
ESD RECORD COPY

ESD ACCE
ESTI

Copy /

31
;ION

Technical Note 1969-48

Efficient Realization

of Boolean Functions

by Pruning NAND(NOR) Trees

B. E. White

2 September 1969

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY M

Lexington, Massachusetts

This document has lmeni

its distribution is

n approved for public release and sale;
unlimited.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS

BY PRUNING NAND(NOR) TREES

B. E. WHITE

Group 66

TECHNICAL NOTE 1969-48

2 SEPTEMBER 1969

This document has been approved for public release and sale;
its distribution is unlimited.

LEXINGTON MASSACHUSETTS

The work reported in this document was performed at Lincoln Laboratory,

a center for research operated by Massachusetts Institute of Technology.

The work was sponsored by the Department of the Navy under Air Force

Contract AF 19(628)-5167.

This report may be reproduced to satisfy needs of U.S. Government agencies.

LI

ABSTRACT

A combinatorial tree structure composed entirely of NAND(NOR)

blocks is pruned in a non-exhaustive fashion to yield minimal or near-

minimal networks. It is assumed that complemented variables are not

available and that there are no fan-in or fan-out limitations. The cost of a

network is taken as being primarily determined by the number of logic blocks

with the number of inputs and logic levels as secondary factors. The pruning

algorithm lends itself to both hand methods and machine computation,

although the synthesis procedure has not been programmed.

Of the 68 nondegenerate functional equivalence classes of 3 variables,

the minimum number of blocks results in 63 cases; only one more block in

excess of the minimum is required in each of the other 5 cases. For 18

randomly selected Boolean functions of 4 variables, the tree solutions yield

an average of 8. 2 blocks per function with the following distribution:

number of logic blocks 5 6 7 8 9 10 11

number of tree solutions 10 2 9 4 1 1 .

It is shown that the linear function f(n) = x„©. . .©x of n variables or its
0 n

complement can be realized with 3n-2 NAND(NOR) blocks, for n 2 3.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office

in

This work is based on the author's Masters thesis, "Implementing

Combinatorial Logic Wit h the NAND Tree, " September 1962, for the

Department of Electrical Engineering at Massachusetts Institute of

Technology, Cambridge, Massachusetts.

IV

I. INTRODUCTION

The synthesis of combinatorial NAND(NOR) logic is a subject that

has generated considerable interest in the last ten years, primarily because

of its application in the design of transistor digital computers. Much of the

basic work in this area was done by G. A. Maley [1] and his colleagues.

Among the published papers in the field, [2, 3,4 and 5) are representative;

additional references are listed in [5] and a Russian survey article[6] .

Another interesting paper[7] submitted recently has yet to appear formally

but is available. Hand methods of synthesis are emphasized in [1,2] , while

[4, 5] discuss algorithms that lend themselves to computer implementation,

as well. Under a fan limit equal to the number (three) of variables,

Hellerman [3] used a computer to exhaustively find all minimal networks for

every functional equivalence class. In [7] Hellerman's solutions are obtained

with no fan restriction by a machine algorithm that is non-exhaustive but

apparently too formidable for a hand method. Gimpel[4] solves the problem

of finding the minimum three-level network with complemented variables

unavailable using a method similar to but more complex than the well-known

Quine-McCluskey algorithm for two-level AND/OR networks. Dietmeyer and

Su[5] concentrate on algorithms for fan-limited blocks and assume comple-

mented variables are available.

Here the author is concerned with the efficient synthesis of minimal or

near-minimal NAND(NOR) networks with complemented variables not available,

where the number of logic blocks is considered the principal cost factor with

the number of inputs and levels of secondary importance. In contrast to other

approaches in which irredundant networks are constructed algebraically from

given Boolean functions, the present synthesis procedure is devised to destroy

redundancies in canonic networks that implement the desired functions from

the outset. As a hand method for, say, up to five or six variables, this

approach has the features of allowing the designer to see the network converge

to an irredundant form and to perhaps make improvements in the realization

by intuition. As an algorithm for computer execution, the procedure appears

relatively straight-forward to program and, being non-exhaustive , suggests

the potential for rapidly obtaining good solutions for functions of four or more

variables. At this time precise information on typical computation speeds

cannot be reported because this version of the algorithm has not been

programmed.

The canonic network used in the synthesis is a combinatorial tree

structure composed only of NAND(NOR) blocks. The tree can be thought of

as a netv/ork implementation of a Karnaugh map or logical truth table. The

basic tree structure was originally suggested by J. Earle [1 - p. 154] as a

means of rapidly obtaining a multiple-output network. However, only single-

output networks are considered here.

The combinatorial tree is discussed in III following a brief review of

NAND(NOR) logic in II. The principles used in removing tree redundancies

are presented in IV. Some results of the algorithm outlined in V are given

in VI. A few conclusions are included in VII.

II. NAND(NOR) LOGIC

Although the reader is assumed to be familiar with Boolean

algebra and NAND(NOR) logical design, a brief review of some basic prin-

ciples is given here. This section highlights the duality between NAND and

NOR logic in order to motivate subsequent discussion that is valid whether

a network is composed entirely of NAND blocks or only of NOR blocks.

A NAND(NOR) block output is the logical complement of the logical

product (sum) of the block inputs. The logical operations /\ , y and —

can be realized solely with NAND(NOR) blocks as shown in Fig. 1 for the

binary variables x- and x.. Therefore, a NAND(NOR) block is called a

universal logical connective in the sense that any Boolean function can be

realized using only NAND(NOR) blocks.

Let a Boolean function of n 2 1 binary variables be expressed in sum-

of-products or product-of-sums form as

f(n) = f(xQ, . . . ,x^, . . . ,xn_1) = V m. = A M., (la)
ifF ifG

f Vi
with the i product or sum given by

n-1
mi = A [b^Ml-b^]

k= 0

n-1
(lb)

Mi= y t^+d-b^i,
k= 0

where the n-tuple

«i = hl
n-vK--'

h
0 (2a)

is the binary equivalent of the decimal number

n-1 . ,
i = X tV, (2b)

k^o k

and F and G are subsets of the universal set

U - [0, ...,i,...,2n-lj . (3)

The complement of f(n) can be written as

f(n) = V m. = A M. . (4)
— I — I

ieF icG

The dual of f(n) is defined as

fD(n) = A M. = y m. , (5)
i^-F ifG

which from (1) is seen to be accomplished by the interchange of V and /\

or, equivalently, the substitution of NOR(NAND) blocks for NAND(NOR)

blocks in Fig. 1. The relationship between F and G in (la) and (5) is easily

established as

G - f2n- 1 - i}3 i (F, (6)

since from (1), (2) and (4)

f(n) = \/_mi = A_mi
ieF icF

/ n-1
= A_ \/ [b/x + (1-b W]

ifF k=0 K K K K

A_M
ifF 2n-l-i

The function associated with a given NAND(NOR) block can be completely

specified by (from) the set of subscripts C = [i] on the m's (M's) in the sum-

of-product (product-of-sums) expression equivalent to the logical product

(sum) of the block inputs. The set fi} (f2 -1-iJ) specifies the combinations

of binary variables according to (lb) and (2) for which f(n) must assume the

NAND BLOCKS NOR BLOCKS

Fig. 1. Universal logical connectives.

logical value 1(0) if the given NAND(NOR) block feeds a common output

NAND(NOR) block. Thus, C can be called a functional cover, and the union

over the set O of covers of NAND(NOR) blocks feeding the output NAND(NOR)

determines the 1(0) network outputs as F= \J fiJ(F= |jf2 "l"i])»
O O

It is implicitly assumed that all NAND(NOR) blocks include a constant

input of 1(0) so that in the absence of binary inputs, the NAND(NOR) block

output is 0(1). When a binary input to a NAND(NOR) block is 1(0), that

input might as well be absent since it cannot affect the block output; when a

binary input is 0(1), it forces the block output to 1(0) regardless of the

logical values of other block inputs. A straightforward application of these

elementary ideas can be used to obtain the following useful property of

NAND(NOR) logic.

