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Abstract 

An important task in computer vision is the recognition of
partially visible two-dimensional objects in a gray scale
image. Recent works addressing this problem have attempted
to match spatially local features from the image to features
generated by models of the objects. However, many algo-
rithms are considerably less efficient than they might be, typ-
ically being O(IN) or worse, where I is the number offeatures
in the image and N is the number of features in the model
set. This is invariably due to the feature-matching portion of
the algorithm. In this paper we discuss an algorithm that
significantly improves the efficiency offeature matching. In
addition, we show experimentally that our recognition algo-
rithm is accurate and robust. Our algorithm uses the local
shape of contour segments near critical points, represented in
slope angle-arclength space (&thetas;-s space), as fundamental fea-
ture vectors. These feature vectors are further processed by
projecting them onto a subspace in &thetas;-s space that is obtained

by applying the Karhunen-Lo&egrave;ve expansion to all such fea-
tures in the set of models, yielding the final feature vectors.
This allows the data needed to store the features to be re-
duced, while retaining nearly all information important for
recognition. The heart of the algorithm is a technique for
performing matching between the observed image features
and the precomputed model features, which reduces the
runtime complexity from O(IN) to O(I log I + I log N), where
I and N are as above. The matching is performed using a
tree data structure, called a kD tree, which enables multidi-
mensional searches to be performed in O(log) time.

1. Introduction

A problem that has received considerable attention in
the computer vision literature is that of recognizing
two-dimensional (2D) partially visible objects in a gray
scale image. In addition to being an important prob-
lem whose solution has many practical applications, it
is an important step toward the solution of the more
difficult problem of recognizing three-dimensional
(3D) partially visible objects in an image. The problem
of recognizing partially visible objects is sometimes
called the bin of parts problem because, in industry,
parts are often presented for batch assembly piled in a
bin. The general bin of parts problem (with no con-
straints on the objects that may appear in scenes except
that they be rigid) has been described as the most diffi-
cult problem in automatic assembly (Mattill 1976). In
this paper, we present a solution to the bin of parts
problem where the objects are 2D or have a small
number of distinct viewpoints that may each be treated
as 2D objects.

There are three very general goals that should be
common to all object recognition systems: accuracy,
robustness, and efficiency. Accuracy is the ability of a
recognition system to correctly segment an image into
instances of the objects of interest, with as few false
instances reported as possible. In addition, accuracy
includes the reporting of the position and orientation
of the objects of interest (henceforth referred to as the
pose of the objects) with as little error as possible.
Robustness is the ability of the recognition system to
tolerate variations in the conditions in which it oper-
ates. Common degradations from the ideal include
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image noise, sampled images, and lighting variations.
We have attempted to provide enough experimental
evidence to suggest that our algorithm is accurate as
well as robust. In Section 5 we discuss the results of

running our algorithm on a total of 20 images that
were composed of two very different sets of parts. The
recognition algorithm exhibited high accuracy on ob-
jects having more than about half of their boundaries
exposed and gradually degraded as objects became
more completely hidden.
A recognition system can be both robust and accu-

rate, yet still not be practical. To make a system prac-
tical, it must also be suitably efficient. The efficiency
of an object recognition algorithm can be gauged in
terms of an order analysis or in terms of a set of time
benchmarks. Employing both is preferable; the first to
ascertain performance as the set of objects to be recog-
nized is increased, and the second as a means of com-
parison with other techniques. We have adopted the
view that low-level image operations such as edge
detection, thresholding, filtering, etc., should not be
included in the efficiency figures since the efficiency of
these operations is highly variable, depending largely
on what hardware is available. Additionally, the e~-
ciency of off-line computations such as setting up a
database of models or training is much less important
than the efficiency of the on-line algorithm and so
should be given separately.

This paper presents a 2D partially visible object
recognition algorithm that is a development of ideas
first outlined in Gottschalk, Tumey, and Mudge
( 1987). In addition, we will attempt to characterize the
accuracy, robustness, and efliciency of our approach
to a greater extent than earlier work.

2. Related Previous Work

An object recognition algorithm may be classified
according to two general attributes: the features that it
uses and the matching strategy that it employs. We
will not attempt to classify all the algorithms known to
us; rather, we will examine those algorithms that are
most closely related to our own. For a thorough review
of much of the work relating to 2D object recognition,

the reader is referred to Chin and Dyer (1986), Tumey
(1986) and Knoll and Jain (1986). Other important
references that, while not closely related to our work,
also address the topic of 2D object recognition include
Fu (1974); Pavlidis (1977); Blum and Nagel (1978);
Tropf ( 1980); Ballard ( 1981 ); Segen (1983); Ballard
and Sabbah (1983); Bhanu and Faugeraus (1984);
Cowan, Chelberg, and Lim (1984); Koch and Kashyap
(1985); Ayache and Faugeraus (1986); and Dubois and
Glanz(1986).
As will be discussed more later, our algorithm em-

ploys data-compressed vectors of samples from the
slope-angle versus arclength (9-s) representation of the
edge contours of objects that are near to high-
curvature points of the contour (critical points). Other
workers who have used the 8-s representation of edges
are Perkins (1978); Yam, Martin, and Aggarwal
(1980); McKee and Aggarwal (1977); Tumey (1986);
and Tsui and Chan (1987). Freeman (1977) has used
critical points as features (critical points are discussed
in detail later).

It is often true that algorithms that use informative
features (in the sense that a given model feature
matches few other model features) will be able to per-
form matching more quickly than those that do not.
There are two reasons for this: first, there will be fewer
highly informative features than less informative fea-
tures, and second, informative features usually provide
a large vector of attributes that can be used to quickly
reject those ( image-feature H model-feature) pairings
leading to a faulty hypothesis. These two properties
usually allow such systems to reduce computation. A
disadvantage of such systems is that, due to the scarcity
of informative features, if the system is designed to
handle overlapping or partially visible objects, then the
degree of occlusion that can be tolerated by the system
is reduced. Bolles and Cain (1984) have used highly
informative features to advantage. In their method, the
features are comprised of a focus feature and a number
of satellite features. The resulting composite features
are very informative and rare, allowing Bolles and
Caine to use an NP-complete matching procedure.
Tumey (1986) has also used highly informative fea-
tures. His recognition procedure, however, remains ro-
bust to large degrees of occlusion in the images, since
it falls back on less informative features if the most

informative ones are not present. Recently, Chien and
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Aggarwal ( 1987) detailed a method for recognizing 3D
objects with features comprised of configurations of
four high-curvature points from the silhouette bound-
ary of the object. The informativeness of high curva-
ture points is a likely contributor to its success. Lowe
(1987) uses informative configurations of straight line
segments, which he calls perceptual groupings, as fea-
tures in the initial stage of matching in his algorithm.
While success of a recognition algorithm depends

on the choice of good features, the design of the
matching algorithm is even more critical. The match-
ing process has been formulated as a subgraph match-
ing problem (Bolles and Cain 1984; Cowan, Chelberg,
and Lim 1984), as a tree search (Grimson and Lozano-
Perez 1987; Ayache and Faugeraus 1986; Goad 1983;
Tropf 1980), as a Hough Transform (Turney 1986;
Tumey, Mudge, and Volz 1985; Knoll and Jain 1986;
Schwartz and Sharir 1986), and as a parsing problem
(Fu 1974). Our matching strategy does not fit neatly
into any one of these categories, as it has elements of
both tree searching and correlation over edge contours.
One of the major concerns in the design of our

matching recognition algorithm, aside from the com-
monly considered ones of accuracy and robustness, is
efficiency. Goad (1983) discusses an object recognition
algorithm for 3D objects in which he attempts to
speed up recognition of objects by pre-compiling a
portion of the search tree and predetermining a best
search path for a given object. We designed our
matching algorithm in the same spirit as Goad by
taking advantage of the freedom to perform off-line
precomputation to optimize our algorithm’s recogni-
tion efficiency.
Another method that is similar to ours is that of

