
 Open access Proceedings Article DOI:10.1109/ICCD.2005.45

Efficient rectilinear Steiner tree construction with rectilinear blockages
— Source link

Z. Shen, Chris Chu, Ying-Meng Li

Institutions: Cadence Design Systems

Published on: 02 Oct 2005 - International Conference on Computer Design

Topics: Rectilinear Steiner tree, Steiner tree problem, Minimum spanning tree, Spanning tree and
k-minimum spanning tree

Related papers:

 An O(nlogn) algorithm for obstacle-avoiding routing tree construction in the λ-geometry plane

 Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles

 Efficient obstacle-avoiding rectilinear steiner tree construction

 The Rectilinear Steiner Tree Problem is NP-Complete

 An-OARSMan: obstacle-avoiding routing tree construction with good length performance

Share this paper:

View more about this paper here: https://typeset.io/papers/efficient-rectilinear-steiner-tree-construction-with-
3wcur4tlvg

https://typeset.io/
https://www.doi.org/10.1109/ICCD.2005.45
https://typeset.io/papers/efficient-rectilinear-steiner-tree-construction-with-3wcur4tlvg
https://typeset.io/authors/z-shen-4d39hfonjs
https://typeset.io/authors/chris-chu-21izu3rued
https://typeset.io/authors/ying-meng-li-2hg9iucakc
https://typeset.io/institutions/cadence-design-systems-268idu5u
https://typeset.io/conferences/international-conference-on-computer-design-2wsiez25
https://typeset.io/topics/rectilinear-steiner-tree-2a8l3iv5
https://typeset.io/topics/steiner-tree-problem-1pzjkwkt
https://typeset.io/topics/minimum-spanning-tree-218lm6ym
https://typeset.io/topics/spanning-tree-zd2ftzqm
https://typeset.io/topics/k-minimum-spanning-tree-2wyy8l5z
https://typeset.io/papers/an-o-nlogn-algorithm-for-obstacle-avoiding-routing-tree-1mtpihjxjw
https://typeset.io/papers/routing-a-multi-terminal-critical-net-steiner-tree-3ttq7gccmn
https://typeset.io/papers/efficient-obstacle-avoiding-rectilinear-steiner-tree-4uou86zksh
https://typeset.io/papers/the-rectilinear-steiner-tree-problem-is-np-complete-hj7vym7mwa
https://typeset.io/papers/an-oarsman-obstacle-avoiding-routing-tree-construction-with-1qqtf8sh5q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-rectilinear-steiner-tree-construction-with-3wcur4tlvg
https://twitter.com/intent/tweet?text=Efficient%20rectilinear%20Steiner%20tree%20construction%20with%20rectilinear%20blockages&url=https://typeset.io/papers/efficient-rectilinear-steiner-tree-construction-with-3wcur4tlvg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-rectilinear-steiner-tree-construction-with-3wcur4tlvg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-rectilinear-steiner-tree-construction-with-3wcur4tlvg
https://typeset.io/papers/efficient-rectilinear-steiner-tree-construction-with-3wcur4tlvg

Efficient Rectilinear Steiner Tree Construction with
Rectilinear Blockages

Zion Shen

Cadence Design Systems

555 River Oaks Parkway

San Jose, CA, 95134

zion@cadence.com

Chris C.N. Chu

Department of ECE

Iowa State University

Ames, Iowa, 50011

cnchu@iastate.edu

YingMeng Li

Atoptech, Inc.

2700 Augustine Drive

Santa Clara, CA 95054

Abstract

Given n points on a plane, a Rectilinear Steiner Minimal Tree

(RSMT) connects these points through some extra points called

steiner points to achieve a tree with minimal total wire length. Taking

blockages into account dramatically increases the problem complex-

ity. It is extremely unlikely that an efficient optimal algorithm exists

for Rectilinear Steiner Minimal Tree Construction with Rectilinear

Blockages (RSMTRB). Although there exist some heuristic algo-

rithms for this problem, they have either poor quality or expensive

running time.

In this paper, we propose an efficient and effective approach to

solve RSMTRB. The connection graph we used in this approach

is called spanning graph which only contains O(n) edges and ver-

tices. An O(n log n) time algorithm is proposed to construct span-

ning graph for RSMTRB. The experimental results show that

this approach can achieve a solution with significantly reduced wire

length. The total run time increased is negligible in the whole design

flow.

