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Abstract: The vortex beam carrying orbital angular momentum (OAM) has attracted great
attentions in optical communication field, which can extend the channel capacity of com-
munication system due to the orthogonality between different OAM modes. Generally, at-
mospheric turbulence can distort the helical phase fronts of OAM beams, which presents a
critical challenge to the effective recognition of OAM modes. Recently, convolutional neural
network (CNN), as a model of deep learning, has been widely applied to machine vision. In
this paper, based on the CNN theory, we make a tradeoff between the computational com-
plexity of the system and the efficiency of recognition by establishing a specially designed
six-layer CNN structure in CPU station to efficiently achieve the recognition of OAM mode
in turbulent environment through the feature extraction of the received Laguerre–Gaussian
beam’s intensity distributions. Furthermore, we examine the performances of our designed
CNN with respect to various turbulence levels, transmission distances, mode spacings, and
we have also compared the performances of recognizing single OAM mode with multiplexed
OAM modes. The numerical simulation shows that basing on CNN method, the coaxial
multiplexed OAM modes can obtain higher recognizing accuracy about 96.25% even under
long transmission distance with strong turbulence. It is anticipated that the results might
be helpful for future implementation of high-capacity OAM-based optical communication
technology.

Index Terms: Pattern recognition, machine vision, optical vortices, free-space optical com-
munication, atmospheric turbulence.

1. Introduction

To eventually overcome unsolved bandwidth crucial problem, realizing higher data transmission

capacity is the main research direction of free-space optical (FSO) communication. Previous re-

search fully exploited the wavelength [1], polarization [2], amplitude and phase [3], even spatially

distribution of light fields [4]. Orbital angular momentum (OAM), a nature of Laguerre-Gaussian (LG)
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beams with helical phase, was proposed and demonstrated firstly by Allen in 1992 [5]. It was shown

that the LG beams comprising an azimuthal phase term of exp(i lϕ) have an OAM of l� per photon,

where l (arbitrary integer) represents OAM mode called topological charge, ϕ is azimuthal angle,

and � is Plank’s constant h divided by 2π [5]. Benefited from the orthogonality between different

OAM modes and the theoretically infinite range, the LG beams can be efficiently multiplexed and

de-multiplexed to satisfy the ever-increasing capacity demands in FSO communication [6]–[11].

The effective recognition of OAM modes is the key to the OAM-based communication system.

Typically, through spiral phase plate (SPP) with special spatial structure [10], grating [11]–[13], or

dynamic loading varied computer-generated holograms (CGHs) corresponding with different OAM

modes into spatial light modulators (SLMs) [14], incident beams carrying diverse OAM states can

be demodulated into Gaussian-like beams and the initial information can be recovered by observ-

ing whether a bright spot is emerged on camera screen. Furthermore, a method based on the

coordinate transformation was proposed to separate and recognize OAM modes [15]. However, the

performances of the OAM-based FSO communication system expressly subject to the influence of

the atmospheric turbulence (AT) which can randomly distort the phase front of a light beam and

further induce channel crosstalk [16], [17]. To alleviate the AT effects, possible turbulence mitiga-

tion methods have been proposed, including aberration correction method where corresponding

algorithm based on phase retrieval technique is used to correct the wave-front of distorted OAM

modes [17], [18], and adaptive optics (AO) compensation method where a Gaussian beam is used

to probe the turbulence-induced wave-front distortions [19].

Recently, machine learning technology has been widely applied to computer engineering as

well as optical communication [20]–[23]. For OAM recognition, efficient artificial neural network

(ANN) and K-nearest neighbor (KNN) based recognition methods were proposed, where intensity

images of received beams were directly recognized and the corresponding OAM mode information

could be successfully obtained [24]–[27]. However, in the process of processing the original image

by ANN, a large number of domain experts are usually required to manually design the feature

extractor to convert the form of the original image [27]. And KNN has problems of computational

complexity and high sample imbalance. Comparatively, convolutional neural network (CNN) allows

computational models that are composed of multiple processing layers to learn representations of

data with multiple levels of abstraction, which is good at directly recognizing and discovering intrinsic

features of input raw images and rarely occurs local minima or over-fitting [28]. The previous

researches about recognizing OAM modes with CNN in OAM-based FSO communication were

explored preliminarily in [27], [29]–[33]. The authors in [27] compared different machine learning

algorithm models including CNN, ANN, KNN and naive Bayes classifier (NBC) in the multi-ary

