that are intersected by the Plucker hypersurface. Each child of the root correspond

to such a cell. Thus, the root has O(r410g r) children. If for such a cell there is

a triangle that is intersected by all lines whose Plucker points are in the cell, then

the child corresponding to the cell is a leaf. Otherwise, we recursively store the at

most ~ logr triangles that are sometimes intersected at this child. Thus S(n), the

preprocessing time and space, satisfies S(n) = O(nr5
) + O(r4log r)S(~ log r), which

solves to S(n) = O(n4+t:), for any e: > o. To answer a query we locate in time

O(r4log r) the cell of A(R) that contains the Plucker point of the query line. If this

cell corresponds to a leaf of the tree, then we know the answer. Otherwise, we have

to search recursively in the child corresponding to this cell. Since r is a constant,

the search takes O(log n) time.

In the second subproblem we are given a cell c of 3(5) and a set S(c) of triangles

whose projections fully contain c, restricted to the portions that project onto c.

Given a query ray p whose projection intersects c, we want to find the first triangle

in S(c) hit by p. Since the projections of the triangles in S(c) fully contain c,

we are, in effect, ray shooting in the arrangement of the planes containing the

triangles. Let us describe a simple solution for this problem, that has a query time

of O(log n) and which uses O(n3+t:) preprocessing. First, we build a point location

structure for the planes containing the triangles; an easy way to do this is using

random sampling, see [11]. Every leaf in this structure corresponds to a cell in

the arrangement of planes. We construct this full arrangement in O(n3
) time [16].

Each cell in the arrangement is preprocessed in linear time (linear in the size of the

cell) for O(log n) time ray shooting queries using the hierarchical representation of

Dobkin and Kirkpatrick [15]. The only problem that is left is to associate these ray

shooting structures with the right leaves in the point location structure. To this end

we take a point in each cell and search with it in the point location structure; the

13

ray shooting structure for this cell is associated with the leaf in which the search

ends. A ray shooting query in the set S(c) now proceeds as follows. First we search

with the starting point of the ray (more precisely, the starting point of the part of

the ray projecting onto c) in the point location structure in O(logn) time. Then

a ray shooting query is performed in the structure that is associated with the leaf

in the point location structure, also taking O(log n) time. We now have found the

first plane that is hit in the arrangement of planes containing the triangles. Finally,

we test if the projection of this first intersection lies in c. If so, the ray will also hit

the triangle that corresponds to this plane; otherwise none of the triangles in S (c)

is hit.

Returning to the original problem, we see that the query time is O(log2 n) (this

follows in the same way as the query time for curtains) and that the preprocessing

time satisfies

which leads to Sen) = O(n4+e).

Theorem 6 Ray shooting queries in a set of n possibly intersecting triangles in

space can be performed in time O(log2 n) with a structure that uses O(n4+e) expected

preprocessing time and O(n4+~) space, for any fixed c > O.

2.5 Reducing the query time

Next it is shown that the query time for the ray shooting problems studied above

can be reduced to O(1og n) without affecting the preprocessing time asymptotically.

The new structures, however, are much more complicated.

Let us first consider the general ray shooting problem. Thus, we are given a set

S of possibly intersecting triangles in space. The first step in devising the structure

remains the same: we project the triangles onto the xy-plane and we compute a (~)

cutting 3(S) for the lines containing the projections of the edges of the triangles.

The main idea behind the reduction in query time is to choose the parameter r to

be ne for a sufficiently small c > 0 instead of choosing r to be constant. This way

the depth of the recursion becomes constant instead of logarithmic. On the other

hand, this also means that we cannot afford to check all of the O(r2) cells of 3(5)

that are intersected by the projection p of the query ray, to see in which cell we have

to recurse. Thus, all these cells have to be tested simultaneously.

Let E be the set of O(r2) edges of the subdivision 3(S). Let W = {e* leE E}

be the set of double wedges dual to the edges in E. Finally, let A(W) be the

arrangement on the dual plane defined by the double wedges in W. Note that

A(W) has size O(r4) = O(n4e). A cell of A(W) corresponds to a fixed subset of

the edges in E that are stabbed by lines whose dual points are in this cell. Hence,

a cell in A(W) also corresponds to a fixed set of cells in 3(S) intersected by such

a line. Now consider a query ray p. Let c}, ... , Ct be the O(r2) cells of 3(S) that

14

are intersected by its projection p. These cells can be found in the following way.

