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We present a method for efficient spectral readout of mechanical resonator arrays in dissipative
environments. Magnetomotive drive and detection are used to drive double clamped resonators in
the nonlinear regime. Resonators with almost identical resonance frequencies can be tracked
individually by sweeping the drive power. Measurements are performed at room temperature and
atmospheric pressure. These conditions enable application in high throughput resonant sensor
arrays. © 2008 American Institute of Physics. �DOI: 10.1063/1.3042097�

Micrometer and nanometer scale mechanical resonators
are widely considered as mass and force sensors. Adsorption
or desorption of molecules by the resonator are detected as
slight changes in resonance frequency. Several methods exist
to measure the resonance frequency of a single resonator.1–4

Small arrays of static mechanical sensors be scanned
optically5 or the reflection of the array as a whole may be
analyzed.6 Spectral readout of small-scale resonant arrays
has been reported in vacuum.7 In this letter, we present an
efficient method to readout resonators with closely spaced
resonance frequencies in dissipative environments. We show
that the number of resonant sensors, which can be operated
in a given bandwidth, is not limited by the Q factor. Using a
magnetomotive setup, we can discriminate mechanical reso-
nators with almost identical frequencies in ambient condi-
tions.

To track two individual resonators with quality factor Q
in a frequency spectrum, their resonance frequencies f i
should be separated by at least �f = f i /Q. Simultaneous op-
eration of n resonators requires a minimum bandwidth on
the order of �f = f1�1+1 /Q�n. Here f1 is the resonance fre-
quency of the slowest resonator. In vacuum, the Q factor of a
mechanical resonator can be of the order 104 �Ref. 7� and
readout of large arrays of resonators should be feasible. At
atmospheric pressure, however, Q factors usually drop below
102 because of viscous drag.8 This limits the number of reso-
nators within a practical bandwidth to a few hundred at most.
Large-scale arrays therefore require either multiple detectors
or separated drive circuits, and the complexity of such sys-
tems rapidly increases with the number of resonators.

To address this problem, we propose to readout arrays
of resonators with closely spaced center frequencies by
sweeping the drive power from low to high values at con-
stant frequency. Once the nonlinear regime is accessed, indi-
vidual resonators are marked by instantaneous transitions in
the phase and amplitude response. When each nonlinear
resonator is used as a sensing element,9 the locations of these
characteristic amplitudes are affected by adsorption or de-
sorption induced mass or stress change to the concerning
resonator. We conduct experiments on arrays of double
clamped resonators at room temperature and atmospheric

pressure. We experimentally show that in a two-dimensional
�2D� array of six resonators with closely spaced resonance
frequencies, individual resonators can be discriminated using
a single drive and detector unit. Calculations confirm the
experimental findings.

Arrays of double clamped mechanical resonators
are fabricated out of 100 nm thick low-pressure chemical
vapor deposited �LPCVD� silicon nitride by electron beam
lithography. All resonators have the same dimensions 200
�15 �m2. Slight variations in center frequencies of the
resonators are expected as a result of variations in residual
stress.10 Figure 1�a� shows one of the resonators before
metallization. A layer of chromium and gold is evaporated on
top to enable magnetomotive drive and detection. The reso-
nators share a support on one side, while supports at the
other side are separated. This allows the measurement of
both the individual and the collective responses.

Figure 1�b� shows the measurement setup schematically.
The rf voltage from a network analyzer is converted to a
current, which drives the resonators �two in series depicted�.
A magnetic field of 1.9 T is generated by a Halbach11 array
constructed from NdFeB permanent magnets. The resulting
voltage is amplified and measured by the network analyzer.
This measurement setup can be used at room temperature
and atmospheric pressure, in contrast to earlier magnetomo-
tive experiments in vacuum and/or at cryogenic tempera-
tures. As a result of viscous drag, the Q factors in our ex-
periments are a factor of 10 to 100 lower than in those
experiments.

Figure 2�a� shows the linear response of two resonators
with almost identical center frequencies. The voltage drop
due to the resistance of the resonator, bond wires, etc., has
been subtracted. The resonance frequencies and Q factors
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FIG. 1. �Color online� �a� Scanning electron micrograph of a single resona-
tor. �b� Magnetomotive measurement setup. The current source is formed by
the amplifier U/I and the resistor network.
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are determined by fitting Lorentzian functions �shown in the
figure� to the measured data. The resonance frequencies of
these devices were 207.72 and 209.05 kHz, and the Q factor
is 39 for both resonators. The corresponding bandwidth is
5.4 kHz, whereas the difference in resonance frequency is
1.3 kHz. Now the resonators are connected in series and the
collective response is measured. Figure 2�b� shows the result
for the same drive conditions as in �a�. Discrimination be-
tween the two resonators is impossible as the resonator band-
width is more than four times the difference in center fre-
quency. We now individually drive the same resonators at
increasing power at a constant frequency of 215 kHz. Figure
2�d� shows the result: a steep transition in the resonator am-
plitude marks the characteristic drive amplitude at this fre-
quency. When the collective response is measured at strong
driving, as in �d�, the two resonators are easily distinguished.

In the absence of interaction, the response of multiple
resonators is just the sum of the individual responses. To
verify this, the difference between the sum of the individual
responses of �a� and �d� and the collective response in �b�
and �e� is plotted in Figs. 2�c� and 2�f�. No amplitude depen-
dency is found, which indicates that the coupling is weak.
Note that a high driving power results in a notably lower
noise level in the nonlinear driven system.12

We now turn to a 2D array of six resonators, for which
the arrangement and the measured linear resonance frequen-
cies are depicted in the inset of Fig. 3�a�. In this experiment,
the bandwidth of the individual resonators was 5�0.1 kHz,
which corresponds to a Q factor of approximately 50.