OAM transmission system. They further deepened the network hierarchy to achieve not only OAM

demodulation but also atmospheric turbulence detection [29]. In Ref. [30], a trained CNN of Alexnet-

architecture was used as a classifier to distinguish multiplexed Bessel-Gauss beams carrying OAM

and tested it against traditional de-multiplexing method. The authors [31] designed an optical

feedback network based on customized CNN with single layer of convolution and pooling, and

demonstrated its ability to mitigate the effects of turbulence on OAM modes. They also investigated

about using deep neural networks and CNN with single convolutional layer on classifying different

OAM mode at different noise levels [32]. In Ref. [33], an OAM-SK-FSO communication system

combining turbo coding method with a six-layer convolution and pooling layer of CNN was proposed.

In general, in these previous works, in order to achieve expected functions in specific cases, such

as the correction of turbulence by the feedback network [31] and the exploration of noise levels [32],

the single convolutional layer CNN with one convolution layer and one pooling layer was often used

to minimize the complexity of the system. While, for the case of OAM mode recognition, CNNs with

multi-hidden-layer were often used to optimize the recognition performance. For example, Ref. [29]

used a seven-layer network structure including three layers of convolution and pooling layers and

one layer of fully connected layer, and Ref. [30] used five-layer of convolutional layer, three-layer

of pooling layer and three-layer of fully-connected layer with a total of eleven-layer of Alexnet-

architecture model. And in Ref. [33], eight-layer of CNN was adopted to maximize the recognition

accuracy. Although it has achieved good results in recognition accuracy, multi-layer networks require
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more training parameters, longer computation time and also increases the complexity in practical

operations. Besides, commonly used central processing unit (CPU) can no longer meet a large

number of computational requirements, thus, graphics processing unit (GPU) capable of large-

scale parallel computing were often used [30]. A trade-off between the computational complexity

of the system and the efficiency of recognition was realized in [27], where a relatively moderate

number of five-layer CNN structure consists of two convolution layer, two pooling layer and one

fully connected layer were adopted, and the corresponding highest recognition accuracy of the 16-

ary OAM was only around 84% after transmitting 2000 m under strong turbulence. Therefore, the

better recognition performance after adopting a CNN with more suitable structure and optimization

methods is what we need to pursue. Moreover, previous work did not give a quantitative analysis

of the impact of multiplexed OAM modes with different mode spacings, and in most cases the

multiplexed OAM modes were superposed by the symmetrical OAM modes with the same absolute

value but opposite signs, because the formed petal-like intensity pattern was less insensitive to

effects of the AT and relatively clearer for the CNN to distinguish [24]–[27]. So, the expansion of

the number of the OAM modes and the multiplexed OAM modes based on different mode sets

are still worth being investigated. In addition, the comparison of recognizing performance between

the single OAM mode and the multiplexed OAM modes has also not been discussed before.

These enlighten us to further explore and discuss the adopting of a specially designed CNN to

recognize OAM modes on the performance of FSO communication system.

Different from above previous work, in this paper, we make a trade-off between the computational

complexity of the system and the efficiency of recognition by establishing a specially designed six-

layer CNN structure in CPU station to efficiently achieve the recognition of OAM mode through the

feature extraction of the received LG beam’s intensity distributions. We examine our designed CNN

with respect to various turbulence levels, transmission distances and mode spacings and attempt to

compare the performances of recognizing single OAM mode with that of multiplexed OAM modes.

By comparison, we can obtain that coaxial multiplexed OAM modes can get higher recognizing

accuracy even under long transmission distance with strong turbulence. The results may help to

achieve high-capacity OAM-based optical communications technology in the future.

2. Concept and Principle

2.1 The Laguerre-Gaussian Beams Carrying Orbital Angular Momentum

There are different types of beam carrying OAM, one of them is the LG beam. For the cylindrical

coordinates (r , ϕ, z), where r is the distance from the propagation axis, ϕ is the azimuthal angle,

and z is the propagation distance, the field distribution of LG beam [34] can be expressed as:
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where λ is the wavelength, k = 2π/λ is the wavenumber, l and p are the mode order called topological

charge and radial indices respectively, w (z) = w 0

√

1 + (z/zR )2 is the Gaussian beam radius, w 0 is

the beam waist, zR = πw 2
0/λ is the Rayleigh range, L | l |

p (·) is the generalized Laguerre polynomial,

and (2p + | l | + 1) tan−1 (z/zR ) is the Gouy phase. It is important to note that the phase factor,

expressed as exp (i lϕ), is what allows these beams to exhibit OAM [34]. The intensity profiles and

phase fronts of a LG beam with different OAM modes is shown in Fig. 1.
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Fig. 1. (a)–(d) Simulated normalized intensity profiles and phase fronts of Laguerre-Gaussian (LG)
beams with different OAM modes of l = 0 (Gaussian-like beam), l = 1, l = 3 and l = 5 respectively.
(e)–(h) Phase fronts corresponding to (a)–(d) at z = 0.

