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ABSTRACT 

A  combinatorial tree structure composed   entirely  of  NAND(NOR) 

blocks is   pruned in a non-exhaustive fashion  to   yield  minimal or near- 

minimal networks.    It is assumed that complemented  variables are not 

available and that there are no fan-in or fan-out limitations.    The cost of a 

network is taken as being primarily determined by the number of logic blocks 

with the number of inputs and logic levels as secondary factors.    The pruning 

algorithm lends itself to both hand methods and machine computation, 

although the synthesis procedure has not been programmed. 

Of the 68 nondegenerate functional equivalence classes of 3 variables, 

the minimum number of blocks results in 63 cases;   only one more block in 

excess of the minimum is required in each of the other 5 cases.    For  18 

randomly selected Boolean functions of 4 variables,  the tree solutions yield 

an average of 8. 2 blocks per function with the following distribution: 

number of logic blocks 5     6     7     8     9      10      11 

number of tree solutions 10     2     9     4        1        1   . 

It is shown that the linear function  f(n) =  x„©. . .©x     of  n  variables or its 
0 n 

complement can be realized with   3n-2 NAND(NOR) blocks,   for  n 2  3. 

Accepted for the Air Force 
Franklin C.  Hudson 
Chief,   Lincoln Laboratory Office 

in 



This work is based on the author's Masters thesis,   "Implementing 

Combinatorial Logic Wit h the   NAND   Tree, "  September   1962,  for the 

Department of Electrical Engineering at Massachusetts Institute of 

Technology,   Cambridge,   Massachusetts. 
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I. INTRODUCTION 

The synthesis of combinatorial NAND(NOR) logic is a subject that 

has generated considerable interest in the last ten years,   primarily because 

of its application in the design of transistor digital computers.    Much of the 

basic work in this area was done by G.   A.  Maley [ 1]  and his colleagues. 

Among the published papers in the field,   [2, 3,4 and 5)   are representative; 

additional references are listed in [5]  and a Russian survey article[6] . 

Another interesting paper[7]   submitted recently has yet to appear formally 

but is available.    Hand methods of synthesis are emphasized in [ 1,2] ,  while 

[4, 5]   discuss algorithms that lend themselves to computer implementation, 

as well.    Under a fan limit equal to the number (three) of variables, 

Hellerman [3]  used a computer to exhaustively find all minimal networks for 

every functional equivalence class.    In [7]  Hellerman's solutions are obtained 

with no fan restriction by a machine algorithm that is non-exhaustive but 

apparently too formidable for a hand method.    Gimpel[4]   solves the problem 

of finding the minimum three-level network with complemented variables 

unavailable using a method similar to but more complex than the well-known 

Quine-McCluskey algorithm for two-level AND/OR networks.    Dietmeyer and 

Su[5]   concentrate on algorithms for fan-limited blocks and assume comple- 

mented variables are available. 

Here the author is concerned with the efficient synthesis of minimal or 

near-minimal NAND(NOR) networks with complemented variables not available, 

where the number of logic blocks is considered the principal cost factor with 

the number of inputs and levels of secondary importance.    In contrast to other 

approaches in which irredundant networks are constructed algebraically from 

given Boolean functions,  the present synthesis procedure is devised to destroy 

redundancies in canonic networks that implement the desired functions from 

the outset.    As a hand method for,   say,  up to five or six variables,  this 

approach has the features of allowing the designer to see the network converge 

to an irredundant form and to perhaps make improvements in the realization 

by intuition.    As an algorithm for computer execution,   the procedure appears 



relatively straight-forward to program and,   being non-exhaustive ,   suggests 

the potential for rapidly obtaining good solutions for functions of four or more 

variables.    At this time precise information on typical computation speeds 

cannot be reported because this version of the algorithm has not been 

programmed. 

The canonic network used in the synthesis is a combinatorial tree 

structure composed only of NAND(NOR) blocks.     The tree can be thought of 

as a netv/ork implementation of a Karnaugh map or logical truth table.    The 

basic tree structure was originally suggested by J.   Earle  [ 1  - p.   154]  as a 

means of rapidly obtaining a multiple-output network.    However,   only single- 

output networks are considered here. 

The combinatorial tree is discussed in III following a brief review of 

NAND(NOR) logic in II.     The principles used in removing tree redundancies 

are presented in IV.    Some results of the algorithm outlined in V are given 

in VI.    A few conclusions are included in VII. 



II.        NAND(NOR) LOGIC 

Although the reader is assumed to be familiar with Boolean 

algebra and NAND(NOR) logical design, a brief review of some basic prin- 

ciples is given here.    This section highlights the duality between NAND and 

NOR logic in order to motivate subsequent discussion that is valid whether 

a network is composed entirely of NAND blocks or only of NOR blocks. 

A NAND(NOR) block output is the logical complement of the logical 

product (sum) of the block inputs. The logical operations /\ , y and — 

can be realized solely with NAND(NOR) blocks as shown in Fig. 1 for the 

binary variables x- and x.. Therefore, a NAND(NOR) block is called a 

universal logical connective in the sense that any Boolean function can be 

realized using only NAND(NOR) blocks. 

Let a Boolean function of n 2  1  binary variables be expressed in sum- 

of-products or product-of-sums form as 

f(n)   =   f(xQ, . . . ,x^, . . . ,xn_1)   =   V     m.   =    A   M., (la) 
ifF ifG 

f Vi 
with the i      product or sum given by 

n-1 
mi   =     A     [b^Ml-b^] 

k= 0 

n-1 
(lb) 

Mi= y t^+d-b^i, 
k= 0 

where the n-tuple 

«i   =   hl
n-vK--'

h
0 (2a) 

is the binary equivalent of the decimal number 

n-1       .   , 
i   = X      tV, (2b) 

k^o   k 



and   F  and  G  are subsets of the universal set 

U   -    [0, ...,i,...,2n-lj . (3) 

The complement of f(n)   can be written as 

f(n)   =    V    m.   =     A   M.    . (4) 
—      I —      I 

ieF icG 

The dual of f(n)  is defined as 

fD(n)   =    A   M.   =    y   m. , (5) 
i^-F ifG 

which from (1) is seen to be accomplished by the interchange of V and  /\ 

or,   equivalently,  the substitution of NOR(NAND) blocks for NAND(NOR) 

blocks in Fig.   1.    The relationship between F and  G in (la) and (5) is easily 

established as 

G   -    f2n- 1 - i}3 i (F, (6) 

since from (1),   (2) and (4) 

f(n)   =    \/_mi   =    A_mi 
ieF icF 

/  n-1 
=   A_     \/    [b/x    + (1-b W] 

ifF    k=0      K   K K    K 

A_M 
ifF      2n-l-i 

The function associated with a given NAND(NOR) block can be completely 

specified by (from) the set of subscripts   C =   [i]  on the  m's (M's) in the sum- 

of-product    (product-of-sums) expression equivalent to the logical product 

(sum) of the block inputs.    The set   fi} (f2   -1-iJ)   specifies the combinations 

of binary variables according to (lb) and (2) for which f(n)  must assume the 



NAND   BLOCKS NOR    BLOCKS 

Fig.   1.    Universal logical connectives. 



logical value   1(0)   if the given NAND(NOR) block feeds a common output 

NAND(NOR) block.    Thus,   C   can be called a functional cover,  and the union 

over the set  O  of covers of NAND(NOR) blocks feeding the output NAND(NOR) 

determines the   1(0)  network outputs as   F=  \J  fiJ(F=  |jf2    "l"i])» 
O O 

It is implicitly assumed that all NAND(NOR) blocks include a constant 

input of   1(0)   so that in the absence of binary inputs,  the NAND(NOR) block 

output is   0(1).    When a binary input to a NAND(NOR) block is   1(0),  that 

input might as well be absent since it cannot affect the block output;   when a 

binary input is   0(1),  it forces the block output to   1(0) regardless of the 

logical values of other block inputs.    A straightforward application of these 

elementary ideas can be used to obtain the following useful property of 

NAND(NOR) logic. 

Property 1.      Given a set  S  of NAND(NOR) blocks,  none of the binary 
inputs common to  S  need appear as inputs to any other NAND(NOR) block 
whose output is connected to every block in  S  via some logic path and yet 
does not lead to a path termination without connecting with some block in S. 

Special cases of Property 1 are: 

a) Binary inputs common to a NAND(NOR) block and all 
NAND(NOR) blocks it feeds can be removed at that block. 

b) Binary inputs identical to those at the output NAND(NOR) 
block can be removed everywhere else they appear in the NAND(NOR) network. 