Figure 3�a� shows the nonlinear amplitude response at
fd=270 kHz; clearly six resonators can be distinguished. In
Figs. 3�b� and 3�c�, sweeps at fixed drive frequencies ranging
from 250 to 285 kHz are plotted. Six lines marking charac-
teristic jumps in resonator amplitude and phase remain equi-
distant. Indeed, over the nonlinear regime, the total band-
width covering the six resonators changes by less than 60 Hz
in this measurement. When sweeping frequency from low to

high values at constant drive current �not shown�, we found
strong coupling between the resonators, which causes mul-
tiple resonators to collapse simultaneously at high driving
power. Strong coupling makes the system useless as an array
of independent sensors.

As for the differences in the center frequencies of the
resonators, we note that in LPCVD silicon nitride residual
stress variations in the order of 10% across a 2� wafer are not
unusual.10 Using this number, the residual stress gradient
would be on the order of 100 Pa /�m. Given the distance
between the resonators �at least 300 �m� the difference in
residual stress is on the order of 104 Pa, which results in
frequency differences on the order of 100 Hz. Similar fre-
quency differences can be obtained by slightly varying the
geometry of the resonators or the thickness of the deposited
gold layer.

To corroborate the experimental results, we have calcu-
lated the characteristic driving amplitude of a nonlinear reso-
nator at a given driving frequency by solving the equation of
motion

Mÿ + Cẏ + �Kt + Kb�y + K3y3 = BLId cos��t� , �1�

where M is the resonator effective mass, y is the beam dis-
placement, C is the damping constant, and Kt and Kb repre-
sent linear stiffness terms due to residual tension and
bending rigidity, respectively. The nonlinear term K3 is a
result of the elongation of the beam, L is the beam length, B
is the magnetic field strength, and Id is the driving current.

For the beams in Fig. 2, the average residual tension
T0=74 �N is found by comparing the calculated stress-free
resonance frequency to the measured resonance frequency.13

We calculated that Kt /Kb�85, which indicates that the bend-
ing rigidity of the resonators is insignificant and the linear
resonance frequency is merely determined by M and Kt. The
magnetomotive voltage generated by the stringlike linear
resonator at resonance equals

FIG. 2. �Color online� Magnetomotive measurements in ambient environ-
ment. �a� Individual linear frequency response of two resonators with almost
identical resonance frequencies. �b� The same resonators driven nonlinear by
sweeping drive power at 215 kHz. ��c� and �d�� Collective response of the
resonators connected in series in linear �c� and nonlinear �d� regimes. ��e�
and �f�� show the difference between the calculated sum of the individual
responses and the measured collective response in the linear �e� and the
nonlinear �f� regimes.

FIG. 3. �Color online� Measurements on a 2D array of six resonators. �a�
Resonator response while sweeping the drive current at f =270 kHz. The
inset shows the arrangement of the resonators and their linear resonance
frequencies. �b� and �c� show amplitude and phase response of the array
driven at different frequencies fd.
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With the experimental values B=1.9 T, Q=39, and L
=200 �m, the transduction at resonance equals VEMF / Id
=0.8 V /A.

Instead of the frequency-dependent resonator amplitude,
we now calculate the resonator amplitude while varying the
drive amplitude at constant frequency fd to mimic the experi-
mental situation. Thus, out of two stable states, the resonator
always vibrates at the lowest amplitude. Figure 4�a� shows
the calculated response for a resonator similar to the ones
used in the experiments. The frequency axis is normalized
to the linear resonance frequency f0, and traces for the
normalized drive frequencies fd / f0 from 0.5 to 2.0 are com-
bined in �a�. Red regions correspond to a high amplitude.
The trace for fd / f0=1.2 is shown in Fig. 4�b�. Sweeping
parallel to the horizontal axis, locations with multivalued
resonator amplitudes are accessible at large drive amplitudes,
when fd� f0. Figure 4�c� shows the simulated response of an

array of ten resonators described by Eq. �1�, where a slight
difference in Kt results in different characteristic amplitudes
for each resonator. We assume a difference in linear reso-
nance frequency for adjacent resonators equal to one-tenth of
the resonator bandwidth. Panel �d� shows a cross section of
the amplitude response at fd / f0

1=1.2, where f0
1 is the linear

resonance frequency of the slowest resonator. The phase re-
sponse �not shown� also displays steep transitions similar to
the amplitude, whose location can be determined with high
accuracy.14 The calculations thus reproduce the experimental
findings in detail.

In conclusion, we have demonstrated an efficient way to
operate and readout mechanical resonator arrays in dissipa-
tive environments. The center frequencies of the linear reso-
nators can be spaced very closely as each resonator is
marked by its characteristic drive amplitude at a fixed fre-
quency instead of the linear resonance frequency. As the ex-
ponential relation between required bandwidth and the num-
ber of resonators is circumvented, this technique may enable
the construction of high-throughput resonant sensor arrays.
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FIG. 4. �Color online� Calculated amplitude responses. �a� Normalized am-
plitude response of a single resonator driven at fixed frequency as a function
of the normalized drive amplitude fd / f0. �b� Cross section at fd / f0=1.2. �c�
and �d� show the amplitude response for ten resonators.
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