2.2 The Analytical Model of Atmospheric Turbulence Channel

The atmospheric turbulence (AT) is caused by random variations in temperature and convective

motion resulting in random variations in the air’s refractive index, which can easily distort the phase

front of a light beam [35]. Usually, phase fluctuations result in amplitude fluctuations as the beam

propagates. In numerical simulation, turbulence channel was simulated by inserting random phase

screens along the propagation path of the beam corresponding to the model developed by Hill [36]

and defined analytically by Andrews [35]:
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where C2
n is the structure constant of the refractive index of air, which represents the strength of AT,

kx and ky denotes the wavenumber in x and y direction respectively, L 0 is the outer scale of AT and

k l = 3.3/l0, l0 is equals to the inner scale of AT. The fluctuation of the wave-front phase is simulated

through a random distribution with variance of σ2. Then, the perturbation of the refractive index is

approximately described by the Kolmogorov spectrum:

σ2(kx , ky ) =
(

2π
N �x

)2
2πk2�zφn (kx , ky ), (3)

where N and �x respectively denotes the size and the grid interval of the phase screen, k = 2π/λ is

the wavenumber and �z is the interval between sequential phase screens. In Cartesian coordinate,

the phase screen is expressed in the frequency domain through the fast Fourier transform:

ϕ(x, y) = FFT (CN × N σ(kx , ky )), (4)

where CN × N is a complex random array with a mean of 0 and a variance of 1, and subscript

represents the distribution over a sampling grid of size N × N . Fig. 2(a)–(b) shows two examples

of turbulence phase screens with different C2
n valued in 1 × 10−15 m−2/3 and 1 × 10−14 m−2/3, and

Fig. 2(c)–(d) shows the intensity images of received LG beam with OAM mode of l = 5 under the

case of 1000 m transmission distance with turbulent environment corresponding to (a–b).

2.3 The Theoretical Model of Convolutional Neural Network (CNN)

Deep learning refers to a machine learning method with multiple levels of representation, obtained

by composing simple but non-linear modules that each transform the representation at one level
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Fig. 2. (a), (b) Simulated turbulence phase screens with different C2
n valued in 1 × 10−15 m−2/3 and

1 × 10−14 m−2/3. (c), (d) The intensity images of received LG beam (l = 5) after transmitting 1000 m
with turbulent environment corresponding to (a) and (b).

Fig. 3. The theoretical model of CNN. (a) Details of the convolution, activation and pooling operation in
a single layer CNN. For example, the 5 × 5 input image is convolved with a 2 × 2 convolution filter and
added a bias, then a 4 × 4 feature map is generated in the convolution layer. After being activated by a
non-linear activation function such as a rectified linear unit (ReLU), the maximum in the non-overlapping
2 × 2 sub-region of the 4 × 4 feature map is calculated and then a 2 × 2 max-pooling feature map is
emerged as an input of the next single layer. (b) The details of training process of CNN.

(starting with the raw input) into a representation at a higher, slightly more abstract level [28]. CNN,

as a model of deep learning, is a trainable feed-forward multi-layer network structure composed of

multiple single-layer convolutional networks. Benefiting from the advantages of CNN, such as local

connection and weight sharing, it has been successfully applied in the fields of image and audio

recognition.

Normally, each layer of CNN are composed of learned convolutional filters followed by a non-liner

activation function and pooling operators. The details of the three operations of the single layer CNN

are shown in Fig. 3(a). In the convolutional operation, with the designable spatial size of filters, stride,

and padding, a collection of filter sets are trained and convolve with input images to extract specific
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Fig. 4. Schematic diagram of OAM transmission system. (a) Structural details diagram of the OAM
transmission system. (b) Structural details diagram of the OAM recognition method based on our
designed CNN.

features at all locations, then generate the convolved feature maps. Due to the weight sharing, the

activation of feature map can move synchronously with the shift of the input images, thus makes CNN

less sensitive to the distortion of input image and further improves its generalization performance.