Locate l(p) *, the dual of the line containing the projection of p, in A(W)j then do

a binary search with the starting point of p on the edges that are intersected by p.
This way we find the cell Cl that contains the starting point of p and also the other

cells that are intersected. As before, we always recursively search in Cl. If we find

an answer in Cl, then we are finished. Otherwise, the answer is in one of the cells

C2, ... , Ct. This sequence of cells is called the suffix of p, and we denote it by up. The

suffix Up will be preprocessed such that we can decide in O(logn) time into which

cell of Up we must recurse, if there is no answer in Cl. Thus, at each of the O(r4)

cells of A(W) we store O(r2) data structures, one for each suffix of the cells of 3(8)

that are stabbed by the lines whose duals are in this cell.

Consider a suffix u = C2, ... , Ct. For cell Ci, let S (Ci) denote the subset of triangles

in S whose projection intersects Ci. Thus, both triangles whose projection completely

contains c; and triangles whose projection partially covers Ci are present in S(Ci)j

of the latter type there are no more than ~. Furthermore, the triangles in S(c;)

are restricted to the parts that project onto c;. For example, if the projection of

a triangle intersects two cells, say Ci and Cj, then this triangle is split into two

partsj S(Ci) contains the part that projects onto Ci, and S(Cj) contains the part that

projects onto Cj. Hence, different parts of the same triangle can occur in different sets

S(c;). This means that if we stab a certain part of a triangle we know in which cell

the (projection of the) intersection will occur. Note that a part of a triangle need not

be a triangle itself, but that it can be a (convex) k-gon, for 3 ~ k ~ 6. Also note that

the total complexity of SeT = U2~i~t S(Ci) is O(nr2). Now consider the arrangement

in Plucker 5-space induced by the triangle parts in SeT' This arrangement gives us

all the stabbing information about the triangle parts. Hence, by performing a point

location in it, we can determine which triangle parts of SeT are stabbed by a line and

thus into which cell of 3(S) we have to recurse. This point location can be done in

O(10g(nr2)) = O(logn) time after O((nr 2)4+e
') preprocessing, for any c' > 0, in the

same way as before.

Putting everything together we see that we can find the cell into which to recurse

in O(log n) time. Then we do an O(log n) time ray shooting query on the triangles

whose projection fully contains this cell (clearly we cannot recurse on them), and we

recurse on the ~ triangles whose projection partially covers the cell. Since r = ne ,

the depth of the recursion is constant, so the total query time is O(logn). The

preprocessing time S(n) satisfies S(n) = O(r6
) X O((nr2)4+e

') + O(r2)S(~), where

r = ne. By choosing c and c' sufficiently small we obtain:

Theorem 7 Ray shooting queries in a set of n possibly intersecting triangles in

space can be performed in time O(log n) with a structure that uses O(n4+e
) prepro

cessing time and space, for any fixed c > O.

To reduce the query time for ray shooting in curtains, we use the same trick. Thus

we construct a (~)-cutting 3(S), with r = ne. For a query ray p whose projection

intersects cells CI, ... , Ct, we always recurse on Cl. If we don't find an answer there,

15

then we decide in O(log n) time in which cell of the suffix (J" p = C2, . .. ,Ct we must

recurse. So we need to determine the suffix of a query ray, and for each suffix we

must be able to determine the cell of the suffix in which we have to recurse.

The structure to compute the suffix for a query ray is the same as in the general

case: a point location structure for the arrangement A(W), where W is the set of

double wedges that are the duals of the edges of the cutting 3(S). Hence, we can

find this suffix in O(log n) time. So now consider a suffix (J" = C2, ... , Ct, and let

SlT = U2~i~t S(Ci), where S(Ci) is the set of curtains whose projection intersects Ci.

Note that ISlTl = O(~t) = O(nr), since each Ci is intersected by O(~) curtains. First

we select the curtains that are intersected by the query ray in the projection. This

is done in the usual way: dualize the projections of the curtains to obtain a set of

double wedges and compute a (~)-cutting for the lines defining the double wedges,

for r = ne
l

and c' sufficiently small. For each cell in the cutting, we store the curtains

whose double wedges fully contain the cell in an associated structure to be described

next, and we recursively store the curtains whose double wedges partially cover the

cell. Using this structure, it is possible to find the curtains that are intersected by

a query line in a constant (depending on c:') number of groups. This is exactly the

same as in section 2.2, so we will not go further into details and we concentrate on

the associated structure.

The associated structure should solve the following problem. Given an ordered

collection of sets of curtains -namely subsets of the sets S(C2), ... , S(Ct)- find the

first set that contains a curtain that is stabbed by the query line. Furthermore, we

know that we only query with lines that intersect all the curtains in the projection.