Property 1. Given a set S of NAND(NOR) blocks, none of the binary
inputs common to S need appear as inputs to any other NAND(NOR) block
whose output is connected to every block in S via some logic path and yet
does not lead to a path termination without connecting with some block in S.

Special cases of Property 1 are:

a) Binary inputs common to a NAND(NOR) block and all
NAND(NOR) blocks it feeds can be removed at that block.

b) Binary inputs identical to those at the output NAND(NOR)
block can be removed everywhere else they appear in the NAND(NOR) network.

III. THE n-TREE

In III and IV the duality between NAND and NOR logic is exploited

so that the explicit mention of NAND(NOR) blocks is unnecessary. The

results are essentially the same whether a NAND or a NOR network is

utilized. An attempt is made to employ concise terminology that conveys

an image consistent with the tree structure of the network.

The n-tree is a combinatorial network of nodes, branches and roots.

Using (3), each node is distinguished by a label i f U. Referring to (2),

node i has among its inputs the set of branches

Xi = fxk)3bk = * in Pi- (7)

Every node has a single implicit output. The remainder of the inputs to

node i come from the outputs of other nodes and are called roots. If /\ is

taken as componentwise multiplication for n-tuples, then the set of roots

at node i is

Ri = H)3 fljA/Si = fli, j * i. (8)

where j f R. means that node j feeds node i. From (7) and (8), the

complete set of n-tree nodes including X. as branches is

T. = fiJuRi- (9)

It is sometimes convenient to label the tree level

L • = number of 1 's in g. (10)

of node i. With this notation the roots at node i can be grouped as n - £.

mutually disjoint sets

R4 = U *\ . (")

1= -ti+1

where R is the set of nodes on level t that feed node i. From (7), the
I n

number of nodes on level t of the n-tree is (.), so the total number of

n-tree nodes is

1 = 0

The number of branches at node i is t. . From (8), the number of roots at
l

node i from level -t> t- is
l

n - I.
l

I- I.
l

so the total number of roots at node i is

, n / n - ti \

I- U
1= l.+ l

I

(13]

To help clarify the notation, the tree structure for 1 <, n ^ 3 is shown

in Fig. 2. Node i is indicated by i enclosed in a square. The inputs to

node i are given immediately above the square with the roots from the same

level grouped together. Note that the number of branches and roots at a

node increases and decreases, respectively, as the level of a node increases

Summarizing the structure of the n-tree in one sentence, node i (U

has as branches a distinct set X. selected from x_, . . . ,x . and is fed bv
I 0 n-1 }

all higher-level nodes with branches that include X. as a subset. This

statement easily leads to the following simple property of the n-tree.

Property 2. Given any node in the n-tree, all roots at that node are
included in the roots at every n-tree node fed by the given node, i.e. , if
node i feeds node i then R. c R-.

J J i

An arbitrary function to be synthesized is uniquely specified by

118-6-100161

(a) n = 1

"l"o

3

«,3

12 3

*03

2 1

0

X2X1X0

124 356 7

(c) n = 3

(b) n = 2

Vi 7 Vo 7 x,x0 7

6 5 3

x2 56 7 x 36 7 xQ 35 7

4 2

Fig. 2. The n-tree structure (1 < n < 3).

n
F - U FcU, (14a)

1= 0 *

where F, is the set of n-tree nodes in F on level t; for convenience the

remaining nodes on level I are designated F. , so

n
F = U F. C U. (14b)

1= 0 *

If C. is the functional cover for node j, then from II, (8) and (9) the appro-

priate cover for node i fed by node j is the recursive definition

C. = T. fl C. , (15)
1 l

 • *c J j €5. J
J
 l

where S. C R. is the set of roots saved at node i. From (15) if S\ = A ,
l — l I

v

then C = T.. From (9) and (15), if S. = R., then
11 11

C = ({ijUR.) n C. = {i},
J€R.J

which is shown by induction as the level t is decreased from n, i.e. , for

t = n, i= 2 -1 and C. = |i} since R. = 0 ; assuming that C. = f j } for node j

on level t. > -l.,
J i

c. = di] u R.) n 0"}

- ({i} n fj))u (R. n 0"))
JfRi JcRi

= {i} U 0 = fi),

since j ^ i.'V'j €R.. With the addition of a common output node external to

the n-tree called the tree base, and using (14), the following property of the

Inclusion is indicated here in anticipation of the removal of redundant roots;
actually, with the tree grafts defined in IV, S. may contain roots disjoint
from R..

1 10

n-tree is established.

Property 3. The n-tree realizes F iff all nodes in F and no nodes in
F feed the base.

Introduced here is the notion of certain embedded tree structures

utilized in the sequel. An m-tree is the network of nodes, branches and

roots of th

and roots)

roots of the n-tree consisting only of the set of 2 nodes (and their branches

T.J(m) = (i + k)3/3k= /SfcAjS. v j * i, (16a)

where i, j € U,)3-Aj3- = /3-, and 0 s m < n. If m = n, the m-tree and

n-tree are identical; if m < n the m-tree is a subtree structure embedded

in the n-tree. Note that in (9) and (15),

2n-l
T. = T* '(n-*,) .

An m-knot is a set

K J/-~->\ _ T J / »-*-. \ •\ T J .J(m) = T.J(m)3T.J(m) C F (F), (16b)

i.e. , the nodes of the m-tree corresponding to an m-knot are either all in

F or all in F .

An m-nest is a set

Np(m) = Tp(m)3k e F iff L even(odd),Vk e T.J(m), (16c)
11 K. 1

i.e. , in the m-tree corresponding to an m-nest, all the nodes on even levels

are in F(F) and all the nodes on odd levels are in F(F).

11

IV. PRUNING TECHNIQUES

With Property 3 as a beginning, the objective of an efficient

synthesis is to prune the n-tree by the orderly removal of logically redundant

nodes, branches and roots. A node that is saved to permit the pruning of at

least one other node is called a stump.

In addition to direct pruning, the network can be reduced indirectly by

other techniques. In particular, a tree graft refers to the attachment of a

new root at a given n-tree node for the purpose of supplanting other roots at

that node. A tree growth refers to the addition of a node different from the

base but external to the n-tree which facilitates further reductions. Unless

the situation warrants the more specific terms, pruning is used generically

to include tree grafts and growths.

The set of nodes feeding the base is designated ,

O = O. U O , (17a)
t g

where O and O is the set of n-tree and growth nodes, respectively, that

feed the base; by Property 3,

O £ F. (17b)

If C is the functional cover associated with a given node,

F = U C = C U C, (17c)
O gieOt

J

where C represents the total cover of the growth nodes in O , and C. is
g P B g i

defined by (15).

Offered here are some rules of redundancy in theorem form that

suggest effective pruning methods. Implicit in the statement of some of the

following results is the assumption that in pruning the n-tree the logical

output function of the network remains unchanged.

1Z

Since C. depends on the covers of nodes at higher tree levels that feed

node i, it is efficacious to prune the n-tree from the top level-by-level.

With this order of pruning, the proofs of most redundancy rules, viz. ,

Theorems 1, 2, 4 and 5 are also simplified.

Theorem 1. At every node i f F (that does not feed a node of a tree
growth), any set _c R. of roots can be pruned.

Proof: By Property 2, R. c R. when n-tree node j feeds n-tree node

i. By Property 3 nodes in F do not feed the base. Thus, barring any node

in F that feeds a node of a tree growth , the roots R. appear everywhere

node j feeds. By Property la any subset of R. can be pruned at node j.

Theorem 2. At every node i (F (that does not feed a node of a tree
growth), any set c R. (IF of roots can be pruned.

Proof: Suppose a root j f R. (IF appears at the base. Then by

Property lb, that root can be pruned anywhere else it appears in the network.

If neither node i nor node j feeds the base, then by Property 2, root j can

be pruned at node i, provided i does not feed a node of a tree growth (see

footnote of Theorem 1). It remains to check the case when i but not j

appears at the base.