After activated by a non-linear activation function to improve the non-linear expression ability of the

network, the pooling operation takes inputs from a non-overlapping sub-region in the feature maps

and extract the maximum or average of these inputs in order to dramatically reduce computational

demands and add translational invariance. During the training period, after the training labeled

images are forward propagated to multi layers of convolutional, activation and pooling operations,

a series of features are extracted, and the notion of spatial information is abandoned, from which

this multi-layer structure converts a level of representation from the original input to a higher, more

abstract level of representation. And the subsequent operation is the fully connected operation.

The fully connected layers consist of a non-linear activation function and a softmax classifier to

achieve classification. When each labeled image has been processed by the network and forward

propagated to the fully connected layers, a loss function measures the error, which is obtained by

comparing the actual output feature map with the expected label. Then, this error is back-propagated

through the network using the chain rule and the weights in every layer are updated using stochastic

gradient descent. The details of the training process are shown in Fig. 3(b). Once the training is

completed, input the test images, and the network in the testing period will perform classification

operation, where the probabilities that the input belongs to every class, are respectively calculated,

and the category corresponding to the maximum probability is further output by the CNN.

3. Numerical Simulation Results and Discussion

3.1 Simulation Description of the OAM Transmission System

The schematic diagram of the OAM transmission system under the AT influence is shown in Fig. 4.

Fig. 4(a) shows the structural details diagram of the OAM transmission system. At the transmitter, we
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simulate laser source to produce Gaussian beam (l = 0) with wavelength of λ = 1550 nm and beam

waist of w 0 = 3 cm respectively, and then the beam is radiating onto phase masks loaded on spatial

light modulator (SLM) that are programmed with different OAM modes for modulating Gaussian

beams into corresponding LG beams. Next, the LG beams sequence are transmitted through the

free-space turbulence channel, which is simulated by inserting random phase screens along the

propagation path of the beam corresponding to the model developed by Hill and defined analytically

by Andrews (that is described in detail in section 2.2). In the simulation, we have following model

parameters: N = 300, �z = 200 m, L 0 = 50 m, l0 = 0.0003 m. And we adopt AT strength from weak

turbulence to strong level, corresponding to C2
n values from 1 × 10−16 m−2/3 to 1 × 10−14 m−2/3.

After being affected by turbulence channel, at the receiver, the intensity images of the destroyed

beams are captured by CCD camera and the method based on our specially designed CNN is

adopted to recognize the OAM of the received LG beams sequence. It is worth mentioning that

in the field of computer engineering, the recognition accuracy is often improved by deepening the

number of network layers, but this will bring a lot of training parameters, lead to too long training time

and introduce the problem of over-fitting. On the contrary, CNN with fewer number of layers (such as

a CNN with single convolutional layer) is relatively easy to design, and it does reduce computational

complexity as well as training time. However, the features extracted from too few layers are relatively

fewer, which brings about a problem that the recognition accuracy is relatively low. Therefore, how

to make a trade-off between the computational complexity and recognition accuracy (that is to say,

rational design of the number of layers or the adoption of appropriate optimization methods) is the

key to our designed CNN.

In our simulation, in order to reduce the amount of training parameters and the computation time

than previous works [29]–[31], and meanwhile, guarantee to extract sufficient features and achieve a

higher recognition accuracy than previous work [27], [29] under long transmission distance, we make

a trade-off between the computational complexity of the system and the efficiency of recognition by

establishing a specially designed six-layer of CNN in which each of convolution layer, pooling layer

and fully connected layer have two layers, and various optimization methods have been adopted.

It should be pointed out that the moderate number of layers are adopted here, which can not only

ensure a better recognition performance by extracting more features than the CNN structure with

fewer layers [27], [31], [32], but also avoid huge computation parameters or over-fitting problem

that may cause by excessive number of layers [29], [30], [33]. At the same time, due to its smaller

computation costs, this network can be established in local CPU station. The structural details are

shown in Fig. 4(b). In the input part, the pixels of each received intensity images of LG beams are

resized from 300 × 300 to 28 × 28 in order to reduce training parameters and improve training

speed. Next is the convolution operation, where filters are convolved with the input to create a

number of convolutional outputs and activated feature maps with 24 × 24 pixels, dependent on the

filter number 20, pixel size 5 × 5, padding 0, and stride 1. In the pooling operation, 20 feature maps

with 12 × 12 pixels are generated as inputs of the next layer through calculating the maximum in

the non-overlapping 2 × 2 sub-region (stride 2) of the feature map with 24 × 24 pixels to reduce

data size and improve the spatial translational invariance (distortion and displacement robustness).