1. INTRODUCTION
Given n points on a plane, a Rectilinear Steiner Minimal Tree

(RSMT) connects these points through some extra points called
steiner points to achieve a tree with minimal total wire length. Many
works [1–12,14–17] have been done on this fundamental problem in
electronic design automation. However, most of them did not take
blockages into consideration. In fact, today’s design often contains
many rectilinear routing blockages, e.g., macro cells, IP blocks, and
pre-routed nets. Thus, rectilinear Steiner minimal tree construction
with rectilinear blockages (RSMTRB) becomes a very practical
problem.

Generally, RSMT is used in initial net topology creation for global
routing or incremental net tree topology creation in physical synthe-
sis. It is also utilized to estimate total wire length, congestion and
timing in early design stages, like block floorplanning and cell place-
ment. The timing and congestion information obtained from RSMT

can be used as a criteria in following timing and congestion driven

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2005 ICCD XXXXXXXXX/XX/XX ...$5.00.

routing. Note that it is the problem applied hundreds of thousands
times in each design flow and many times this problem comes with
very large input size. RSMT thus deserves much intensive research
in VLSI CAD.

Unfortunately, RSMT itself was first shown to be strongly NP-
complete by Garey [7] in 1977. Taking blockages into account dra-
matically increases the problem complexity. Thus, it is extremely
unlikely that an efficient optimal algorithm exists for RSMTRB.
Although there exist some heuristic algorithms for this problem, they
have either poor quality or expensive run time.

Existing heuristics for RSMTRB can be classified into three cat-
egories.

The first category is maze routing [8] based approach. Maze rout-
ing can optimally route two pin nets. However, for multi-pin nets,
designers need to introduce a multi-terminal variant [9–11], which
incurs a solution far from optimal. In addition, since the run time
and memory used in maze routing are proportional to the size of the
routing area rather than the size of actual problem (i.e., the number of
pins and blockages), maze routing algorithms are inefficient in terms
of run time and memory.

The second category is called sequential approach which typically
consists of two steps. These two steps are illustrated in Figure 1.
Step 1 is to construct a tree T1, which is either a minimum span-
ning tree (MST) or a Steiner minimal tree (SMT) with absence
of blockages. In this example, T1 is an MST . Step 2 is to trans-
form T1 to a RSMT with blockages by substituting edges around
the blockages for the edges overlapped by the blockages. Generally
a simple line sweep technique is applied in step 2. For example, for
pin pair (p1, p4), we have two possible L-shaped routes, r1 and r2 to
interconnect p1 and p4 as illustrated in Figure 2(a) with absence of
blockages. Then we sweep all blockages which overlap with these
two routes and choose one route with smaller corresponding detour.
As shown in Figure 2(b), route r2 are selected since the detour length
introduced by r2 is smaller than that by r1. This approach is com-
monly used in industry due to its simplicity and efficiency. However,
since step 1 neglects the global view of blockages, step 2 can only
locally remove overlap between T1 and blockages. The quality(i.e.,
the total wire length) of resulting RSMT can be much worse than
expected in many cases.

Later on, Yang et.al [12] introduced a complicated 4-process heuris-
tics to remove the overlaps in step 2 in a clever way. However the
approach still cannot avoid bad solution for many cases. This is be-
cause a bad T1 due to neglecting blockages in step 1 could introduce
an unexpected routing detour in step 2.

The third category consists of connection graph [13] based ap-
proaches. Typically, the approach in this category is to first construct
a connection graph by pins and blockage boundaries, which guaran-
tees that at least one rectilinear Steiner minimal (or close to minimal)
tree is embedded in the graph. Then, some graph searching tech-

�✁�✁�
�✁�✁�
�✁�✁�
�✁�✁�
�✁�✁�
�✁�✁�

✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂

✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄

☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎

✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆
✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞

✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟

✠✁✠✁✠
✠✁✠✁✠
✠✁✠✁✠
✠✁✠✁✠
✠✁✠✁✠
✠✁✠✁✠

✡✁✡✁✡
✡✁✡✁✡
✡✁✡✁✡
✡✁✡✁✡
✡✁✡✁✡
✡✁✡✁✡

☛✁☛✁☛
☛✁☛✁☛
☛✁☛✁☛
☛✁☛✁☛
☛✁☛✁☛
☛✁☛✁☛

☞✁☞✁☞
☞✁☞✁☞
☞✁☞✁☞
☞✁☞✁☞
☞✁☞✁☞
☞✁☞✁☞

✌✁✌✁✌✁✌✁✌✁✌
✌✁✌✁✌✁✌✁✌✁✌
✍✁✍✁✍✁✍✁✍✁✍
✍✁✍✁✍✁✍✁✍✁✍

✎✁✎
✎✁✎
✎✁✎
✎✁✎
✎✁✎
✎✁✎

✏✁✏
✏✁✏
✏✁✏
✏✁✏
✏✁✏
✏✁✏

✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑
✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑
✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑✁✑

✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒
✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒
✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒✁✒

✓✁✓
✓✁✓
✓✁✓
✓✁✓
✓✁✓
✓✁✓
✓✁✓

✔✁✔
✔✁✔
✔✁✔
✔✁✔
✔✁✔
✔✁✔
✔✁✔

p4

b1 b3
b4

b5b2
p1

p2 p3

p4

b1 b3
b4

b5b2

Step 2

p1

Step 1

p3p2

Figure 1: Sequential approach to solve RSMTRB.

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄
✄✁✄
✄✁✄
✄✁✄
✄✁✄
✄✁✄

☎✁☎
☎✁☎
☎✁☎
☎✁☎
☎✁☎
☎✁☎

✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆

✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝

✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞

✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟

p4

b5b2
p1

p4

b5b2 p1

(b)(a)

r2

r1

r2

r1

Figure 2: Overlap removal in sequential approach. (a) two L-

shaped routes, r1 and r2, before overlap removal. (b) route r1

and r2 after overlap removal.

nique is used to find a RSMT as a subgraph from the connection
graph. Unlike sequential approach, this approach can globally catch
the view of both pins and blockages in the design. Therefore, the
connection graph based approach can generally achieve an optimal
or near optimal RSMT .

The efficiency of connection graph based approach depends on the
size of graph. While the accuracy or effectiveness of this approach
depends on whether the graph contains a good Steiner minimal tree.
Obviously, there is a trade-off between efficiency and accuracy in
this approach.

In [14], a connection graph is called escape graph which is con-
structed by escape segments. The number of vertex in the escape
graph can be O(n2) in the worst case, where n is the sum of pins
and blockage boundaries. Even the size of a reduced escape graph
is still quite huge. In [15], authors proposed a connection graph
with O(n log n) vertices and edges and later on [16], they intro-
duced an even smaller graph which contains O(n

√
log n) vertices

and O(n log3/2 n) edges. The construction of the connection graph

takes O(n log3/2 n) time and memory usage.
In this paper, we will propose an efficient and effective connection

graph. It is called spanning graph. We show that the spanning graph
contains only O(n) vertices and O(n) edges, which is smaller than
any previous connection graph. In addition, we show that our span-
ning graph can always produce a RSMT with good quality. Due
to the special property of the spanning graph, the construction takes
only O(n log n) time and memory usage, which are also smaller than
those in any previous connection graph construction.

We organize the rest of the paper as follows. In section 2, we
will formally define the problem and explain the details of the basic
component in the problem. In section 3, we will first demonstrate
the drawback in the escape graph and then introduce the spanning
graph as a connection graph in RSMTRB. Section 4 and 5 describe
the details of construction of spanning graph for RSMTRB. The
experimental results are shown in section 6. The paper is concluded
in section 7.

2. PROBLEM FORMULATION
Let P = {p1, p2, p3, . . . , pm} be a set of pins for m pin net.

Let B = {b1, b2, b3, . . . , bk} be a set of rectangular blockages. Let
V = {v1, v2, v3, . . . , vn} = P∪ {corners in B} as the vertex set
in the problem, where each vi has coordinates (xi, yi). Note that
each rectangular blockage has 4 corners, we have n ≤ m + 4k. The

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

Figure 3: Dissect a rectilinear blockage into 3 rectangular block-

ages.

�✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁��✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆
✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆
✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆
✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆
✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆
✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆✝✆

✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞
✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞
✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞
✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞
✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞
✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞✝✞

(a) (b) (c)

Figure 4: Three types of blockages: (a) Complete blockage (b)

Vertical blockage (c) Horizontal blockage

.

rectilinear distance between vi and vj is given as |xi − xj | + |yi −
yj |. A RSMT connects all pins through some extra points (called
Steiner points) to achieve a minimal total length, while avoiding the
intersection with any blockage in the design.

2.1 Rectilinear blockages
If all boundaries of a blockage are either horizontal or vertical, we

call this blockage as rectilinear blockage. Note that each rectilinear
blockage can be dissected into a set of rectangular blockages (see
Figure 3 as an example). In the rest of paper, for simplicity, we
assume each blockage to be rectangular.