While j appears at the base C. c: F, for if C. => F, the network would

not realize F; C. f F, since i e F and i f C. At the base j is pruned only

if C. is covered by other nodes feeding the base, again, because F would

not be realized otherwise. With j pruned at the base and node i feeding the

base, if root j does not appear at node i, then root j has already been

pruned legitimately, by definition; if root j appears at node i, then from (15)

c. = T. n c7 n c"
1 x J -j o r JJ^r cS.

l

As is seen in Theorem 5, the node of a tree growth may have only one root,
•ay_root j, which cannot be a member of R., from (8); actually, only nodes
in F feed tree growth nodes. J

13

that becomes

(C. u c.) T. n c = T. n c
j j i r 1 r

j^reS. j?rfS.

with the removal of root j at node i, i.e. , there is an addition of

c. n T. n c c c. c F
J i r J

j^rcSi

to the cover supplied by node i, which does not alter the function realized

by the network since C. is already covered at the output.

Corollary 1. No more than a three-level realization of F is always
possible.

Proof: If all the roots at every node in F are pruned by Theorem 1,

and if all the roots in F at every node in F are pruned by Theorem 2, then

all nodes in F can only feed nodes in F, and nodes in F can only feed the

base. Tree growths are not involved in such realizations which, obviously,

are of three logic levels or less.

Theorem 3. If node j feeds node i and C, czc. for k c R., then root
 k J J

k can be pruned at node i.

Proof: By Property 2, if k c R., then k e R.. If C,cC., then

C => C.. From (15),
* J

c. = T. nc. n c, nc
i i j k r

j.k^r eS.

= T. nc. nc
i J

r

j.k^r cS.

is independent of root k at node i, since C. (1 C. = C.
J k j

14

Corollary 2. If node j feeds node i and S. = 0, then the roots R.
can be pruned at node i. J J

Proof: From (15), with all roots R. pruned at node j, C.= T.= {j J U R..

Since CR C Tfc = {k3URk, and R^ c R.,^k €R., C.3C; by Theorem 3,

the roots R. can be pruned at node i.
J

Lemma 1. Given any knot K. (m), if the roots K = K.(m) fl {T} are

pruned at node i, then C. 3 Kp(m).

Proof: From (16ab), all but node i of the nodes in K*(m) feed node i,

i.e., K c_ R.. [The equality holds only when j = 2 - 1.] A node r { K that

feeds node i has no roots from nodes in Kr(m), i.e., R D Kr(m) = A. Since
l r i *

node r feeds node i, i ^ R . If node i + k (k > 0) in K fed node r, then so

would node j, since node j feeds node i + k and because R. , c R , by

Property 2. Consequently, from (8),

/SjA/3. = 0r and Bj./\Bi = 0.,

which along with (16a) and the fact that

0//^ = ai

implies that

B. A/3 = B ., ^j-i/\^r-i Mr-i

or that r e Tr(m). But by assumption r f Tr(m), so R (1 K = 0 is proved

by contradiction. It follows that C ^_ {r } U R is disjoint from Kr(m) for

each node r ^ Kr(m) that feeds node i. Thus, if the roots K are pruned at

node i, from (15),

C. = T. D C 3 T. fl ({r} U R)
I I r — I r

reS. rcS.
1 x

=> T. n Kp(m) = Kp(m).
— I l i

15

Lemma 2. Given any knot K.J(m) C F(F) and a knot K r(m') C F(F) 3

r € R. and s < R., T D Kpfen) = 0.
l 'is 1 '

Proof: From (2), (8) and (9). the /J for every element in T has 1's
• s

in all components where /J has l's. For T and K. (m) to have at least one
S S . X

element in common, the /3 for some element in Kr(m) must have l's in all

components where)8 has l's. Since £. has more l's than the /J for any
i S "* other element in K.J(m) from (I6ab), it is assumed that j (R , which must

hold if T H Kp(m) ± 9. li\Jis taken as componentwise logical addition for

n-tuples, /? and fi. both have l's in all components where £ = /S-\//3 has

1 's (j8. 7^ /3-, 0 , since i + s) because rcR., rcR , j € R. and j c R (by
1 1 S 1 S 1 s

assumption). Consequently, presuming that t 7* r, j, nodes r and j must

feed a common node t that is in both K (m') and K.J(m), i.e. , r, j € R.
5 1 I

with t (K (m'), Kp(m). Since these knots are disjoint by definition, j ^R .

If t = r or if t = j, then node j must feed node r or vice-versa i'. e. ,

j e R or r C R., respectively. From the proof of Lemma 1 this is impossible
l r since r f K.J(m) and r (K (m1). Again, by contradiction, j \ R .

Theorem 4. Given any knot K/(m), all nodes in K = K:(m) (1 fi~} but

stumps can be pruned provided node i is saved.

Proof: Lemma 1 permits node i to cover for all nodes in Kp(m)

independent of nodes in K. Lemma 2 guarantees Lemma 1 even if a tree

graft, viz. , root s € F(F) supplanting root r e F(F) at node i e F(F), is

applied at node i. Consequently, all nodes in K but stumps can be pruned

if node i becomes a stump.

Lemma 3. Given any nest Nr(m) with if F(F), if the nodes in

N = Np(m) fl (T) are saved and if at node i + k c N. (m) all roots in N but

those from nodes on level I. ,. + 1 are pruned, then C. 3 N. (m) D F(F) and
l+k r 1 — 1

C. H N.J(m) H F(F) = 0.
1 1

Proof: By an argument similar to that in the proof of Lemma 1, using

(I6ac), for a node r f N which feeds any node in N.(m), C is disjoint from

N.J(m). With K r(m') DNp(m) = 0 a modified Lemma 2 guarantees that C is
1 s 1 *

16

1 1"

disjoint from N.J(m) if root s of K (m1) supplants root r by means of a
1 s

tree graft. Thus, no elements of N.j(m) can be inhibited from the cover of

any node in Np(m) by roots from nodes not in N, i.e. ,

DC 3 N.J(m),y i + k c N.J(m). (18a)

r fS.±1 n N
i+k

However, nodes in N collectively inhibit the elements {i+k} c^ N for

£, odd from C. and guarantee the inclusion of [i+k] c^ N for I, even in

C, if all roots in N at node i+k € N/(m) but those from nodes on the next
l l

higher level are pruned, where A, is defined by (2), (10) and (16a). This is

now shown by induction on decreasing tree level from I.,

For A = I., since C. => fj } and R- D N = 0, it follows that

C. HN.j(m) = {j} U (R„j n N), (18b)

even

i+k
where A I - I- £.,, >0 and R „ k is defined with (11). Assume that for

i+k I '

1 - *i+k'

C.., n N.J(m) - {i+k} U (R/+k n N). (18c)
i+K i A£

even

With all roots in N at node s f Nr(m) fl {j } pruned except those roots in N

from nodes on level & + 1 (see (18e)), from (15),
s

C n N.J(m) = T 0 C fl C n N.J(m),
si s r r I

x " (18d)

rfS ON r CS n N
s s

where

S n N = {i+k} CNDR 31 = I +1.
S S ITK S

(18e)

17

Using (18a), (18d) becomes

Cg n N.J(m) = Tg nC.+k n N.J(m). (18f)

i+k e S n N
s

Since

C.^, 0 Np(m) = (C.J., U N.J(m)) 0 N.J(m),
i+k 1 i+k l l

using (18c), (18f) can be rewritten as

i+k
C n N.J(m) = T D [{i+k} U (R D N)] fl N.J(m)
si s hi x

i+k fS fl N even
s

i+k
n [U I i+k } U (R f fl N)l PI N.J(m)

AX l X

i+k eS ON even
s

T D [U (R, n N)] D N.J(m)
s AA 1

odd

T n [(sj u (R/ n N>]
S Ll

even

{s} U (R/ fl N), (18g)

even

with the application of De Morgan's Theorem and Property 2.