After performing similar operations in the later, all feature maps are connected to the fully connected

layer with 50 nodes, and next, the second fully connected layer is connected with the previous 50

nodes. Then a softmax classifier is followed to achieve classification and get the output results.

Different from the past works, we have further adopted various optimization methods together

during the training period to improve the performance of this specially designed CNN. Firstly, the

rectified linear unit (ReLU) is chosen as the non-linear activation function in the convolution, pooling

and fully connected layers due to its faster convergence rate than the traditional non-linear function

such as sigmoid and hyperbolic tangent (Tanh) function [37]. Then, in order to better improve the

stability of convergence, mini-batch method which equally divides the input training databases into

several batches is used. In this case, training images in a batch traverse the whole network once

and the errors are back-propagated with the weights updating during an iteration. Then in an epoch,

the above operations are repeated for all batches, that is, all batches which consist of whole training

databases traverse the whole network during one epoch of all epochs. Besides, the model relies on
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Fig. 5. The intensity images of received LG beam (l = 1, 2, 3, ..., 10) after transmitting 1000 m with
AT strength levels C2

n = 1 × 10−16 m−2/3, C2
n = 1 × 10−15 m−2/3 and C2

n = 1 × 10−14 m−2/3 corre-
sponding to (a), (b) and (c).

gradient descent for training, where the learning rate is an important factor affecting convergence

speed of the gradient descent and recognition accuracy. Thus, we use a momentum-based gradient

descent method, namely, the learning rate decreases exponentially as the training epoch increased,

which can accelerate the training speed of the model while improving the convergence ability. At

last, we add a dropout unit between the last two layers of the fully connected layer of the designed

CNN. The function of this unit is to stop the activation of a certain neuron with a certain probability

and the neurons which are dropped out in this way do not contribute to the forward-propagation

and do not participate in back-propagation. So inputting an image every time, the network samples

a different structure, which reduces complex co-adaptations of neurons, since a neuron cannot rely

on the presence of particular other neurons [37]. Therefore, it force our designed CNN to learn

more robust features, make the CNN more generalizable and then avoids over-fitting.

3.2 Performance of the OAM Recognition Method Based on CNN

In this section, we analyze the performance of the OAM recognition method based on our designed

CNN. To demonstrate the destructive effect of turbulent channels on LG beams, we simulate 10

single OAM modes (l = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) after transmitting 1000 m under three AT strength

levels corresponding to weak, medium and strong turbulence, as shown in Fig. 5. We can see that,

as the AT is strengthened, wave-front phases will be damaged gradually, thus the intensity profile

of diverse LG beams cannot be maintained, which makes it more challenging to recognize them

accurately.

In order to reduce the impact of AT on the recognition of OAM modes, recognition method

based on CNN is adopted at the receiver. Here, we define recognition accuracy to measure the

performance of system:

A ccuracy =
∑N

n=1 f (n)

N
× 100%, (5)

and

f (n) =
{

1 ln = l∗n
0 ln �= l∗n

, (6)

where ln is the training true label of LG beam, l∗n represents the classification label predicted by

CNN and N is the sample number. The performances are shown in Fig. 6. For transmitting single

OAM mode, 10 single OAM modes are transmitted through AT respectively and recognized by CNN

at the receiver. Firstly, we investigate the effect of different AT strengths on recognition accuracy,

in which each of AT strength is divided into ten levels, for each level, 2500 intensity images of LG

beams are accumulated and divided into training set and testing set (2000 for training and 500

for testing set). And the CNN training parameters are as follows: epoch = 20, batch-size = 100,

Vol. 11, No. 3, June 2019 7903614



IEEE Photonics Journal Efficient Recognition of the Propagated OAM

Fig. 6. The performances of recognizing 10 single OAM modes (l = 1, 2, 3, ..., 10) based on CNN
method. (a) Accuracy of recognizing 10 single OAM modes with 1000 m transmission distance under
different AT strength. (b) Accuracy of recognizing 10 single OAM modes under three AT strength levels
with different transmission distance.

