Efficient Ray Shooting and

Hidden Surface Removal

M. de Berg, D. Halperin, M. Overmars, J. Snoeyink
M. van Kreveld

RUU-CS-91-28
July 1991

Utrecht University
Department of Computer Science

R '3

3 z

\fs, =~/ Padualaan 14, P.O. Box 80.089,
7)

3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

Efficient Ray Shooting and

Hidden Surface Removal

M. de Berg, D. Halperin, M. Overmars, J. Snoeyink
M. van Kreveld

Technical Report RUU-CS-91-28
July 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

Efficient Ray Shooting and
Hidden Surface Removal*

M. de Bergt D. Halperin! M. Overmars' J. Snoeyinkf
M. van Kreveld'

Abstract

In this paper we study the ray shooting problem for three special classes
of polyhedral objects in space: axis-parallel polyhedra, curtains (unbounded
polygons with three edges, two of which are parallel to the z-axis and extend
downward to minus infinity) and fat horizontal triangles (triangles parallel
to the zy-plane whose angles are greater than some fixed constant). For
all three problems structures are presented using O(n?*<) preprocessing, for
any fixed ¢ > 0, with O(logn) query time. We also study the general ray
shooting problem in an arbitrary set of (possibly intersecting) triangles. Here
we present a structure that uses O(n**¢) preprocessing and has a query time
of O(logn).

As an application of the ray shooting structure for curtains we show that
the view of a set of (non-intersecting) polyhedra with n edges in total can be
computed in O(n1+‘\/7c-) time, where k is the size of the output, for any fixed
€ > 0. This is the first output-sensitive algorithm for this problem that does
not need a depth-order on the faces of the polyhedra.

1 Introduction

The ray shooting problem is to preprocess a set of objects such that the first object
hit by a query ray can be determined efficiently. This problem (also called the ray
tracing problem) is an important problem in computer graphics. To compute the
shading information that is necessary to render a realistic picture of a scene, one
can trace rays from the view point until they hit an object, trace the deflected rays,

*This research was supported by the ESPRIT Basic Research Action No. 3075 (project AL-
COM). The first and third author were also supported by the Dutch Organization for Scientific
Research (N.W.0.).

tDepartment of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The
Netherlands.

tDepartment of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.

$On leave from the Department of Computer Science of the University of British Columbia.

1

etcetera, to see if a light source can be reached. Since this ray tracing operation
has to be performed many times, it is natural to preprocess the objects in order to
speed up the tracing process.

For this reason the ray shooting problem is one of the more widely studied
problems in computational geometry. In the plane this has led to many efficient
solutions, both for general scenes (where the objects are arbitrary line segments
(1, 10, 17, 21] or curved segments [3]) and for special cases (such as ray shooting
inside a simple polygon [5, 8]).

In 3-dimensional space, however, the ray shooting problem is still far from re-
solved. When the origin of the query ray is fixed and the objects are the faces of
a polyhedral terrain, then an efficient solution exists [12]. For arbitrary query rays,
we know of only three results in the literature.

The first result is due to Schmitt, Miller and Leister [25]; they show that a
set of axis-parallel polyhedra in space can be preprocessed into a data structure of
size O(n3 polylog n) such that a query takes O(log®n) time. They also present an
O(n polylog n) size structure with O(n%®%®) query time.

The second result is by Chazelle et al. [7]. They have shown how to preprocess
a polyhedral terrain into a structure of size O(n%*¢) such that ray shooting queries
take O(log? n) time.

Finally, there is a result by Pellegrini [23], who gives a structure for ray shooting
in a set of non-intersecting triangles. His structures uses O(n%*¢) preprocessing, and
it has O(log n) query time!.

In this paper we improve these results, and we also obtain new results for other
classes of objects.

First, we consider ray shooting in axis-parallel polyhedra. In this case it is possi-
ble to obtain O(log® n) query time after O(n?*¢) preprocessing, by using the recently
developed recursive partition trees of Chazelle et al. [9] instead of the conjugation
trees of Dobkin and Edelsbrunner [14] in the second structure of [25]. (In fact, any-
thing between near-linear storage and roughly O(y/n) query time and near-quadratic
storage and polylogarithmic query time is possible.) We take a different approach
and obtain a structure using the same amount of preprocessing time and space,
namely O(n?*¢), but with a query time of only O(log?n). The solution extends
to polyhedra with faces having only g different inclinations. The query time then
becomes O(g? log? n), while the amount of preprocessing remains O(n2+¢). An inter-
esting subproblem that we solve is the stabbing-counting problem for axis-parallel
faces. We show that after O(n2*¢) preprocessing it is possible to count in O(logn)
time the number of faces intersected by a query line. We also show how to solve

!Pellegrini’s solution in [23] is incomplete. An improved and corrected result can be found in
(24]. We have recently learned that Agarwal and Sharir [2] also study the general ray shooting
problem, and give an O(n!t¢) preprocessing, O(n/5) query time solution. Finally, we note that
Pellegrini [24] has obtained results on ray shooting in axis-parallel polyhedra, which are similar to
the results of this paper.

the ray shooting problem for axis-parallel polyhedra in (logn) time after O(n?+¢)
preprocessing using yet another method; this method, however, is much more com-
plicated.

The second class of objects we consider is the class of curtains. A curtain is an
unbounded polygon in space with three edges, two of which are parallel to the z-axis
and extend to minus infinity. Thus the polygon can be viewed as an infinite curtain
hanging from the third, bounded, edge. Our solution uses O(n?*¢) preprocessing
and has O(logn) query time. If we hang curtains from the edges of a polyhedral
terrain, then by ray shooting in this set of non-intersecting curtains we can obtain
the answer to the ray shooting query in the terrain. Furthermore, we allow curtains
to intersect; thus, curtains can be considered as a generalization of a polyhedral
terrain. Notice that the query time we achieve is better than that achieved for
terrains in (7], while the amount of preprocessing is the same.

Thirdly, we study the ray shooting problem in a set of fat horizontal triangles,
i.e., a set of triangles that are parallel to the zy-plane in which all angles of the
triangles are greater than some fixed constant. Again, an O(n***) preprocessing,
O(log n) query time structure is given.

After studying these special cases, we return to the general ray shooting problem.
It is shown how ray shooting queries in an arbitrary set of (possibly intersecting)
triangles can be answered in O(log n) time after O(n**¢) preprocessing.

Another basic problem in computer graphics is the hidden surface removal prob-
lem: Given a set of objects in space (typically non-intersecting polyhedra), compute
which parts of the polyhedra can be seen by an observer standing at a given view
point. More precisely, we want to compute the visibility map of the scene, i.e., the
subdivision of the viewing plane into maximally connected regions such that in each
region exactly one face of a polyhedron is visible or no face at all is visible. Until
very recently, no output-sensitive algorithm (algorithms whose complexity depends
not only on n, the total number of edges of the polyhedra, but also on k, the com-
plexity of the visibility map) was known for this problem except when there is a
known depth order on the faces. Since cyclic overlap can occur at many places a
depth order does not always exist. Furthermore, even if there is no cyclic overlap
it is hard to compute a valid depth order. (See [6] for an initial study of these
problems.) Hence, the restriction to scenes for which there is a known depth order
is a severe one. De Berg and Overmars [13] have shown that a depth order is not
necessary to obtain an output-sensitive algorithm if the polyhedra are axis-parallel.
Using some of their ideas we give the first output-sensitive hidden surface removal
algorithm for arbitrary (non-intersecting) polyhedra. Our algorithm uses the ray
shooting structure for curtains. It runs in O(n!'*¢\/k) time. Thus it is quasi-optimal
for very small (near-constant) values of k as well as for very large (near-quadratic)
values of k.

2 Ray shooting

In this section we study four versions of the ray shooting problem: ray shooting
in axis-parallel polyhedra, in curtains, in fat horizontal triangles and, finally, the
general case of arbitrary (possibly intersecting) triangles. We will first describe data
structures that have an O(log?n) query time. Then we show how the query time
can be reduced to O(log n), without changing the asymptotic preprocessing time.
Before we proceed, it is convenient to introduce some notation and to state a

technical lemma that we use repeatedly. This lemma allows us to build recursive
data structures in an efficient way.

Lemma 1 Let e > 0 be a constant, let r be some sufficiently large parameter, and
let S(n) = O(r*n®*¢) + O(r?)S(2) where S(O(1)) = O(1). Then S(n) = O(r’n?*c).