III.      THE n-TREE 

In III and IV the duality between NAND and NOR logic is exploited 

so that the explicit mention of NAND(NOR) blocks is unnecessary.    The 

results are essentially the same whether a NAND or a NOR network is 

utilized.    An attempt is made to employ concise terminology that conveys 

an image consistent with the tree structure of the network. 

The n-tree is a combinatorial network of nodes,  branches and roots. 

Using (3),   each node is distinguished by a label   i f U.    Referring to (2), 

node  i has among its inputs the set of branches 

Xi   =    fxk)3bk  =   *  in  Pi- (7) 

Every node has a single implicit output.    The remainder of the inputs to 

node  i  come from the outputs of other nodes and are called roots.    If /\ is 

taken as  componentwise  multiplication for n-tuples,  then the set of roots 

at node  i  is 

Ri  =    H)3 fljA/Si  =   fli,     j * i. (8) 

where j f R.   means that node j  feeds node  i.    From (7) and (8),  the 

complete set of n-tree nodes including  X.   as branches is 

T.   =    fiJuRi- (9) 

It is sometimes convenient to label the tree level 

L •   =   number of 1 's in   g. (10) 

of node i.    With this notation the roots at node  i can be grouped as n - £. 

mutually disjoint sets 

R4 =  U     *\    . (") 

1= -ti+1 



where   R       is the set of nodes on level   t that feed node   i.    From (7),  the 
I n 

number of nodes on level   t of the n-tree is ( .),   so the total number of 

n-tree nodes is 

1 = 0 

The number of branches at node   i  is   t. .    From (8),   the number of roots at 
l 

node   i  from level  -t> t-   is 
l 

n - I. 
l 

I- I. 
l 

so the total number of roots at node   i  is 

, n / n - ti \ 

I- U 
1= l.+ l 

I 

(13] 

To help clarify the notation,  the tree structure for   1 <, n ^ 3   is shown 

in Fig.   2.    Node   i  is indicated by  i  enclosed in a square.    The inputs to 

node  i are given immediately above the square with the roots from the same 

level grouped together.    Note that the number of branches and roots at a 

node increases and decreases,   respectively,  as the level of a node increases 

Summarizing the structure of the n-tree in one sentence,  node i ( U 

has as branches a distinct set  X.   selected from x_, . . . ,x     .   and is fed bv 
I 0 n-1 } 

all higher-level nodes with branches that include  X.   as a subset.    This 

statement easily leads to the following simple property of the n-tree. 

Property 2.    Given any node in the n-tree,  all roots at that node are 
included in the roots at every n-tree node fed by the given node,   i.e. ,   if 
node   i   feeds node   i  then R. c R-. 

J J i 

An arbitrary function to be synthesized is uniquely specified by 
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Fig.   2.     The n-tree structure (1 <   n <  3). 



n 
F   -     U      FcU, (14a) 

1= 0    * 

where   F,   is the set of n-tree nodes in   F  on level   t;   for convenience the 

remaining nodes on level   I are designated  F. ,    so 

n 
F   =    U       F. C U. (14b) 

1= 0    * 

If  C.   is the functional cover for node  j,  then from II,   (8) and (9) the appro- 

priate cover for node   i  fed by node  j  is the recursive definition 

C.   =   T.    fl      C. , (15) 
1 l

 • *c      J j €5.    J 
J
       l 

where  S. C     R.   is the set of roots saved at node  i.    From (15) if S\  = A , 
l —       l I      

v 

then  C  =   T..    From (9) and (15),   if S.   =  R.,  then 
11 11 

C    =   ({ijUR.) n C.  =   {i}, 
J€R.J 

which is shown by induction as the level   t is decreased from n,   i.e. ,  for 

t = n,   i=  2   -1   and  C.  =   |i}   since   R.   = 0 ; assuming that  C. =   f j }  for node j 

on level   t. >  -l., 
J i 

c. = di] u R.) n 0"} 

- ({i} n fj))u (R.  n 0")) 
JfRi JcRi 

=    {i} U   0 =   fi), 

since  j ^ i.'V'j €R..    With the addition of a common output node external to 

the n-tree called the tree base, and using (14),  the following property of the 

Inclusion is indicated here in anticipation of the removal of redundant roots; 
actually,  with the tree grafts defined in IV,  S.   may contain roots disjoint 
from R.. 

1 10 



n-tree is established. 

Property 3.    The n-tree realizes   F   iff all nodes in  F  and no nodes in 
F  feed the base. 

Introduced here is the notion of certain embedded tree structures 

utilized in the sequel.    An m-tree is the network of nodes,  branches and 

roots of th 

and roots) 

roots of the n-tree consisting only of the set of 2      nodes (and their branches 

T.J(m)   =    (i + k)3/3k=  /SfcAjS.   v   j * i, (16a) 

where   i,  j   €  U,    )3-Aj3-  =   /3-,  and  0 s m < n.    If m =  n,  the m-tree and 

n-tree are identical; if m < n  the m-tree is a subtree structure embedded 

in the n-tree.    Note that in (9) and (15), 

2n-l 
T.   =   T*     '(n-*,) . 

An m-knot is a set 

K J/-~->\      _      T J / »-*-. \ •\ T J .J(m)   =   T.J(m)3T.J(m)  C   F (F), (16b) 

i.e. ,  the nodes of the m-tree corresponding to an m-knot are either all in 

F  or all in  F . 

An m-nest is a set 

Np(m)   =   Tp(m)3k e F iff L   even(odd),Vk e T.J(m), (16c) 
11 K. 1 

i.e. ,   in the m-tree corresponding to an m-nest,  all the nodes on even levels 

are in  F(F)  and all the nodes on odd levels are in F(F). 

11 



IV.       PRUNING TECHNIQUES 

With Property 3 as a beginning,  the objective of an efficient 

synthesis is to prune the n-tree by the orderly removal of logically redundant 

nodes,   branches and roots.    A node that is saved to permit the pruning of at 

least one other node is called a stump. 

In addition to direct pruning,  the network can be reduced indirectly by 

other techniques.    In particular,  a tree graft refers to the attachment of a 

new root at a given n-tree node for the purpose of supplanting other roots at 

that node.    A tree growth refers to the addition of a node different from the 

base but external to the n-tree which facilitates further reductions.    Unless 

the situation warrants the more specific terms,   pruning is used generically 

to include tree grafts and growths. 

The set of nodes feeding the base is designated , 

O   =   O. U O   , (17a) 
t g 

where  O    and O     is the set of n-tree and growth nodes,   respectively,  that 

feed the base;   by Property 3, 

O   £  F. (17b) 

If  C   is the functional cover associated with a given node, 

F   =   U   C   =   C       U    C, (17c) 
O gieOt 

J 

where   C     represents the total cover of the growth nodes in  O   ,  and   C.   is 
g       P B g i 

defined by (15). 

Offered here are some rules of redundancy in theorem form that 

suggest effective pruning methods.    Implicit in the statement of some of the 

following results is the assumption that in pruning the n-tree the logical 

output function of the network remains unchanged. 

1Z 



Since  C.   depends on the covers of nodes at higher tree levels that feed 

node  i,   it is efficacious to prune the n-tree from the top level-by-level. 

With this order of pruning,  the proofs of most redundancy rules,  viz. , 

Theorems  1,  2,   4 and 5    are also simplified. 

Theorem 1.    At every node  i f F   (that does not feed a node of a tree 
growth),  any set _c   R.   of roots can be pruned. 

Proof:     By Property 2,  R. c R.   when n-tree node  j   feeds n-tree node 

i.    By Property 3 nodes in  F  do not feed the base.    Thus,  barring any node 

in  F  that feeds a node of a tree growth   ,  the roots   R.  appear everywhere 

node  j   feeds.    By Property la any subset of R.   can be pruned at node  j. 

Theorem 2.    At every node  i (F  (that does not feed a node of a tree 
growth),  any set c  R. (IF  of roots can be pruned. 

Proof:   Suppose a root j  f R. (IF appears at the base.    Then by 

Property lb,  that root can be pruned anywhere else it appears in the network. 

If neither node   i nor node  j   feeds the base,   then by Property 2,   root  j   can 

be pruned at node  i,  provided  i does not feed a node of a tree growth (see 

footnote of Theorem 1).    It remains to check the case when  i but not j 

appears at the base. 