momentum = 0.5, dropout probability = 0.5. As we can see in Fig. 6(a), for the training database,

the total training time of all levels is approximately 4.4 minutes, and the accuracy is 100% for all

of the situations, which represents that as the number of iterations increases, finally, features of

input images can be extracted and trained effectively. For the testing database, when C2
n is less

than 1 × 10−15 m−2/3, medium turbulence level, the recognizing accuracy maintains at 100%, but

it declines to 91% when C2
n increases from 1 × 10−15 m−2/3 to 1 × 10−14 m−2/3, in which the AT

strength increase from medium turbulence level to strong turbulence level. We can see that the CNN

can effectively classify the OAM modes of the transmitted LG beams after the AT, and maintain the

accuracy of more than 90% even in the case of strong turbulence strength levels.

Then we test the relationship between the accuracy of the OAM recognition and the transmission

distance. We set three different levels of C2
n in simulation as shown in Fig. 5 and compare the

accuracy versus different transmission distance z. The total training time of each levels is approx-

imately 4.5 minutes and the results are shown Fig. 6(b), for C2
n = 1 × 10−16 m−2/3 corresponding

to the weak AT strength, no matter how far the transmission distance is (even the transmission

reaches 2000 m), the accuracy remains at 100%. And when the AT strength is medium level with

C2
n = 1 × 10−15 m−2/3, the accuracy is still greater than 95% with 2000 m transmission distance.

However, under strong turbulent environment, the accuracy is above 95% only within a short trans-

mission distance of less than 500 m. With the continuous increase of transmission distance, the

accuracy decreases rapidly, and when the transmission distance reaches 2000 m, it drops to only

about 74%. Therefore, the accuracy of the OAM recognition method based on our designed CNN

can achieve 100% accuracy within 1000 m in the case of weak to medium atmospheric turbulence

level, but cannot adapt to strong turbulence level while maintaining long distance transmission.

It should be noted that when the LG beam carrying OAM propagates through the free space,

the beam is constantly diverging. And due to the AT influence, the wave-front is severely distorted

and the divergence becomes random and chaotic, resulting in OAM spectrum expansion which

called channel crosstalk in communication filed. Normally, crosstalk between different OAM modes

varies according to the mode spacing, therefore, we will also investigate the impact of different

mode spacings on the accuracy of CNN recognition. Table 1 describes the three mode sets used

for recognizing single OAM mode in simulation. Each set consists of 5 OAM modes {1, 2, 3, 4, 5},
{1, 3, 5, 7, 9} and {1, 4, 7, 10, 13} with different spacing of � = 1, 2 and 3 between two adjacent

modes. Based on these, we explore the accuracy of CNN in recognizing single OAM mode under

the effect of long-distance (2000 m) turbulent environment. For each set, the average training time

was 7 seconds at a particular turbulence intensity level. The results are presented in Table 2, as

we can see, under the weak turbulence intensity, the choice of mode set has no effect on the
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TABLE 1

Mode Set Used in Simulation

TABLE 2

The Performance of Recognition Accuracy Based on Different Sets for Single OAM Mode

recognition accuracy of CNN, and all sets can be fully recognized with accuracy of 100%. However,

when the turbulence intensity increases to medium and strong levels with C2
n as 1 × 10−15 m−2/3

and 1 × 10−14 m−2/3 respectively, the recognition accuracy of set 3 with lager mode spacing is the

highest and the set 1 with smaller mode spacing is the lowest. The reason is that, at the transmitter,

for the single OAM mode, the intensity images corresponding to each OAM mode are all ring-shaped

“doughnut” shapes and only the size of the ring is slightly different (as shown in Fig. 5). When LG

beams with small mode spacing are transmitted into free-space turbulence channel, the received

feature changes of intensity images corresponding to different OAM modes are mutually similar,

thus classification errors will occur especially when CNN is classifying images corresponding to

adjacent single OAM mode at the receiver. On the contrary, when transmitting LG beams with larger

OAM mode spacing, it is easier to be classified and recognized because of the obvious feature

difference in ring size, so the recognition accuracy is relatively high. But it is worth noting that, the

mode spacing cannot be set too large, because increasing the spacing requires the inclusion of

modes with higher mode order. Previous study has shown that channel efficiency decreases with

relation to mode order [16], and LG beam with higher mode order has a wider beam radius and a

lager contact area with turbulence filed, which means the beams would be degraded by turbulence

filed more severely, leading to more crosstalks.