Here r being sufficiently large means that r is larger than some constant which
depends on ¢ and the constants involved in the recurrence itself. The (inductive)
proof of this lemma is straightforward and therefore omitted. Note that r can be
a function of n, for example r = n® for some § > 0. This lemma (and also some
variations of it) will be used in connection with the following result of Matousek [19]
on cuttings of sets of hyperplanes. Define a (%)—cutting of a set S of hyperplanes
in d-space to be a subdivision of d-space into simplices such that any simplex is
intersected by at most 2 of the hyperplanes in S. The size of the cutting is the
number of simplices in the cutting.

Lemma 2 (Matousek [19]) Given a set S of n hyperplanes in d—-space, there ez-
ists a (})-cutting =(S) of size O(r?). Moreover, such a cutting can be computed
deterministically in time O(nr-!) for r < n!=%,

In the remainder of this section the query ray is denoted by p. The point p =
(s> Py, pz) is the starting point of p and I(p) denotes the line containing p. The
projection of an object o onto the zy-plane is denoted 5. Finally, we say that a
segment e in space, also called a rod, passes above a rod €' iff eNe’ # & and ‘at
this intersection point’ e has greater z-coordinate. The notion of ‘passing above’ is
defined similarly for lines with respect to rods, rays with respect to lines, etcetera.

2.1 Axis-parallel polyhedra

Let S be a set of axis-parallel polyhedra with n edges in total and let F be the set
of faces of the polyhedra in S. We want to find the first face that is hit by some
(not necessarily axis-parallel) query ray p. To this end we split F into three subsets,
Fi, F,; and F3, that contain the faces parallel to the yz-plane, the zz-plane and the
zy-plane. For each subset we build a separate structure. A query is performed in
all three structures; of the (at most) three faces we find we then select the one that
is intersected first. Next we show how to preprocess F; for efficient ray shooting; F,
and F3 can be handled in the same way.

Because a face f in Fj is parallel to the yz-plane, f has one specific z-coordinate,
denoted f,. The first level of the data structure is just a balanced binary tree T
storing the z-coordinates of the faces in increasing order from left to right in its
leaves. With each node § in this tree we associate a structure that can answer the
following query on the set F¥ of faces that are stored in the subtree rooted at §:
‘Given a query line I, does it stab at least one of the faces in F¥ ?’.

Before we turn our attention to the implementation of the associated structures,
let us describe how to use this structure to answer a ray shooting query. Assume
w.l.o.g. that p is directed to the right, i.e., in the positive z-direction. If the
search path of p, (the z-coordinate of the starting point of p) in T turns right at
the root of T, then p cannot stab any face in the left subtree, so we only have to
search recursively in the right subtree. If the search path turns left, then we search
recursively in the left subtree. If we find an answer in the left subtree then this will
be the answer to the ray shooting query. If p misses all faces in the left subtree
then we also have to search in the right subtree. But in that case we know that
the starting point of p lies to the left of all faces in the right subtree. Therefore the
search can be done as follows. Starting at the right child of the root, we walk down
the tree. Using the associated structures we test if the left subtree of the current
node contains at least one face that is stabbed by I(p) (and, hence, by p); if this is
the case then we turn to the left, otherwise we turn to the right. The search will end
in the leaf that contains the answer to the ray shooting query (or we find out that p
misses all faces). The query algorithm visits at most two nodes at every level of the
tree. So after O(log n) queries in associated structures we have found the answer to
the ray shooting query.

We are left with the following subproblem: Preprocess a set of axis-parallel faces
that are parallel to the yz-plane—Ilet’s call this set A—to decide efficiently whether
a query line stabs at least one of the faces. In fact, a more general structure will be
presented: instead of telling us if at least one face is stabbed, it answers stabbing-
counting queries, i.e., 1t can tell us exactly how many faces are stabbed.

Consider a face f € A. A bottom edge of f is an edge that bounds f from below,
and a top edge is an edge that bounds f from above. For any line ! that stabs f,
we know that the number of bottom edges of f above which ! passes is one greater
than the number of top edges of f above which [passes. Similarly, a line I’ that
does not stab f passes above an equal number of bottom and top edges. This leads
to the following observation. Let o(l, A) be the number of faces in A stabbed by a
line I. Let E4 and EY be the set of bottom and top edges of the faces in A, and let
#(1, EY) and ¢(I, E4) be the number of bottom and top edges passing below [.

Observation 1 o(l, A) = é(I, EY) — 4(I, EY,)

Our strategy will be to store the sets EY and EY such that ¢(I, EY) and ¢(I, EY,) can
be computed efficiently. Consider the set EY of bottom edges; EY can be handled in
the same way. Recall that to pass above an edge e € EY, the projection I of / onto

5

the zy-plane has to intersect the projection € of e. If this is the case then [passes
either above or below e. To distinguish between these two cases we project [and e
onto the zz-plane; the projection I of [is a line and the projection & of e is a point.
Now [passes above e if and only if & € i~, where i~ is the half-plane below i.

This leads to the following structure. Let .EZ = {g€ | e € EY} be the set of
projections of edges in EY onto the zy-plane. For an edge € let 2* denote its dual,
which is a double wedge, and let W = {€* | e € E4}. (We use the standard duality
transform, described for example by Edelsbrunner [16], that maps points to lines
and vice versa.) Let Z(W) be a (1)-cutting for the lines that define the double
wedges in W, where r is a parameter to be determined later. For a cell ¢ in Z(W),
let Wi(c) be the subset of double wedges that fully contain ¢ and let Wy(c) be the
subset of double wedges that partially cover c. Since E(W) is a (1)-cutting we
know that |W3(c)| < 2 for each cell ¢, where n = |W|. Our structure can be seen
as a tree of branching degree O(r?). The root of this tree stores the subdivision
Z(W), preprocessed for point location queries using e.g. Kirkpatricks method [18].
Furthermore, for each cell ¢ in Z(W) the set of points {&é | €* € Wi(c)} is stored,
preprocessed for half planar range counting as described in [9]. This half planar range
counting structure uses O(|W;(c)|*log |Wi(c)|) preprocessing time and O(|W;(¢c)|?)
space and it allows us to count the number of points in {€ | €* € Wi(c)} below a
query line in O(logn) time. Finally, the O(r?) children of the root correspond to
recursively defined structures on the set Wa(c).

Next it is described how to count the number of edges in EY passing below a query
line ! with this structure. First 1", the dual of the projection of I onto the zy-plane,
is located in the subdivision Z(W) that is stored at the root of the structure. Let ¢
be the cell containing I*. Then we perform a query with [~ the half-plane below the
projection of [onto the zz-plane, in the half planar range counting structure that
stores {€ | €* € Wi(c)}. This gives us the number of edges in {e | €* € W(c)} that
pass below I. However, {e | €* € W)(c)} can contain edges that pass below [as well,
so we recurse in the child of the root corresponding to cell ¢. This way we compute
¢(1, EY). A similar structure allows us to count #({, E). Using Observation 1 we
obtain:

Theorem 1 Stabbing-counting queries in a set of axis-parallel faces with n edges in
total can be performed in time O(logn) with a structure that uses O(n**¢) prepro-
cessing time and space, for any fized € > 0.

Proof: The correctness of the approach follows from the discussion above. It re-
mains to analyze the query time and the preprocessing. To compute ¢(I, E) we first
perform a point location in the subdivision Z(W) associated with the root, taking
O(logr) time. Then we perform a half planar range query, which costs O(log n)
time, and then we recurse. Hence, the query time Q(n) satisfies the recurrence
Q(n) = O(logr) + O(logn) + Q(2). The preprocessing time S(n) can be seen to
satisfy S(n) = O(r’n?logn) + O(r?)S(2). The query time and the bounds on the

6

preprocessing (use Lemma 1) follow if we set r = n® for a sufficiently small &’ > 0.

a

Let us now return to our original ray shooting problem. Recall that we have a
balanced binary tree on the z-coordinates of the faces. At every node § we have
an associated structure for stabbing-counting queries on the set of faces whose z-
coordinate is stored in the subtree rooted at §. To answer a ray shooting query we
have to perform stabbing-counting queries in O(log n) associated structures. Using
the structure of Theorem 1 for the associated structures we obtain:

Theorem 2 Ray shooting queries in a set of azis-parallel polyhedra with n edges in
total can be performed in time O(log® n) with a structure that uses O(n?**) prepro-
cessing time and space, for any fized € > 0.