Schwartz and Sharir (1986). Like us, they have at-
tempted to construct an efficient data structure for
performing matching. The technique is called geomet-
ric hashing. In it they &dquo;hash&dquo; 5D feature vectors that
have been obtained from the object models. Roughly
speaking, their features are obtained by projecting
constant-length windowed sections of a 0-s representa-
tion of the model boundaries onto the first four Fou-
rier basis elements. The final feature vector is obtained

by catenating to these four elements a fifth element
representing the total angular change from one end of
the window to the other. The &dquo;hashing&dquo; is accom-
plished by covering the entire 5D feature space with

uniform hypercubes and using a hash function that
maps a feature vector in a hypercube to that hyper-
cube’s bucket in the hash table. The term &dquo;hashing&dquo; is
somewhat misleading in that it implies that the re-
trieval time is constant in the number of model fea-
tures that are stored in the table. In fact, however,
only the entire set of model features stored in a hyper-
cube can be accessed in constant time, so, strictly
speaking, the access time is linear in the average num-
ber of features in a hypercube. Therefore, when there
are a large number of model objects, the size of the
hypercubes must be reduced in order to maintain the
fast access time. Unfortunately, shrinking the hyper-
cubes has two undesirable effects: it increases the
amount of storage necessary for the table, and, more
seriously, it makes it less likely that a noisy image
feature will &dquo;hash&dquo; into the hypercube with the correct
model feature. Schwartz and Sharir attempt to get
around this problem by examining the 32 neighboring
hypercubes in 5D space of the hypercube that the
image feature maps to. Under less favorable conditions
than those reported, where high contrast parts and
back-lighting were used, it is possible that this may not
be sufficient. The essential problem with using
Schwartz and Sharir’s geometric hash table data struc-
ture is that it is difficult to query for the features in an

arbitrarily sized and positioned hypercube in the 5D
feature space while maintaining favorable access com-
plexity. In our work, we have chosen a data structure
that avoids the problems inherent in geometric hashing
while maintaining logarithmic average access time.
This data structure, called a kD tree, will be discussed
in detail later. Geometric hashing is, nevertheless, an
important step in the right direction, one that has
lately been employed in work to recognize 3D objects
(Lamdan, Schwartz, and Wolfson 1988).

3. Considerations for the Design of a Highly
Efficient 2D Object Recognition Algorithm

Conceptually, the simplest strategy for recognizing 2D
objects in an image is to attempt to match the model
of each possible object at every position and orienta-
tion in the image. In two dimensions, this approach is
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Fig. 1. Steps in the recogni-
tion algorithm.

computationally feasible, though very slow. In order
to speed up the recognition procedure, most object
recognition techniques use features of the objects.
Typically the recognition procedure attempts to match
the features from the models of the objects to features
in the image. A feature is a processed version of the
image data that has the desirable property of greatly
reducing the data needed to represent the image ade-
quately. At the same time, extracting a feature should
sacrifice as little as possible of the information in the
image necessary for recognition. Clearly, for feature-
based recognition to be worthwhile, the time taken to
extract the features from the image should be more
than made up for by the reduced time needed to per-
form recognition using the features. Generally, the
extraction of features is a relatively low-level operation
and can often be done very quickly using special hard-
ware. In the case where the recognition of partially
visible objects is required, it is necessary that spatially
local, or combinations of spatially local, features be
used. Global features are too prone to distortion if an
object in the scene is occluded by another.
Figure 1 shows the general strategy employed by our

algorithm, as well as many other recognition methods.
Examining the on-line half of Figure 1, we see that the
input image is processed to extract higher level repre-
sentations such as boundary segments, regions, or (as
in our case) edge contours. These representations may
then be further processed to detect the features. The
features may be represented by an ordered set of num-
bers, often called a feature vector. The image feature
vectors are then compared to all of the model feature
vectors. Those model feature vectors that are close

enough to an image feature vector, according to some
metric, are hypothesized to exist in the image at the
position and orientation given by the image feature
vector. ‘ These initial hypotheses must then be verified
or rejected. The hypotheses that pass the final verifica-
tion phase are those that are most likely to hypothe-
size the correct object appearing at the correct pose in
the image.
The off-line preprocessing branch of Fig. 1 starts

with a model generation phase. Models are typically
generated by processing a set of training images or by
a CAD system (Tumey, Mudge, and Volz 1985). Fea-
tures are then extracted from the models in the same

way as in the feature detection phase in the recognition
branch of the figure. As a final key step in off-line
processing, the model features are organized into a
data structure that is accessed during the feature-
matching phase of the recognition procedure.
The relationship between the off-line step of model

feature organization and the on-line step of feature
matching deserves closer scrutiny. A very powerful
means of speeding up the feature-matching stage is
available through the creation of an appropriate data
structure for the model features. This data structure
should be designed to allow the fastest possible re-
trieval of the matching model features. Some algo-

1. Formally, a hypothesis is an ordered pair (M, J) where M is a
model that is hypothesized to appear in the image, and J is a trans-
formation that is applied to the model in order to place it at the
hypothesized pose. In order to facilitate the discussion, we will
sometimes speak of a hypothesis to be the model M after applying J
to it.
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rithms have taken a step in this direction. For example,
Tumey, Mudge, and Volz (1986) sort the set of model
features by their saliency (saliency formalizes the no-
tion of informativeness of 2D features). However, the
matching process is still a linear search. Knoll and
Jain (1986) choose a set of features from the model so
as to reduce overall recognition time. However, the
improvement that this strategy can yield is limited
since, again, the matching process is a linear search.

It is possible to organize the set of model features so
that the feature matching is much more efficient than
a linear search. To this end, it is useful to view the
operation of retrieving those model feature vectors that
match a feature vector from the image as an operation
on an abstract data type: given a K-dimensional vec-
tor, v, return a list of all K-dimensional vectors from a
set of vectors that lie within a K-dimensional neigh-
borhood (as defined by some distance metric) of v. A
number of data structures have been proposed in the
database literature that allow this retrieval to be done
in average case O(log N) time, where N is the cardi-
nality of the set of vectors to be searched (Bentley and
Friedman 1979). This is in contrast with the O(N)
time of a linear search. Figure 2 illustrates this view of
the matching process. In Sec. 4, we discuss how one of
these data structures, a kD tree, can be used to do very
fast feature matching.

Further consideration of Fig. 1 yields some interest-
ing insights into the object recognition process. One
such insight concerns the selection of features. A de-
gree of freedom that exists in the design of an object
recognition algorithm is the choice of features. They
should be chosen to be as informative as possible
within the constraint that a certain degree of possible
partial occlusion be allowed. As features become more
informative, fewer of them will be found. If there are
too few features, the chance of them being obscured
increases and performance suffers. For example, the
local feature focus technique of Bolles and Cain (1984)
falls prey to this difficulty; the features are highly in-
formative, but there are often very few of them, and so
we would not expect this technique to perform well
when high degrees of occlusion occur. Indeed, this
expectation is borne out by experiments in Tumey
( 1986).
Another observation that can be made from Fig. 1

is that the efficiency of the recognition process, as we

Fig. 2. A hypothetical 2D
feature space. The solid dots
represent model features,
while the X represents the

image feature located at the
point (a, b) in the feature
space. The hollow dot repre-

sents the model feature that
correctly matches the image
feature. The large, medium,
and small circles depict
Euclidean neighborhoods of
the image feature with radii
6,, ~z, and 6, respectively.

have defined it, is the sum of the execution times of
the last three stages: (1) feature detection in the image;
(2) feature matching or hypothesis generation; and
(3) hypothesis verification. There appears to be a fun-
damental trade-off between these three stages. How-

ever, to our knowledge, only Knoll and Jain (1986)
have examined this trade-off to any extent. They as-
sumed a two-stage model of the recognition process, in
which the feature detection stage and the feature

matching stage in Fig. 1 are treated as a single stage.
Further, the features they used were assumed to be
selected from the set of all boundary segments sampled
at uniform intervals of arclength in the models. Under
these conditions, they showed how to choose the fea-
tures from the set of all of the boundary segments so as
to reduce the total recognition time.