Since (18bg) have the same form as (18c), this nearly completes the

proof. It merely remains to note from (16c) and (18g) that when s = i C F(F),

C. 3 Np(m) D F(F) and C. 0 Np(m) fl F(F) = 0.
I — I I I

18

Lemma 4. Given any nest N. (m) with i e F(F) and a variable

^CX. OX, C.+2k3 N.J k(m-l) n F(F), C.+2k n N.J k(m-l) H F(F) = 0,

C._^ N.j-2k(m-l) 0 F(F) and C{ D N.j"2 (m-1) fl F(F) = 0 all can hold if

node i+2 has no roots in N.J_,k(m_l) but has tree graft roots from all nodes
i-2k 1+2 i-2k

in N.J (m-1) on n-tree level i. + l, and if each node in N.J (m-1) has
1 1-2* X * roots from all nodes in N.J (m-1) on the next higher n-tree level but no

i-2k X i other nodes in N.J (m-1) and no roots in N. ,-,v(m-l).
l i+2K

Proof: As can be verified using (I6ac), the nest N. (m) is composed

of two distinct nests, N? _k(ni-l) and N.-* (m-1), that are uniquely

determined by x, , which can be any branch that appears at node j but not

node i. The nodes N.J, 0i, (m-1) and N.J" (m-1) have (x, j U X. and X. as
i+2K I k I I

common branches, respectively. From (2), (7) and (8), T k is the set of

all n-tree nodes that have x, as a branch. Let v(v) be the logical value of

an input to a node such that the output of that node is not influenced (is forced

to v) by that input.

If x, = v, all x, branches in the n-tree can be ignored. This is
k equivalent to removing all x, branches and subtracting 2 from all nodes

and roots in T k of the n-tree. But in this event an original node r € T k

becomes identical to n-tree node r-2k with roots in T k removed. Further-

more, since n-tree node r-2 now has all the branches (as well as roots)
k

that appear at the new node r-2 , and because the original node r feeds
k k n-tree node r-2 , the output of n-tree node r-2 is forced to v by the new

k
node r-2 . This follows from Property la where all the explicit inputs to

k k the new node r-2 are redundant with respect to n-tree node r-2 . There-

fore, only the influence of the implicit input v remains at the new node
— k

which thereby effectively supplies v as an input to n-tree node r-2 . Hence,

all n-tree nodes and roots not in T?k can also be removed.

If x, = v, all roots in T k have logical value v and can be ignored.

This is equivalent to removing all nodes and roots in T?k from the n-tree.

19

-2k

Let the roots of nodes in Nr (m-1) be constrained as stated in
1

Lemma 4. Similarly, let each node in N1? ^^(m-1) have roots from all nodes

in N. k(m-l) on the next higher n-tree level but no other nodes in Np ^(m-l).

Then by Lemma 3, all the conditions on C, -.k and C. stated in Lemma 4
1+2*" l

hold. The conditions on C.,-1, are unaffected if node r f i+2 in ~N\ , ^i,(m- 1)
k 1+2 i-2k 1+2

is replaced by node r-2 / i in N. (m-1). This can be verified using the

previous discussion as follows. If x, = v, each root s { N^. 7k(m_l) at node

r corresponds to the pair of equivalent roots s and s-2* ^ N.J ' (m-1) at
k i X

node r-2 ; root s e NJ. ^(m-l) at node r corresponds to root
k i-2^ L- i

s-2 e N.J (m-1) at node r-2K. The absence of roots in NJ. _,v.(m-l) at
i , i+<£K

node r-2*- prevents the redundancy of node r-2 when x, = v. If x, = v,
k k ~k

the output of node i+2 is forced to v regardless of the other inputs at node
k

i+2 . Consequently, the conditions on C ,,k remain satisfied if the roots
i ' ?k

in N. ?k(m-l) on level I. ?k+l are supplanted by the roots in Np" (m-1)

on level i. + 1 by means of tree grafts.

Lemma 5. Given the conditions of Lemma 4, (a) C.(C.+?k) also
1-2^

includes all elements in N.J(m) fl F only covered by stumps in N.J (m-1)

(N . -,k(m- 1)) R F if none of these elements are included in any of the covers

of nodes in N.J(m) fl F which feed a node in N.J (m-1) fl F (node i+2 € F),

and (b) for a node s e N.J(m) fl O that node i + 2k(i) € F feeds, C includes
1 i i-2^ S

all elements in F only covered by stumps in N. k(m-l)(N.J ' (m-l))D F if

none of these elements are included in any of the covers of nodes in F which

also feed node s, and if no nodes in Nr(m) fl F feed node s.
1 '-2k

Proof: In (a), consider a stump on level i in N. (m-1) fl F which

covers a set of elements in N. (m) fl F not covered by nodes disjoint from

Nr(m). By definition of the roots in Lemma 4, these elements are inhibited
1 i-2k

from the cover of each node in N.J (m-1) on level i - 1, regardless of

whether unspecified roots at these nodes are present. Continuing to level

1-2 the cover of each node in Nr (m-1) includes the elements in question

because neither the cover of a node in F fl Nr(m) nor in F fl Nr(m) feeding

such a node covers any of the elements, by assumption. The inhibition and

20

covering of these elements continues to alternate as the level is decreased.

By induction on decreasing the level to I., C. includes these elements. The

remainder of the lemma can be shown in a similar fashion. Note that from

(17a), s may be a node of a tree growth.

Lemma 6. Given the conditions of Lemmas 4 and 5, all roots at nodes

in N.J (m-1) fl (x) and at node i+2 (at nodes in Np"2 (m-1)) but those

roots specified in Lemma 4 as being present can be pruned when i e F(F)
i -2^ i

provided any inhibiting required at nodes in N.J (m-1) (N. ^(m-1)) fl F is
k ''^ i

accomplished at nodes i(i+2) and s, and if nodes in NJ. (m) fl F do not feed

node s.

— -2k

Proof: If i f F(F), any inhibiting required at nodes in N. (m-1)

(N. ^(m-l)) fl F, including that mentioned explicitly in Lemma 5a, can
k *

just as well be accomplished at node i(i+2) and node s, by Property 2; if

s is a node of a tree growth, the appropriate roots must be created at node

s since Property 2 does not apply for tree growths. All but the specified
k —

roots at node i+2 (i) € F can be pruned because this can only decrease the

number of elements in C without deleting elements that are guaranteed by

Lemma 5b. The last clause of Lemma 6 is necessary when s is not a node

of a tree growth to insure that C includes all elements in F covered only
ok

by nodes in NJ k(m-l) (N.J (m-1)) fl F.

Theorem 5. Given any nest Nr(m) with i € F(F) and a variable
— i X k x. e X. 0 X.. all nodes in N. , _v(m- 1) but node i+2 can be pruned if the

k J x k 1+2 i-2k
roots of node i+2 and the nodes of N.J (m-1) are as stated in Lemma 6

[except that if i e F, node i+2 feeds node i] , if all roots in N.J" (m-1) (1 F

[but root i, if i e F] are pruned from the base, and if the covers of nodes

in N. (m) fl F are constrained as stated in Lemma 5 and applied as in

Lemma 6 [should node s of Lemma 5b not exist, a tree growth is created
— k

which feeds only the base and is fed by x, (x,) and node i+2 (i)] .

k i
Proof: If i c F, node i is fed by node i+2 to prevent N. ?k(m~l) ^ F

from appearing in the network output, as it would otherwise since then nodes

If i f F(F~), any inhibiting required at nodes in N? k(m-l) (N1! (m-l))p F
is accomplished at node s.

21

k
i+2 and i are equivalent when x, = v from the proof of Lemma 4; if i € F,

k
node i need not be fed by node i+2 because node i feeds only nodes not in

T k whose outputs are redundant anyway when x, = v. For the same reason
i_2k K

roots in N.J (m-1) fl F are pruned from the base. Lemmas 4, 5 and 6 permit

nodes i+2 and i to properly cover all elements in Np(m) and those in

N/(m) 0 F only covered by stumps in N.^m) fl F without requiring the

presence of nodes in N. ^^(m-1) fl (i+2kj . Thus, the latter set of nodes

can be pruned. The tree growth provision of the theorem merely offers a

means of supplying the network output with a required cover when node s

does not exist; note that another extra node is required to generate x, from

x, when i e F.

Theorem 6. If 0 (F, all nodes (not used in tree grafts or growths)

in any knot K^m) C F can be pruned.

Proof: No node k € KV) can feed the base, from (I6ab) and

Property 3. Barring stumps in Kn (m) used in tree grafts or growths (see

Theorems 4 and 5), node k cannot feed any node not in K^(m). From (8),

every n-tree node r feeds node 0, i.e. , re R y r 7s 0. From the proof of

Lemma 1, an n-tree node r f K^m) that feeds node 0 has no roots in

K^m). Thus, an assumption that k feeds r is disproved by contradiction.