Hence, we can extend the top edges of the curtains to full lines. Thus we are given

an ordered collection of sets of lines and we want to know the first set that contains

a line that passes above a query line. As mentioned before, the twist of a query line

with respect to a given line is determined by the position of the corresponding query

point relative to the corresponding hyperplane in Pliicker 5-space. If the two lines

are consistently oriented-say both from left to right-then the query line passes

above the given line if and only if its Pliicker point is on one distinguished side

of the hyperplane h. For notational convenience, we denote the half-space on this

side of h by h+, and the other half-space by h-. Now consider a query line that

is consistently oriented with respect to a set of given lines. This line passes above

all given lines if and only if the Plucker point corresponding to the line lies in the

convex polytope n h+ determined by the hyperplanes h corresponding to the given

lines. Chazelle et al. [71 have shown how to enforce the consistency constraint on

the orientations of the lines. For our problem we can use their technique directly,

without affecting the asymptotic preprocessing and query time, so we will ignore

this consistency constraint from now on.

Hence, we have the following problem. Let HI, ... , Hm be an ordered collection

of m = O(n2e) sets of hyperplanes in 5-space, with Ei:l IHd = n. (The bound on

the size of Ei:l IHi I follows from the fact that each projected curtain is intersected at

16

most once by p.) Let P(Hi) = n{ h+ I h E Hi} be the convex polytope determined by

the hyperplanes in Hi and define Compl(P(Hi)) = E 5 -P(Hi) to be the complement

of P(Hj). We want to preprocess H = HI U ... U Hm such that we can efficiently

find the smallest i* such that Compl(P(Hi*)) contains a query point q.

Before we describe the solution in all its technical details, let us give an overview

of the method. First, we note that the subdivision of 5-space induced by the

m = O(n2e) polytopes P(Hi) has size O(n2m) = O(n2+2e) (see claim (B) below),

and that a point location in this subdivision tells us exactly which polytopes do and

do not contain a query point. However, there are two problems in preprocessing

this subdivision for point location queries using Clarkson's method [11]. The first

problem is that if we take a sample of the hyperplanes of size r, then the subdivi

sion defined by these hyperplanes has size O(r2 m). If we take r to be a constant,

then the 0 (m) factor dominates the size of the subdivision, resulting in a structure

that uses too much space. This problem is overcome by taking large samples of size

r = n l
/

IO so that we can afford the extra O(m) factor in the complexity. But this

imposes a new problem, namely that we can no longer locate the query point in the

subdivision in a brute-force way. So we need another structure for locating the query

point in the subdivision. A second, and more serious, problem that we encounter is

the following. The subdivisions that we consider are not full arrangements of hyper

planes. Therefore, random sampling theory does not guarantee anything about the

number of hyperplanes that cut a simplex in the triangulated subdivision. Indeed,

since we have only a small number of simplices (much less than r 5
) there is no way

in which we can bound this number in a satisfactory way. Moreover, the regions

of the subdivision are not convex, so how should we triangulate them? The fact

that saves us is that only the hyperplanes from polytopes P(H1), . .• , P(Hi- l) are

important, when we consider a region (in the subdivision induced by some sample)

that is already outside P(Hd.
It is time to make these ideas concrete. Let R C H be a random sample of H

of size r = n l
/

IO
, and let ~ = R n Hi. Define Ai = Compl(P(Ri)) n P(Rj-l) n··· n

P(Rl). If R = 0 then we define P(Ri) = E5
; hence, Ai = 0 in that case. Thus,

for R = H, Ai is exactly the region where the answer to a query is i. Finally, define

Am+! = P(Rm) n ... n P(Rd. See Figure 3 for an illustration of these definitions.

For each non-empty Ai, i > 1, we construct a set Sim(Ai) of simplices as follows.

Pick an arbitrary point p E P(Ri) n ... n P(Rt}; if P(Ri) n ... n P(R1) = 0, then

Ai = P(Ri-d n ... n P(R1) and we pick a point in Ai. We triangulate the facets

of Ai that are not facets of P(Ri) n ... n P(R1), and extend the 4-simplices thus

obtained to 5-simplices, using point p. We claim that:

(A) Ai S;;; U{s\s E Sim(Ai)} for every 1 < i ~ m + 1

(B) 2:~·tt ISim(Ai)l, the total number of simplices, is O(r2m)

(C) Each simplex in Sim(Ai) is intersected by O(;:-log2 r) hyperplanes in

HI U ... U Hi-I, with probability greater than ~

17

Figure 3: The regions Ai and the set Sim(A2) of triangles constructed for A2.

We postpone the proof of (A)-(C) and continue to describe the data structure. Let

F be the set of O(r2m) hyperplanes containing the facets of simplices in Sim(R) =

U~1I Sim(Aj). The data structure is a tree of branching degree O(r2m), where

each child of the root corresponds to a simplex in Sim(R). At the root we store a

point location structure for the arrangement A(F). With the child corresponding to

simplex s E Sim(Aj) we store the value is = min(i, {j : s C h- for some h E Hj}).