2.2 Directional blockages
In multi-layer routing, there exist three types of blockages. The

first one is called complete blockage which blocks all vertical and
horizontal metal layers in its obstructed area. A complete blockage
requires all routes must detour around it. The second type is denoted
as vertical blockage in which all vertical layers in obstructed area are
blocked while a certain number of horizontal layers are still available
for routing. The routes are allowed to horizontally pass through the
obstructed area, while not allowed in vertical direction. The third
type is called horizontal blockage, where routes can still vertically
pass through the obstructed area. These three types of directional
blockages are illustrated in Figure 4.

3. ESCAPE GRAPH VS. SPANNING GRAPH

3.1 Redundancy in escape graph
As we mentioned in Section 1, a connection graph can catch the

global view of both blockages and pins. And the efficiency of this
approach highly depends on the size of the connection graph. In
other words, a good connection graph is able to describe all neces-
sary geometrical relationship between pins and blockages using as
few edges as possible. In [14], the connection graph is called es-
cape graph, which is constructed by escape segments. Escape seg-
ments are formed by horizontal and vertical lines extending from
pins and blockage boundaries, and ending with their abutment to ei-
ther a blockage boundary or the internal perimeter of the routing re-
gion. The number of vertex in the escape graph can be O(n2) in the
worst case. An example is shown in Figure 5. The collection of the
escape segments (shown as dashed segments) composes the escape
graph. And the graph preserves a good RSMT for a multi-pin net.
However, we notice that most of edges and vertices are redundant in
the escape graph for finding a RSMT . For example, instead of using

�✁�✁�
�✁�✁�
�✁�✁�
�✁�✁�
�✁�✁�
�✁�✁�

✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂
✂✁✂✁✂

✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄

☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎
☎✁☎✁☎

✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆

✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞

✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟

b2

b1 b3

p1

p2

p3

b4

Figure 5: Escape graph

R 5

R3

R 2

R1R 8

R 6

R 7

R 4

Figure 6: Eight regions defined for each point in spanning graph.

13 edges, 3 edges (shown as solid segments) are enough to represent
the connection relationship between the blockage b2 and pin p2 in
the corresponding connection graph.

3.2 Spanning graph
In [17], a spanning graph is introduced as an intermediate step

in minimal spanning tree construction. Given a set of points on the
plane, a spanning graph is an undirected graph over the points that
contains at least one minimal spanning tree. The number of edges in
the graph is called the cardinality of the graph.

The construction of spanning graph is illustrated in Figure 6. From
each point p, a plane can be divided into 8 regions by horizontal, ver-
tical and ±45o lines through p. It can be proved that the rectilinear
distance between any two points in one region is always smaller than
the maximal distance from them to p. Due to the cycle property of a
minimal spanning tree, that is, the longest edge on any cycle should
not be included in any minimal spanning tree, which means only the
closest point to p in each region needs to be connected to p. Consid-
ering all given points, the connections will form a spanning graph of
cardinality O(n). In other words, spanning graph is able to describe
the relative geometrical relationship between points in the plane us-
ing O(n) edges.

Enlightened by the spanning graph in MST construction, we bor-
row and revise this idea to solve RSMTRB. The details are pre-
sented in following section.

4. SPANNING GRAPH BASED APPROACH

IN RSMTRB

4.1 Search regions
In general spanning graph, each point p corresponds to 8 regions

which are divided by the horizontal, vertical and ±45o lines going
through p. Then we search each region and find the closest point
in each region and connect it to p. While in RSMTRB, for each
blockage bi, we divide the whole plane into 8 regions as shown in
Figure 7(a). Each corner of blockage bi has 3 neighboring search

�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

R

R R

R

RRR

2

3 4 5

6

781

R R

R R

(b)(a)

b

p
1

2p p3

p
4

p

R

2 3

41

Figure 7: Search regions for blockage and pin

�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�

✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆

✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝

✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞
✞✁✞

✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟
✟✁✟

✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠
✠✁✠✁✠✁✠

✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡
✡✁✡✁✡✁✡

☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛

☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞

✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌
✌✁✌

✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍
✍✁✍

✎✁✎✁✎✁✎✁✎
✎✁✎✁✎✁✎✁✎
✎✁✎✁✎✁✎✁✎
✎✁✎✁✎✁✎✁✎
✎✁✎✁✎✁✎✁✎
✎✁✎✁✎✁✎✁✎

✏✁✏✁✏✁✏✁✏
✏✁✏✁✏✁✏✁✏
✏✁✏✁✏✁✏✁✏
✏✁✏✁✏✁✏✁✏
✏✁✏✁✏✁✏✁✏
✏✁✏✁✏✁✏✁✏

b1

b b
b

2 3
4

b1

b b
b

2 3
4

(a) (b)