4. Two-Dimensional Object Recognition
Algorithm

In this section, we discuss our approach to 2D object
recognition. The heart of the algorithm, the feature
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matching technique, will be discussed first. The choice
of features is an important consideration in the design
of any object recognition algorithm. If done correctly,
a synergy can be developed between the feature
matching algorithm and the features that will signifi-
cantly enhance the efficiency of the matching algo-
rithm. A discussion of the features we use and their

impact on the matching strategy follows the discussion
of matching. Next we describe our hypothesis verifica-
tion method. To conclude this section, we explain the
way in which the overall algorithm combines the three
central modules and derive the complexity of the algo-
rithm.

4.1. Feature Matching

In our algorithm, as in a number of others, features of
models of those objects that we desire to find in an
image are stored in a database. As will be discussed in
the next section, each feature employed by our algo-
rithm encodes the shape of an object in the locality of
a critical point or point of high curvature. The features
in our system are represented by vectors that may be
of any dimension, but in our experiments were five-
dimensional. Our matching technique is very general
and is completely independent of how the features are
computed. The goal of the matching module is to
retrieve, as quickly as possible, all features in the model-
feature database that are close, in some sense, to a
given image feature. Closeness is defined in terms of a
metric over the feature space. Each feature in the set
of model features that is returned as the result of such
a query forms a conjecture, or hypothesis, as to which
object in what pose resulted in a given feature in the
image.
We emphasize the importance of an efficient match-

ing algorithm: in our experimental system, there were
only a few hundred features in the model-feature data-
base. However, it is not difficult to imagine a practical
system in which many thousands of features must be
stored. Because the matching process must typically be
performed on a significant fraction of the features in
the image, efficiency becomes critical to the practical-
ity of an algorithm. It is not uncommon to find recog-

nition algorithms that perform a linear search through
the database of model features to find the set of ac-

ceptable matches. Clearly this limits the practicality of
such algorithms. Below we describe an OClog N)
method for the search procedure.
To be more precise, the matching algorithm per-

forms the following function: given a set of K-
dimensional vectors, retrieve all those vectors in the
set that fall within a K-dimensional 6 neighborhood of
another vector. We will henceforth call this operation
a neighborhood search. As we mentioned, Fig. 2 illus-
trates this formulation of the matching problem. The
definition of neighborhood includes the choice of a
distance metric. One general class of metrics is defined
by

where K is the dimensionality of the vectors a and b,
c~~ and b; are the components of a and b respectively,
and n is the order of the metric. A special case of ( 1 ),
the Dm metric, or Chebeychev metric, is obtained as
n -+ 00 and can also be written as

A 6 neighborhood of a vector s with respect to Dn,
denoted N(6, s, n), is defined as the set of all vectors r
such that D~(r, s) < 6. Furthermore, for later use, we
note the fact that D~(a, b) - Dia, b), V a, b G 8 K
implies that N(6, s, (0) contains 1V(~, s, n) for all finite n.
A neighborhood search using the Chebeychev metric

can be reduced to a special case of a problem in data-
base theory, namely that of multikey range searching.
The problem of range searching can be stated as fol-
lows : given a set of records with K real valued keys,
retrieve those records where the keys of all of the re-
trieved records fall within a range specified for each
key. We can use range searching to retrieve all vectors
of a set that are contained in N(6, s, (0) by letting each
component of the vectors be a key and choosing the
ranges for each key to be the intervals [si - 6, si + 6],
(i = 1, ... , K), where the s~ are the components of s.
An important parameter in the neighborhood search

is 6, because it controls the number of hypotheses that
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will be generated, on average, for each image feature.
For example, assume that an image feature is a noisy
version of a certain model feature. If 6 is made too

small, the noise will make the probability that the
model feature is within the neighborhood small, and
the algorithm will often fail to find the correct object
(see neighborhood 6j in Fig. 2). On the other hand, if 6
is made excessively large, then the correct hypothesis
will likely be among those retrieved by the neighbor-
hood query (since the large neighborhood implied by a
large 6 will enclose most of the probability density of
the image feature vector in the feature space). Unfor-
tunately, as is evident in Fig. 2, a large neighborhood,
6~ , will likely include many incorrect hypotheses as
well as the correct one. Since all hypotheses must be
verified, and verification is computationally rather
expensive, allowing 6 to be indiscriminately large is
not acceptable. We have chosen to view 6 as a design
parameter. The recognition task will require a certain
level of reliability, and 6 should be made just large
enough that the correct hypothesis will be retrieved
with a high enough probability to satisfy the reliability
requirement. The ideal value, ~2, can only be deter-
mined by experiment; however, our experience indi-
cates that the number of hypotheses is rather insensi-
tive to the size of 6 over a fairly wide range, so long as
it exceeds a minimum size.
There are a number of data structures that may be

used to perform the range searching operation (Bentley
and Friedman 1979). A data structure called a kD tree
was chosen as being the most suited to our purpose: it
has the best average case query time complexity, best
preprocessing time complexity, requires minimum
space, and it is the easiest to implement.2 Figure 3
shows a kD tree for retrieving 3D vectors. A kD tree is
a binary tree with two pieces of additional information
stored at each node, a key identifier and a discrimina-
tion value. In our work, we are concerned with re-
trieving vectors and their associated records; conse-
quently the key identifiers correspond to vector indices
(i.e., the keys are the elements of the vector). The tree
is organized such that at each node all data stored in
the left subtree has the key indicated by the node’s key

Fig. 3. A simple kD tree for
rapid retrieval of 3D vectors.
The enclosed area shows the

sequence of nodes traversed
to retrieve the one vector in
the tree that is in the neigh-
borhood (10.0, 4.0, 2. 0) T +
(:E 0.5, ±0.5, ±0.5)T.

identifier less than the discrimination value, while the
data on the right has the key indicated by the node’s
key identifier greater than the discrimination value
stored at the node. All data in a kD tree are stored in
its leaves. The leaves are lists of less than some prede-
termined length that contain data satisfying the con-
straints of all of the ancestor nodes.

In our application, the kD tree need not support
random insertions and deletions, i.e., all of the data in
the tree is known a priori. Under these conditions, it is
possible to balance the kD tree during its construction
unless the data is highly degenerate.3 This is done by
first computing the variance of each key over all
records. The key with the largest variance is selected as
the root node’s discrimination key (as will be de-
scribed in greater detail later, organizing the tree in
this way makes queries more efficient). Denote this key
as a. The median of a is found and this value becomes
the root node’s discrimination value. The records are
then divided into sets: those where a is less than or

equal to the discrimination value (these records are
stored in the left subtree), and those where a is greater

2. The "kD" in the name of the "kD tree" stands for "k-
dimensional."

3. The degeneracy occurs when two or more of the keys of two
distinct records have the same value.
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than the discrimination value (these records are stored
in the right subtree). The entire procedure is repeated
recursively on each set to create the children of the
root node. The recursion stops when there are less than
a given number, say J (six in our case), records left in
the set. J is chosen such that the cost of a query is
minimized. In the case where there are less than J
records left in the set, a leaf, which is a linked list of
less than J elements, is formed.

Searching a kD tree is a simple recursive procedure.
A range is specified for each key; the task is to retrieve
all records where the value of every key falls into the
corresponding range for that key. At each node that is
not a leaf (starting at the root), the range associated
with the discrimination key of the node is compared
with the discrimination value stored at the node. If the

range interval lies completely above the discrimination
value, the result of a recursive call made on the right
subtree only is returned. Similarly, if the range interval
lies completely below the discrimination value, the
result of a recursive call made on the left subtree only
is returned. If the range interval straddles the discrimi-
nation value, recursive calls on both the left and right
subtrees are made. The results of the calls are concate-
nated and then returned. The recursion stops when a
leaf is encountered, and the list at the leaf is scanned;
any records whose vector of keys do not fall in all of
the range intervals are excluded. A linked list of the

remaining records is returned.
We now return to the construction of the kD tree.