This is the smallest index j for which we can certify that s C Compl(P(Hj)). The

child corresponding to s is also the root of a recursively defined structure on the

hyperplanes in HI U··· U H j .-I that intersect s. Recall that r = n l
/

IO, and that the

point location structure for A(F) uses 0((r 2m)5+6) preprocessing, for an arbitrarily

small 8 > O. The term r IO+2c5 forces us to have r = (n')I/IO, where n' is the current

number of hyperplanes at some point in the recursion. This, however, would cause

the depth of the tree to be O(loglogn). To avoid this, we stop the recursion when

n' = m, and we solve the problem 'brute force' using O(m5+c5) preprocessing.

We have finished the description of the data structure, so now we can describe

the query algorithm. Let q be the query point. We want to find the smallest

index i* such that q E Compl(P(Hi)). Initialize i* = 00. First, we locate q in the

arrangement A(F). The cell of A(F) that contains q uniquely determines the region

Ai that contains q, and also the simplex s E Sim(Aj) that contains q. Recursively

find the smallest index i* such that q E Compl(P(Hio)) in the substructure rooted

at the child corresponding to s. Finally, set i* = min(i*, is).

Lemma 3 The smallest index i* such that Compl(P(Hio)) contains a query point

can be found in O(log n) time with a structure that uses O(n 2+~m6+clog(1/~») =

O(n2+7~+alog(1/~») space and (expected) preprocessing time, where c is a constant.

Proof: The correctness of the method should be clear from the preceding discussion

(we will prove claims (A)-(C) below), so let us concentrate on its complexity. The

18

point location structure for A(F) stored at the root of the tree uses O((r 2 m)5+c5)

preprocessing time and space, for any fixed 8 > 0, and it has a query time of O(log n).

It is not hard to test a sample R for the condition in (C) in time O((r2m)5+c5n).

Since the probability of success is greater than ! we expect to find a good sample

after a constant number of trials. In the same time we can compute the values ill,

and find the hyperplanes on which to recurse for each simplex s. Using claims (B)

and (C), we see that the space and (expected) preprocessing time S(n) used by our

structure satisfies:

S(n) = O((r2m)5+c5n) + O(r2m)S(~log2r)
S(m) = O(m5+c5)

Furthermore, the query time Q(n) satisfies:

Q(n) O(logn)+Q(~log2r)

Q(m) O(log n)

where r = n l
/

IO. It is not hard to verify that the depth of the tree is O(log(1/c))

and, hence, that the query time is O(log n). The proof of the preprocessing is

slightly more involved. Let Sd(n') be the space used by a subtree of depth d, with

n' being the number of hyperplanes stored in the subtree. One can prove that

Sd(n') = O(m5+c5+d(n')2+E); for d = 0 we have n' = m so the claim is true, and for

d> 1 this follows by induction on d. Since the depth of the whole tree is O(log(1/ c)),

we have S(n) = Sclog(l/E)(n), for some constant c, and the bound follows.

It remains to prove claims (A)-(C).

Claim (A): Ai ~ U{ sis E Sim(Ai)} for every 1 < i ~ m + 1.

Proof: Assume the point p that we picked to construct the simplices is inside

P(~) n··· n P(Rt}; the case where P(~) n··· n P(RI) = 0 is proved in a similar

way. Let x be an arbitrary point in Ai. Shoot a ray from point p in the direction of x.

After the ray passes through x it will hit a facet of Ai. Since p E p(~)n··· np(Rt},

and Ai ~ Compl(P(~)), this cannot be a facet of P(Ri). Thus p is contained in the

5-simplex that we constructed out of the 4-simplex that we hit in that facet. 0

Claim (B): ~?:::tl ISim(Ai)l, the total number of simplices, is O(r2m).

Proof: Note that every feature of Ai is either a feature of P(Ri-d n ... n P(Rd,
or a feature of P(~), or a feature of P(Ri) n ... n P(Rt}. The complexity of

P(Ri-t} n ... n P(Rt}, P(Ri), and P(~) n ... n P(RI) are O(r2
) by the Upper

Bound Theorem [16]. Hence, the complexity of Ai is O(r2), and since the number

of Ai's is at most m, the bound follows. 0

Claim (C): Each simplex in Sim(A;) is intersected by O(~ log2 r) hyperplanes in

HI U ... U Hi-I, with probability greater than !.
Proof: We will use the following fact.

19

Fact 1: Let H be an ordered set of n items, and R C H be a random

subset of size r. The probability that there is a 'gap' of size greater than

an between two consecutive items in R (or before the first or after the

last item) is 0(r2(1 - aY-2).