Since node k feeds nowhere but other nodes in K.^m), it can be pruned.

22

V. A SYNTHESIS PROCEDURE

The cost of the n-tree synthesis of F is taken as the triple

$ = (r?.p.X). (18)

where 77 , p and \ are integers specifying the total number of nodes, inputs

and levels, respectively, in the final network realization. In the pruning

method suggested here an attempt is made to minimize 77 before p or \ , a.

bias which reflects an assumed greater cost for nodes than inputs or levels.

Invoked in the following procedure are Theorems 1,2,3 and 5 for pruning

inputs and Theorems 4, 5, and 6 for pruning nodes.

Step 1 (Th. 4)

(a) Setting & = n and j = 2 -1, using (l6ab), find all the knots

\ K. (m)| of maximum size and select one of these arbitrarily. If m ^ 1,
1 2n-l <-) all nodes in K. (m) Q \ i \ of the chosen knot are pruned and stump i is

saved. If m = 0, node 2 -1 is saved. Decrease 1 to n-1; if 1 = 0, go to

Step 3.

(b) Given any level 0 < I < n and a set | j \ of remaining nodes

on level i that are not stumps, prune all nodes in { j } 3 j e K. (m) for some

stump i. Next, using (14), for every node j f F (F) that feeds only one
 Ju Z

remaining node i e F (F 1), prune node j and save stump i; then prune

any other node in | j \ that forms a one-variable knot with any one of these new

stumps. Each node j f F (F) that feeds no remaining node i f F . (F)

is saved. Using (l6ab), find all the knots JK. (m)} of maximum size among

remaining nodes for every other node in | j 1. For a given j, if m i 2 prune

node j if j f K. (m) for some stump i; otherwise, select one of these knots

arbitrarily, prune node j and save stump i. Finally, if m = 1, prune node

j and save stump i that is not included in any of the chosen knots for m ^ 2,

if possible; also, the node i f F (F .) fed by the most such nodes

j £ F (F) is preferred.
At X/

(c) Decrease i by one and repeat (b) until 1 = 0.

23

When there is more than one knot K. (m) of maximum size for a given

j, a refined choice rather than an arbitrary selection of i sometimes leads

to a cheaper realization. The simplest refinement is to select an i which

is not part of any knot K (m) for m ^ 1, since in this event node i must be

saved anyway; if no such i exists, then an arbitrary selection is made.

Extensions of this principle below tree level X- are straightforward but may

become quite involved when there are many options. Instead of attempting

to abstractly describe a more general refinement, one is illustrated in sub-

sequent examples. As an alternate to complex refinement, Step 1 can be

iterated over all possible choices in order to prune the most n-tree nodes.

The appropriate mixture of refinement and repetition is more a question of

algorithm efficiency than network minimality.

Step 2 (Th. 5)

(a) If n < 3, omit Step 2. Otherwise, using (I6ac), among

only the saved nodes find all the nests |Nr(m)| with m ^ 2 that are not

properly included as subsets of larger nests. Arbitrarily select one of

these nests of maximum size. If there are no such nests, then go to Step 3.

(b) Given N. (m) with node j on level l and i c F(F), determine

if any of the m nodes in Nr(m) on level jj-m+1 (if node i) feeds a saved node

s e F; if such a node s exists, all nodes in N. ^(m-1) p j i + 2^} are pruned,

where x^ ^ X. n X. and k is selected in accordance with any of the nodes in

Np(m) on level £-m+l which feed node s (is selected arbitrarily). If such

a node s does not exist and m = 2, then nodes N. ^(m-l) f) j i+2^ } are still

saved. If s does not exist, m ^ 3(4) and i f F(F), then all nodes in

N-.^kC1*1"!) fl (i+2 f are pruned, and a tree growth is created consisting of
— k

a node feeding the base and fed by x, (x,) and node i+2 (i), where k is

selected arbitrarily. In the remaining case for m = 3 and i g- F, if i = 0 or

if node i is not a stump, then N-l(3) is reduced to three two-variable nests

| N"1 (2)}, any one of which is treated exactly as in the previous case for m = 2,

r e F and node s existing; if i ^ 0 and node i is a stump, then the three

24

nodes in N. ^(2) p | i+2 } are pruned, and a tree growth fed by x, and

node i is created.

(c) Repeat (b) for the next larger nest found in (a) not already
i_2k k

considered if that nest is disjoint from the nodes N. (m-1), i+2 and s of

any other nest where nodes were pruned. When all nests found in (a) have

been considered, go to Step 3.

As in Step 1, when there is more than one nest Nr(m) of maximum

size, a refined choice rather than an arbitrary selection may lead to a cheaper

realization. The simplest refinement of Step 2 is to select a nest for which

a saved node s exists; if there is no such nest, then an arbitrary selection

is made. Since the expected number of options in Step 2 is less than in

Step 1, further refinement is less preferred than iterating Step 2 over all

possible choices in order to prune the most saved n-tree nodes.

The various cases of Step 2b result from the fact that 2 -1 nodes can

be pruned from N. (m) but a tree growth requires one (two) additional nodes

when i f F(F). Also, in the special case when node s does not exist, m = 3,

i f F and either i = 0 or node i is not a stump, the direct application of

Theorem 5 sacrifices the opportunity for pruning node i by Theorem 6. This

is illustrated in a subsequent example. In short, Theorem 5 is applied only

if there is a net gain in the number of nodes pruned.

When m s 4, a cheaper network may result if all nodes in N. (m) but

stumps are replaced by a linear realization of 3m-2 nodes in the m variables

of X. p X.. With such a replacement the output node of the linear network is

identified with node i when roots in Nr(m) are pruned. A general construction

technique for such linear networks is described in Appendix A.

Step 3 (Th. 6)

If 0 f F, omit Step 3. If 0 f F and node 0 does not feed a node

of a tree growth, then node 0 is pruned; otherwise, node 0 is saved.

25

Step 4a (Th. 5)

If nodes are not pruned in Step 2, then go to Step 5. Otherwise,

for each nest N.(m) where nodes N. k(rn-l) P {i+2 f are pruned, perform
i -2 the following operations. Prune all roots but those from nodes in N.J ' (m-1)

on the next higher level at nodes in N.J (m-1) p \ i V. Prune all roots in
i i - 2*^ N.J(m) but those from nodes in N.J (m-1) on level jj. + l at node i, except

1 k k1 f root i+2 if i f F. At node i+2 prune all roots in N. , _,i,(m-1) and add
i_2k 1+2k

roots from all nodes in N. (m-1) on level jfc.+l.

Step 4b (Ths. 1,2 and 3)

— i k If i p F(F), all roots in N.J(m) are pruned at node i+2 (i). At
k 1

node i(i+2) all remaining roots in F are pruned. Using (17a), if s fO ,

all roots in F are pruned at node s. This leaves only roots in F remaining

at node i(i+2) and node s.

i k For each node r f N.J(m) p F but node i(i+2), find the union of all

knots |Kt(m,)[and form the set C- = {K^m')} p fr} • If C- = 0. define

E - 0. Otherwise, for each r 3 C— ^ 0, determine the elements
6 1

E r- C— "} the knot K (m") does not exist for a saved node u ? N.J(m) n F,

where e e C—. e r

If i e F, using (11) and (15), for every root w f R . fl Nr(m) [there
X, . T 1 1

are exactly m such roots] , at node i prune each root z ^ C— if node z is

pruned and z e C "} C <- C , where C is the union of all knots JK (m1)} r fwJzw z <z»
[if z is not a node of another nest where nodes were pruned in Step 2] . Set

i = JL+l and select any remaining root w f R at node i. If node w was

pruned, root w is replaced by root w' by means of a tree graft, where node

w' is the stump saved to permit the pruning of node w. For every
i-2k

r ^E 0 R :/ 0 and r f N.J (m-1), node r feeds node w by means of a

tree graft. [From the proof of Lemma 1, r i R .1 Roots R [or R „ if

node w was pruned] are pruned at both nodes w [or w'] and i. When all

remaining roots in R are considered, £ is increased by one and this process
X

26

is repeated through £ = n.