As was mentioned previously, during the construction
of a kD tree, the discrimination key of a node is cho-
sen as the key that has the greatest variance over the
set of remaining records. It was also mentioned that
this was done to make queries more efficient. Having
described how queries work, we may now understand
why this is so. The query algorithm makes two recur-
sive calls if the range associated with the discrimina-
tion key at a given node contains the discrimination
value. If the kD tree can be constructed such that this
case occurs less frequently than the other two cases
(where the range lies completely above or completely
below the discrimination value), then the query will be
more efficient, since only one recursive call will be
made. This is especially important in the nodes near
the root, since avoiding a search of both sides of the
tree near the root yields the greatest savings. This is

why the key with the greatest variance is made the
discriminator of the root of the remainder of the tree.

If we assume that the ranges are distributed like the

data (which they are in our case), it is less likely that a
range will contain the discrimination value if that key
has a large variance.
We have shown that the kD tree can perform neigh-

borhood searches with respect to the DW metric. It is

simple to modify the algorithm to perform neighbor-
hood searches with respect to all of the metrics repre-
sented by (1) with no increase in complexity for either
queries, space, or preprocessing. It was noted pre-
viously that for a given 6, N(6, s, 00) contains N(t5, s, n).
Thus, all that must be done to implement a neighbor-
hood search for finite n is to scan the result of a

N(6, s, 00) search implemented by a K-dimensional
range search using a kD tree and exclude those vectors
that do not fall into N(6, s, n). We can show that the
time complexity of a query remains the same as in the
N(6, s, 00) case as follows. It is shown in Bentley and
Friedman (1979) that the average complexity of a
query is O(log N + F), where N is the size of the set of
vectors to be searched, and F is the size of the set of
vectors that is returned. The complexity of scanning
the returned set and rejecting the vectors that are not
in the neighborhood N(6, s, n) is O(F). Therefore the
complexity of a general neighborhood search remains
0(log N+ F).

In this section we have discussed the problem of
feature matching, and we have shown that the feature
matching problem is isomorphic to the problem of
neighborhood searching. We have also shown how to
implement neighborhood searches, and hence feature
matching, quickly via kD trees. In the following sec-
tion, we discuss our approach to hypothesis verifica-
tion, and, in particular, we show how kD trees may
also be used to some advantage there.

4.2. Selection and Computation of Feature Vectors

I .

Our algorithm recognizes objects entirely by the shape
of contours. A contour consists of edge points that
have been linked together into a single edge segment
and stored in a data structure, typically a linked list.
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Fig. 4. The puzzle piece
contour represented in both
Cartesian space (top) and 0-s
space (middle). At the bot-
tom is shown the a(s) curve.
Marked on all three curves

are the locations of critical
points. Positive extrema of
curvature are marked with
circles, and negative extrema
of curvature are marked with
squares.

Contours are represented in a dual Cartesian and slope
angle-arclength (6-s hereafter) representation. The
ordinate, or B, in the B-s representation is the slope
angle of the tangent at the point of interest on the con-
tour, measured relative to the horizontal. Similarly,
the abscissa, or s, is the arclength measured from some
arbitrary point of reference on the contour to the
point of interest. As an illustration of the 6 s represen-
tation, Figure 4 shows a contour of a jigsaw puzzle
piece represented in Cartesian space and in 8-s space.
We have a number of reasons for choosing to repre-

sent contours in 8-s space. One fundamental consider-
ation is that the 9-s representation simplifies the con-
struction of features that are invariant to image
translation and rotation. Translation invariance is

automatic, since all quantities are measured from a
point of reference on the contour. As for rotation in-
variance, note that the rotation of a contour in Carte-
sian space corresponds to a simple shift in the ordinate
(0) of the 6-s representation. To normalize contours
with respect to rotation, an offset is added to 9 so that
the reference point on the contour is some standard

value, such as zero (in the following paragraphs, we
will describe how we use points of high curvature, or
critical points as the reference points). If this is done,
then the 6-s representations of rotated versions of the
same Cartesian contour are the identical. Other ad-

vantages of the 0-s representation, such as single-
valuedness and the ease with which our features can
be extracted, contribute to the efficiency of the algo-
rithm at various stages. These aspects of the 6-s repre-
sentation will be explained in more detail as the perti-
nent portions of the algorithm are discussed.
The computation of the 8-s representation for con-

tours is only an intermediate step to the extraction of
the final feature vectors in our algorithm. Since we
have as a goal the recognition of partially visible ob-
jects, we must employ spatially local or a combination
of spatially local features. We have chosen our funda-
mental geometric features to be neighborhoods of
critical points (i.e., fixed length portions of contours
with critical points at their centers). Attneave (1954)
was one of the first to discuss the importance of points
of locally maximal curvature, which he termed critical
points. He also suggested that they have at least one
aspect of a good feature, namely that they are highly
informative in the sense that humans can often recog-
nize an object given only the critical points on the
object’s line drawing. More recently, Biederman (1985)
has presented evidence that critical point-like entities
occurring at points of concavity along a boundary play
a significant role in human vision. Attneave’s and
Biederman’s conjectures receive empirical support in
the domain of machine vision in Mudge, Tumey, and
Volz ( 1987).
As noted earlier, for the case of 2D object recogni-

tion, a formalized notion of the degree of informative-
ness of features, called saliency, was defined in Tumey
( 1986). Under the condition that features are contour
segments of a given length from an object set, Tumey
noted that the most salient of these features usually
contains a critical point. Figure 5 shows a map of the
saliency of segments making up the contours of a 2D
object. Note that the most informative segments are
highly structured (in the sense that they contain a
large amount of high curvature boundary) and usually
contain at least one critical point. This implies that,
typically, the neighborhoods of critical points are also
highly informative.
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Fig. 5. A perspective view of
the contour of a doorlock
part. Extendingfrom evenly
spaced points on the contour
are vertical bars whose

lengths are proportional to
the informativeness of the
contour neighborhoods,
which have the points as
their centers. Informative-

ness in this case is the in-
verse of the number of times
the contour segment of inter-
est matched sufficiently well
in the object set. Note the
large correlation between the
amount of high curvature
boundary that is contained
in the segment and how

informative it is.

Fig. 6. On the left are several
typical puzzle piece CPN
features in their Cartesian
representation, and on the
right are the same features
represented in 0-s space.

Critical points have another advantage in addition
to their high information content: they are easily and
quickly extracted by the application of a one-
dimensional edge operator to the B-s representation of
the contours. This is clear from the following:

A critical point is a point of locally maximal cur-
vature, and curvature is the rate of change of
slope with respect to arclength. Thus, given a con-
tour represented in 0-s space, denoted ~(s), the
curvature is a(s) = do(s)lds and the critical points
are the peaks in this function. Application of a
one-dimensional derivative of a Gaussian edge
detector to the 0(s) function performs precisely
the operation d/ds, in addition to filtering any
noise that may be present.

Figure 4 shows a contour whose critical points have
been marked in its Cartesian representation as well as
its 0-s representation. The critical points in the figure
are the edge points marked by a one-dimensional de-
rivative of a Gaussian edge detector.