While j  appears at the base  C. c: F,  for if C. => F, the network would 

not realize   F; C. f F,   since   i e F  and  i f C.    At the base  j   is pruned only 

if C.   is covered by other nodes feeding the base,  again,   because   F  would 

not be realized otherwise.    With  j  pruned at the base and node   i  feeding the 

base,   if root  j   does not appear at node   i,   then root  j   has already been 

pruned legitimately,  by definition;   if root j   appears at node  i,  then from (15) 

c. = T. n c7 n  c" 
1 x J  -j o r JJ^r cS. 

l 

As is seen in Theorem 5,  the node of a tree growth may have only one root, 
•ay_root j, which cannot be a member of R.,   from (8); actually,  only nodes 
in F  feed tree growth nodes. J 

13 



that becomes 

(C. u c.) T.   n c     =    T.   n   c 
j j       i r 1 r 

j^reS. j?rfS. 

with the removal of root j   at node   i,   i.e. ,  there is an addition of 

c. n T. n c   c c. c F 
J i r J 

j^rcSi 

to the cover supplied by node   i,  which does not alter the function realized 

by the network since   C.   is already covered at the output. 

Corollary 1.     No more than a three-level realization of  F  is always 
possible. 

Proof:     If all the roots at every node in  F  are pruned by Theorem 1, 

and if all the roots in  F  at every node in  F  are pruned by Theorem 2,  then 

all nodes in  F   can only feed nodes in  F,  and nodes in  F   can only feed the 

base.     Tree growths are not involved in such realizations which,   obviously, 

are of three logic levels or less. 

Theorem 3.    If node   j   feeds node   i  and  C,   czc.   for  k c R.,  then root 
  k        J J 

k  can be pruned at node   i. 

Proof:    By Property 2,   if k c R.,  then  k e R..    If  C,cC.,  then 

C    => C..    From (15), 
* J 

c. = T. nc. n c, nc 
i i j k r 

j.k^r eS. 

=  T. nc. nc 
i      J       

r 

j.k^r cS. 

is independent of root  k  at node  i,   since   C. (1 C.    =   C. 
J k j 

14 



Corollary 2.      If node j   feeds   node   i and S. = 0, then the roots  R. 
can be pruned at node  i. J J 

Proof:    From (15),  with all roots   R.   pruned at node j, C.= T.= {j J U R.. 

Since   CR C Tfc =   {k3URk,   and  R^ c R.,^k €R.,   C.3C;   by Theorem 3, 

the roots   R.   can be pruned at node  i. 
J 

Lemma  1.     Given any knot   K. (m),  if the roots   K =  K.(m) fl  {T}  are 

pruned at node   i,   then  C. 3 Kp(m). 

Proof:    From (16ab),  all but node  i  of the nodes in  K*(m)  feed node   i, 

i.e.,   K c_ R..     [ The equality holds only when j  =  2   - 1. ]    A node   r  { K that 

feeds node   i has no roots from nodes in  Kr(m),   i.e.,   R    D Kr(m) =  A.    Since 
l r i * 

node   r   feeds node   i,   i ^ R   .    If node  i + k (k > 0) in  K  fed node   r,   then so 

would node  j,   since node  j   feeds node   i + k and because  R.   ,   c R   ,   by 

Property 2.    Consequently,   from (8), 

/SjA/3.   =   0r  and   Bj./\Bi   =   0., 

which along with (16a) and the fact that 

0//^ = ai 

implies that 

B. A/3 =   B     ., ^j-i/\^r-i        Mr-i 

or that r e Tr(m). But by assumption r f Tr(m), so R (1 K = 0 is proved 

by contradiction. It follows that C ^_ {r } U R is disjoint from Kr(m) for 

each node r ^ Kr(m) that feeds node i. Thus, if the roots K are pruned at 

node   i,   from (15), 

C. =   T.   D C    3   T.   fl ({r} U R  ) 
I I r —     I r 

reS. rcS. 
1 x 

=>   T.  n Kp(m)   =   Kp(m). 
—      I l i 

15 



Lemma 2.     Given any knot   K.J(m) C F(F)  and a knot  K r(m') C F(F) 3 

r € R.   and  s < R.,   T    D Kpfen) =  0. 
l 'is 1 ' 

Proof:    From (2),   (8) and (9).  the   /J for every element in  T     has   1's 
• s 

in all components where   /J     has   l's.    For   T     and  K. (m)  to have at least one 
S S .       X 

element in common,  the   /3 for some element in  Kr(m)   must have  l's in all 

components where   )8     has   l's.    Since   £.   has more  l's than the  /J for any 
i     S "* other element in K.J(m)  from (I6ab),   it is assumed that j (R   ,  which must 

hold if T    H Kp(m) ±  9.    li\Jis taken as componentwise logical addition for 

n-tuples,   /?    and  fi.  both have l's in all components where   £    =  /S-\//3     has 

1 's (j8.  7^ /3-,   0   ,   since   i + s) because  rcR.,   rcR   , j € R.   and j c R    (by 
1 1 S 1 S 1 s 

assumption).    Consequently,   presuming that  t 7* r,  j,   nodes   r  and j   must 

feed a common node  t  that is in both  K    (m')  and  K.J(m),  i.e. ,   r,  j  € R. 
5 1 I 

with  t (K    (m'),   Kp(m).    Since these knots are disjoint by definition,  j  ^R   . 

If t =  r   or if t = j,  then node  j must feed node   r  or vice-versa    i'. e. , 

j  e R    or   r C R.,   respectively.    From the proof of Lemma 1 this is impossible 
l r since   r f K.J(m)  and   r (K    (m1).    Again, by contradiction,   j  \ R   . 

Theorem 4.    Given any knot   K/(m),   all nodes in  K =  K:(m) (1 fi~}  but 

stumps can be pruned provided node  i  is saved. 

Proof:    Lemma  1 permits node   i  to cover for all nodes in  Kp(m) 

independent of nodes in  K.    Lemma 2 guarantees Lemma  1 even if a tree 

graft,  viz. ,   root   s  € F(F)   supplanting root  r  e F(F)  at node   i e F(F),  is 

applied at node  i.    Consequently,  all nodes in  K but stumps can be pruned 

if node   i  becomes a stump. 

Lemma 3.    Given any nest   Nr(m)  with  if F(F),   if the nodes in 

N =  Np(m) fl  (T)  are saved and if at node  i + k c N. (m)  all roots in  N but 

those from nodes on level   I. ,. + 1   are pruned,  then  C. 3 N. (m) D F(F)   and 
l+k r 1 —     1 

C.  H N.J(m) H F(F) =   0. 
1 1 

Proof:    By an argument similar to that in the proof of Lemma 1,  using 

(I6ac),  for a node   r f N which feeds any node in N.(m),   C     is disjoint from 

N.J(m).    With K r(m')  DNp(m) =   0 a modified Lemma   2 guarantees that  C     is 
1 s 1 * 
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1 1" 

disjoint from N.J(m)   if root  s   of K    (m1)   supplants root   r by means of a 
1 s 

tree graft.    Thus,  no elements of N.j(m)   can be inhibited from the cover of 

any node in Np(m)  by roots from nodes not in N,  i.e. , 

DC     3 N.J(m),y i + k c N.J(m). (18a) 

r fS.±1   n N 
i+k 

However,  nodes in N  collectively inhibit the elements   {i+k} c^ N for 

£,    odd from  C.  and guarantee the inclusion of   [i+k] c^ N for   I,    even in 

C,  if all roots in  N at node   i+k € N/(m)   but those from nodes on the next 
l l 

higher level are pruned,  where   A,    is defined by (2),   (10) and (16a).    This is 

now shown by induction on decreasing tree level from   I., 

For   A =   I.,   since   C. =>   fj }  and  R- D N =   0,   it follows that 

C. HN.j(m)   =    {j}  U  (R„j n N), (18b) 

even 

i+k 
where   A I -   I-  £.,,   >0  and  R „     k  is defined with (11).    Assume that for 

i+k I ' 

1 -   *i+k' 

C..,   n N.J(m)   -    {i+k}  U   (R/+k n N). (18c) 
i+K i A£ 

even 

With all roots in  N at node   s  f Nr(m) fl {j }  pruned except those roots in  N 

from nodes on level   &    + 1 (see (18e)),   from  (15), 
s 

C    n N.J(m)   =   T       0     C fl    C       n    N.J(m), 
si s r r I 

x    " (18d) 

rfS   ON       r CS   n N 
s s 

where 

S    n N  =    {i+k} CNDR   31 =    I   +1. 
S S ITK S 

(18e) 
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Using (18a),   (18d) becomes 

Cg  n  N.J(m)   =   Tg   nC.+k n N.J(m). (18f) 

i+k e S    n N 
s 

Since 

C.^,   0 Np(m)   =   (C.J.,   U  N.J(m)) 0  N.J(m), 
i+k 1 i+k l l 

using (18c),   (18f) can be rewritten as 

i+k 
C    n  N.J(m)      =      T     D    [    {i+k}  U   (R D N) ]   fl  N.J(m) 
si s hi x 

i+k fS     fl N even 
s 

i+k 
n   [   U   I i+k }  U   (R f        fl N)l   PI N.J(m) 

AX     l X 

i+k eS    ON  even 
s 

T     D    [   U   (R,    n  N)]   D N.J(m) 
s AA 1 

odd 

T   n [ (sj u  (R/ n N>] 
S Ll 

even 

{s}  U  (R/ fl N), (18g) 

even 

with the application of De Morgan's  Theorem and Property 2. 