- i+2k

If i f F, using (11) and (15), for every root w f R . n N. (m)
k i+2k l

[there are exactly m-1 such roots] , at node i+2 prune each root z ^ C—

if node z is pruned and z f C "} C <- C . Set £ = X- . -.L-+1 and select any
•+->C wJ

 z w i+2K '

remaining root w ^ R at node i+2^. Again, if node w was pruned,

root w is replaced by root w' from the appropriate stump. For every

r ^E p R ^ f* and r e N. .^Urn-l), node r-2 feeds node w by means of J r w w s i+2*"
a tree graft. Roots R for R .1 are pruned at both nodes wfor w'l and

w l w r i i J

k i+2^ i+2 . When all remaining roots in R are considered, £ is increased
X

by one and this process is repeated through £ = n.

if If s j O and if i f F(F), at node s prune each root w f C:—rr^C-r) i

node w is pruned and w f C. . ,k(C) 3 C c C,,i,(C.). Set *= i +1 and
' i+2K i J w i+2K l * *s

select any remaining root w (R but i+2 (i). If node w was pruned,
X

root w is replaced by root w' from the appropriate stump. For every

r3({r} u Er) n Rw 4 0 and r e Nj.+2k(m-l) (N.j"2k(m-1)), node r-2k(r)

feeds node w [or w'] by means of a tree graft. Roots R [or R ,] are

pruned at node w [or w'] . At node s prune each root z f C— [or C—,] if

node z is pruned and z e C [or C .H C c C [or C .1 . When all c
 *wL w'-'-'zw1 W,J

g
remaining roots in R are considered, £ is increased by one and this process

x
is repeated through £ = n.

Using (17a), if s (O and if i e F(F), perform the following operations

for each node z CN
J. k(m-!) (N-J_ (m"U on level i.+2k+1 (1- + 1) [Only this

level need be considered by Property 2.] to determine the inhibiting roots

required at node s. Given a node z, define the set S = R initially. Remove z z
1 Z 1

all elements in F and N . (m) from S . If node w e R , , n N . (m) was a
l z * 1 +1 1

z
stump prior to Step 2, form the set C— and eliminate elements in C— from r r r w w
S . Set l=l+l and select any remaining element w (R at node z. If

z z X
node w was pruned, element w is replaced by element w' from the appropriate

stump. Eliminate elements R from S . When all remaining elements in

R are considered, increase I by one and repeat this process through £ = n.

27

The final set S are nodes that feed node s. z

Step 5 (Ths. 1, 2 and 3)

i-2 k
Except for saved nodes N. (m-1), i+2 and s associated with

any nest Nr(m) where nodes N. ^^(m-1) p ji+2k[were pruned in Step 2,

perform the following operations for each saved n-tree node z with all the

roots R still remaining. If z f F, prune all roots R at node z. If z « F,

prune all roots in F at node z. Also, using (11), set jj = £ +1 and select
z

any remaining root w f R .If node w was pruned replace root w by root
Ju

w' by means of a tree graft, where node w' is the stump saved to permit

the pruning of node w. [If w' is one of the nodes in N.,?k(m-1) n {i+2 f
j k 1+<i

that was pruned in any nest N . (m), then node w'-2 is used as the stump
k 1

and root w'-2 replaces root w at node z.] If node w [or w'] has no roots,

prune roots R at node z; otherwise prune all roots in C [or C .1 but r w r w l wIJ

w [or w'] . When all remaining roots in R are considered, I is increased
Ju

by one and this process is repeated through l = n.

Step 6

(a) The base is fed by remaining nodes in F except nodes in

N.J" (m-1) n {i"[of each nest N.J(m) where nodes NJ. ^(rn-l) fl { i+2. }

were pruned. At this point it may be possible to further prune the resulting

network by somewhat ad hoc techniques.

(b) If node 0 remains and has a single root w, and if node w

feeds no other remaining node then both nodes w and 0 are pruned and the

remaining inputs at node w replace root 0 at every remaining node where

0 appears. If the base has a single root w and is not fed by a node of a tree

growth, and if node w has a single input, then both node w and the base are

pruned and the input to node w becomes the network output. [This follows

from the fact that a node with a single input merely implements the logical

complementation of that input.] If a branch now appears at the base, this

branch is pruned at every other remaining node. [This follows from

Property lb.]

28

(c) If node 0 remains and is fed by nodes with a common input,

then that input feeds the base and is pruned elsewhere in the network. [This

is easily verified by showing network equivalence for both logical values

(v and v) of the common input] .

(d) Branches at nodes on level three can sometimes be pruned

by Property la utilizing existing complemented variables (or other third-level

nodes) where required at nodes on level two; rarely, even a node on level

three can be pruned in this fashion. Also, occasionally the network can be

simplified by merely creating complemented variables to replace multi-

branch nodes on level three.

29

VI. SPECIFIC RESULTS

Let F be represented as a binary number

« = a2n_r--ai---aO; ai = {J if i
 € f <19>

but written in octal notation for convenience, e.g., for n= 3, F= | 1,2, 4, 7}

is represented as a = 10010110 but is written as (o/)„ = 226. This example

function illustrates the special case of Step 2b of the synthesis procedure where
7 —

the node s does not exist for the nest Nn(3) and 0 f F. The resulting network

realizing 226 is shown in Fig. A-1 as f(3). The complementary function 151

is synthesized as f(3) in Fig. A-l. Both networks are obtained using

Theorem 5 in Steps 2 and 4 of V and are the cheapest possible realizations,

i.e. , from (18), $226 = (7, 20, 4) and $151 = (7, 16, 5) are minimal in ^ , p

and \ .

There are sixty-eight nondegenerate functional equivalence classes of

three variables (n = 3), where two functions are defined to be equivalent if

one becomes identical to the other with any permutation of the true variables.

Hellerman[3] lists all possible minimal circuits for n = 3 with -n minimized

first and p minimized subject to 77 being minimum. The synthesis procedure

yields the minimum value of 71 in sixty-three cases; only one more node in

excess of the minimum is required in each of the other five cases. In fifty-

five of the sixty-eight cases, the synthesis procedure results in a network

identical to one of Hellerman's circuits. [He lists more than one minimal

circuit for some of the classes.] A cost comparison of the other thirteen

cases are listed in Table 1.

Except for the two functions 226 and 151, all three-variable solutions

of the synthesis procedure are of three levels or less (\ s 3). The first

seven entries of Table 1 show tree solutions requiring the same number of

nodes but one more input and one less level than Hellerman's circuit; the

eighth entry requires two more inputs. The last five entries correspond to

tree solutions that require one more node than the minimum. For the last

30

Table 1. Cost Comparison of Synthesis Procedure
Solutions and Hellerman's Circuits

2 12

13

33

274

275

255

153

75

232

251

351

55

236

Tree Solution

(4,7,3)
(5,8,3)
(5,9,3)
(5, 11,3)
(6, 12,3)
(6,11,3)
(7, 15,3)
(6,12,3)
(6, 13,3)
(7, 13,3)
(8, 16,3)
(7, 13,3)
(7, 17,3)

Hellerman's Circuit

(4,6,4)
(5,7,4)
(5,8,4)
(5, 10,4)
(6, 11,4)
(6, 10,4)
(7, 14,4)
(6,10,4)
(5,11,4)
(6, 12,4)
(7,15,4)
(6, 11,4)
(6,15,4)

Table 2. Randomly Chosen 4-Variable Examples

F(octal)

161472

151432

45565

134160

136644

36402

121153

141732

36607

131457

153651

10506

77624

175044

17110

175665

104535

22536

$= (77' P- \)

(7,20,4)

(8,21,3)
(9,23,3)

(5, 12,3)
(7, 18,3)
(9,23,3)
(10,25,3)
(8,20,3)
(9,23,3)

(8,19,3)
(11,29,3)
(8,20,3)
(8,23,3)
(8, 18,3)
(8,27,3)
(8,18,3)
(8,19,3)
(9,29,4)

Comment

Ng4(2), k=2, s=4

2; 10,5
1; 12,10; 7(Xl,x0)

-; 10,3
1; 6
4,2; 9,6
8,4,2; 10; 7
-; 12,10, 5
4; 9,3;14(Xl)

4; 10,6
4,2, 1; 13, 11
4; 10,9,3
1; 6;-;15
8, 1; 6
-;5;14
1;10,6
1;12,10,5
N13(2), k=2, s=4

8

31

two entries, Hellerman's circuit results if Step 2 is applied before Step 1 in

the synthesis procedure.