Critical point neighborhood (CPN) features, while
being much more informative on average than other
segments of a set of contours, are nevertheless not a

very efficient encoding of the important recognitive
information. Examination of Figure 6 reveals that
CPNs are continuous and, in fact, rather similar in ap-
pearance. As we have noted, in practice the represen-
tation is discretized and contains a finite number of

samples that comprise a vector. The similarities in

Figure 6 suggest that the elements of a CPN feature
vector are highly correlated with each other, i.e., it is
possible to predict quite accurately what the value of
an element will be given the values of some other
elements of the CPN feature vector. The Karhunen-
Lo~ve ( K-L~ expansion, a standard data compression
technique in signal processing, takes advantage of
highly correlated data. Rosenfeld and Kak (1976) de-
scribe how the K-L expansion can be employed with
success to compress picture data. We use it in the
present work to reduce the data needed to represent
the CPN features described above.
Each sample of a CPN feature vector can be consid-

ered to be a component of a real vector of some di-

mension, say N. The set of CPN features can now be
viewed as the result of trials of an underlying real ran-
dom vector X of dimension N. We may assume that X
is zero mean since, if it is not, the mean may be esti-
mated and X adjusted accordingly. Let R = E[X X’]
be the auto-correlation matrix of X. Since R is non-

negative definite, there exists a set of orthonormal
eigenvectors and associated eigenvalues of R, 95k and
~,k ~ 0 respectively, where k = 1, ... , N. Define the
random variables Yk = cb~ X. Without loss of general-
ity, we may assume that the eigenvectors q5k are or-
dered so that ~1 = ~ - ... ~ AN. The K-L expansion
says that X can be expanded in the following manner:
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Fig. 7. A hypothetical 3D
feature space is shown in (A),
whose elements are highly
correlated among themselves

(dots represent features in
the space). The correlation
can be seen from the degree
to which the features cluster
near the plane. Shown in (B)
is a different view of (A)
looking with b2 going into

the paper. The vectors bland
b2 span the plane, while b] is
orthogonal to it. When repre-
sented in terms of the basis
bJ. b,~, and b3, the b3 compo-
nent of the vectors will be
near zero and may be ig-
nored, achieving a degree of
data reduction. The K-L

expansion allows such a
basis to be computed.

where the Yk are uncorrelated and var ( Y,~ _ lk.
Geometrically, the K-L expansion chooses a special

basis in the ~’V-dimensional vector space in which X is
defined. This basis has the following property: the
basis vector 01 defines the direction in which X has
the greatest variance (i.e., Y, , the projection of X in the
q5, direction, has the maximum variance); the second
basis vector c/J2 defines the direction in the subspace

perpendicular to c~r in which X has the greatest var-
iance, and so on until all dimensions are defined.
Therefore, the K-L expansion chooses a basis that,
when X is represented in terms of it, will concentrate
the total variance of X into its lower numbered com-

ponents. A subspace whose basis vectors 4hk are asso-
ciated with those Yk having small variance may be
ignored with negligible effect upon the stochastic prop-
erties of X. The result of this is that the original fea-
ture vectors can be projected onto a space of smaller
(often considerably smaller) dimension and still retain
most of their information. Figure 7 gives an example
of such a situation.

Before applying the K-L expansion to compress the
data needed to represent the CPN feature, it is neces-
sary to adjust the data to give it a zero mean to decor-
relate the Yk. Let S = {f;, i = 1, ... , V) be the set
of all feature vectors in the object set (extracted from
models or training images), where V is the number of
CPN features found in the training images. The set of
zero mean feature vectors derived from S is T = (fj =

fr - m, i = 1, ... , V), where m is the sample mean
of S. The autocorrelation matrix, R, can then be esti-
mated from T by the formula

Using this estimate of R, the values Of (bk and Ak can
be computed, and then the K-L expansion formula
can be applied. The data reduction is effected by re-
taining only those basis vectors Ok associated with the
Yk having the largest variances and then projecting the
original features onto the subspace spanned by the
retained Ok. Define the total variance of X, C2 , as
E~X;X ], then rr2 x = 2~ ~ since the ok are an ortho-
normal set. The number of (bk’s retained, L, is deter-
mined by the fraction of ai we wish to retain.&dquo; The

4. The fraction is a design parameter. Adjusting the fraction allows
data reduction to be traded off for informativeness. If the fraction is

very close to 100%, there will be less data reduction, and the re-
duced features will represent the original features more closely. On
the other hand, a lower fraction will increase the data reduction at
the expense of a less perfect representation of the original features.
As discussed in the text, a fraction quite close to 100% (e.g., 98%)
still yields a large data reduction.
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Fig. 8. On the left are the
basis vectors represented in
0-s space. They result from
applying the K-L expansion
to all of the CPNfeatures in
the model set (in this case, a

set of ten puzzle pieces). In
the center is the percentage of
the total variance associated
with each basis vector. At

right are the Cartesian repre-
sentations of the basis vectors.

Fig. 9. On the left are shown
. 

some typical puzzle piece
CPN fearures in Cartesian
space. In the middle are
their 0-s representations. On

the right are their projections
onto the reduced basis made

up of thefive vectors shown
in Fig. 8.

reduced feature vector, r, of any CPN feature f can
then be computed by the formula r = Pf, where P is
the L X N matrix whose rows are the L retained ok
ordered such that the Ok with the largest associated
variance appears at the top, the Ok with the second
largest variance appears second from the top, and so
on to the bottom where the last retained Ok (associated
with the smallest variance) appears.

Figure 8 shows the K-L basis vectors, <~, which
have been computed using all of the CPN features
from the set of models of jigsaw puzzle pieces, the as-
sociated variances of the Yk, and the reduced feature
vectors. In our case, we required that 98% of the total
variance be retained; only five dimensions out of a
total of 45 were necessary to achieve the 98% variance

figure. This is a reduction in data by nearly an order
of magnitude. Finally, Figure 9 shows the projections
of some typical CPN features onto the reduced basis
obtained from applying the K-L expansion to the
CPNs of a set of puzzle piece contours.
We have previously alluded to an important synergy

that exists between the matching method and the fea-
ture computation technique. The kD tree matching
would be significantly less efficient if the K-L expan-
sion were not applied to the original feature vectors to
yield the reduced feature vectors with uncorrelated,
high-variance components. As discussed earlier, the
logarithmic complexity of retrieval from a kD tree is
only attained if no more than a small proportion of
the nodes that are visited require both subtrees to be
examined. If this requirement cannot be met, then the

performance of a retrieval degrades to its worst case
linear complexity. If the data is highly correlated, and
a kD tree is built, it is much more likely that both
subtrees will need to be searched during a retrieval
than if uncorrelated, high variance data is used. There-
fore, it is critical to the overall performance of the kD
tree matching that it be used in conjunction with fea-
ture vectors that have been reduced using the K-L
technique.

4.3. Hypothesis Verification

We now turn to the problem of hypothesis verification.
In our framework, a hypothesis is a prediction about
what may appear in the image, and verification is the
process of comparing the prediction with some set of
observations. Hypothesis verification consists of a
detailed comparison of the model of the hypothesized
object at the hypothesized pose with the image (or
data derived from the image). The purpose of the
comparison is to gather evidence, positive or negative,
about the hypothesis in question. The result of the
comparison is a score that rates the strength of the hy-
pothesis. The score depends in some way on how
closely what actually appears in the image matches
what is hypothesized to appear. All the available hy-
potheses are rated, and those that have enough support
are kept. These remaining hypotheses are the algo-
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rithm’s best guesses as to which objects appear in the
image, and their poses.

In terms of the discussion in Sec. 4.1, a hypothesis is
a model that has a reduced CPN that falls within the

a-neighborhood of some image feature identified dur-
ing the feature detection stage. The model, then, rep-
resents our guess at the specific object in the image
that gave rise to the image feature.
The model of the object contains the reduced feature

and its position within the model. More especially, the
model of the object is the set of all of its Cartesian and
0-s contours, together with a list of the poses of all
CPN features in the model. This information allows
the model’s pose to be transformed to the pose indi-
cated by the feature found in the image (and therefore
allows the list of critical points from the model to be
transformed to their expected locations in the image).
It will be convenient in the rest of the discussion to

speak of a hypothesis as being the contours and critical
points of the model after the pose transformation that
aligns the model feature to the image feature (where
the model feature matched the image feature), not just
the information necessary to effect the transformation.