This result can be generalized to polyhedra whose faces have g different inclinations.
To this end, we partion the set F of faces of the polyhedra into g subsets Fi, ..., Fy,
one for each inclination. For each subset we build a separate structure. Consider
the faces in some subset F}, and assume w.l.o.g. that these faces are parallel to
the yz-plane. The main structure is a tree on the z-coordinates of the faces, and
the secondary structure is a structure for stabbing counting queries. Hence, the
structure is similar to the structure for axis-parallel faces; the only difference is that
the structure for stabbing-counting queries now consists of g — 1 ‘substructures’, one
for each possible orientation of the edges. (Notice that the edges that are stored in
some stabbing-counting structure are the intersection of a face in F; and some other
face, and, hence, they have only g—1 different orientations.) Each such substructure
is identical to the stabbing-counting structure described above for the axis-parallel
case. Thus, stabbing counting queries now take O(glogn) time, and ray shooting
queries in F; take O(glog?®n) time. To answer a ray shooting query, we search the
subsets F; separately; the answer to the ray shooting query is easily computed from
the subanswers in O(g) time. This results in a total query time of O(g2log®n). Since
each edge is present in exactly two structures (one for each face that is incident to
it), the preprocessing time and space are independent of g and remain O(n?*¢).

Theorem 3 Ray shooting queries in a set of polyhedra with n edges in total whose
faces have g different inclinations can be performed in time O(g?log® n) with a struc-
ture that uses O(n?*®) preprocessing time and space, for any (fized) € > 0.

Remark: As was already noted in the introduction, it is possible to get a trade-
off between query and preprocessing time, by using the recursive partition trees
of Chazelle et al. [9] in the method of Schmitt et al. [25]. More precisely, it is
possible to achieve O(n!*¢/ /m) query time using O(m!*¢) preprocessing, for any
n < m < n? It should also be noted that these bounds lead to an improvement
over Pellegrini’s result on batched ray shooting for axis-parallel polyhedra [23].

2.2 Curtains

A curtain is an unbounded polygon in space with three edges, two of which are
parallel to the z-axis and extend to z = —oo. Thus the polygon can be seen as
an infinitely long curtain hanging from the third (bounded) edge, which we call its
top edge. Observe that two curtains can intersect each other. Let S be a set of n
such curtains. We want to preprocess S for ray shooting queries. As in the case
of axis-parallel polyhedra we first reduce the problem to a stabbing problem: ‘Does
a given line intersect at least one curtain?’ (This time, however, we are unable to
compute the exact number of curtains stabbed by the line. In fact, if we could devise
a structure for stabbing-counting queries in a set of curtains, it would allow us to
solve the ray shooting problem for an arbitrary set of triangles efficiently.)

To reduce the ray shooting problem to a stabbing problem we would like to
impose an order on the curtains. Since they can intersect, however, it seems hard
to obtain such an order in an efficient way. Fortunately, the cuttings that we have
used before are also useful in this respect. Project the curtains onto the zy-plane,
obtaining a set S of segments. Construct a (1)-cutting Z(5) for the lines that
contain the segments in S, where r is some sufficiently large constant. For a cell ¢in
=(5), let S(c) be the set of curtains whose projections intersect c. (More precisely,
we restrict our attention to that part of each curtain that projects onto c.) The
main structure is a tree T of degree O(r?). With the root we associate Z(S) and
for each cell ¢ we have an associated structure that can tell us whether at least one
curtain in S(c) is stabbed by some query line. Furthermore, every child of the root
corresponds to a recursively defined structure for some set S(c).

A query in this structure is performed in much the same way as in the axis-
parallel case. The projection 7 of the query ray intersects O(r?) cells ¢, ¢, .- C
of =(3) that are stored at the root of T} the cells are numbered according to the
order in which they are intersected by p. See Figure 1. We recursively find the
first curtain in S(c;) that is hit. If there is such a curtain, then this must be the
answer to the query. If none of the curtains is intersected, then we do the following.
Using the associated structures we test if p stabs at least one curtain in S(cz), if not
we test S(cs), etcetera, until we find the first cell ¢; such that p stabs at least one
curtain in S(c;). This set contains the answer, so we recurse in the corresponding
child of the root. This process is repeated until we reach the leaf of T that contains
the answer. The reason that we treat c; separately is that p does not cut completely
through ¢;, so we cannot replace p by I(p) inside ¢;. However, when none of the
curtains in S(c;) is intersected, then this problem will not occur again. From this
it follows that at each level of our tree we visit only O(r?) nodes. Since the depth
of the tree is O(log, n) and we chose r to be a constant, it follows that we perform
O(log n) queries in associated structures in total.

What remains is to devise a structure for the stabbing problem: ‘Does a query
line [stab at least one curtain in some set A7’ This structure is closely related to

Figure 1: The tree corresponding to a cutting.

the structure for stabbing-counting queries in axis-parallel faces that was described
in Section 2.1. We project the curtains in A onto the zy-plane, resulting in a set
A of segments, and dualize this set to obtain a set W of double wedges. Next
we construct a (%)-cutting Z(W) for the lines defining the double wedges in W.
The structure that stores A is a tree of degree O((r')?). With the root we store
the subdivision (W), preprocessed for point location queries, and each child of
the root corresponds to a recursively defined structure for the set A(c) of curtains
whose corresponding double wedges cross the cell c. For each cell ¢ we also store a
structure that can test if a query line stabs at least one of the curtains in A;(c), the
set of curtains corresponding to double wedges that fully contain ¢. This structure
is defined as follows. Because we know that the projection of a query line that visits
¢ intersects the projection of each curtain in Ai(c), we can extend the top edges of
these curtains to full lines. Now a query line ! stabs none of the curtains if and only
if it passes above all these lines. This can be tested in O(logn) time after O(n?+*)
preprocessing, for any ¢ > 0, see [7). We thus can test if a query line stabs at least
one curtain in A in time O(log n) after O(n?*¢) preprocessing, for any € > 0, if we
set ' = n¢ for an appropriate value of ¢’ and apply Lemma 1. This concludes the
description of the associated structure of our main tree.

Summarizing, the ray shooting structure consists of three levels. The first level
recursively imposes an ordering on the curtains and thus reduces the shooting queries
to stabbing queries. The second level is used to filter out the curtains that are

intersected in the projection so that the top edges can be extended to lines. The
third level then answers the stabbing queries for these extended curtains. We have
to perform O(logn) stabbing queries to find the answer to the ray shooting query.
Since the stabbing queries take O(logn) time and the depth of the trees on the
second level is constant, the total query time is O(log?n). Using Lemma 1 once
more, the preprocessing time of the structure is seen to be O(n?*¢) for a, by this
time fairly large, € > 0 that can still be chosen arbitrarily small.

Theorem 4 Ray shooting queries in a set of n curtains can be performed in time
O(log? n) with a structure that uses O(n?*¢) preprocessing time and space, for any
fized € > 0.

2.8 Fat horizontal triangles

We call a triangle fat if all its internal angles are greater than some fixed constant 6.
Fat horizontal triangles, that is, triangles parallel to the zy-plane, have the following
important property.

Observation 2 There exists a set of slopes D of constant size, such that, for each
vertez v of any fat horizontal triangle t, it is possible to split t into at most two
(non-empty) triangles with a segment incident to v whose slope is in D.

The size of D is inversely proportional to the minimum angle 8 of the triangles.
For example, we can take the set D = {i6/2 : 0 < ¢ < 47/0}. Let S be a set
of n fat horizontal triangles. The property stated above enables us to decompose
each triangle t € S into at most four triangles t, t2, t3 and t4 such that each ¢;
has two edges whose slopes are in D: Pick any vertex of t and split ¢t according
to Observation 2 using some segment s. Split the two resulting triangles from the
vertices opposite s, see Figure 2. This clearly results in four triangles that each have

Figure 2: Splitting a fat triangle using segments with slope in D.

two edges with slope in D. We call these edges the fized edges of the triangles. Next
we partition the set of 4n triangles thus obtained into |D|? subsets Si, ..., Sipjz; two
triangles are in the same subset if and only if the two fixed edges of one triangle

10

are parallel to the two fixed edges of the other triangle. For each S; a separate
structure is built. A query is performed in all structures and the final answer to the
ray shooting query is easily computed from the |D|? ‘subanswers’ that are found.

Consider one subset S;. Assume w.l.o.g. that each triangle t € S; has one edge
that is parallel to the z-axis, and one edge that is parallel to the y-axis. Assume that
the triangles lie above (i.e. in the positive y-direction of) the edge that is parallel
to the z-axis; the triangles that lie below this edge are treated separately. For a
triangle t, we call the edge that is parallel to the z-axis its bottom edge, the edge
that is parallel to the y-axis its vertical edge, and its third edge, which does not have
a fixed slope, its top edge. The idea of the structure is as follows. First we select
all triangles t such that I(p) passes in the y-direction above the line containing the
bottom edge of t. Once we know that I(p) passes above the bottom edge of these
triangles, we can as well extend them to y = —oo. In other words, we can regard
each triangle t as a curtain hanging from its top edge into the negative y-direction
(which is the direction of its vertical edge). Thus, if we can find all triangles whose
bottom edges pass below a query line efficiently, we can use the structure developed
in the previous section.