Since (18bg) have the same form as (18c),   this nearly completes the 

proof.    It merely remains to note from (16c) and (18g) that when  s =   i C F(F), 

C. 3 Np(m) D F(F) and  C. 0 Np(m) fl F(F) =   0. 
I —     I I I 
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Lemma 4.   Given any nest  N. (m)  with i e F(F)  and a variable 

^CX. OX,   C.+2k3 N.J     k(m-l) n F(F),   C.+2k n N.J     k(m-l) H F(F) =   0, 

C._^ N.j-2k(m-l) 0 F(F) and  C{ D N.j"2   (m-1) fl  F(F) =  0   all can hold if 

node   i+2     has no roots in N.J_,k(m_l) but has tree graft roots from all nodes 
i-2k 1+2 i-2k 

in N.J        (m-1)  on n-tree level   i. + l,   and if each node in  N.J       (m-1)  has 
1 1-2*      X * roots from all nodes in  N.J        (m-1)  on the next higher n-tree level but no 

i-2k X i other nodes in  N.J        (m-1)  and no roots in  N. ,-,v(m-l). 
l i+2K 

Proof:   As can be verified using (I6ac),  the nest  N. (m)  is composed 

of two distinct nests,   N?   _k(ni-l)  and  N.-*        (m-1),  that are uniquely 

determined by x, ,  which can be any branch that appears at node  j  but not 

node  i.    The nodes   N.J, 0i, (m-1) and N.J"     (m-1)  have   (x, j U  X.   and X.   as 
i+2K I k I I 

common branches,   respectively.    From (2),   (7) and (8),   T  k is the set of 

all n-tree nodes that have  x,   as a branch.    Let  v(v) be the logical value of 

an input to a node such that the output of that node is not influenced (is forced 

to  v)  by that input. 

If x,   = v,  all  x,    branches in the n-tree can be ignored.    This is 
k equivalent to removing all x,   branches and subtracting  2     from all nodes 

and roots in   T  k  of the n-tree.    But in this event an original node   r  € T  k 

becomes identical to n-tree node   r-2k  with roots in  T  k  removed.    Further- 

more,   since n-tree node  r-2     now has all the branches (as well as roots) 
k 

that appear at the new node  r-2   ,  and because the original node   r  feeds 
k k n-tree node   r-2   ,  the output of n-tree node   r-2     is forced to  v by the new 

k 
node   r-2   .    This follows from Property la where all the explicit inputs to 

k k the new node   r-2     are redundant with respect to n-tree node   r-2   .    There- 

fore,  only the influence of the implicit input v remains at the new node 
— k 

which thereby effectively supplies  v as an input to n-tree node   r-2   .    Hence, 

all n-tree nodes and roots not in  T?k  can also be removed. 

If x,   = v, all roots in  T k have logical value  v and can be ignored. 

This is equivalent to removing all nodes and roots in  T?k  from the n-tree. 
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-2k 

Let the roots of nodes in  Nr        (m-1)  be constrained as stated in 
1 

Lemma 4.    Similarly,   let each node in  N1?   ^^(m-1)  have roots from all nodes 

in N.     k(m-l)  on the next higher n-tree level but no other nodes in Np    ^(m-l). 

Then by Lemma 3, all the conditions on  C, -.k and  C.   stated in Lemma 4 
1+2*" l 

hold.    The conditions on  C.,-1,  are unaffected if node   r f  i+2     in  ~N\ , ^i,(m- 1) 
k    1+2 i-2k 1+2 

is replaced by node   r-2    / i in N. (m-1).    This can be verified using the 

previous discussion as follows.    If x,   =  v,  each root   s  { N^.   7k(m_l)  at node 

r   corresponds to the pair of equivalent roots   s   and  s-2* ^  N.J   '    (m-1)  at 
k i X 

node   r-2   ;    root   s  e NJ.     ^(m-l)  at node   r   corresponds to root 
k i-2^ L- i 

s-2      e  N.J        (m-1)  at node   r-2K.    The absence of roots in  NJ.   _,v.(m-l)  at 
i , i+<£K 

node   r-2*-  prevents the redundancy of node   r-2     when  x,   =  v.    If x,   =  v, 
k k ~k 

the output of node   i+2     is forced to  v  regardless of the other inputs at node 
k 

i+2   .    Consequently,  the conditions on   C ,,k  remain satisfied if the roots 
i '   ?k 

in N.   ?k(m-l)   on level   I.   ?k+l  are supplanted by the roots in  Np"     (m-1) 

on level   i. + 1  by means of tree grafts. 

Lemma 5.   Given the conditions of Lemma 4,   (a)   C.(C.+?k)  also 
1-2^ 

includes all elements in  N.J(m) fl  F  only covered by stumps in  N.J        (m-1) 

(N .   -,k(m- 1) ) R  F   if none of these elements are included in any of the covers 

of nodes in N.J(m) fl F which feed a node in N.J        (m-1) fl F   (node i+2     €  F), 

and   (b)   for a node   s   e N.J(m) fl O  that node  i + 2k(i)  € F  feeds,   C     includes 
1 i i-2^    S 

all elements in  F  only covered by stumps in  N.     k(m-l)(N.J   '    (m-l))D  F  if 

none of these elements are included in any of the covers of nodes in  F  which 

also feed node  s,  and if no nodes in  Nr(m) fl  F  feed node   s. 
1 '-2k 

Proof:   In (a),   consider a stump on level   i in  N. (m-1) fl  F  which 

covers a set of elements in  N. (m) fl  F  not covered by nodes disjoint from 

Nr(m).    By definition of the roots in Lemma 4,  these elements are inhibited 
1 i-2k 

from the cover of each node in N.J        (m-1) on level   i - 1,   regardless of 

whether unspecified roots at these nodes are present.    Continuing to level 

1-2  the cover of each node in  Nr        (m-1)  includes the elements in question 

because neither the cover of a node in F fl Nr(m)   nor in  F fl Nr(m)   feeding 

such a node covers any of the elements, by assumption.    The inhibition and 
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covering of these elements continues to alternate as the level is decreased. 

By induction on decreasing the level to   I.,   C.   includes these elements.    The 

remainder of the lemma can be shown in a similar fashion.    Note that from 

(17a),   s  may be a node of a tree growth. 

Lemma 6.    Given the conditions of Lemmas 4 and 5,  all roots at nodes 

in  N.J        (m-1)   fl   (x)  and at node   i+2     (at nodes in  Np"2   (m-1))  but those 

roots specified in Lemma 4 as being present can be pruned when  i e F(F) 
i -2^ i 

provided any inhibiting required at nodes in  N.J        (m-1) (N.     ^(m-1) ) fl F   is 
k ''^ i 

accomplished at nodes   i(i+2   )   and   s,  and if nodes in   NJ. (m)  fl  F   do not feed 

node   s. 

— -2k 

Proof:    If  i f F(F),  any inhibiting required at nodes in  N. (m-1) 

(N.   ^(m-l) ) fl  F,  including that mentioned explicitly in Lemma 5a,   can 
k * 

just as well be accomplished at node  i(i+2   )   and node   s,   by Property 2; if 

s   is a node of a tree growth,  the appropriate roots must be created at node 

s   since Property 2 does not apply for tree growths.    All but the specified 
k — 

roots at node   i+2   (i)  € F  can be pruned because this can only decrease the 

number of elements in  C     without deleting elements that are guaranteed by 

Lemma 5b.     The last clause of Lemma 6 is necessary when  s   is not a node 

of a tree growth to insure that  C     includes all elements in  F   covered only 
ok 

by nodes in  NJ      k(m-l) (N.J        (m-1)) fl  F. 