Figure 10 illustrates the process of transforming the
model’s contours and critical points so that the match-
ing model and the image features are brought into
alignment.
Our verification scheme bases its decision about

whether to pass or fail a hypothesis on two statistics: a
fraction of critical points matched <2cp, and a fraction
of boundary matched Qb. We chose these two statis-
tics because past experience showed them to be effec-
tive decision variables for a wide variety of objects. In
addition, other researchers have used similar measures
successfully. For example, Bolles and Cain (1984)
describe a measure that is similar to our computation
of Qb, and Ayache and Faugeras (1986) describe a
measure that is similar to Q~, except that they use line
segment features instead of critical points, as in this
work.

Unlike other researchers, we have chosen to use two
measures, as we have found that each possesses dis-
tinct strengths. In particular, Q~p is effective for objects
possessing many critical points; it heavily weights the
most informative portions (the critical point neighbor-
hoods) of an object’s contour. However, the statistic
Q~p alone is not adequate for all kinds of objects. Some

Fig. 10. This figure illus-
trates how a model is trans-

formed into a hypothesis
using a feature that was
matched during the feature
matching stage of the algo-
rithm. The image is shown
at (A), the model at (B), and
the image with the dotted
outline of the hypothesis su-
perimposed in (C). The
reduced model CPNfeature
vector derived from fm,
shown in (B), matches the
reduced image CPN feature

vector derived from fi, shown
in (A). The critical points
associated with these fea-
tures are Pm and Pi, respec-
tively. To create a hypoth-
esis, Pm is translated so that
it coincides with Pi and is
rotated so that the tangent to
the model contour at P,~ is
aligned with the tangent to
the image contour at Pi, (C)
shows the dotted outline of
the hypothesis resulting from
this process.

objects, such as nails, have relatively few critical
points. In these cases employing Qb in conjunction
with Q~p is appropriate, since these objects often have
only three or four critical points visible; all the rest
may be occluded by other objects. This is generally
more than adequate for generating hypotheses, but it
is inadvisable to rely solely on properties of the critical
points for hypothesis verification. For example, Q,,
becomes very sensitive to accidental matches when
there are few critical points on the object. On objects
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with few critical points, all contour segments are
roughly equally informative, hence the presence of
any hypothesized contour in the image can be regarded
as evidence that the hypothesized object was indeed
present in the scene.
The idea of searching for features predicted by the

model and using their presence to strengthen hypothe-
ses is not new. As mentioned above, a quality measure
very similar to ~.p, with the difference that the fea-
tures were line segments rather than critical points, can
be found in Ayache and Faugeras (1986). In that work,
however, the process is taken a step further by using a
Kalman filter to recursively update a least-squares
estimate of the model’s position and orientation each
time a new image line segment is found that matches
closely to a model line segment. This step provides a
more precise positional estimate than our method. It
would be a simple matter to add this capability, if the
application requires precise pose information. A sim-
ple least-squares fit would be su~cient, especially in
light of the work in Tumey (1986), where it is shown
that the Kalman filter reduces to a least-squares fit
when it is used for estimating the pose of motionless
objects.
We now detail the computation of the statistics. The

value of <2e~ is computed by searching a spatial neigh-
borhood of each critical point from the hypothesis for
a matching critical point in the image, and increment-
ing a count if one is found. In order to match, a criti-
cal point from the image must possess roughly the
same orientation and the same sign of curvature as the
hypothesized critical point it is being matched against.
The orientation of a critical point is simply the value
of 0 of the contour at the critical point (recall that we
consider the pose transformation to have already
taken place). The value of Qcp is then given by

where I~F is the number of critical points in the hy-
pothesis that were found to match an image critical
point, and Mp is the total number of critical points in
the model. In order to check quickly whether there are
any critical points in the image matching a hypothe-
sized critical point, a second kD tree is employed. For
reasons that will shortly become apparent, we shall
call this kD tree the pose tree. The pose tree is built

during the feature detection stage when the CPNs are
being found. The kth CPN in the image is assigned a
key vector (xk, Yb sin 8k, cos 9k), which we shall call
the pose vector. The elements of the pose vector are

defined as follows: the ordered pair (Xk, y~) is the co-
ordinates of the kth critical point in the image, and is
the slope angle of the contour at the critical point. The
sine and cosine of Ok were used in place of Bk itself to
avoid branch discontinuity problems associated with
direct representation of slope. Each hypothesized criti-
cal point is also assigned a pose vector. The pose tree
is then used to perform a range query to retrieve all
image critical points with roughly the same pose as the
hypothesized critical point. Let the hypothesized criti-
cal point have the pose vector (xh, yh, sin °h, cos 0~).
The range is then defined by the four-dimensional
interval (xh ± dx, yh ± dy, sin B,~ ± d sin 0, cos
Oh ± d cos 0). the values of dx, dy, d cos 0, and d sin 0
are not critical; they must be fairly large to allow for
slight differences in pose of the hypothesis and an
instance of the object in the image. We used 4 pixels
for dx and dy, and 0.5 for d sin 0 and d cos 0. If the
list returned by the range query is not empty, then the
count I,, is incremented. This process continues until
all of the hypothesized critical points are checked, at
which time ~~ may be computed.
We have discussed the computation of the first sta-

tistic, which is based on the count of matched critical
points. We now explain how we perform the computa-
tion of the second statistic, the fraction of boundary
matched. The mechanics of performing the boundary
comparison are quite straightforward. Figure 11 illus-
trates the process. The image contours are first drawn
onto a bitmap to allow easy checking of the spatial
proximity of contours (the contours are drawn white
on black). After drawing the image contours, the con-
tours of the hypothesis are traced, sample by sample,
creating the Cartesian representation of the hypothesis.
As before, the transformation from the model to the

hypothesis is chosen so that the pose of the hypothe-
sized CPN feature is at the same pose as the image
CPN feature that it matched. At fixed intervals of arc-

length, ds, a probe is made along a line perpendicular
to the hypothesis contour. The pixels on the probe line
are generated by Bressenham’s line algorithm (Bres-
senham 1965) such that the line probed is perpendicu-
lar to the hypothesis contour, and the pixels in the line
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Fig. 11. The calculation of
the percentage of boundary
matched statistic, Qb. Shown
is an image contour (A) and
a corresponding hypothe
sized contour (B). The hy-
pothesis contour contains a
CPN feature that matched an
image CPN at (C). As ex-
plained in Fig. 10, the pose
of the hypothesized part has
been transformed so that the
matched features have the
same pose. In order to calcu-
late the percentage of bound

ary matched, probes (D) are
made perpendicular to the
hypothesis contour in lines
extending five pixels on
either side of it. If a probe
line intersects an image
contour, a probe hit (E) has
occurred, otherwise it is a
miss (F). For each probe hit
that occurs, Q6 (which is
initialized to 0) is incre-
mented by the percentage of
the total hypothesis contour
between two consecutive

probe lines (G).

Fig. 12. In order to be ac-
cepted, a hypothesis must fall
into the gray region. This
region is the intersection of
the half planes defined by
vertical line (a), horizontal
line (b), and oblique line (c),
and bounded above by 1.0 in
both the ap and Qb direc-
tions. Four parameters,

described in the text, deter-
mine the shape of the region.
Optimal values of the pa-
rameters vary with the set of
objects and must be deter-
mined experimentally. Per-
formance is not sensitive to
the precise values of the
parameters.

are checked up to two pixels on either side of the con-
tour. If a white pixel (which corresponds to a point on
one of the image contours) is encountered in the
probe, the fraction of boundary statistic, Qb, is incre-
mented by the quantity ds/sn where s, is the total arc-
length of all the contours making up the hypothesis.
The process continues until all of the contours making
up the hypothesis have been probed.
We have discussed the methods used to compute

~p and Qb, but we have yet to explain how these sta-
tistics are used to make the decision to accept or reject
a hypothesis. As would be expected, the optimal deci-
sion regions depend on the object set as well as on the
degree of occlusion allowed. While we do not find
optimal decision regions, we nevertheless desire to be
general enough to get good performance for a wide
variety of object sets and degrees of occlusion. In par-
ticular, a hypothesis is accepted if the ordered pair
(Qcp, Qb) falls into the following region:

The hypothesis is rejected otherwise. The three thresh-
olds and ~3 are chosen to give the best performance
with the given object set. Figure 12 shows a typical ac-
ceptance region.