How do we find these triangles quickly, and, equally important, in a small number
of groups? Here we use the fact that all bottom edges are parallel to the z-axis. So
the idea that was used in the axis-parallel case applies: we project the set E%. of
bottom edges of the triangles in S; onto the yz-plane, giving a set Eg-'. of points. A
line [passes above the line containing a bottom edge e € E%, if and only if € € -,

where & and [are the projections of e and [onto the yz-plane, and [~ denotes the
half-plane below I (i.e. in the negative y-direction of [). To find all points & € [~ for a
query line | we can use the same technique that we have used before: we dualize the
set of points E% , and construct a (})-cutting Z((EY,)*) for the resulting set (E%)*
of lines. The subdivision E((Egi)*), preprocessed for point location, is stored at the
root of our main structure, which is an O(r?)-ary tree. For each cell ¢ of Z((E%)")
we have an associated structure on the set of triangles that correspond to the lines
below ¢, and we recursively store the at most 2 lines that intersect c. The associated
structure is a ray shooting structure, as described in the previous section, on the
set of curtains hanging from the top edges of the triangles into negative y-direction.
Choosing r to be n® for an appropriately small ¢’ > 0, we get the triangles for
which the bottom line passes below [(p) in a constant (dependent of ¢') number
of groups. Thus the total query time will be the same as the query time for the
curtains, which is O(log?n) by Theorem 4. Using the fact that the ray shooting
structure for curtains uses O(n**¢) preprocessing, the preprocessing can be done in
time O(n2*¢) for any (slightly larger) € > 0, see Lemma 1.

Theorem 5 Ray shooting queries in a set of n fat horizontal triangles can be per-
formed in time O(log?n) with a structure that uses O(n**¢) preprocessing time and
space, for any fired e > 0.

11

Observe that, using the same techniques, it is possible to obtain an alternative
solution for the ray shooting problem in a set of axis-parallel polyhedra. This is
true because each face of an axis-parallel polyhedron can be split into rectangles
whose edges have a fixed orientation. These rectangles can be treated in the same
way as the triangles that have two fixed edges: first select the ones whose bottom
edge passes below the query line, and then treat the rectangles as curtains hanging
from the top edge into the direction of the, in this case two, vertical edges.

2.4 The general case

This section tackles the general ray shooting problem, which is to preprocess a set of
possibly intersecting triangles in space for efficient ray shooting. First, we impose an
ordering on the triangles in the same manner as we did in Section 2.2 for curtains.
Once we have imposed the ordering, the ray shooting problem reduces to a stabbing
problem: ‘Does a query line stab at least one triangle of a given set of triangles?’

Let S be a set of n possibly intersecting triangles in space. Project the triangles
in S onto the zy-plane, obtaining a set 5. Next, construct a (1)-cutting =(S) for
the 3n lines containing the edges of the projected triangles, for a sufficiently large
constant r. Associate with each cell ¢ in Z(5) the portions of the projected triangles
that intersect c. For a query ray p we have to test the cells ¢1, ¢z, . . . of Z(5) that are
intersected by 7, until we find the first ¢; that contains a triangle stabbed by p. We
handle the triangles whose projection fully contains c; at this level and we recursively
search in the at most 2 triangles whose projected boundary intersects c;.

This approach leads to two subproblems that we have to solve. Firstly, we have
to be able to decide if a query line stabs at least one triangle of a given set. Secondly,
we have to treat in an efficient manner the triangles whose projection fully contains a
cell ¢. Observe that the second subproblem did not occur when we studied curtains,
since a curtain projects onto a segment.

The first subproblem can be solved using Plicker coordinates, as in [23]. To
this end, the lines through the edges of the triangles are oriented and mapped to
hyperplanes in Plicker 5-space, and an (oriented) query line is mapped to a point.
The position of the point—whether it is above, on or below—relative to a hyper-
plane determines the ‘twist’ of the query line—whether it is clockwise, intersecting,
or counterclockwise—with respect to the line corresponding to the hyperplane. See
[7, 26] for more details. Thus, if we consider the arrangement of three hyperplanes
corresponding to the lines through the edges of a triangle, then there are exactly two
cells corresponding to query lines that stab the triangles. One cell corresponds to
lines that are oriented such that they stab the triangle from front to back, and the
other cell corresponds to lines stabbing the triangle from back to front. Hence, point
location with the Pliicker point of the query line in the subdivision of hyperplanes
corresponding to all lines through triangle edges tells us which triangles are stabbed.
Moreover, only the cells of this subdivision that intersect the Pliicker hypersurface

12

(the hypersurface containing the images of all lines in 3-space, also called the Grass-
man manifold) are of interest. Recently, Aronov and Sharir [4] have shown that the
total complexity of all these cells is O(n%logn). Therefore, the point location can
be done in O(logn) time after O(n**¢) preprocessing, in the same way as the point
location method for arrangements of hyperplanes, as described by Clarkson [11]:
take a sample R C H of size O(r) such that any cell in the triangulated arrange-
ment A(R) is intersected by no more than % Jog r hyperplanes of H, for a sufficiently
large constant r. Because a random sample has this property with high probability,
such a sample can be found in O(nr®) expected time [11]. Consider a cell in A(R)
and some triangle. If none of the three Pliicker hyperplanes that correspond to this
triangle intersect the cell, then we know that either any line whose Pliicker point lies
in this cell intersects the triangle, or any such line misses the triangle. If one or more
of the Pliicker hyperplanes intersect the cell, then some lines whose Pliicker point
is inside the cell intersect the triangle, while other lines miss it. Thus, the question
if at least one triangle is hit by a query line can be answered with the following
tree. The root of the tree stores the cells of the triangulated arrangement A(R)
that are intersected by the Pliicker hypersurface. Each child of the root correspond
to such a cell. Thus, the root has O(r*logr) children. If for such a cell there is
a triangle that is intersected by all lines whose Pliicker points are in the cell, then
the child corresponding to the cell is a leaf. Otherwise, we recursively store the at
most 2logr triangles that are sometimes intersected at this child. Thus S(n), the
preprocessing time and space, satisfies S(n) = O(nr®) 4 O(r#log r)S(2 log r), which
solves to S(n) = O(n*t®), for any ¢ > 0. To answer a query we locate in time
O(r*logr) the cell of A(R) that contains the Pliicker point of the query line. If this
cell corresponds to a leaf of the tree, then we know the answer. Otherwise, we have
to search recursively in the child corresponding to this cell. Since r is a constant,
the search takes O(logn) time.

In the second subproblem we are given a cell ¢ of =(S) and a set S(c) of triangles
whose projections fully contain c, restricted to the portions that project onto c.
Given a query ray p whose projection intersects ¢, we want to find the first triangle
in S(c) hit by p. Since the projections of the triangles in S(c) fully contain c,
we are, in effect, ray shooting in the arrangement of the planes containing the
triangles. Let us describe a simple solution for this problem, that has a query time
of O(logn) and which uses O(n3t¢) preprocessing. First, we build a point location
structure for the planes containing the triangles; an easy way to do this is using
random sampling, see [11]. Every leaf in this structure corresponds to a cell in
the arrangement of planes. We construct this full arrangement in O(n®) time [16].
Each cell in the arrangement is preprocessed in linear time (linear in the size of the
cell) for O(logn) time ray shooting queries using the hierarchical representation of
Dobkin and Kirkpatrick [15]. The only problem that is left is to associate these ray
shooting structures with the right leaves in the point location structure. To this end
we take a point in each cell and search with it in the point location structure; the

13

ray shooting structure for this cell is associated with the leaf in which the search
ends. A ray shooting query in the set S (c) now proceeds as follows. First we search
with the starting point of the ray (more precisely, the starting point of the part of
the ray projecting onto c) in the point location structure in O(logn) time. Then
a ray shooting query is performed in the structure that is associated with the leaf
in the point location structure, also taking O(logn) time. We now have found the
first plane that is hit in the arrangement of planes containing the triangles. Finally,
we test if the projection of this first intersection lies in ¢. If so, the ray will also hit
the triangle that corresponds to this plane; otherwise none of the triangles in S(c)
is hit.

Returning to the original problem, we see that the query time is O(log?®n) (this
follows in the same way as the query time for curtains) and that the preprocessing
time satisfies

S(n) = O(*(2)+) + 0(*n™) + O(*)S(),

which leads to S(n) = O(n***).