Theorem 5.    Given any nest  Nr(m)  with  i € F(F)  and a variable 
— i X k x.   e X. 0 X..   all nodes in  N. , _v(m- 1)  but node   i+2     can be pruned if the 

k J x k 1+2 i-2k 
roots of node   i+2     and the nodes of  N.J        (m-1)  are as stated in Lemma 6 

[except that if i e F,   node   i+2     feeds node   i] ,   if all roots in  N.J"     (m-1) (1  F 

[but root   i,   if  i e F]   are pruned from the base,  and if the covers of nodes 

in  N. (m) fl  F  are constrained as stated in Lemma 5 and applied as in 

Lemma 6  [should node   s   of Lemma 5b not exist,  a tree growth is created 
— k 

which feeds only the base and is fed by  x, (x, )  and node  i+2   (i)] . 

k i   
Proof:    If i c F,  node   i  is fed by node   i+2     to prevent  N.   ?k(m~l) ^  F 

from appearing in the network output,  as it would otherwise since then nodes 

If i f F(F~),  any inhibiting required at nodes in  N?     k(m-l) (N1!        (m-l))p F 
is accomplished at node   s. 
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k   
i+2     and  i  are equivalent when x,   =  v  from the proof of Lemma 4;    if i € F, 

k 
node   i  need not be fed by node  i+2     because node   i  feeds only nodes not in 

T  k whose outputs are redundant anyway when x,    = v.    For the same reason 
i_2k K 

roots in  N.J        (m-1) fl  F  are pruned from the base.    Lemmas 4,   5 and 6 permit 

nodes i+2     and  i to properly cover all elements in  Np(m)  and those in 

N/(m) 0  F  only covered by stumps in  N.^m) fl  F  without requiring the 

presence of nodes in N.   ^^(m-1) fl   (i+2kj .    Thus,  the latter set of nodes 

can be pruned.     The tree growth provision of the theorem merely offers a 

means of supplying the network output with a required cover when node   s 

does not exist;    note that another extra node is required to generate  x,    from 

x,    when  i e F. 

Theorem 6.   If  0 ( F,  all nodes (not used in tree grafts or growths) 

in any knot  K^m) C F   can be pruned. 

Proof:    No node  k € KV)   can feed the base,   from (I6ab) and 

Property 3.    Barring stumps in  Kn (m)  used in tree grafts or growths (see 

Theorems 4 and 5),  node k  cannot feed any node not in K^(m).    From (8), 

every n-tree node   r  feeds node  0,   i.e. ,  re R   y r 7s  0.    From the proof of 

Lemma  1,   an n-tree node   r  f K^m)  that feeds node   0  has no roots in 

K^m).     Thus,  an assumption that k feeds   r   is disproved by contradiction. 

Since node  k  feeds nowhere but other nodes in  K.^m),  it can be pruned. 
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V.        A SYNTHESIS PROCEDURE 

The cost of the n-tree synthesis of  F  is taken as the triple 

$   =   (r?.p.X). (18) 

where   77 ,   p and   \ are integers specifying the total number of nodes,   inputs 

and levels,   respectively,   in the final network realization.    In the pruning 

method suggested here an attempt is made to minimize  77 before   p or   \ ,  a. 

bias which reflects an assumed greater cost for nodes than inputs or levels. 

Invoked in the following procedure are Theorems  1,2,3 and 5 for pruning 

inputs and Theorems 4,   5,  and 6 for pruning nodes. 

Step 1   (Th.   4) 

(a) Setting   &  =  n  and  j =  2   -1,   using (l6ab),   find all the knots 

\ K. (m)|   of maximum size and select one of these arbitrarily.    If m ^   1, 
1 2n-l <-) all nodes in  K. (m) Q \ i \ of the chosen knot are pruned and stump  i  is 

saved.    If  m =   0,   node   2   -1   is saved.    Decrease   1 to  n-1;   if   1  =   0,   go to 

Step 3. 

(b) Given any level   0  <  I  < n and a set  | j \   of remaining nodes 

on level   i that are not stumps,   prune all nodes in  { j } 3 j  e K. (m)  for some 

stump  i.    Next,  using (14),   for every node  j  f F   (F    )  that feeds only one 
  Ju Z 

remaining node   i e F (F      1 ),   prune node   j  and save stump  i;   then prune 

any other node in | j \ that forms a one-variable knot with any one of these new 

stumps.    Each node  j f F    (F    )  that feeds no remaining node   i f F      . (F ) 

is saved.    Using (l6ab),  find all the knots   JK. (m)}   of maximum size among 

remaining nodes for every other node in  | j 1.    For a given j,  if m i 2   prune 

node j   if j f K. (m)  for some stump i;   otherwise,   select one of these knots 

arbitrarily,   prune node j    and save stump  i.    Finally,   if m =   1,   prune node 

j  and save stump  i  that is not included in any of the chosen knots for  m ^ 2, 

if possible;   also,  the node  i f F        (F      .)  fed by the most such nodes 

j £ F   (F    )  is preferred. 
At X/ 

(c) Decrease i  by one and repeat (b) until 1 =  0. 
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When there is more than one knot K. (m)  of maximum size for a given 

j,  a refined choice rather than an arbitrary selection of  i   sometimes leads 

to a cheaper realization.    The simplest refinement is to select an  i  which 

is not part of any knot  K   (m)   for  m ^ 1,   since in this event node   i must be 

saved anyway;    if no such i   exists,   then an arbitrary selection is made. 

Extensions of this principle below tree level   X-   are straightforward but may 

become quite involved when there are many options.    Instead of attempting 

to abstractly describe a more general refinement,   one is illustrated in sub- 

sequent examples.    As an alternate to complex refinement,   Step 1 can be 

iterated over all possible choices in order to prune the most n-tree nodes. 

The appropriate mixture of refinement and repetition is more a question of 

algorithm efficiency than network minimality. 

Step  2   (Th.   5) 

(a) If n < 3,   omit Step 2.    Otherwise,  using (I6ac),  among 

only the saved nodes find all the nests   |Nr(m)|   with m ^ 2   that are not 

properly included as subsets of larger nests.    Arbitrarily select one of 

these nests of maximum size.    If there are no such nests,  then go to Step 3. 

(b) Given  N. (m)  with node  j   on level   l and  i c F(F),   determine 

if any of the   m  nodes in  Nr(m)   on level   jj-m+1   (if node   i) feeds a saved node 

s  e F;    if such a node   s   exists,  all nodes in  N.     ^(m-1) p   j i + 2^}   are pruned, 

where  x^ ^ X.  n X.   and  k  is selected in accordance with any of the  nodes in 

Np(m)   on level   £-m+l   which feed node   s   (is selected arbitrarily).    If such 

a node   s   does not exist and m =  2,  then nodes   N.     ^(m-l) f)   j i+2^ }  are still 

saved.    If  s   does not exist,   m ^  3(4)  and  i f F(F),  then all nodes in 

N-.^kC1*1"!) fl   (i+2    f are pruned,  and a tree growth is created consisting of 
— k 

a node feeding the base and fed by x, (x, )  and  node  i+2   (i),   where  k  is 

selected arbitrarily.    In the remaining case for  m =  3  and  i g- F,  if  i = 0   or 

if node   i  is not a stump,  then  N-l(3)   is reduced to three two-variable nests 

| N"1 (2)},  any one of which is treated exactly as in the previous case for  m =  2, 

r e F and node   s   existing;   if i ^ 0  and node  i  is a stump,  then the three 
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nodes in N.     ^(2) p  | i+2   }   are pruned,  and a tree growth fed by x,    and 

node   i  is created. 

(c)       Repeat (b) for the next larger nest found in (a) not already 
i_2k k 

considered if that nest is disjoint from the nodes   N. (m-1),  i+2     and  s   of 

any other nest where nodes were pruned.    When all nests found in (a) have 

been considered,   go to Step 3. 

As in Step 1,   when there is more than one nest   Nr(m)   of maximum 

size,  a refined choice rather than an arbitrary selection may lead to a cheaper 

realization.    The simplest refinement of Step 2 is to select a nest for which 

a saved node   s   exists;   if there is no such nest,  then an arbitrary selection 

is made.    Since the expected number of options in Step 2 is less than in 

Step 1,   further refinement is less preferred than iterating Step 2 over all 

possible choices in order to prune the most saved n-tree nodes. 

The various cases of Step 2b result from the fact that   2 -1   nodes can 

be pruned from  N. (m)  but a tree growth requires one (two) additional nodes 

when   i f F(F).    Also,   in the special case when node   s   does not exist,   m =   3, 

i f F and either   i =   0  or node  i is not a stump,  the direct application of 

Theorem 5 sacrifices the opportunity for pruning node   i  by Theorem 6.    This 

is illustrated in a subsequent example.    In short,   Theorem 5 is applied only 

if there is a net gain in the number of nodes pruned. 

When m s  4,  a cheaper network may result if all nodes in  N. (m)  but 

stumps are replaced by a linear realization of  3m-2   nodes in the   m variables 

of X. p X..    With such a replacement the output node of the linear network is 

identified with node  i  when roots in  Nr(m)  are pruned.    A general construction 

technique for such linear networks is described in Appendix A. 