(The size of a gap between two items in R is the number of items in H that lie

between the two items.) We also need the more-dimensional version of this fact,

proved by Clarkson [11].

Fact 2: Let H be a set of n hyperplanes in Ed, and R C H be

a random subset of size r. The probability that there is a simplex in

the triangulated arrangement A(R) that is intersected by more than an
hyperplanes in His 0(rd(d+1)(1 - aY-d(d+1»).

In the following we shall use that for suitable a = O(logr/r) these probabilities are

at most 1/r2.

Consider the ordered set H = H t U· . ·uHm of hyperplanes in E 5
j the hyperplanes

within a set Hi are ordered arbitrarily, but a hyperplane from Hi comes before any

hyperplane from Hj if i < j. There are n r samples R c H of size r. (The sampling

is done with replacement, as in [11].) We will discard samples that do not satisfy

condition (C) until we are left with a collection of samples that all satisfy (C). This

collection will contain at least (1 - W)nr samples, which proves (C).

Let Ajl"'" Ajk be the non-empty regions, with 1 < jt < ... < jk' We will

argue that there are at least (1- W)n r samples having the following property: each

simplex in Sim(Aj/), k - i < I ~ k, is intersected by 0(;-log2 r) hyperplanes from

Ht U ... U Hj ,-t . Since k ~ r, (C) then follows by setting i = k. (The claim is

trivially true for At, and for the empty regions.) The argument is by induction on i.

Since we want to prove something not only for the full set H, but also for

subsets of the form H1 U ... U Hi/-I, we want our samples to contain a sufficient

number of hyperplanes from each such subset. To this end we discard all samples

R such that there is a 'gap' of size an between two consecutive hyperplanes in

R (or before the first hyperplane in R). From Fact 1 it follows that for suitable

a = O(log r/r), we discard at most nr /r2 samples. Let H = {hI, ... , hn}. The

bound on the gap size implies that R' = R n H' has size r' ~ n' / an, for any initial

portion H' = {hI, ... , hnl} of H. In the remainder we only consider samples with

this property, of which there are at least (1- ~)nr. Now we are ready to prove that

each simplex in Sim(Aj/), k - i < I ~ k, is intersected by 0(; log2 r) hyperplanes

from H t u··· U H j ,- t .

The base case, i = 0, is trivially true. So assume that the statement is true for

i - 1, and consider Sim(AjJ. By induction we still have at least (1 - ri2)nr samples

available. Let H' = Ht U ... U Hj;-t and n' = IH'I. Observe that if n' = 0(;-log2 r)

20

then trivially all the samples remain good. We know that we have chosen r' ~ n' / an
hyperplanes from H'. Hence, the number X of combinations that we can make using

the hyperplanes in R n (H - H') is no more than (n - n'y-r' < nr- r'. This implies

that we must have Y different subsamples R' C H' available, where

Of these subsamples, at most (r~)2 (n't' are bad, in the sense that there is a simplex

in Sim(Ai) that is intersected by more than

~g~ ~g~. n
O(--n') = 0(-/ -n') = O(anlogr') = 0(-10g2 r)

r' n' an r

hyperplanes from H'. In other words, the number of samples that satisfy the con

ditions is at least

X(Y - _1_(n'y') ~ (1- i.)nr - (n - n'r-r,_1_(n'y'.
(1") 2 r2 (r')2

We have to show this is at least (1 - ~)nr or, equivalently, that

nr (n - n'y-r' (n't'
-;:2 - (r')2 ~ O.

We distinguish between the case where n' ~ n/2 and the case n' < n/2. In the first

case we have

r 1 (1/2y-r'
n (r2 - (r'p).

So we need (r'/r)2 ~ {1/2y-r', which is true since r' ~ r and we may assume

that r ~ 3. For the second case, n' < n/2, we can show in a similar way that

we need (r'/r)2 ~ (1/2Y', which is true if r' ~ 2logr. For r' < 2logr we have

n' = 0(; 10g2 r) and we already noted that the condition is also fulfilled in this case.

Thus we always have enough good samples left, proving (C). 0

This completes the proof of the Lemma 3. o
Note that dog(1/e) --+ 0 as € --+ O. Hence, by choosing € small enough, we can find

the smallest index i* such that Compl(P(Hi*» contains a query point in O(log n)
time after O(n2+e

') preprocessing, for any €' > O.

Finally, we give an overview of the total structure. The main tree has branching

degree O(r2), for r = ne. This tree imposes the ordering on the curtains. Each

child of the root corresponds to a cell in a (~)-cutting for the projected curtains.