4.4. Summary of the Algorithm and Complexity
Analysis

The previous three sections have dealt in detail with
the matching, feature detection, and hypothesis verifi-
cation. In this section, we shall summarize the algo-
rithm and analyze its complexity.

Let N be the number of model features, let b be the
average number of critical points per unit arclength of
contour in the model set, let P be the number of ob-

jects in the image, and let I be the number of features
detected in the image. We shall examine the on-line
computation first, ignoring the low-level operations of
edge detection and edge linking. The off-line computa-
tion is composed of the following series of steps
(which have been discussed in detail above): critical
point detection, neighborhood extraction, K-L expan-
sion, basis reduction, projection of model CPNs, and
building of the kD tree. These steps have complexity
O(N), O(N), D(N), D( 1 ), O(N), and O(N log N),
respectively. Thus the entire procedure has complexity
O(N log N).
The on-line portion of the algorithm is composed of

two major parts: first a sequence of steps that are exe-
cuted only once for each image that the algorithm is
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asked to process, and a second sequence of operations
that form a loop. We have written the on-line portion
of the algorithm in Pascal-like pseudocode below:

Procedure ONLINE

BEGIN

DETECT-CRITICAL-POINTS;
EXTRACT-NEIGHBORHOODS;
POSE-TREE-CONSTRUCTION;
PROJECT-CPNS;

LOOP: GET-NEXT-FEATURE;
NEIGHBORHOOD-SEARCH;
VERIFY-HYPOTHESES;
REMOVE-ASSIGNED-

FEATURES ;
IF MORE-FEATURES THEN

LOOP ELSE DONE

END

The function of the first four steps should be clear
from their names and the earlier discussion. The pro-
cedure DETECT-CRITICAL-POINTS has com-

plexity O(Ilb) = O(1 ); the procedure EXTRACT-
NEIGHBORHOODS has complexity 0(1); the
procedure POSE-TREE-CONSTRUCTION has com-
plexity 0(1 log 1 ); and the procedure P R O J E C T -
C P N S has complexity D(I ). Thus, the total complexity
of the four steps prior to the loop is 0(1 log I). We
now examine the loop body. The procedure G E T -
N E X T - F E A T U R E retrieves the next available feature
from the set of features remaining to be processed.
This procedure has complexity O( 1 ). The next step in
the loop is NEIGHBORHOOD-SEARCH . Recall that
this procedure retrieves all image features within a
neighborhood of the image feature that was obtained
by G E T - N E X T - F E A T U R E . This procedure has
average complexity O(log N). Following
NEIGHBORHOOD-SEARCH is VERIFY-
HYPOTHESES. As described in Sec. 4.3, this proce-
dure decides whether the hypotheses generated by
NEIGHBORHOOD-SEARCH are good enough to be
considered final hypotheses. This procedure is com-
plexity O(log I) since it queries the pose tree. Next, the
procedure REMOVE-ASSIGNED-FEATURES re-
moves from the set of image features remaining to be
processed those features that have been determined by
the hypothesis verification stage to belong to a final
hypothesis. This is an 0(l) step. Finally, a test based

on MORE-FEATURES is made. MORE-FEATURES
returns TRUE if there are additional image features to
be processed by the algorithm and FALSE otherwise.
This is also an O( 1 ) step. Thus, the complexity of the
loop body is 0(log I + log N). The loop will be exe-
cuted, at most, I times (usually considerably fewer
than I times). This leads to a combined complexity of
0(1 log I + I log N) for the loop. Combining this with
the complexity of the previous four steps yields
0(1 log I + I log N) as the complexity of the entire
on-line recognition procedure.
From an information theoretic point of view, the

logarithmic dependence of the complexity on the
number of model features is a lower bound. This be-
havior gives us a great deal of latitude to add as many
redundant models as necessary of each object in order
to achieve good performance without significantly
degrading speed of the algorithm. As will be described
in the next section, redundant models help to combat
widely varying lighting conditions, as well as perspec-
tive effects of objects that are really 3D but which the
system is treating as 2D.

5. Experimental Results

5.1. Methods

We now present some of the experimental results that
we have collected from running our recognition algo-
rithm on a number of images. All images were ob-
tained from a CCD camera at 256 X 256 resolution.
Each pixel was digitized to 8 bits. We then prepro-
cessed all images by applying a Canny edge detector
(Canny 1983), and we then applied a simple linking
algorithm to trace the contours. After the linking step,
we resampled the contours so that both the Cartesian
and the 0-s contours were sampled at uniform intervals
of arclength. To accomplish this, we used an operation
developed in Tumey (1986) that simultaneously
smoothes the contours, resamples them, and generates
both the resampled Cartesian and 0-s contours of the
image.
We ran the algorithm on two sets of objects: a set of
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Fig. 13. Models of the jigsaw
puzzle pieces.

Fig. 14. Models of the switch
parts. The microswitch
models are shown in the
second, third, and fourth po-
sitions from the left in the
first row.

10 puzzle pieces and a set of eleven switch parts.5 The
puzzle pieces are a set of truly 2D objects that provide
a good benchmark. The switch parts are not true 2D
parts. However, by treating each view of a distinct
stable position as a 2D object, we were able to use our
2D algorithm to recognize the 3D switch parts.
We painted the jigsaw puzzle pieces white to cover

the pictures normally appearing on jigsaw puzzles. In
all experiments, the parts were scattered randomly in a
tray, with some effort made to encourage occlusions.
The switch assembly was not painted and was com-
prised of a number of specular metallic and non-
specular plastic parts. The lighting used was a simple
fluorescent desk lamp with a movable arm. This was
used to reposition the light prior to the acquisition of
each image, allowing us to measure robustness to
lighting changes.
The algorithm was run on an Apollo series DN570

color workstation, a 5 MIPS machine (roughly).

5.2. Off-line Preprocessing

The off-line processing needs to be performed only
once for each distinct set of objects that the system is

required to work on. After a training image was pre-
processed as previously described, the next step was the
assignment of contours to object labels (our training
images typically contain several objects). The CPN
features of the model contours were then extracted

using a simple one-dimensional derivative of a Gaus-
sian edge detector as described in Sec. 4.2. We then
applied the K-L expansion to the CPN features to
obtain the reduced basis, and the model CPN’s were
then projected onto the subspace spanned by the re-
duced basis, also per Sec. 4.2. The projections of the
CPN’s were stored for use by the on-line recognition
procedure.
Figuro 13 shows the set of ten puzzle pieces which

form our first model set. Similarly, Figure 14 shows the
set of views the algorithm will use to form the model
set for the switch parts. Note that in Figure 14, some of
the models are of the same stable position of a part. It
was advantageous to employ these redundant models
for a number of reasons. First, the fact that the switch
parts are really 3D implies that their aspects change
slightly depending on where in the image they are
located in the field of view. Secondly, some of the
switch parts were metallic and quite reflective. We
found that for these parts, lighting changes could alter
the shape of some of the critical points enough that
the algorithm could not recognize a part (this is espe-
cially true of the reflective parts that have few critical
points). Adding a model whose training image was
taken in different lighting greatly improved the robust-

5. These parts were provided by the U.S. Air Force. They are some
of the same parts that Cowan, Chelberg, and Lim (1984) used to test
ACRONYM.
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Fig. 15. A representative
example of running the algo-
rithm on an image of over-
lapping puzzle pieces. On the

left are the contours of an
image. On the right are
images showing the contours

on the left superimposed
with images of the final hy-
potheses filled with patterns

so that the various final
hypotheses may be distin-
guished from each other.