Step   3 (Th.   6) 

If 0 f F,   omit Step 3.    If 0 f F and node   0  does not feed a node 

of a tree growth, then node   0  is pruned;   otherwise,  node   0  is saved. 
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Step  4a (Th.   5) 

If nodes are not pruned in Step 2,  then go to Step 5.    Otherwise, 

for each nest  N.(m)  where nodes   N.     k(rn-l) P {i+2    f  are pruned,   perform 
i -2 the following operations.     Prune all roots but those from nodes in  N.J    '   (m-1) 

on the next higher level at nodes in  N.J        (m-1) p  \ i V.     Prune all roots in 
i i - 2*^ N.J(m)  but those from nodes in  N.J        (m-1)  on level   jj. + l   at node   i,   except 

1 k k1 f root   i+2     if  i f F.    At node   i+2     prune all roots in  N. , _,i,(m-1)  and add 
i_2k 1+2k 

roots from all nodes in  N. (m-1)   on level   jfc.+l. 

Step  4b (Ths.   1,2 and 3) 

— i k If i p F(F),  all roots in  N.J(m)  are pruned at node  i+2   (i).    At 
k 1 

node   i(i+2   )   all remaining roots in  F  are pruned.    Using (17a),   if  s  fO , 

all roots in  F  are pruned at node   s.    This leaves only roots in  F   remaining 

at node  i(i+2   )  and node   s. 

i k For each node   r  f N.J(m) p  F  but node   i(i+2   ),   find the union of all 

knots   |Kt(m,)[  and form the set  C-  =   {K^m')}   p   fr} •    If  C-   =    0.   define 

E     -    0.    Otherwise,   for each  r 3 C— ^   0,   determine the elements 
6 1 

E    r-   C— "} the knot   K    (m")   does not exist for a saved node   u ? N.J(m) n  F, 

where   e e C—. e     r 

If i e F,  using (11) and (15),  for every root  w f R .  fl  Nr(m)  [there 
X, . T 1 1 

are exactly m   such roots] ,  at node   i  prune each root  z  ^ C—  if node  z   is 

pruned and  z e C   "} C    <- C    ,  where   C     is the union of all knots   JK   (m1)} r fwJzw z <z» 
[if z   is not a node of another nest where nodes were pruned in Step 2] .    Set 

i =  JL+l   and select any remaining root  w f R     at node  i.    If node  w  was 

pruned,   root  w  is replaced by root  w' by means of a tree graft,  where node 

w'  is the stump saved to permit the pruning of node  w.    For every 
i-2k 

r ^E    0 R     :/ 0 and  r f N.J        (m-1),  node   r  feeds node  w by means of a 

tree graft.   [From the proof of Lemma  1,   r i R    .1    Roots   R      [or   R    „  if 

node  w was pruned]  are pruned at both nodes  w [or w']  and i.    When all 

remaining roots in R     are considered,   £ is increased by one and this process 
X 
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is repeated through   £ = n. 

- i+2k 

If i f F,   using (11) and (15),   for every root  w f R . n  N. (m) 
k i+2k l 

[there are exactly  m-1   such roots] ,   at node   i+2     prune each root  z  ^ C— 

if node   z is pruned and   z  f C   "} C    <- C    .    Set   £ =   X- . -.L-+1   and select any 
•+->C      wJ

     z w i+2K ' 

remaining root  w ^ R at node   i+2^.    Again,   if node  w  was pruned, 

root  w  is replaced by root   w'  from the appropriate stump.    For every 

r ^E     p  R     ^   f*   and  r  e N. .^Urn-l),   node   r-2     feeds node  w  by means of J    r w        w s       i+2*" 
a tree graft.    Roots   R      for R    .1   are pruned at both nodes   wfor w'l   and 

w l        w r   i i J 

k i+2^ i+2   .     When all remaining roots in  R are considered,   £ is increased 
X 

by one and this process is repeated through £ =  n. 

if If s  j O    and if i f F(F),  at node   s   prune each root  w f C:—rr^C-r)  i 

node  w  is pruned and  w f C. . ,k(C) 3 C     c C,,i,(C.).    Set    *=   i   +1   and 
'     i+2K     i    J    w i+2K     l *      *s 

select any remaining root  w ( R     but  i+2   (i).    If node  w was pruned, 
X 

root  w  is replaced by root  w'  from the appropriate stump.    For every 

r3({r}   u   Er)  n  Rw 4  0 and  r  e Nj.+2k(m-l) (N.j"2k(m-1)),   node   r-2k(r) 

feeds node  w [or w']  by means of a tree graft.    Roots   R     [ or R    ,]   are 

pruned at node   w [or w'] .    At node   s   prune each root  z  f C— [or C—,]   if 

node   z   is pruned and  z  e C     [ or C    .H C    c C      [ or C    .1 .    When all c
 *wL w'-'-'zw1 W,J 

g 
remaining roots in  R      are considered,   £ is increased by one and this process 

x 
is repeated through   £ =  n. 

Using (17a), if s ( O and if i e F(F), perform the following operations 

for each node z CN
J. k(m-!) (N-J_ (m"U on level i.+2k+1 (1- + 1) [Only this 

level need be considered by Property 2. ]  to determine the inhibiting roots 

required at node   s.    Given a node   z,   define the set  S    =  R    initially.    Remove z z 
1 Z 1 

all elements in  F  and  N . (m)   from  S   .    If node   w e R        , ,   n N . (m)  was a 
l z *        1   +1 1 

z 
stump prior to Step 2,   form the set   C— and eliminate elements in  C—  from r r r w w 
S   .     Set   l=l+l   and select any remaining element  w ( R      at node   z.    If 

z z X 
node  w was pruned,   element w is replaced by element w'  from the appropriate 

stump.    Eliminate elements   R      from  S   .    When all remaining elements in 

R      are considered,   increase   I by one and repeat this process through   £ =  n. 
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The final set  S     are nodes that feed node   s. z 

Step 5 (Ths.   1,   2 and 3) 

i-2 k 
Except for saved nodes   N. (m-1),  i+2     and  s   associated with 

any nest  Nr(m)  where nodes   N.   ^^(m-1) p  ji+2k[  were pruned in Step 2, 

perform the following operations for each saved n-tree node  z   with all the 

roots  R     still remaining.    If  z f F,   prune all roots   R     at node   z.    If z  « F, 

prune all roots in  F  at node   z.    Also,   using (11),   set   jj =   £   +1   and select 
z 

any remaining root  w f R     .If node w was pruned  replace root  w by root 
Ju 

w' by means of a tree graft,  where node  w'  is the stump saved to permit 

the pruning of node  w.     [If w'  is one of the nodes in  N.,?k(m-1) n  {i+2    f 
j k      1+<i 

that was pruned in any nest  N . (m),    then node  w'-2     is used as the stump 
k 1 

and root  w'-2     replaces root  w at node   z. ]   If node  w [or  w']  has no roots, 

prune roots   R     at node   z;   otherwise    prune all roots in  C     [or   C    .1   but r w r w l wIJ 

w [or w'] .    When all remaining roots in  R      are considered,   I is increased 
Ju 

by one and this process is repeated through   l =  n. 

Step  6 

(a) The base is fed by remaining nodes in  F  except nodes in 

N.J"      (m-1) n   {i"[  of each nest  N.J(m)  where nodes   NJ.     ^(rn-l) fl  { i+2.    } 

were pruned.    At this point it may be possible to further prune the resulting 

network by somewhat ad hoc techniques. 

(b) If node   0   remains and has a single root  w,  and if node  w 

feeds no other remaining node then both nodes  w and   0  are pruned and the 

remaining inputs at node  w  replace   root   0  at every remaining node where 

0  appears.    If the base has a single root  w and is not fed by a node of a tree 

growth,  and if node  w  has a single input,   then both node   w and the base are 

pruned and the input to node  w becomes the network output.    [This follows 

from the fact that a node with a single input merely implements the logical 

complementation of that input. ]    If a branch now appears at the base,  this 

branch is pruned at every other remaining node.    [This follows from 

Property lb.] 
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(c) If node   0   remains and is fed by nodes with a common input, 

then that input feeds the base and is pruned elsewhere in the network.     [This 

is easily verified by showing network equivalence for both logical values 

(v and v)   of the common input] . 

(d) Branches at nodes on level three can sometimes be pruned 

by Property  la utilizing existing complemented variables (or other third-level 

nodes) where required at nodes on level two;    rarely,   even a node on level 

three can be pruned in this fashion.    Also,  occasionally the network can be 

simplified by merely creating complemented variables to replace multi- 

branch nodes on level three. 
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VI.      SPECIFIC RESULTS 

Let  F  be represented as a binary number 

«  =   a2n_r--ai---aO;   ai = {J   if i
 €  f <19> 

but written in octal notation for convenience,   e.g.,   for  n=   3,    F=   | 1,2, 4, 7} 

is represented as   a   =    10010110  but is written as   (o/)„ =   226.     This example 

function illustrates the special case of Step 2b of the synthesis procedure where 
7 — 

the node   s   does not exist for the nest Nn(3)  and  0 f F.    The resulting network 

realizing 226 is shown in  Fig.  A-1 as   f(3).    The complementary function   151 

is synthesized as   f(3)   in Fig.  A-l.     Both networks are obtained using 

Theorem 5 in Steps 2 and 4 of V and are the cheapest possible realizations, 

i.e. ,  from (18),   $226 =   (7, 20, 4)  and  $151 =  (7, 16, 5)  are minimal in ^ ,   p 

and   \ . 