With the root we associate a structure to find the first cell Cl intersected by a query

21

ray, and also the suffix C2, • •. ,Ct. For each of the O(r6
) possible suffices we have an

associated structure. This associated structure consists of two levels. The first level

selects in a constant number of groups the curtains whose projections are intersected

so that we can extend their top edges to full lines; the structure of the second level

is a structure as described above for finding the first (Plucker) polytope that does

not contain a query (Plucker) point.

The analysis of the complexity of the associated structures that we store for each

suffix is similar to the analysis of the structure for line stabbing queries in Subsec

tion 2.2. Thus an associated structure has O(log n) query time and the preprocessing

can be done in time O(n2+~II), for any elf > O.

Since r = n~, the depth of the main tree is constant, and the total query time is

o (log n). The preprocessing S (n) satisfies:

S(n) = O(r6
). O(n2+~II) + O(r2)S(~)

r

with r = n~. By choosing e and elf sufficiently small we obtain a preprocessing time

of O(n2+~III) for any fixed elll > O.

Observe that reducing the query time for curtains immediately reduces the query

time for fat horizontal triangles and for axis-parallel polyhedra.

Theorem 8 Ray shooting queries in a set of n curtains (or in a set of n fat hor

izontal triangles or in a set of axis-parallel polyhedra with n edges in total) can be

performed in time O(log n) with a structure that uses O(n2+~) preprocessing time

and space, for any fixed e > O.

Remark: For axis-parallel polyhedra there is an easier way to obtain O(log n) query

time. A query ray intersects a rectangle with edges parallel to the y- and z-axis if

and only if the ray intersects the rectangle in the projection onto the xy-plane and in

the projection onto the xz-plane. Thus, one doesn't have to use Plucker coordinates

to test this, leading to a simpler solution. This is the approach taken in [24].

3 Hidden surface removal

In this section we present an output-sensitive hidden surface removal algorithm for

a set of non-intersecting triangles in space. (The restriction to triangles is just

to simplify the description. In fact, any set of non-intersecting polyhedra can be

handled.) Unlike previous output-sensitive algorithms this algorithm makes no as

sumptions about the triangles, except that they do not intersect. In particular we

do not require a depth order on the triangles. Since a depth order often does not

exist (and even when an order does exist it is, in general, hard to compute), this is

an important feature of our algorithm.

Let S be a set of non-intersecting triangles with n edges in total. To simplify

the description, we assume that the view point is located at z = 00. We want to

22

compute the visibility map of S. The visibility map M(S) of S is the subdivision of

the viewing plane (in our case the xy-plane) into maximally connected regions such

that in each region one triangle is visible or no triangle at all. Notice that the vertices

of this subdivision are of two types: they are either the projection of a visible vertex

of a triangle or they are the intersection of the projection of two edges. The global

method we use to compute M(S) is similar to the method used in [13,22]: starting

from the visible vertices we 'shoot along' the edges of M(S), thereby discovering

the other vertices of M(S). There is one important difference, however; in [13, 22]

the visible vertices are computed beforehand, whereas we compute them 'on the fly'.

Next we describe the global algorithm in a little more detail.

The algorithm moves a horizontal sweep line from top to bottom over the viewing

plane, halting at every vertex of M(S) and at every projection of a vertex of a

triangle. Thus we have an event queue Q which initially stores the projections of

vertices of triangle in order of decreasing y-coordinate; when a new vertex of M (S)
is discovered it is inserted into Q. While sweeping, the algorithm keeps track of the

edges of M (S) that are intersected by the sweep line. These edges are stored in a

binary search tree T in the order of their intersection with the sweep line. We also

store for each edge the face that is visible to its left.

The sweep line is advanced in the following way. First the vertex v with greatest

y-coordinate is removed from Q. If v is the projection of a vertex of a triangle we

test if it is visible. This is done by searching in T to find the edge of M(S) to the

right of v. Since we know the face that is visible to the left of this edge, we can check

whether v is visible or not. If v is not the projection of a vertex of a triangle, we

already know that it is visible. If v is visible we now have to update Q and T. This

means that we have to compute the other vertices of the edges of the visibility map

that are incident to v and will be intersected by the sweep line when it is advanced.

It is easy to ensure that we always know which edges of triangles correspond to the

edges incident to v. Let e be such an edge. We use the same characterization to find

the other vertex w of e that was used in [13]. Let f be the face that is immediately

below v, i.e., the face whose interior is hit first when we shoot a ray from the view

point into the direction of v. Let p be the projection onto f of the ray starting at v

along e. Then we have:

Lemma 4 [13] The vertex w is either the projection of a vertex of e or it is the

intersection of the projection of e with the projection of the first edge passing above p.

To compute the other vertex of e we thus have to be able to find the first edge

passing above a query ray. But this edge corresponds exactly to the first curtain

hit by the ray, when we hang a curtain from each edge of a triangle. Hence, a data

structure for this problem was already presented in Section 2.2.