Theorem 6 Ray shooting queries in a set of n possibly intersecting triangles in
space can be performed in time O(log? n) with a structure that uses O(n**c) ezpected
preprocessing time and O(n**¢) space, for any fized € > 0.

2.5 Reducing the query time

Next it is shown that the query time for the ray shooting problems studied above
can be reduced to O(log n) without affecting the preprocessing time asymptotically.
The new structures, however, are much more complicated.

Let us first consider the general ray shooting problem. Thus, we are given a set
S of possibly intersecting triangles in space. The first step in devising the structure
remains the same: we project the triangles onto the zy-plane and we compute a (1)-
cutting =(3) for the lines containing the projections of the edges of the triangles.
The main idea behind the reduction in query time is to choose the parameter r to
be n for a sufficiently small ¢ > 0 instead of choosing to be constant. This way
the depth of the recursion becomes constant instead of logarithmic. On the other
hand, this also means that we cannot afford to check all of the O(r?) cells of Z(5)
that are intersected by the projection 7 of the query ray, to see in which cell we have
to recurse. Thus, all these cells have to be tested simultaneously.

Let E be the set of O(r?) edges of the subdivision Z(S). Let W = {e*|e€ E}
be the set of double wedges dual to the edges in E. Finally, let A(W) be the
arrangement on the dual plane defined by the double wedges in W. Note that
A(W) has size O(r*) = O(n*). A cell of A(W) corresponds to a fixed subset of
the edges in E that are stabbed by lines whose dual points are in this cell. Hence,
a cell in A(W) also corresponds to a fixed set of cells in =(5) intersected by such
a line. Now consider a query ray p. Let ci,...,c be the O(r?) cells of Z(5) that

14

are intersected by its projection 5. These cells can be found in the following way.
Locate I(p)*, the dual of the line containing the projection of p, in A(W); then do
a binary search with the starting point of 7 on the edges that are intersected by 7.
This way we find the cell ¢; that contains the starting point of 7 and also the other
cells that are intersected. As before, we always recursively search in ¢;. If we find
an answer in c;, then we are finished. Otherwise, the answer is in one of the cells
Ca,. .., ¢ This sequence of cells is called the suffiz of p, and we denote it by o,. The
suffix o, will be preprocessed such that we can decide in O(logn) time into which
cell of o, we must recurse, if there is no answer in ¢;. Thus, at each of the O(r*)
cells of A(W) we store O(r?) data structures, one for each suffix of the cells of Z(5)
that are stabbed by the lines whose duals are in this cell.

Consider a suffix o = c3,...,c. Forcellc,let S (c;) denote the subset of triangles
in S whose projection intersects ¢;. Thus, both triangles whose projection completely
contains ¢; and triangles whose projection partially covers ¢; are present in S(c);
of the latter type there are no more than . Furthermore, the triangles in S(c;)
are restricted to the parts that project onto ¢;. For example, if the projection of
a triangle intersects two cells, say ¢ and c;, then this triangle is split into two
parts; S(c;) contains the part that projects onto ¢;, and S(c;) contains the part that
projects onto c;. Hence, different parts of the same triangle can occur in different sets
S(c;). This means that if we stab a certain part of a triangle we know in which cell
the (projection of the) intersection will occur. Note that a part of a triangle need not
be a triangle itself, but that it can be a (convex) k—gon, for 3 < k < 6. Also note that
the total complexity of S, = Usgic: S(ci) is O(nr?). Now consider the arrangement
in Pliicker 5-space induced by the triangle parts in S,. This arrangement gives us
all the stabbing information about the triangle parts. Hence, by performing a point
location in it, we can determine which triangle parts of S, are stabbed by a line and
thus into which cell of =(5) we have to recurse. This point location can be done in
O(log(nr?)) = O(logn) time after O((nr?)**¢') preprocessing, for any &’ > 0, in the
same way as before.

Putting everything together we see that we can find the cell into which to recurse
in O(logn) time. Then we do an O(log n) time ray shooting query on the triangles
whose projection fully contains this cell (clearly we cannot recurse on them), and we
recurse on the 2 triangles whose projection partially covers the cell. Since r = n°,
the depth of the recursion is constant, so the total query time is O(logn). The
preprocessing time S(n) satisfies S(n) = O(r%) x O((nr?)**<') + O(r?)S(}), where
r = n¢. By choosing ¢ and ¢’ sufficiently small we obtain:

Theorem 7 Ray shooting queries in a set of n possibly intersecting triangles in
space can be performed in time O(log n) with a structure that uses O(n*te) prepro-
cessing time and space, for any fized e > 0.

To reduce the query time for ray shooting in curtains, we use the same trick. Thus
we construct a (})-cutting Z(5), with r = n®. For a query ray p whose projection
intersects cells ¢, . . ., ¢, we always recurse on ¢. If we don’t find an answer there,

15

then we decide in O(logn) time in which cell of the suffix o, = ¢g,...,¢: We must
recurse. So we need to determine the suffix of a query ray, and for each suffix we
must be able to determine the cell of the suffix in which we have to recurse.

The structure to compute the suffix for a query ray is the same as in the general
case: a point location structure for the arrangement A(W), where W is the set of
double wedges that are the duals of the edges of the cutting =(S). Hence, we can
find this suffix in O(logn) time. So now consider a suffix ¢ = ¢3,...,¢, and let
Sy = Usgict S(¢ci), where S (¢;) is the set of curtains whose projection intersects ¢;.
Note that |S,| = O(2t) = O(nr), since each ¢; is intersected by O(2) curtains. First
we select the curtains that are intersected by the query ray in the projection. This
is done in the usual way: dualize the projections of the curtains to obtain a set of
double wedges and compute a (})-cutting for the lines defining the double wedges,
for 1 = n® and ¢’ sufficiently small. For each cell in the cutting, we store the curtains
whose double wedges fully contain the cell in an associated structure to be described
next, and we recursively store the curtains whose double wedges partially cover the
cell. Using this structure, it is possible to find the curtains that are intersected by
a query line in a constant (depending on ¢) number of groups. This is exactly the
same as in section 2.2, so we will not go further into details and we concentrate on
the associated structure.

The associated structure should solve the following problem. Given an ordered
collection of sets of curtains —namely subsets of the sets S(cz), ..., S(ct)— find the
first set that contains a curtain that is stabbed by the query line. Furthermore, we
know that we only query with lines that intersect all the curtains in the projection.
Hence, we can extend the top edges of the curtains to full lines. Thus we are given
an ordered collection of sets of lines and we want to know the first set that contains
a line that passes above a query line. As mentioned before, the twist of a query line
with respect to a given line is determined by the position of the corresponding query
point relative to the corresponding hyperplane in Plicker 5-space. If the two lines
are consistently oriented—say both from left to right—then the query line passes
above the given line if and only if its Pliicker point is on one distinguished side
of the hyperplane h. For notational convenience, we denote the half-space on this
side of h by h*, and the other half-space by ™. Now consider a query line that
is consistently oriented with respect to a set of given lines. This line passes above
all given lines if and only if the Pliicker point corresponding to the line lies in the
convex polytope (Jh* determined by the hyperplanes h corresponding to the given
lines. Chazelle et al. [7] have shown how to enforce the consistency constraint on
the orientations of the lines. For our problem we can use their technique directly,
without affecting the asymptotic preprocessing and query time, so we will ignore
this consistency constraint from now on.

Hence, we have the following problem. Let Hi,...,H, be an ordered collection
of m = O(n*) sets of hyperplanes in 5-space, with 7, |H;| = n. (The bound on
the size of 7, | H;| follows from the fact that each projected curtain is intersected at

16

most once by p.) Let P(H;) = N{h*|h € H;} be the convex polytope determined by
the hyperplanes in H; and define Compl(P(H;)) = E®— P(H;) to be the complement
of P(H;). We want to preprocess H = Hy U -+ U Hp such that we can efficiently
find the smallest :* such that Compl(P(H;)) contains a query point g.

Before we describe the solution in all its technical details, let us give an overview
of the method. First, we note that the subdivision of 5-space induced by the
m = O(n?*) polytopes P(H;) has size O(n?m) = O(n?*%) (see claim (B) below),
and that a point location in this subdivision tells us exactly which polytopes do and
do not contain a query point. However, there are two problems in preprocessing
this subdivision for point location queries using Clarkson’s method [11]. The first
problem is that if we take a sample of the hyperplanes of size r, then the subdivi-
sion defined by these hyperplanes has size O(r?m). If we take r to be a constant,
then the O(m) factor dominates the size of the subdivision, resulting in a structure
that uses too much space. This problem is overcome by taking large samples of size
r = nM10 5o that we can afford the extra O(m) factor in the complexity. But this
imposes a new problem, namely that we can no longer locate the query point in the
subdivision in a brute-force way. So we need another structure for locating the query
point in the subdivision. A second, and more serious, problem that we encounter is
the following. The subdivisions that we consider are not full arrangements of hyper-
planes. Therefore, random sampling theory does not guarantee anything about the
number of hyperplanes that cut a simplex in the triangulated subdivision. Indeed,
since we have only a small number of simplices (much less than r5) there is no way
in which we can bound this number in a satisfactory way. Moreover, the regions
of the subdivision are not convex, so how should we triangulate them? The fact
that saves us is that only the hyperplanes from polytopes P(H1),.. ., P(H;_,) are
important, when we consider a region (in the subdivision induced by some sample)
that is already outside P(H;).