There are sixty-eight nondegenerate functional equivalence classes of 

three variables (n =   3),  where two functions are defined to be equivalent if 

one becomes identical to the other with any permutation of the true variables. 

Hellerman[3   ]   lists all possible minimal circuits for   n =   3  with  -n minimized 

first and   p minimized subject to   77 being minimum.    The synthesis procedure 

yields the minimum value of  71 in sixty-three cases; only one more node in 

excess of the minimum is required in each of the other five cases.    In fifty- 

five of the sixty-eight cases,   the synthesis procedure results in a network 

identical to one of Hellerman's circuits.     [He lists more than one minimal 

circuit for some of the classes.]    A cost comparison of the other thirteen 

cases are listed in Table  1. 

Except for the two functions 226 and 151,  all three-variable solutions 

of the synthesis procedure are of three levels or less (\ s 3).    The first 

seven entries of Table  1 show tree solutions requiring the same number of 

nodes but one more input and one less level than Hellerman's circuit; the 

eighth entry requires two more inputs.    The last five entries correspond to 

tree solutions that require one more node than the minimum.    For the last 
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Table  1.     Cost Comparison of Synthesis Procedure 
Solutions and Hellerman's Circuits 

2 12 

13 

33 

274 

275 

255 

153 

75 

232 

251 

351 

55 

236 

Tree Solution 

(4,7,3) 
(5,8,3) 
(5,9,3) 
(5, 11,3) 
(6, 12,3) 
(6,11,3) 
(7, 15,3) 
(6,12,3) 
(6, 13,3) 
(7, 13,3) 
(8, 16,3) 
(7, 13,3) 
(7, 17,3) 

Hellerman's Circuit 

(4,6,4) 
(5,7,4) 
(5,8,4) 
(5, 10,4) 
(6, 11,4) 
(6, 10,4) 
(7, 14,4) 
(6,10,4) 
(5,11,4) 
(6, 12,4) 
(7,15,4) 
(6, 11,4) 
(6,15,4) 

Table 2.    Randomly Chosen 4-Variable Examples 

F(octal) 

161472 

151432 

45565 

134160 

136644 

36402 

121153 

141732 

36607 

131457 

153651 

10506 

77624 

175044 

17110 

175665 

104535 

22536 

$= ( 77' P- \) 

(7,20,4) 

(8,21,3) 
(9,23,3) 

(5, 12,3) 
(7, 18,3) 
(9,23,3) 
(10,25,3) 
(8,20,3) 
(9,23,3) 

(8,19,3) 
(11,29,3) 
(8,20,3) 
(8,23,3) 
(8, 18,3) 
(8,27,3) 
(8,18,3) 
(8,19,3) 
(9,29,4) 

Comment 

Ng4(2),   k=2,   s=4 

2;  10,5 
1;  12,10; 7(Xl,x0) 

-;  10,3 
1; 6 
4,2; 9,6 
8,4,2;  10; 7 
-;   12,10, 5 
4; 9,3;14(Xl) 

4;  10,6 
4,2, 1;  13, 11 
4;  10,9,3 
1; 6;-;15 
8, 1; 6 
-;5;14 
1;10,6 
1;12,10,5 
N13(2),  k=2,   s=4 

8 
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two entries,   Hellerman's circuit results if Step 2 is applied before Step 1 in 

the synthesis procedure. 

The tree solutions are all minimal for  n ^ 2 .   For  ni4,  there are no 

known tabulations of minimal NAND(NOR) circuits with complemented 

variables unavailable.    With no standard of comparison,   it is impossible to 

be precise in evaluating the quality of any synthesis procedure with respect 

to the relative cost of the resulting solutions.    However,   reasonable guidelines 

such as the following one offered by the author can be achieved with experience 

in the logical design of NAND(NOR) networks. 

Conjecture.      Given an arbitrary Boolean function  f(n) with n ^ 3  and 

complemented variables unavailable,   there exists a network of no more than 

3n-2   NAND(NOR) blocks that realizes  f(n). 

For the 4-variable examples discussed next,  this conjecture suggests    an 

upper bound of « s  10  for the minimal realization. 

In Table 2 are listed the costs of the tree solutions for some 4-variable 

functions.     Each bit in a   of (19) for every  F   was selected using a source 

of random digits [ 8 ]  in an appropriate manner.    Theorem 5 was invoked in 

Steps 2 and 4 of V in only two cases,  viz. ,   161472 and 22 536,  which yielded 

a 4-level solution by permitting the pruning of node  14 and 13 of the two- 
14 13 variable nest  NR   (2)  and  N„   (2),   respectively;   x,   =  x    and  s =  4 was chosen 

in each case.    All the third-level nodes in the tree solutions for the other 

cases are indicated in the comment column, e.g. ,   for 45565., node  1 from tree 

level 1 (I =   1),  nodes  12 and 10 from   £ =  2  and node 7 from   £ =   3  are present 

with no remaining roots;   7(x,x„)   means that branch x?   was pruned at node 7. 

Note that the cheaper solutions,   such as that for 134160 with 77 =   5 and no 

third-level nodes from   4=1,  tend to utilize fewer nodes with a single branch, 

i.e. ,  fewer complemented variables each requiring a single-input node.    The 

synthesis procedure is now followed in detail for two interesting examples in 

Table 2. 
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Example  1 (F:   153651)     Step 1:    Node  15 is pruned and either node 14 
15 

or node 7 becomes a stump because a knot  K.     (m)  for  m s 2   does not exist. 

Since both nodes  14 and 7 are in  F  and feed nodes in  F  on the next lower tree 

level,   this decision is postponed temporarily.    Nodes   13 and 11 are both in  F 

and neither feeds a node in  F  on the next lower tree level;    consequently,   both 

nodes are saved.    Similarly,  nodes  5 and 3 in  F  must be saved;    since node   7 

feeds nodes  5 and 3,   the decision is now made to prune node 7 and designate 

node  14 as a stump.     Nodes   12,   10 and 9 in   F   each feed a single node in   F 

on the next lower tree level,   so all three nodes are pruned and node   8  in  F 

becomes a stump.    Node 6 in  F  feeds nodes  4 and 2 in  F  which must be saved, 

so node 6 is pruned.    Finally,  node  1 in  F  and node 0 in   F  must be saved. 

5 3 
Step 2:     There are two nests   N  (2)   and  Nn(2)   of at least two-variables 

among the saved nodes,  but a saved node   s   does not exist.    Since  m ~  2,  this 

step is complete. 

Step 3:     This step is by-passed since node 0 is in  F. 

Step 4:     This step is by-passed since nodes were not pruned in Step 2. 

Step 5:     Prune all roots at nodes  13,   11,   4,   2 and  1 in  F;    since   S.  -   0 

for each of these nodes,   the cover   C.  =   T.,   from (15).    Root 15 in  F   is 
11 

pruned at node  14 in  F;   C,.  =   {14, 15 [.    Root 7 in   F  is pruned at node 5 in 

F; root  13 in  F  must feed node 5 but by Corollary 2 root 15 is pruned at 

node 5;   Cj. =   |5, 7 |.    Similarly,   roots 7 and  15 are pruned at node 3 and 

C,  =   {3, 7 |.    Roots 9,   10 and 12 in  F  are pruned at node 8 in  F; roots  11 and 

13 in  F  must feed node 8 but root 15 is pruned by Corollary 2;  root  14 in  F 

is pruned and  CR =   -{8,9, 10, 12, 14}.    Finally,  roots   1,   2 and 4 in  F   must 

feed node  0   in  F  but all other roots in R„   but root 8 are pruned by Corollary 2; 

root 8 in  F   is pruned and  CQ =   JO, 8 }. 

Step 6:     The base is fed by nodes 0, 8, 3, 5 and 14 in  F.    From (17), 

O    =   0,  O    =   {0,8,3,5, 14} and 

yC    =    {0,8,9,10,12,14,3,7,5,15}   =   F, 
O 
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so the function is realized.    Neither node 0   nor the base has a single root and 

the nodes feeding node 0 have no common input.      Third-level roots  13 and  11 

are required at node 8,   so no branches can be pruned.    Thus,  no further 

pruning is possible in this step;    $=   (11,29,3). 