The tree solutions are all minimal for n ^ 2 . For ni4, there are no

known tabulations of minimal NAND(NOR) circuits with complemented

variables unavailable. With no standard of comparison, it is impossible to

be precise in evaluating the quality of any synthesis procedure with respect

to the relative cost of the resulting solutions. However, reasonable guidelines

such as the following one offered by the author can be achieved with experience

in the logical design of NAND(NOR) networks.

Conjecture. Given an arbitrary Boolean function f(n) with n ^ 3 and

complemented variables unavailable, there exists a network of no more than

3n-2 NAND(NOR) blocks that realizes f(n).

For the 4-variable examples discussed next, this conjecture suggests an

upper bound of « s 10 for the minimal realization.

In Table 2 are listed the costs of the tree solutions for some 4-variable

functions. Each bit in a of (19) for every F was selected using a source

of random digits [8] in an appropriate manner. Theorem 5 was invoked in

Steps 2 and 4 of V in only two cases, viz. , 161472 and 22 536, which yielded

a 4-level solution by permitting the pruning of node 14 and 13 of the two-
14 13 variable nest NR (2) and N„ (2), respectively; x, = x and s = 4 was chosen

in each case. All the third-level nodes in the tree solutions for the other

cases are indicated in the comment column, e.g. , for 45565., node 1 from tree

level 1 (I = 1), nodes 12 and 10 from £ = 2 and node 7 from £ = 3 are present

with no remaining roots; 7(x,x„) means that branch x? was pruned at node 7.

Note that the cheaper solutions, such as that for 134160 with 77 = 5 and no

third-level nodes from 4=1, tend to utilize fewer nodes with a single branch,

i.e. , fewer complemented variables each requiring a single-input node. The

synthesis procedure is now followed in detail for two interesting examples in

Table 2.

32

Example 1 (F: 153651) Step 1: Node 15 is pruned and either node 14
15

or node 7 becomes a stump because a knot K. (m) for m s 2 does not exist.

Since both nodes 14 and 7 are in F and feed nodes in F on the next lower tree

level, this decision is postponed temporarily. Nodes 13 and 11 are both in F

and neither feeds a node in F on the next lower tree level; consequently, both

nodes are saved. Similarly, nodes 5 and 3 in F must be saved; since node 7

feeds nodes 5 and 3, the decision is now made to prune node 7 and designate

node 14 as a stump. Nodes 12, 10 and 9 in F each feed a single node in F

on the next lower tree level, so all three nodes are pruned and node 8 in F

becomes a stump. Node 6 in F feeds nodes 4 and 2 in F which must be saved,

so node 6 is pruned. Finally, node 1 in F and node 0 in F must be saved.

5 3
Step 2: There are two nests N (2) and Nn(2) of at least two-variables

among the saved nodes, but a saved node s does not exist. Since m ~ 2, this

step is complete.

Step 3: This step is by-passed since node 0 is in F.

Step 4: This step is by-passed since nodes were not pruned in Step 2.

Step 5: Prune all roots at nodes 13, 11, 4, 2 and 1 in F; since S. - 0

for each of these nodes, the cover C. = T., from (15). Root 15 in F is
11

pruned at node 14 in F; C,. = {14, 15 [. Root 7 in F is pruned at node 5 in

F; root 13 in F must feed node 5 but by Corollary 2 root 15 is pruned at

node 5; Cj. = |5, 7 |. Similarly, roots 7 and 15 are pruned at node 3 and

C, = {3, 7 |. Roots 9, 10 and 12 in F are pruned at node 8 in F; roots 11 and

13 in F must feed node 8 but root 15 is pruned by Corollary 2; root 14 in F

is pruned and CR = -{8,9, 10, 12, 14}. Finally, roots 1, 2 and 4 in F must

feed node 0 in F but all other roots in R„ but root 8 are pruned by Corollary 2;

root 8 in F is pruned and CQ = JO, 8 }.

Step 6: The base is fed by nodes 0, 8, 3, 5 and 14 in F. From (17),

O = 0, O = {0,8,3,5, 14} and

yC = {0,8,9,10,12,14,3,7,5,15} = F,
O

33

so the function is realized. Neither node 0 nor the base has a single root and

the nodes feeding node 0 have no common input. Third-level roots 13 and 11

are required at node 8, so no branches can be pruned. Thus, no further

pruning is possible in this step; $= (11,29,3).

The tree solution of Example 1 for NAND blocks is shown in Fig. 3a.

Since 77 = 11 exceeds the conjectured upper bound of 10 blocks for 4-variable

functions, one hopes that a cheaper but functionally equivalent tree realization

exists if a different initial n-tree condition is assumed. Indeed, in this

example, if F is realized with the n-tree and a node with no other inputs is

fed by the base, the total cost is $ = (10, 29, 4), i. e. , one less node is needed

at the expense of an additional logic level. For this F synthesis the procedure

is similar to that for F except that node 14 is pruned in Step 6 as a result of

replacing root 14 at node 13 and node 11 by root 3 and 5, respectively, by

means of a tree graft. An even cheaper realization is possible here if the

same Boolean function is implemented with NOR blocks by synthesizing G

with the n-tree, where G is defined by (6) given the F of (la), i.e. ,

G: 65024 in octal notation. For this G synthesis several tree grafts are

performed in Step 5, and in Step 6 when root 1 replaces root 7 at node 14

and root 6 replaces root 7 at node 9 by means of tree grafts, again, it happens

that node 7 can be pruned. This time the total cost is only $ = (8,23,3), a

reduction of three nodes and six inputs from the first realization! This NOR

block solution is shown in Fig. 3b.

Example 2 (F: 22536) Step 1: Node 15 is pruned and either node 14,

node 11 or node 7 becomes a stump. Choosing stump 7 arbitrarily, nodes 14

and 11 are pruned with nodes 12 and 9 becoming stumps. Node 13 in F must

be saved since it feeds no node in F on the next lower tree level; similarly,

node 5 in F must be saved. Nodes 10, 6 and 3 in F are pruned since nodes

8, 4, 2 and 1 in F must be saved. Finally, node 0 in F is saved.

13
Step 2: The largest nest among the saved nodes is NQ (3). Because a

— 13
saved node s does not exist and since m = 3 and 0 ^ F, N~ (3) is reduced

34

18-6-10068

(a) NAND BLOCKS

Fig. 3. Tree solution of example 1.

35

(b) NOR BLOCKS

Fig. 3. Continued.

36

to three two-variable nests N13(2), N*3(2) and Nj3(2),and Ng3(2) with

x, = x and s = 4 is selected arbitrarily. Node 13 is pruned.

Step 3: Node 0 in F is pruned.

Step 4: All roots are pruned at node 9; CQ= {9,11,13,15}. Root 13
13 13

in N„ (2) is pruned at node 8. At node 12 root 13 in N. (1) is pruned and
° Q *-2 »-w

root 9 in Ng(l) is added; CJ2 = {l2, 14}. Roots 14 and 15 in Ng (2) are

pruned at node 12. At node 8 in F root 10 in F is pruned. Roots 6 and 13 in

F are pruned at node s = 4 in F. The set Or,- = E, _ = 0 . For root 9 at

node 8, roots 11 and 15 are pruned at node 8 since C— = 11 and node 11 was

pruned and because Clc.= Jl5| c C-. For root 12 at node 8, root 14 is

pruned at node 8 since C-ry = 14 and node 14 was pruned. All roots RR have

now been considered; only roots 9 and 12 at node 8 remain; CQ = \8, 10 }.
k

Similarly, for root i+2 = 12 at node 4, root 14 is pruned at node 4. Root 5

in F must feed node 4. Since ({13} (j E.^>) p Re 4 0 and 13 f N. (1), node 9

feeds node 5. Roots Rj. = {7, 13, 15} are pruned at node 5. Root 7 = C-^- f

Cj. = {5,7} cannot be pruned at node 4, since node 7 is saved and C_ = {7,15}

is not properly included in C-, but root 15 is pruned at node 4 by Corollary

2; C4 = {4,6, 13}.