It is time to make these ideas concrete. Let R C H be a random sample of H
of size r = n}/1°, and let R; = RN H;. Define A; = Compl(P(R;))N P(Ri-1)N---N
P(R,). If R; = @ then we define P(R;) = E®; hence, A; = @ in that case. Thus,
for R = H, A, is exactly the region where the answer to a query is i. Finally, define
Amy1 = P(Rm) 0 -+~ N P(Ry). See Figure 3 for an illustration of these definitions.
For each non-empty A;, i > 1, we construct a set Sim(A;) of simplices as follows.
Pick an arbitrary point p € P(R:) N ---N P(Ry); if P(R:)N--- N P(R,) = @, then
A; = P(Ri_1)N -+ N P(R,) and we pick a point in A;. We triangulate the facets
of A; that are not facets of P(R;) N --- N P(R,;), and extend the 4-simplices thus
obtained to 5-simplices, using point p. We claim that:

(A) A; CU{s|s € Sim(A;)} foreveryl <:<m+1
(B) Y74 |Sim(A;)], the total number of simplices, is O(r?m)

(C) Each simplex in Sim(A;) is intersected by O(% log? r) hyperplanes in
H, U ---U H;_;, with probability greater than 1

17

Ags
A, g A,
A, A,
Rl
R2

Figure 3: The regions A; and the set S im(A;) of triangles constructed for As.

We postpone the proof of (A)-(C) and continue to describe the data structure. Let
F be the set of O(r2m) hyperplanes containing the facets of simplices in Sim(R) =
Urt! Sim(A;). The data structure is a tree of branching degree O(r?m), where
each child of the root corresponds to a simplex in Sim(R). At the root we store a
point location structure for the arrangement A(F). With the child corresponding to
simplex s € Sim(A;) we store the value i, = min(i, {j : s C h~ for some h € Hj}).
This is the smallest index j for which we can certify that s C Compl(P(H;)). The
child corresponding to s is also the root of a recursively defined structure on the
hyperplanes in Hy U---U H;,_; that intersect s. Recall that r = n1/1°, and that the
point location structure for A(F') uses O((r?m)3+%) preprocessing, for an arbitrarily
small § > 0. The term r1%+2% forces us to have r = (n')!/1°, where n' is the current
number of hyperplanes at some point in the recursion. This, however, would cause
the depth of the tree to be O(loglogn). To avoid this, we stop the recursion when
n' = m, and we solve the problem ‘brute force’ using O(m5+%) preprocessing.

We have finished the description of the data structure, so now we can describe
the query algorithm. Let ¢ be the query point. We want to find the smallest
index i* such that ¢ € Compl(P(H;)). Initialize i* = co. First, we locate ¢ in the
arrangement A(F). The cell of A(F) that contains ¢ uniquely determines the region
A; that contains ¢, and also the simplex s € S im(A;) that contains ¢. Recursively
fnd the smallest index #* such that ¢ € Compl(P(H;.)) in the substructure rooted
at the child corresponding to s. Finally, set i* = min(i*, iy).

Lemma 3 The smallest indez i* such that Compl(P(H;+)) contains a query point
can be found in O(logn) time with a structure that uses O(n2+emstelos(t/e)) =
O(n?+7eteslos(1/e)) space and (ezpected) preprocessing time, where ¢ is a constant.

Proof: The correctness of the method should be clear from the preceding discussion
(we will prove claims (A)-(C) below), so let us concentrate on its complexity. The

18

point location structure for A(F) stored at the root of the tree uses O((r’m)*+’)
preprocessing time and space, for any fixed § > 0, and it has a query time of O(logn).
It is not hard to test a sample R for the condition in (C) in time O((r?m)*+n).
Since the probability of success is greater than ; we expect to find a good sample
after a constant number of trials. In the same time we can compute the values i,,
and find the hyperplanes on which to recurse for each simplex s. Using claims (B)
and (C), we see that the space and (expected) preprocessing time S (n) used by our
structure satisfies:

5(n)
S(m)

O((r*m)**¥n) + O(r*m)S(2 log® r)
O(m5+9)

Furthermore, the query time @Q(n) satisfies:

Q(n) = O(logn) +Q(3log’r)
Q(m) = O(logn)

where r = n!/19. It is not hard to verify that the depth of the tree is O(log(1/e¢))
and, hence, that the query time is O(logn). The proof of the preprocessing is
slightly more involved. Let Sq(n') be the space used by a subtree of depth d, with
n' being the number of hyperplanes stored in the subtree. One can prove that
Sa(n') = O(m>*+¥+d(n’)2+¢); for d = 0 we have n’ = m so the claim is true, and for
d > 1 this follows by induction on d. Since the depth of the whole tree is O(log(1/¢)),
we have S(n) = S;log(1/¢)(n), for some constant c, and the bound follows.
It remains to prove claims (A)-(C).

Claim (A): A; C U{s|s € Sim(A;)} for everyl <z <m + 1.

Proof: Assume the point p that we picked to construct the simplices is inside
P(R;)N---N P(R,); the case where P(R;)N---N P(R,) = @ is proved in a similar
way. Let z be an arbitrary point in A;. Shoot a ray from point p in the direction of z.
After the ray passes through « it will hit a facet of A;. Since p € P(R;)N-- ‘NP(Ry),

and A; C Compl(P(R;)), this cannot be a facet of P(R;). Thus p is contained in the
5-simplex that we constructed out of the 4-simplex that we hit in that facet. O

Claim (B): 74! |Sim(A4;)|, the total number of simplices, is O(r?m).

Proof: Note that every feature of A; is either a feature of P(R;_;)N---N P(R,),
or a feature of P(R;), or a feature of P(R;) N --- N P(R;). The complexity of
P(Ri_;) N -+ N P(Ry), P(R;), and P(R;) N--- N P(R,) are O(r?) by the Upper
Bound Theorem [16]. Hence, the complexity of A; is O(r?), and since the number
of A;’s is at most m, the bound follows. O

Claim (C): Each simplex in Sim(4;) is intersected by O(% log? r) hyperplanes in
H, U---U H;_,, with probability greater than 1.

Proof: We will use the following fact.

19

Fact 1: Let H be an ordered set of n items, and R C H be a random
subset of size r. The probability that there is a ‘gap’ of size greater than
om between two consecutive items in R (or before the first or after the
last item) is O(r?(1 — @)™ %).

(The size of a gap between two items in R is the number of items in H that lie
between the two items.) We also need the more-dimensional version of this fact,
proved by Clarkson [11].

Fact 2: Let H be a set of n hyperplanes in FE4, and R C H be
a random subset of size r. The probability that there is a simplex in

the triangulated arrangement A(R) that is intersected by more than an
hyperplanes in H is O(r#d+1)(1 — o)r-d(@+))y,

In the following we shall use that for suitable a = O(log r/r) these probabilities are
at most 1/r2.

Consider the ordered set H = HyU---UH,, of hyperplanes in E®; the hyperplanes
within a set H; are ordered arbitrarily, but a hyperplane from H; comes before any
hyperplane from Hj if : < ;. There are n" samples R C H of size r. (The sampling
is done with replacement, as in [11].) We will discard samples that do not satisfy
condition (C) until we are left with a collection of samples that all satisfy (C). This
collection will contain at least (1 — 25t)n" samples, which proves (C).

Let Aj,...,A;, be the non-empty regions, with 1 < j3 < --+ < Jk- We will
argue that there are at least (1- 5—:’,—1)11' samples having the following property: each
simplex in Sim(4;,), k—i1 <I< k, is intersected by O(% log?) hyperplanes from
HyU---UHj_,. Since k < 7, (C) then follows by setting i = k. (The claim is
trivially true for 4;, and for the empty regions.) The argument is by induction on .