Above we consider the case of transmitting the single OAM mode, and in order to represent more

bits and increase the capacity of the system, the multiplexing LG beam with m different OAM modes

is usually adopted in the actual optical communication system because coaxially propagating LG

beams with different OAM modes are mutually orthogonal, which is called the OAM multiplexing

technology. In theory, the number m can be any positive integer, thus, infinite superposition can

be chosen to configure the encoding mode set. It is worth mentioning that, in most past works

where the multiplexed OAM mode was recognized, the multiplexing OAM modes with the same

absolute value but opposite signs were often chosen in the simulations and experiments, because

the petal-like intensity pattern formed by this superposition are less insensitive to effects of the

AT and relatively clearer for the CNN to distinguish [24]–[27]. Here, we expand the number of

superimposed OAM modes and explore the performance of recognizing multiplexed OAM mode

based on our designed CNN. 4 (m = 4) OAM mode set {l = −4,−1, 2, 5} is used as an example

and multiplexed by complex phase masks loaded on SLM to create 2m = 24 = 16 different coherent

superposition. The parameters of CNN are the same as those described above for recognizing

single OAM mode.

The performances of recognizing multiplexed OAM modes are shown in Fig. 7. Fig. 7(a) shows

the recognition accuracy of 16 different multiplexed LG beams under different AT strengths, as

we can see, for the training database, input images’ features are extracted and trained completely
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Fig. 7. The performances of recognizing multiplexed OAM modes (16 different superposition carrying
4 OAM modes {l = −4, −1, 2, 5} based on CNN method. (a) Accuracy of recognizing multiplexed OAM
modes with 1000 m transmission distance under different AT strength. (b) Accuracy of recognizing
multiplexed OAM modes under three AT strength levels with different transmission distance.

TABLE 3

Mode Set Used in Simulation

with the total training time of about 7.2 minutes. And for the testing database, the recognizing

accuracy maintains at 100% originally, but declines slightly to 97% when turbulence level increases

to strong turbulence level with C2
n = 1 × 10−14 m−2/3. Then, we explore the relationship between

the recognition accuracy and the transmission effect with the total training time of about 7 minutes

and the test results are shown in Fig. 7(b). With the increase of transmission distance, when the

transmission turbulent environment of free-space is weak level with C2
n valued in 1 × 10−16 m−2/3,

the accuracy curve is basically kept at 100%, and drops to about 97% when it is transmitted for

2000 m under the medium level turbulent environment with C2
n valued in 1 × 10−15 m−2/3. Although

in the case of strong level turbulence, the accuracy curve starts to decline gradually from about

500 m, and drops to about 93% after transmitting 2000 m, it is still higher than the accuracy of about

84% in Ref. [27] and about 90% in Ref. [29] under the same transmission distance with the same

turbulence environment.

In addition, the impact of different mode spacings on the accuracy of CNN recognition has

also been explored. Table 3 describes the three mode sets used for recognize multiplexed OAM

mode under 2000 m transmission distance in simulation. Each set consists of 4 modes and all

approximately centers around l = 0 with different spacings between adjacent modes. The intensity

images of 16 coherent superposition corresponding to each mode set are shown in Fig. 8 and the

performance of recognition accuracy for multiplexed OAM sets are presented in Table 4, where the

average training time was 22 seconds for each set at a particular turbulence intensity level. We can

see that, under the weak turbulence intensity, the choice of mode set has no effect on the recognition

accuracy of CNN, in which all sets can be fully recognized. However, when the turbulence intensity

level increases, the recognition accuracies of different mode sets are roughly similar, that is, the

mode spacing seems to has little effect on the OAM multiplexing system. The exact reason for

this condition should be investigated further in the future, but we preliminarily assume that the

reason may be attributed as that for each set, the light intensity distributions of the 16 coherent
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Fig. 8. Different coherent multiplexed LG beams based on three different OAM mode sets
{l = −4, −1, 2, 5}, {l = −5, −1, 3, 7} and {l = −7, −2, 3, 8}. The title above the sub-image is the en-
coded bit string (4 digit binary number) and the label below is the corresponding OAM modes.