Figure 8: Visible points in search region for different blockages

regions which are adjacent to this corner. We call these three regions
as neighboring search regions for a given corner point. For example,
the neighboring search regions for the lowerleft corner p1 in Fig-
ure 7(a) are R8, R1 and R2. For each pin p, we divide the whole
plane into 4 search regions. The corresponding neighboring search
regions for p are R1, R2, R3 and R4 as shown in Figure 7(b).

For each v ∈ V , we connect the closest visible point in v’s each
neighboring search region to v. Note that the visible point in each
search region could be different for complete blockage and direc-
tional blockage. For example, between Figure 8(a) and Figure 8(b),
the only difference is that the blockage b3 is a complete blockage in
Figure 8(a) while a vertical blockage in Figure 8(b). The search re-
gion R2 for blockage b4 is denoted as the area enclosed by the dashed
segments. Obviously, the search region in Figure 8(b) is larger than
that in Figure 8(a). In Figure 8(a), there exists only 1 visible point
in region R2 of b4. While in Figure 8(b), there are 4 visible points in
R2 of b4.

A few natural questions may be raised as follows. First, why do we
not apply ±45o lines in defining RSMTRB search region? If ±45o

lines are applied, each corner and pin has 6 and 8 search regions,
respectively. We find that in practice, the total number of edges for
spanning graph by our method is actually very close to the one by
the method where ±45o lines are applied. However, ignoring these
±45o lines can greatly simplify the construction of spanning graph.

Second, why do we only consider 3 neighboring search regions for
each corner p of blockage b? This is because for any visible point q

in the rest 5 search regions of b, we can always find another corner
p′ of b such that q lies in one search region of p′ and a shortest path
from p to q can always be obtained by making p′ as an intermediate
point in the path.

In addition, for each point p, why do we only consider the connec-
tion with its visible points? The reason is that between the visible
region and invisible region, there must exist at least one intermedi-

�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎

R

R

2

3 4

bb

R

R 2

p

12

q

Figure 9: Example of invisible region for point p

ate blockage such that the point p can always reach the points in
invisible region by making use of the boundaries of the intermediate
blockage(s) as part of the shortest path. As an example in Figure 9,
region R2 of blockage b2 is invisible to the upperleft corner p of
b1. However, any point in R2 of b2 can be reached from p by using
boundaries of b2 as part of the shortest path.

4.2 Spanning graph construction in RSMTRB

First, from blockage set B, we find out a subset Bs which includes
each blockage lying within or intersected by the bounding box of net.
Let Vs be a point set which includes all corners of Bs and pins of a
given net. Our initial spanning graph G has Vs as its vertices and all
blockage boundary segments of Bs as its edges. Then, we incremen-
tally build the graph by applying a sweep line based edge connection
among vertices in Vs. For any point v ∈ Vs, we only connect at most
one visible point v′ in each neighboring search region to v, where
v′ ∈ Vs and v′ is the closest point to v in the corresponding neigh-
boring search region.

Based on an O(n log n) sweep line algorithm proposed in [17],
we propose a revised sweep line algorithm to construct spanning
graph in RSMTRB. Our construction algorithm consists of four
passes. Each pass performs edge connection for a pair of search re-
gions of Vs. For sake of simplifying the exposition, we only present
the detail procedures of Pass one which performs edge connection
for search region R2 and R6 of all corner points.