Since we want to prove something not only for the full set H, but also for
subsets of the form Hy U --- U Hj_1, we want our samples to contain a sufficient
number of hyperplanes from each such subset. To this end we discard all samples
R such that there is a ‘gap’ of size an between two consecutive hyperplanes in
R (or before the first hyperplane in R). From Fact 1 it follows that for suitable
a = O(logr/r), we discard at most n" [r? samples. Let H = {h1,...,ha}. The
bound on the gap size implies that R’ = RN H' has size r' > n//an, for any initial
portion H' = {h1,..., hp} of H. In the remainder we only consider samples with
this property, of which there are at least (1 — ;lf)n’ Now we are ready to prove that
each simplex in Sim(A4;), k—1 <1< k, is intersected by O(-'rllog2 r) hyperplanes
from Hy U---U Hj, 1.

The base case, ¢ = 0, is trivially true. So assume that the statement is true for
i —1, and consider Sim(A;;). By induction we still have at least (1 — 3)n" samples
available. Let H' = H;U---U Hj,-y and n' = |H'|. Observe that if n’ = O(2 log®r)

20

then trivially all the samples remain good. We know that we have chosen ' > n'/an
hyperplanes from H'. Hence, the number X of combinations that we can make using
the hyperplanes in RN (H — H') is no more than (n — n’)= < n7~"'. This implies
that we must have Y different subsamples R’ C H' available, where

Y}(l—ﬁ)n’/X > (1—;2—)n/n = (1—;2-)n .
Of these subsamples, at most (—T%T,-(n’)" are bad, in the sense that there is a simplex
in Sim(A;) that is intersected by more than

log ' log ' ~ n
O(fl n') = O(-T?/—g&;n') = O(anlogr’) = O(;logzr)

hyperplanes from H'. In other words, the number of samples that satisfy the con-
ditions is at least

1 nr' z r nr—r' 1 nr'
—— > — 2 —(n - — .
X(Y (,,.,)2 (n)) (1 ,,,2)n (n n) (T’)2 (Tl)
We have to show this is at least (1 — $5)n" or, equivalently, that
n’ _ (n _ nl)r—r'(nl)r’
72 (rl)‘l

We distinguish between the case where n’ 2> n/2 and the case n’ < n/2. In the first
case we have

n' _ (n - nl)r—r'(n/)r’ S n’ B (n/z)r-—r’nr' - 1 (1/2)r—r’

) (r)? Z 2 _—('77)2___ - r('ﬁ— (r')?)-

So we need (r'/r)? > (1/2)"~", which is true since r' € r and we may assume
that r > 3. For the second case, n' < n/2, we can show in a similar way that
we need (r'/r)? > (1/2)", which is true if ' > 2logr. For r' < 2logr we have
n’ = O(2 log?r) and we already noted that the condition is also fulfilled in this case.

Thus we always have enough good samples left, proving (C). O

This completes the proof of the Lemma 3. O

Note that €log(1/¢) — 0 as ¢ — 0. Hence, by choosing ¢ small enough, we can find
the smallest index i* such that Compl(P(H;.)) contains a query point in O(logn)
time after O(n?*+¢') preprocessing, for any €' > 0.

Finally, we give an overview of the total structure. The main tree has branching
degree O(r?), for r = n®. This tree imposes the ordering on the curtains. Each
child of the Toot corresponds to a cell in a (1)-cutting for the projected curtains.
With the root we associate a structure to find the first cell ¢; intersected by a query

21

ray, and also the suffix c;,...,¢;. For each of the O(r®) possible suffices we have an
associated structure. This associated structure consists of two levels. The first level
selects in a constant number of groups the curtains whose projections are intersected
so that we can extend their top edges to full lines; the structure of the second level
is a structure as described above for finding the first (Pliicker) polytope that does
not contain a query (Pliicker) point.

The analysis of the complexity of the associated structures that we store for each
suffix is similar to the analysis of the structure for line stabbing queries in Subsec-
tion 2.2. Thus an associated structure has O(log n) query time and the preprocessing
can be done in time O(n?t"), for any €” > 0.

Since r = n¢, the depth of the main tree is constant, and the total query time is
O(logn). The preprocessing S(n) satisfies:

S(n) = 0() - O(n**") + 0(r*)S(3)

with r = n¢. By choosing ¢ and ¢” sufficiently small we obtain a preprocessing time
of O(n?*+") for any fixed " > 0.

Observe that reducing the query time for curtains immediately reduces the query
time for fat horizontal triangles and for axis-parallel polyhedra.

Theorem 8 Ray shooting queries in a set of n curtains (or in a set of n fat hor-
izontal triangles or in a set of axis-parallel polyhedra with n edges in total) can be
performed in time O(logn) with a structure that uses O(n?*®) preprocessing time
and space, for any fized € > 0.

Remark: For axis-parallel polyhedra there is an easier way to obtain O(log n) query
time. A query ray intersects a rectangle with edges parallel to the y- and 2-axis if
and only if the ray intersects the rectangle in the projection onto the zy-plane and in
the projection onto the zz-plane. Thus, one doesn’t have to use Pliicker coordinates
to test this, leading to a simpler solution. This is the approach taken in [24].

3 Hidden surface removal

In this section we present an output-sensitive hidden surface removal algorithm for
a set of non-intersecting triangles in space. (The restriction to triangles is just
to simplify the description. In fact, any set of non-intersecting polyhedra can be
handled.) Unlike previous output-sensitive algorithms this algorithm makes no as-
sumptions about the triangles, except that they do not intersect. In particular we
do not require a depth order on the triangles. Since a depth order often does not
exist (and even when an order does exist it is, in general, hard to compute), this is
an important feature of our algorithm.

Let S be a set of non-intersecting triangles with n edges in total. To simplify
the description, we assume that the view point is located at z = co. We want to

22

compute the visibility map of S. The visibility map M(S) of S is the subdivision of
the viewing plane (in our case the zy-plane) into maximally connected regions such
that in each region one triangle is visible or no triangle at all. Notice that the vertices
of this subdivision are of two types: they are either the projection of a visible vertex
of a triangle or they are the intersection of the projection of two edges. The global
method we use to compute M(S) is similar to the method used in [13, 22]: starting
from the visible vertices we ‘shoot along’ the edges of M(S), thereby discovering
the other vertices of M(S). There is one important difference, however; in [13, 22]
the visible vertices are computed beforehand, whereas we compute them ‘on the fly’.
Next we describe the global algorithm in a little more detail.

The algorithm moves a horizontal sweep line from top to bottom over the viewing
plane, halting at every vertex of M(S) and at every projection of a vertex of a
triangle. Thus we have an event queue Q) which initially stores the projections of
vertices of triangle in order of decreasing y-coordinate; when a new vertex of M(S)
is discovered it is inserted into Q. While sweeping, the algorithm keeps track of the
edges of M(S) that are intersected by the sweep line. These edges are stored in a
binary search tree T in the order of their intersection with the sweep line. We also
store for each edge the face that is visible to its left.

The sweep line is advanced in the following way. First the vertex v with greatest
y-coordinate is removed from Q. If v is the projection of a vertex of a triangle we
test if it is visible. This is done by searching in T to find the edge of M(S) to the
right of v. Since we know the face that is visible to the left of this edge, we can check
whether v is visible or not. If v is not the projection of a vertex of a triangle, we
already know that it is visible. If v is visible we now have to update @ and T'. This
means that we have to compute the other vertices of the edges of the visibility map
that are incident to v and will be intersected by the sweep line when it is advanced.
It is easy to ensure that we always know which edges of triangles correspond to the
edges incident to v. Let e be such an edge. We use the same characterization to find
the other vertex w of e that was used in [13]. Let f be the face that is immediately
below v, i.e., the face whose interior is hit first when we shoot a ray from the view
point into the direction of v. Let p be the projection onto f of the ray starting at v
along e. Then we have:

Lemma 4 [13] The vertez w is either the projection of a vertex of e or it is the
intersection of the projection of e with the projection of the first edge passing above p.

To compute the other vertex of e we thus have to be able to find the first edge
passing above a query ray. But this edge corresponds exactly to the first curtain
hit by the ray, when we hang a curtain from each edge of a triangle. Hence, a data
structure for this problem was already presented in Section 2.2.

However, two problems remain. First of all, we cannot afford to spend the
O(n***) preprocessing time that the structure for ray shooting in a set of curtains
takes. Second, we have ignored the computation of p itself. For this we need to

23

find the face immediately below v. Note that it is not always possible to find this
face using T. Thus we need a structure that computes the face immediately below
a visible query point p.