TABLE 4

The Performance of Recognition Accuracy Based on Different Sets for Multiplexed OAM Modes

superposition are completely different from each other, as shown in Fig. 8, in which the features

are obvious and each superposition has its own unique intensity distribution. Therefore, although

the distribution of light intensity is destroyed after strong turbulence, due to the large difference in

features between each intensity image, the probability of error is small when CNN classifies it. That

is why the test recognition accuracy of the sets with different mode spacing is not much different in

Table 4.

3.3 Discussion

Here, we analyze the different performances of recognition accuracy between multiplexed OAM

modes as shown in Fig. 7 and single OAM mode as shown in Fig. 6. By comparing Fig. 7(a) with

Fig. 6(a), we find that, under different AT strengths, the recognition accuracy curve of multiplexed

OAM beams is slightly higher than that of single OAM beam, and the former keeps nearly 100% ac-

curacy before turbulence level with C2
n = 5 × 10−15 m−2/3, while the latter is C2

n = 3 × 10−15 m−2/3.

That is to say, under turbulent environment, the recognition performance of the multiplexed OAM

beam is better than that of the single OAM beam. The reason has been mentioned above, and

compared to all ring-shaped feature of single OAM mode as Fig. 5 shows, the features of the inten-

sity images corresponding to different superposition modes are significantly different as shown in

Fig. 8, thus the CNN can fully extract these features and perform high recognition accuracy. Similar

result can be found by comparing Fig. 7(b) with Fig. 6(b), as the transmission distance changes, the

accuracy curve of the multiplexed OAM modes is always higher than or equal to the accuracy curve

of the single OAM mode at the same transmission distance. Even when transmitted long-distance

with 2000 m under strong turbulent environment, the accuracy of the former was nearly 20% higher

than the latter. At the same time, by comparing Table 4 with Table 2, for different mode spacings,

the recognition rate of the multiplexed mode is substantially higher than the recognition rate of the

single mode, and this is even achieved when the former has 16 classification and the latter only

has 5 classification, which is also because the feature map of the former is more obvious than the

later. These results indicate that due to good fidelity and recognition, the performance of using CNN

to recognize multiplexed OAM modes is better than recognizing single OAM mode. In addition, it

should be noted that, in this paper, we discuss the main factors affecting the recognition accuracy
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of applying a six-layer of CNN to OAM communication system, but the detailed structure of CNN

itself, such as network internal parameters including the number of network layer, the learning rate,

the selection of activation function, the size and number of convolution filter, etc., will also have

some impact on the recognition results. These have been extensively discussed in the literature

on computer engineering in the past [37]–[41], so we will not discuss them in detail here. All in

all, compared with the traditional method, CNN has high detection accuracy of OAM beams, and

does not require complicated equipment support and beam calibration at the receiver. Thus, this

efficient detection method can be applied to the realization of high-capacity OAM-based optical

communication technology in the future.

4. Conclusion

In this paper we focus on the use of CNN in OAM based optical communication systems to recognize

different OAM modes under turbulence environment. We expound the corresponding principles of

vortex beam, turbulence model and CNN. Then, a specially designed six-layer CNN network in CPU

station is established, from which we have investigated the effects of different turbulence-intensity

levels, transmission distances and mode spacings on OAM recognition accuracy. Finally, we analyze

the recognizing performances of different cases with single OAM mode and multiplexed OAM mode,

and briefly discuss the factors that affect the measurement results. The numerical simulation shows

that based on our designed CNN structure, through the feature extraction of the received beams’

intensity distributions, the recognition of different OAM modes in turbulent environment has achieved

efficiently, in which the recognizing accuracy about 96.25% of coaxial multiplexed OAM modes is

higher than that of single OAM mode even under long transmission distance with strong turbulence.

Due to the high efficiency of the method and no need of redundant optical devices, this efficient

detection method might be helpful to future implementation of high-capacity OAM-based optical

communication technology.

It should be mentioned that the designed CNN in this paper aims to make a trade-off between

the computational complexity of the system and the efficiency of recognition. It still belongs to

the category of classic network and there are other network models that can be chosen, such

as ZFNet [38], GoogleNet [39], VGGNet [40] and ResNet [41], which are used in different cases

in the field of computer engineering and can be further investigated in our next work. We are

also planning on studying the applicability of the CNN-based method to LG beams with different

radial indices or other OAM carrying beams including Bessel-Gauss (BG) beams. In addition, the

combination of different adaptive demodulation algorithms and CNN may be one of the directions for

further enhancing the recognition efficiency, which will be considered in our future investigations.
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