The tree solution of Example 1 for NAND blocks is shown in Fig.   3a. 

Since   77  =   11   exceeds the conjectured upper bound of 10 blocks for 4-variable 

functions,  one hopes that a cheaper but functionally equivalent tree realization 

exists if a different initial n-tree condition is assumed.    Indeed,   in this 

example,   if  F  is realized with the n-tree and a node with no other inputs is 

fed by the base,  the total cost is   $ =   (10, 29, 4),   i. e. ,   one less node is needed 

at the expense of an additional logic level.    For this   F   synthesis the procedure 

is similar to that for   F  except that node  14 is pruned in Step 6 as a result of 

replacing root  14 at node 13 and node  11 by root 3 and 5,   respectively,  by 

means of a tree graft.    An even cheaper realization is possible here if the 

same Boolean function is implemented with NOR blocks by synthesizing   G 

with the n-tree,  where   G  is defined by (6) given the   F  of (la),   i.e. , 

G: 65024  in octal notation.    For this   G   synthesis several tree grafts are 

performed in Step 5,  and in Step 6 when root  1 replaces root 7 at node 14 

and root 6 replaces root 7 at node 9 by means of tree grafts,  again,   it happens 

that node 7 can be pruned.     This time the total cost is only  $ =  (8,23,3),  a 

reduction of three nodes and six inputs from the first realization!    This NOR 

block solution is shown in Fig.   3b. 

Example 2 (F: 22536)   Step  1:    Node  15 is pruned and either node  14, 

node  11 or node 7 becomes a stump.     Choosing stump 7 arbitrarily,   nodes   14 

and 11 are pruned with nodes  12 and 9 becoming stumps.    Node 13 in F  must 

be saved since it feeds no node in  F  on the next lower tree level; similarly, 

node 5 in  F  must be saved.    Nodes  10,   6 and 3 in F are pruned since nodes 

8, 4, 2 and 1 in  F  must be saved.    Finally,  node 0 in  F  is saved. 

13 
Step 2:   The largest nest among the saved nodes is   NQ   (3).    Because a 

—       13 
saved node   s   does not exist and since  m =  3  and  0 ^ F,  N~   (3)  is reduced 
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18-6-10068 

(a)     NAND   BLOCKS 

Fig.   3.     Tree solution of example  1. 
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(b)    NOR   BLOCKS 

Fig.   3.    Continued. 
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to three two-variable nests  N13(2),   N*3(2)  and  Nj3(2),and  Ng3(2)  with 

x,   =  x     and   s  =  4  is selected arbitrarily.    Node  13 is pruned. 

Step 3:   Node 0 in  F  is pruned. 

Step 4:   All roots are pruned at node 9;    CQ=   {9,11,13,15}.    Root 13 
13 13 

in N„ (2) is pruned at node 8. At node 12 root 13 in N. (1) is pruned and 
° Q *-2  »-w  

root   9   in  Ng(l)  is added;    CJ2  =   {l2, 14}.    Roots  14 and 15 in  Ng   (2)  are 

pruned at node  12.    At node 8 in  F   root 10 in  F  is pruned.    Roots 6 and 13 in 

F  are pruned at node   s  =  4 in  F.     The set  Or,- =  E, _  =   0 .   For root 9 at 

node 8,  roots  11 and  15 are pruned at node 8 since   C— =   11   and node  11 was 

pruned and because   Clc.=   Jl5| c C-.    For root 12 at node 8,   root 14 is 

pruned at node 8 since   C-ry =   14 and node  14 was pruned.    All roots   RR  have 

now been considered;    only roots  9 and  12 at node 8 remain;    CQ  =   \8, 10 }. 
k 

Similarly,  for root  i+2     =   12   at node 4,   root 14 is pruned at node 4.    Root 5 

in  F  must feed node 4.    Since   ({13}   (j   E.^>) p  Re 4   0 and   13 f N.   (1),   node 9 

feeds node 5.    Roots   Rj.  =   {7, 13, 15}  are pruned at node 5.    Root  7  =   C-^- f 

Cj.  =   {5,7}   cannot be pruned at node 4,   since node 7 is saved and  C_  =   {7,15} 

is not properly included in  C-,  but root 15 is pruned at node 4 by Corollary 

2;    C4 =   {4,6, 13}. 

Step 5:    Prune root 15 at node 7 in  F.    Roots 3,   6 and 10 in  F  are 

pruned at node   2 in  F;    root 7 must feed node 2 but root  15 is pruned by 

Corollary 2;    root  11 and root 14 are replaced by root 9 and 12,   respectively, 

by means of a tree graft at node 2;   C    =   {2,3,6,lo}.    At node 1 in  F,   roots 

3 and 13 in  F  are pruned;    roots 5 and 9 must feed node  1; root 7  f C-  is 

pruned at node  1 because of root 5,and roots   11 and 15 are pruned by Corollary 2 

because of root 9;   C ,  =   {1, 3 }. 

Step 6:    The base is fed by nodes 

O.   =    {1,2,4,8}   c   F   =   yC   =    {1,3,2,6,10,4,13,8};   O    =   $. 
t O g 

No further pruning is possible in this step;    $ =   (9,29, 4).    The tree solution 

is shown in Fig.   4. 
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18-6-10070 

12 

Fig.   4.    Tree solution of example 2. 

BASE 
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VII.     SUMMARY 

A synthesis procedure utilizing a few basic theorems for directly- 

pruning a canonic but redundant NAND(NOR) tree network is presented.    The 

utility of regular subtree configurations  (knots and nests) for simplying 

networks is exhibited.    Given a Boolean function  F,  the logic designer has 

the option of selecting the minimum network resulting from the tree solutions 

of F,  the complementing function  F  and the dual functions   G and  G   [with 

the proper attention to whether NAND or NOR blocks are used and if the 

output is complemented] . 

To avoid a significant bias in the choice of example functions,   a table 

of random digits is employed.    From the examples it appears that most tree 

solutions are of three logic levels or less.    Three-level networks are obtained 

faster since major portions of the algorithm are by-passed,  but in a broad 

sense irredundant solutions of more than three levels tend to require fewer 

logic blocks. 

Fan-in and fan-out requirements apparently do not greatly exceed the 

number of variables.    It is conjectured that no more than   3n-2  blocks are 

needed to realize any n-variable function,   for  n s  3. 
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APPENDIX  A 

Linear networks of two and three variables are defined as shown in 

Fig.  A-l.    If the nodes are all NAND(NOR) blocks,  then f(2) =  x ff>x,(x ©x,) 

and  f(3) =  x  ©x.©x      where  © is logical addition modulo two.     These 

networks are the cheapest possible realizations of the given functions. 

Since the complement of the function realized by any NAND(NOR) network 

can be obtained when the output block feeds another NAND(NOR) block,  as 

indicated in Fig.  A-2 any m-variable linear network can be constructed using 

the networks of Fig.  A-l.    For example,   referring to Fig.  A-2a, 

f(4)   =   x ©x.©x ©x,.  (x^x^x ©x~)   is realized with ten nodes by feeding the 

output of the  f(3)  network in Fig.  A-l into another node to obtain  f(3),  thereby 

permitting the elimination of the two nodes indicated by dashed lines.    The 

inputs to the node whose output is   f(3)   in Fig.  A-2a can just as well feed 

everywhere the output  f(3)   feeds.    Using the same principle,   f(4)   is realized 

with ten nodes in Fig.  A-2b with  f,   =  f(2)  and  f? =  f'(2)  and using the  f(2) 

network of Fig.  A-l,  where the prime merely emphasizes that  f'(2)   involves 

variables disjoint from those of f(2). 

In general for  m > 4,   f(m)   is realized as shown in Fig.  A-2b with 

f.  =  i(-rr-)  and  f    =  f '(~r)  using networks that realize  i{~y)  and  f'(-^-)   for  m 

even and with  f.  =  f(—r—)  and  f?  =  f '(—z—)  using networks that realize   f(— ) 

.,,m-l. 
and f'(—-—) for m odd; f(m) is obtained simply by complementing f, and 

using the corresponding complementary network. It is easily verified that 

these linear networks require only 3m-2 nodes and are not unique (except 

possibly  f(4)). 
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*' 1 1 | , . X2 1 1 

X1   X2" 

f(3) 

Fig.  A-l.    Linear two and three-variable networks. 
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f(4) 

(a)   REALIZATION   OF   f(4) 

f, 

* 
1 

i 

t <! 

f2  

f(m): f(m) 

(b)    GENERAL  CONFIGURATION 

Fig.   A-2.     Construction of m-variable linear networks. 
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