There is a trivial solution to the second problem: just compute the visibility
map of S (which can be done in time O(n?), see [20]) and perform a point location
in this map in O(logn) time. But this structure suffers from the same drawback
as the ray shooting structure: we do not want to spend that much preprocessing.
(And there seems to be something wrong with the idea of computing M(S) to
be able to compute M(S) anyway.) So what we would like to have is a trade-off
between preprocessing time and query time for our data structures. This can be
accomplished by partitioning the set of triangles into m subsets each of size - (for
some 1 < m < n to be determined later). Now the preprocessing time of the ray
shooting structure is O(n?*¢/m) and the time to compute all visibility ‘submaps’ is
O(n?/m). A query is performed by querying all subsets and taking the first of the
m answers that are found. The query times thus are O(m log?n) and O(mlogn)
respectively. (For the second structure a better trade-off is in fact possible. But
since this would not help us if we do not have better trade-offs for the curtains, we
stick to the simpler method described above.)

The total running time of the hidden surface removal algorithm can thus be ana-
lyzed as follows: O(nlogn) (to sort the vertices of the triangles and insert them
into Q), plus O(n?*¢/m) (the preprocessing time for the data structures), plus
O(nlogn) (to check for each triangle vertex if it is visible), plus O(mlog®n) for
each edge of M(S) that is discovered. Hence, the time needed to compute M(S) is
O(n**¢/m!*e + km log? n), where k denotes the complexity of M(S). To minimize
the time we would like to choose m depending on k. More precisely, we would like
to set m = n'+¢/\/k to obtain a running time of O(n'*<Vk). Although we do not
know the value of k in advance, it is still possible to achieve this running time by
‘guessing’ the value of k as in [22]: set m = nl+¢/\/k for some constant value of
k' and start running the algorithm. If k < &’ then the algorithm finishes within
O(nlte V¥') time and we are done. Otherwise, we stop the algorithm as soon as we
discover that k > k', and try it again, multiplying ¥’ by four. This way the total
running time will be at most a constant factor worse than the time taken if we had
plugged in the right value of k right away. We thus obtain:

Theorem 9 The visibility map of a set of non-intersecting polyhedra with n edges
in total can be computed in time O(n”‘\/E), where k is the complezity of the map,
for any fized € > 0.

4 Concluding remarks

In this paper the ray shooting problem has been studied for three special classes of
polyhedral objects: axis-parallel polyhedra, curtains and fat horizontal polyhedra.

24

We presented structures that use O(n?*¢) preprocessing (for any fixed € > 0) and
have a query time of O(logn). For axis-parallel polyhedra it is also possible to
achieve a query time of O(n'**//m) with O(m1**) preprocessing, for any n <m <
n2. For the curtains and fat horizontal triangles we are only able to get the naive
trade-off that uses O(n2*¢/m) preprocessing to achieve O(mlogn) query time. The
general problem of arbitrary (possibly intersecting) triangles has been studied as
well. Here a structure was given whose preprocessing time is O(n**c) and with
a query time of O(logn). These results improve or generalize the previously best
known solutions.

Furthermore the hidden surface removal problem was studied. The first output-
sensitive algorithm was presented that can deal with (non-intersecting) polyhedra
for which a depth order on the faces is not known. Its running time is O(nt*<Vk),
where n is the total number of edges of the polyhedra and k is the size of the output.

A number of open problems remain. For example, we would like to have a
better preprocessing vs. query time trade-off in the structure for curtains than the
one given in Section 3. This would also improve the running time of the hidden
surface removal algorithm. Furthermore, if we could count the number of curtains
intersected by a query line efficiently this would lead to improved bounds for the
general ray shooting problem. Finally it would be interesting to have lower bounds
for the ray shooting problem: what is the amount of preprocessing that is necessary

to solve the general ray shooting problem with a polylogarithmic query time?

References

[1] P.K. Agarwal, Ray Shooting and Other Applications of Spanning Trees with
Low Stabbing Number, Proc. 5th ACM Symp. on Computational Geometry,
1989, pp. 315-325.

[2] P.K. Agarwal and M. Sharir, Applications of a New Space Partitioning Tech-
nique, Proc. Workshop on Algorithms and Data Structures, 1991, to appear.

[3] P.K. Agarwal, M. van Kreveld and M. Overmars, Intersection Queries for
Curved Objects, Proc. 7th ACM Symp. on Computational Geometry, 1991,
pp. 41-50.

[4] B. Aronov and M. Sharir, On the Zone of a Surface in a Hyperplane Arrange-
ment, Proc. Workshop on Algorithms and Data Structures, 1991, to appear.

[5] B. Chazelle, H. Edelsbrunner, M. Gringi, L.J. Guibas, M. Sharir and
J. Snoeyink, Ray Shooting in Polygons Using Geodesic Triangulations, Proc.
18th Int. Coll. on Automata, Languages and Programming, 1991, to appear.

25

[6] B. Chazelle, H. Edelsbrunner, L.J. Guibas, R. Pollack, R. Seidel, M. Sharir and
J. Snoeyink, Counting and Cutting Cycles of Lines and Rods in Space, Proc.
81st IEEE Symp. on Foundations of Computer Science, 1990, pp. 242-251.

[7] B. Chazelle, H. Edelsbrunner, L.J. Guibas and M. Sharir, Lines in Space —
Combinatorics, Algorithms and Applications, Proc. 21st ACM Symp. on Theory
of Computing, 1989, pp. 382-393.

[8] B. Chazelle and L.J. Guibas, Visibility and Intersection Problems in Plane
Geometry, Discr. & Comp. Geometry 4 (1989), pp. 551-581.

[9] B. Chazelle, M. Sharir and E. Welzl, Quasi-Optimal Upper Bounds for Simplex
Range Searching and New Zone Theorems, Proc. 6th ACM Symp. on Compu-
tational Geometry, 1990, pp. 23-33.

[10] S.W. Cheng and R. Janardan, Space-Efficient Ray-Shooting and Intersection
Searching: Algorithms, Dynamization and Applications, Proc. 2nd ACM-SIAM
Symp. on Discrete Algorithms, 1991, pp. 7-16.

[11] K. Clarkson, New Applications of Random Sampling in Computational Geom-
etry, Discr. & Comp. Geometry 2 (1987), pp. 195-222.

[12] R. Cole and M. Sharir, Visibility Problems for Polyhedral Terrains, J. Symb.
Comp. T (1989), pp. 11-30.

[13] M. de Berg and M.H. Overmars, Hidden Surface Removal for Axis-Parallel
Polyhedra, Proc. 81st IEEE Symp. on Foundations of Computer Science, 1990,
pp. 252-261.

[14] D.P. Dobkin and H. Edelsbrunner, Space Searching for Intersecting Objects, J.
Algorithms 8 (1987), pp. 348-361.

[15] D.P. Dobkin and D. Kirkpatrick, A Linear Algorithm for Determining the Sep-
aration of Convex Polyhedra, J. Algorithms 6 (1985), pp. 381-392.

[16] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag,
Berlin, 1987.

[17] L. Guibas, M. Overmars and M. Sharir, Ray Shooting, Implicit Point Location
and Related Queries in Arrangements of Segments, Tech. Rep. No. 443, Courant
Institute of Math. Sciences, New York University, 1989.

[18] D.G. Kirkpatrick, Optimal Search in Planar Subdivisions, SIAM J. Comput.
12 (1983), pp. 28-35.

[19] J. Matousek, Approximations and Optimal Geometric Divide-and-Conquer,
Proc. ACM Symp. on Theory of Computing, 1991, to appear.

26

[20] M. McKenna, Worst-Case Optimal Hidden Surface Removal, ACM Trans.
Graphics 6 (1987), pp. 19-28.

[21] M.H. Overmars, H. Schipper and M. Sharir, Storing Line Segments in Partition
Trees, BIT 30 (1990), pp. 385-403.

[22] M.H. Overmars and M. Sharir, Output-Sensitive Hidden Surface Removal, Proc.
80th IEEE Symp. on Foundations of Computer Science, 1989, pp. 598-603.

[23] M. Pellegrini, Stabbing and Ray Shooting in 3 Dimensional Space, Proc. 6th
ACM Symp. on Computational Geometry, 1990, pp. 177-186.

[24] M. Pellegrini, New Results on Ray Shooting and Isotopy Classes of Lines in 3-
Dimensional Space, Proc. Workshop on Algorithms and Data Structures, 1991,
to appear.

[25] A. Schmitt, H. Miiller and W. Leister, Ray Tracing Algorithms — Theory
and Practice, in: R.A. Earnshaw (ed.), Theoretical Foundations of Computer
Graphics and CAD, NATO ASI Series, Vol. F40, Springer-Verlag, 1988, pp.
997-1030.

[26] J. Stolfi, Primitives for Computational Geometry, Ph. D. Thesis, Computer
Science Department, Stanford University, 1988.

27