Table 1. False Alarm (F.A.) Statistics for Experiments on the
Two Sets of Objects

ness of our algorithm with respect to lighting changes
for such parts. Finally, and again related to lighting
changes, one part (the microswitch - see Fig. 14) had
details that were near the limit of our resolution and
were extremely sensitive to lighting: images taken in
one set of conditions would show the detail, while
images taken in other conditions would not show the
detail. To solve the problem, we included one model
for each case. Because our matching algorithm is only
logarithmic in the number of model features, the addi-
tion of more views did not significantly affect the run-
time of the algorithm. In fact, doubling the number of
views would increase the matching by just one step.

5.3. Recognition Processing and Results

In this section we experimentally assess the accuracy,
robustness, and efficiency of our algorithm. We give

three means of characterizing the accuracy of our
algorithm:

I . Plots of the percentage, p, of the objects that
the algorithm recognized correctly versus the
percentage of the object’s contour that was
exposed (Figs. 16 and 18). Note that the per-
centage of objects missed (i.e., not found by the
algorithm when they should have been found)
is 100 - p.

2. The number of false alarms generated in each
image (Table 1). This is the number of times
that the algorithm predicts an object to be in
the image that is not actually there.

3. Images before the recognition procedure is
run, and the same images with the final hy-
potheses superimposed. This yields a reason-
able, although qualitative, measure of the posi-
tional accuracy of our algorithm.

To characterize the robustness of our algorithm, we
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Fig. 16. Percent of objects
recognized correctly vs.
percent of object boundary
visible: jigsaw puzzle pieces.
The performance statistics
were gathered over a sample
of six images.

rely on the fact that we have run a sizable number of
experiments under widely differing conditions,
namely, two object sets, several lighting setups, and
many object placements. In addition, the plot of the
percentage of objects recognized correctly versus the
percentage of the object’s contour visible makes ex-
plicit the algorithm’s robustness with respect to occlu-
sion. Finally, to characterize the algorithm’s efficiency,
we give (in addition to the complexity) average run-
time of the algorithm from the feature detection step
onward for each object set.

After the preprocessing described earlier in this sec-
tion, the on-line portion of our algorithm proceeds as
described in Sec. 4.4.

Puzzle Pieces

Figure 15 shows sample results of running our algo-
rithm on an image of overlapping puzzle pieces, and
Figure 16 illustrates the algorithm’s robustness with
respect to occlusion. It shows a plot of the percentage
of puzzle pieces correctly recognized versus the per-
centage of the boundary of the puzzle pieces exposed.
As can be seen from the figure, none of the puzzle
pieces is wrongly classified. Also, any puzzle piece with
more than 55% of its boundary exposed is recognized
correctly. For those pieces with less than 55% of their
boundaries exposed, the algorithm sometimes has no
hypothesis good enough to consider as a final hypoth-
esis. However, the false alarm numbers in Table 1
show that if the algorithm does have a final hypothesis,
it will be correct with near certainty.
The four variables that determine the decision re-

gion specified by (6) for the set of puzzle parts are as
follows: 8 = 0, T, = 0.3, T2 = 0, and T3 = 0. In other

words, for this part set, only Q~ is used to decide
whether or not to keep a hypothesis. The reason for
this is simply that the puzzle pieces have many critical
points, and as discussed in Sec. 4.3, for such objects,
f2cp is really the only decision variable needed.
The average time to finish an entire image from the

stage of feature detection onward was 2.0 s for test

images containing 10 puzzle pieces each. Humans who
are familiar with the puzzle pieces generally took at
least 20 s to recognize as many puzzle pieces as they
could from an image. They could usually recognize
more pieces than the algorithm; however, they also
averaged more false alarms per image. Humans do
better with less boundary visible than the algorithm,
presumably because they use other information in
addition to boundaries.

Switch Parts

Figure 17 shows a representative example of running
our algorithm on an image of overlapping switch parts.
Figure 18 gives a plot of the percentage of the switch
parts that were recognized correctly versus the per-
centage of part boundary visible. As can be seen from
both figures, the algorithm had more difficulty recog-
nizing the switch parts than it did recognizing the
puzzle pieces. Table 1 summarizes the false alarm sta-
tistics on the images of the switch parts.
The decision region for the switch parts is given by

(6) and the following list of parameter values: Tl = 0.3,
T2 = 0.3, T3 = 0.4, P = 0.6. The runtime of the algo-
rithm on images containing the switch parts averaged
1.5 s, again from the step of feature detection onward.

6. Conclusions

In this paper, we have presented a new procedure for
2D partially visible object recognition. The neighbor-
hoods of critical points were employed as the funda-
mental features. The heart of the method was the use
of a kD tree for fast feature matching. The use of the
kD tree was made feasible by applying the Karhunen-
Lo~ve expansion to the feature vectors to reduce the
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Fig. 17. A sample of the
results of running the algo-
rithm on the images of the
switch parts. This figure is
analogous to Fig. 15.

data in them by an order of magnitude. Experiments
were conducted on two sets of real objects, jigsaw
puzzle pieces and switch parts, to get an idea of the
accuracy, robustness, and efficiency of our algorithm.
A high degree of accuracy was obtained for objects
having more than 50 - 60% of their boundary exposed.
Objects that were more heavily occluded were still
recognized much of the time, but success was less cer-
tain. Although a direct comparison is inappropriate, it
is interesting to compare this with the success one
would expect from the analogous problem of recogniz-
ing a sentence with half of the letters and spaces missing.
The results of the experiments we have conducted

and our experience developing the algorithm have led
to an interesting conclusion. Observe first that in a few
of the images in Fig. 17, the spring found in the image
was shifted one or more cycles from the correct posi-
tion. This is not surprising, since all of the critical
points along the side of the spring are very similar and
generate many spurious hypotheses that place the
spring shifted from where it should be. Our algorithm
occasionally chooses one of the spurious hypotheses,
because it may just happen to adjoin a section of
boundary from another part, thus making Qb large
enough to pass the false hypothesis over the correct
one. In fact, this scenario also leads to most of the
false alarms in the experiments. Interestingly, all of
these false alarms as well as most of the misplacements
of the spring could easily be eliminated if some simple
segmentation information was employed in addition

to just the shape of the edge contours. In particular, if
the background region was known, then these prob-
lems could often be eliminated, since in many cases,
such false (or poor) hypotheses will have large sections
of their contour deep in background with no other
contours nearby. This information could be used to
weaken those hypotheses, making the correct one
more likely to be chosen as a final hypothesis. We be-
lieve that employing segmentation information will be
necessary to solve the problem in 3D of partially visi-
ble object recognition. Our algorithm currently uses
no information about the background.

Finally, we note that our recognition system could
be extended in a straightforward manner to the recog-
nition of scaled objects if a scale-invariant feature
vector that is not sensitive to noise could be found.

There are many possibilities employing multiple
points. We have found a method that normalizes scale
using local curvature information at a single critical
point to yield a scale invariant feature vector encoding
the local shape of the object (Gottschalk and Mudge
1988). These features show promise for use in recogni-
tion of both scaled 2D and 3D objects. Using these
observations, we are currently working to extend the
method presented here to the domain of 3D partially
visible objects. In addition to the edge-based features
described here, it is likely that other attributes of ob-
jects will be useful in recognition. The kD tree match-
ing technique that we have described is sufficiently
general to accommodate such extensions with ease.



130

Fig. 18. Percent of objects
recognized correctly vs.
percent of object boundary
visible: switch parts. Per-

formance statistics for this
figure were gathered from a
sample of 14 images.
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