However, two problems remain. First of all, we cannot afford to spend the

O(n2+~) preprocessing time that the structure for ray shooting in a set of curtains

takes. Second, we have ignored the computation of p itself. For this we need to

23

find the face immediately below v. Note that it is not always possible to find this

face using T. Thus we need a structure that computes the face immediately below

a visible query point p.

There is a trivial solution to the second problem: just compute the visibility

map of S (which can be done in time O(n2
), see [20]) and perform a point location

in this map in O(log n) time. But this structure suffers from the same drawback

as the ray shooting structure: we do not want to spend that much preprocessing.

(And there seems to be something wrong with the idea of computing M(S) to

be able to compute M(S) anyway.) So what we would like to have is a trade-off

between preprocessing time and query time for our data structures. This can be

accomplished by partitioning the set of triangles into m subsets each of size ~ (for

some 1 < m < n to be determined later). Now the preprocessing time of the ray

shooting structure is O(n2+~ 1m) and the time to compute all visibility 'submaps' is

O(n 2 1m). A query is performed by querying all subsets and taking the first of the

m answers that are found. The query times thus are O(mlog2n) and O(mlogn)

respectively. (For the second structure a better trade-off is in fact possible. But

since this would not help us if we do not have better trade-offs for the curtains, we

stick to the simpler method described above.)

The total running time of the hidden surface removal algorithm can thus be ana

lyzed as follows: O(n log n) (to sort the vertices of the triangles and insert them

into Q), plus O(n2+~ 1m) (the preprocessing time for the data structures), plus

O(nlogn) (to check for each triangle vertex if it is visible), plus O(mlog2n) for

each edge of M(S) that is discovered. Hence, the time needed to compute M(S) is

o (n2+t; Im1+~ + km log2 n), where k denotes the complexity of M(S). To minimize

the time we would like to choose m depending on k. More precisely, we would like

to set m = n1+t; l..fk to obtain a running time of O(n1+~..fk). Although we do not

know the value of k in advance, it is still possible to achieve this running time by

'guessing' the value of k as in [22]: set m = n1+~ IVk' for some constant value of

k' and start running the algorithm. If k ~ k' then the algorithm finishes within

O(n1+t;Vk') time and we are done. Otherwise, we stop the algorithm as soon as we

discover that k > k', and try it again, multiplying k' by four. This way the total

running time will be at most a constant factor worse than the time taken if we had

plugged in the right value of k right away. We thus obtain:

Theorem 9 The visibility map of a set of non-intersecting polyhedra with n edges

in total can be computed in time O(n l+~ v'k), where k is the complexity of the map,

for any fixed € > o.

4 Concluding remarks

In this paper the ray shooting problem has been studied for three special classes of

polyhedral objects: axis-parallel polyhedra, curtains and fat horizontal polyhedra.

24

We presented structures that use O(nHE) preprocessing (for any fixed c > 0) and

have a query time of O(log n). For axis-parallel polyhedra it is also possible to

achieve a query time of O(nHE /JTT0 with O(mHE) preprocessing, for any n < m <
n 2

• For the curtains and fat horizontal triangles we are only able to get the naive

trade-off that uses O(n HE / m) preprocessing to achieve O(m log n) query time. The

general problem of arbitrary (possibly intersecting) triangles has been studied as

well. Here a structure was given whose preprocessing time is O(n4+E
) and with

a query time of O(log n). These results improve or generalize the previously best

known solutions.

Furthermore the hidden surface removal problem was studied. The first output

sensitive algorithm was presented that can deal with (non-intersecting) polyhedra

for which a depth order on the faces is not known. Its running time is O(nHEJ'k),

where n is the total number of edges of the polyhedra and k is the size of the output.

A number of open problems remain. For example, we would like to have a

better preprocessing vs. query time trade-off in the structure for curtains than the

one given in Section 3. This would also improve the running time of the hidden

surface removal algorithm. Furthermore, if we could count the number of curtains

intersected by a query line efficiently this would lead to improved bounds for the

general ray shooting problem. Finally it would be interesting to have lower bounds

for the ray shooting problem: what is the amount of preprocessing that is necessary

to solve the general ray shooting problem with a polylogarithmic query time?

References

[1] P.K. Agarwal, Ray Shooting and Other Applications of Spanning Trees with

Low Stabbing Number, Proc. 5th ACM Symp. on Computational Geometry,

1989, pp. 315-325.

[2] P.K. Agarwal and M. Sharir, Applications of a New Space Partitioning Tech

nique, Proc. Workshop on Algorithms and Data Structures, 1991, to appear.