Step 5: Prune root 15 at node 7 in F. Roots 3, 6 and 10 in F are

pruned at node 2 in F; root 7 must feed node 2 but root 15 is pruned by

Corollary 2; root 11 and root 14 are replaced by root 9 and 12, respectively,

by means of a tree graft at node 2; C = {2,3,6,lo}. At node 1 in F, roots

3 and 13 in F are pruned; roots 5 and 9 must feed node 1; root 7 f C- is

pruned at node 1 because of root 5,and roots 11 and 15 are pruned by Corollary 2

because of root 9; C , = {1, 3 }.

Step 6: The base is fed by nodes

O. = {1,2,4,8} c F = yC = {1,3,2,6,10,4,13,8}; O = $.
t O g

No further pruning is possible in this step; $ = (9,29, 4). The tree solution

is shown in Fig. 4.

37

18-6-10070

12

Fig. 4. Tree solution of example 2.

BASE

38

VII. SUMMARY

A synthesis procedure utilizing a few basic theorems for directly-

pruning a canonic but redundant NAND(NOR) tree network is presented. The

utility of regular subtree configurations (knots and nests) for simplying

networks is exhibited. Given a Boolean function F, the logic designer has

the option of selecting the minimum network resulting from the tree solutions

of F, the complementing function F and the dual functions G and G [with

the proper attention to whether NAND or NOR blocks are used and if the

output is complemented] .

To avoid a significant bias in the choice of example functions, a table

of random digits is employed. From the examples it appears that most tree

solutions are of three logic levels or less. Three-level networks are obtained

faster since major portions of the algorithm are by-passed, but in a broad

sense irredundant solutions of more than three levels tend to require fewer

logic blocks.

Fan-in and fan-out requirements apparently do not greatly exceed the

number of variables. It is conjectured that no more than 3n-2 blocks are

needed to realize any n-variable function, for n s 3.

39

REFERENCES

1. G. A. Maley and J. Earle, The Logical Design of Transistor Digital
Computers, Prentice-Hall Inc., Englewood Cliffs, N. J. (1963).

2. E. J. McCluskey, "Logical Design Theory of NOR Gate Networks With
No Complemented Inputs, " 1963 Proc, 4th Ann. Symp. on Switching
Circuit Theory and Logical Design, 137-148, (1963).

3. L. Hellerman, "A Catalog of Three-Variable OR-INVERT and AND-
INVERT Logical Circuits, " IEEE Trans. Electronic Computers,
EC-12, 198-223, (June 1963).

4. J. F. Gimpel, "The Minimization of TANT Networks, " IEEE Trans.
Electronic Computers, EC-16, 18-38, (February 1967).

5. D. L. Dietmeyer and Y-H. Su, "Logic Design Automation of Fan-In
Limited NAND Networks, " IEEE Trans. Electronic Computers,
C-18, 11-22, (January 1969).

6. S. V. Novikov, "Analysis of Algorithms for the Synthesis of Logic
Networks from OR-NOT Elements, " Automation and Computing
Technology (Avtomatika i Vychislitel *naya Tekhnika), 18-24,
(February 1969).

7. C. R. Baugh, T. Ibaraki, T. K. Liu and S. Muroga, "Optimum Network
Design Using NOR and NOR-AND Gates by Integer Programming, "
IEEE Computer Group Repository, R-69-61, (10 January 1969).

8. A Million Random Digits with 100,000 Normal Deviates, The RAND
Corporation, Free Press, Glencoe, 111. (1955).

40

APPENDIX A

Linear networks of two and three variables are defined as shown in

Fig. A-l. If the nodes are all NAND(NOR) blocks, then f(2) = x ff>x,(x ©x,)

and f(3) = x ©x.©x where © is logical addition modulo two. These

networks are the cheapest possible realizations of the given functions.

Since the complement of the function realized by any NAND(NOR) network

can be obtained when the output block feeds another NAND(NOR) block, as

indicated in Fig. A-2 any m-variable linear network can be constructed using

the networks of Fig. A-l. For example, referring to Fig. A-2a,

f(4) = x ©x.©x ©x,. (x^x^x ©x~) is realized with ten nodes by feeding the

output of the f(3) network in Fig. A-l into another node to obtain f(3), thereby

permitting the elimination of the two nodes indicated by dashed lines. The

inputs to the node whose output is f(3) in Fig. A-2a can just as well feed

everywhere the output f(3) feeds. Using the same principle, f(4) is realized

with ten nodes in Fig. A-2b with f, = f(2) and f? = f'(2) and using the f(2)

network of Fig. A-l, where the prime merely emphasizes that f'(2) involves

variables disjoint from those of f(2).

In general for m > 4, f(m) is realized as shown in Fig. A-2b with

f. = i(-rr-) and f = f '(~r) using networks that realize i{~y) and f'(-^-) for m

even and with f. = f(—r—) and f? = f '(—z—) using networks that realize f(—)

.,,m-l.
and f'(—-—) for m odd; f(m) is obtained simply by complementing f, and

using the corresponding complementary network. It is easily verified that

these linear networks require only 3m-2 nodes and are not unique (except

possibly f(4)).

41

18-6-10071

f(2)

V

x2

*° 1 I ' ' '
"1—I I I—I

X,

*2 1 I

x .

f(3)

—n i——i

*' 1 1 | , . X2 1 1

X1 X2"

f(3)

Fig. A-l. Linear two and three-variable networks.

42

-r~ ~i to) r" ~i fo)

i_ i i i

18-6-1CC72

f(4)

(a) REALIZATION OF f(4)

f,

*
1

i

t <!

f2

f(m): f(m)

(b) GENERAL CONFIGURATION

Fig. A-2. Construction of m-variable linear networks.

43

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification oi titlm, body ol abatract and Indexing annotation muat ba antarad whan the overall report Im claaalfled)

1. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M.I.T.

to. REPORT SECURITY CLASSIFICATION

Unclassified

2b. GROUP

None
3. REPORT TITLE

Efficient Realization of Boolean Functions by Pruning NAND(NOR) Trees

4. DESCRIPTIVE NOTES (Type ol report and Inclusive dates)

Technical Note

3. AUTHOR(S) (Laat name, Ural name, Initial)

White, Brian E.

REPORT DATE

2 September 1969

TOTAL NO. OF PAGES

48

7b. NO. OF REFS

8a. CONTRACT OR GRANT NO.

AF 19(628)-5167
b. PROJECT NO.

1508A

9«. ORIGINATOR'S REPORT NUMBER(S)

Technical Note 1969-48

9b. OTHER REPORT NOISI (Any other number a that may be

aaalgned thta report)

ESD-TR-69-244

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Department of the Navy

13. ABSTRACT

A combinatorial tree structure composed entirely of NAND(NOR) blocks is pruned in a
non-exhaustive fashion to yield minimal or near-minimal networks. It is assumed that com-
plemented variables are not available and that there are no fan-in or fan-out limitations.
The cost of a network is taken as being primarily determined by the number of logic blocks
with the number of inputs and logic levels as secondary factors. The pruning algorithm
lends itself to both hand methods and machine computation, although the synthesis pro-
cedure has not been programmed.

Of the 68 nondegenerate functional equivalence classes of 3 variables, the minimum
number of blocks results in 63 cases; only one more block in excess of the minimum is
required in each of the other 5 cases. For 18 randomly selected Boolean functions of 4
variables, the tree solutions yield an average of 8.2 blocks per function with the following
distribution:

number of logic blocks
number of tree solutions

5 6 7 8 9 10 11
10 2 9 4 1 1

It is shown that the linear function f(n) = XQ @ ... ® xn of n variables or its complement
can be realized with 3n - 2 NAND(NOR) blocks, for n >, 3.

14. KEY WORDS

Boolean functions
tree structure

NAND(NOR) logic
network theory

algorithms
digital computers

44 UNCLASSIFIED

Security Classification