[3] P.K. Agarwal, M. van Kreveld and M. Overmars, Intersection Queries for

Curved Objects, Proc. 7th A CM Symp. on Computational Geometry, 1991,

pp.41-50.

[4] B. Aronov and M. Sharir, On the Zone of a Surface in a Hyperplane Arrange

ment, Proc. Workshop on Algorithms and Data Structures, 1991, to appear.

[5] B. Chazelle, H. Edelsbrunner, M. Gringi, L.J. Guibas, M. Sharir and

J. Snoeyink, Ray Shooting in Polygons Using Geodesic Triangulations, Proc.

18th Int. Coil. on Automata, Languages and Programming, 1991, to appear.

25

[6] B. Chazelle, H. Edelsbrunner, L.J. Guibas, R. Pollack, R. Seidel, M. Sharir and

J. Snoeyink, Counting and Cutting Cycles of Lines and Rods in Space, Proc.

31st IEEE Symp. on Foundations of Computer Science, 1990, pp. 242-251.

[7] B. Chazelle, H. Edelsbrunner, L.J. Guibas and M. Sharir, Lines in Space -

Combinatorics, Algorithms and Applications, Proc. 21st A CM Symp. on Theory

of Computing, 1989, pp. 382-393.

[8] B. Chazelle and L.J. Guibas, Visibility and Intersection Problems in Plane

Geometry, Discr. & Compo Geometry 4 (1989), pp. 551-581.

[9] B. Chazelle, M. Sharir and E. Welzl, Quasi-Optimal Upper Bounds for Simplex

Range Searching and New Zone Theorems, Proc. 6th ACM Symp. on Compu

tational Geometry, 1990, pp. 23-33.

[10] S.W. Cheng and R. Janardan, Space-Efficient Ray-Shooting and Intersection

Searching: Algorithms, Dynamization and Applications, Proc. 2nd ACM-SIAM

Symp. on Discrete Algorithms, 1991, pp. 7-16.

[11] K. Clarkson, New Applications of Random Sampling in Computational Geom

etry, Discr. & Compo Geometry 2 (1987), pp. 195-222.

[12] R. Cole and M. Sharir, Visibility Problems for Polyhedral Terrains, J. Symb.

Compo 7 (1989), pp. 11-30.

[13] M. de Berg and M.H. Overmars, Hidden Surface Removal for Axis-Parallel

Polyhedra, Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990,

pp. 252-261.

[14] D.P. Dobkin and H. Edelsbrunner, Space Searching for Intersecting Objects, J.

Algorithms 8 (1987), pp. 348-361.

[15] D.P. Dobkin and D. Kirkpatrick, A Linear Algorithm for Determining the Sep

aration of Convex Polyhedra, J. Algorithms 6 (1985), pp. 381-392.

[16] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag,

Berlin, 1987.

[17] L. Guibas, M. Overmars and M. Sharir, Ray Shooting, Implicit Point Location

and Related Queries in Arrangements of Segments, Tech. Rep. No. 443, Courant

Institute of Math. Sciences, New York University, 1989.

[18] D.G. Kirkpatrick, Optimal Search in Planar Subdivisions, SIAM J. Comput.

12 (1983), pp. 28-35.

[19] J. Matousek, Approximations and Optimal Geometric Divide-and-Conquer,

Proc. ACM Symp. on Theory of Computing, 1991, to appear.

26

[20] M. McKenna, Worst-Case Optimal Hidden Surface Removal, ACM Trans.

Graphics 6 (1987), pp. 19-28.

[21] M.H. Overmars, H. Schipper and M. Sharir, Storing Line Segments in Partition

Trees, BIT 30 (1990), pp. 385-403.

[22] M.H. Overmars and M. Sharir, Output-Sensitive Hidden Surface Removal, Proc.

30th IEEE Symp. on Foundations of Computer Science, 1989, pp. 598-603.

[23] M. Pellegrini, Stabbing and Ray Shooting in 3 Dimensional Space, Proc. 6th

ACM Symp. on Computational Geometry, 1990, pp. 177-186.

[24] M. Pellegrini, New Results on Ray Shooting and Isotopy Classes of Lines in 3-

Dimensional Space, Proc. Workshop on Algorithms and Data Structures, 1991,

to appear.

[25] A. Schmitt, H. Miiller and W. Leister, Ray Tracing Algorithms - Theory

and Practice, in: R.A. Earnshaw (ed.), Theoretical Foundations of Computer

Graphics and CAD, NATO ASI Series, Vol. F40, Springer-Verlag, 1988, pp.

997-1030.

[26] J. Stolfi, P1'imitives for Computational Geometry, Ph, D. Thesis, Computer

Science Department, Stanford University, 1988.

27