First, all points in Vs are sorted by their x coordinates in non-
decreasing order. Note that for each blockage, lowerleft corner shares
the same x coordinate as upperleft corner and lowerright corner shares
the same x coordinate as upperright corner. We only need to sort left
boundary and right boundary segment of each blockage instead of
point by point to speed up sorting process. Note that a fundamental
operation of sweep line algorithm is to keep an active set A of v such
that all points in A are visible to v. We thus build an active set A and
dynamically keep A by adding and deleting points for set A. Starting
with an empty set A, we check each point vi in the sorted list Vss. If
vi is not a lowerleft corner of a blockage (i.e., v is either a pin or one
of the other three corners of a blockage), we just add vi into set A,
otherwise we perform edge connection for vi as follows. Suppose vi

is the lowerleft corner of blockage bj . We first pick the point vi+1

which is right after vi in the list of Vss. Note that vi+1 must be the
upperleft corner point of bj due to the attribute of our sorted list Vss .
Then, we check each point a in A. If point a lies in region R2 of bj ,
we add this point to another set As. If bj is not a vertical blockage,
we delete this point from A. After that, we find out two points q and
q′ from As which are closest to vi and vi+1, respectively, in rectilin-
ear distance. Finally, we add two edges, (vi, q) and (vi+1, q

′), into
graph G. Note that q and q′ could be the same point in As. Before
we move to the next point in Vss, we vacate set As.

An example is shown in Figure 10. The bold-faced segments are
the edges added to graph G after edge connection is performed for
R2 of all corner points. Since search region R6 has the reverse sweep
sequence, we can make use of the same sorted list Vss to perform
edge connection for R6 in Pass one. Similarly, in Pass two, we per-
form edge connection for search region R4 and R8 of blockages after
sorting Vs in a non-decreasing order with their y coordinates. In Pass
three, we perform similar edge connection for R1 and R5 of block-
ages and R1 and R3 of pins after sorting Vs in non-decreasing x+y.
Similarly, in Pass four, edge connection is performed for search re-
gion R3 and R7 of blockages and R2 and R4 of pins after Vs is
sorted in non-decreasing y − x.

In order to achieve O(n) running time, the active sets A and As

must be efficiently maintained so that searching, deletion, and inser-
tion each can be done in O(log n) time. The spanning graph after
four passes is shown in Figure 11. The algorithm of spanning graph
construction in RSMTRB is summarized in Algorithm 1. The de-
tail procedure of edge connection for search region R2 is summa-

p1

b2

b1

b3

b4

b5

p4

p2

p3

Figure 10: Edge connection for region R2.

p1

p2

p3 p4

b2

b1

b3

b4

b5

Figure 11: Complete spanning graph

rized in Algorithm 2.

Algorithm 1: Spanning graph construction in RSMTRB

Input: Vs

sort Vs by non-decreasing x;
perform edge connection for R2 and R6 of all corners;
sort Vs by non-decreasing y;
perform edge connection for R4 and R8 of all corners;
sort Vs by non-decreasing x + y;
perform edge connection for R1 and R5

of all corners and R1 and R3 of all pins;
sort Vs by non-decreasing y − x;
perform edge connection for R3 and R7

of all corners and R2 and R4 of all pins;
Return:spanning graph G for Vs

5. RSMT CONSTRUCTION
After we complete the spanning graph G = (V, E), we apply a

heuristic to construct an RSMT based on the graph G. The heuristic
consists of following six steps. An example is shown from Figure 12
to Figure 17 to illustrate each step.

Step 1: Let P be a set of pins for a net. We construct a complete
undirected graph G1 = (V1, E1) from G and P in such a way that
V1 = P and for each edge (vi, vj) ∈ E1, the length on the edge
(vi, vj) is equal to the length of the shortest path from vi to vj in
graph G. See Figure 12 as an illustration for step 1. The length of
edge (p1, p3) in G1 is the length of the shortest path from p1 to p3

Algorithm 2: edge connection for R2

Input: a sorted Vss with non-decreasing x.
A = φ;
For each vi ∈ Vss {
if (vi is a not a lowerleft corner of bj){

add vi to A;
else {

if (A! = φ){
As = φ;
if (bj is not a vertical blockage)

delete points from A which are located in R2 of vi;
add the points located in R2 of vi to As;
if (As! = φ){

find point q and q′ from As which are closest to
vi and vi+1, respectively;

add new edge (vi, q) and (vi+1, q
′) to graph G;

}
}

}
}

p1

p3 p4

b2

b1

b3

b4

b5

p2

p3 p4

p1

p2

12

9

13

6

15

9

G1G

Figure 12: Step 1

.

in graph G, which is shown in bold-fased segments.
Step 2: Find the minimum spanning tree T1 of G1. If there exist

several minimum spanning trees, pick an arbitrary one. In practice,
we always pick the first one which we obtain. See Figure 13 as an
illustration for step 2.

Step 3: Construct the subgraph Gs of G as follows. First we con-
struct an intermediate subgraph G′

s = (E′, V ′) of G by replacing
each edge in T1 by its corresponding shortest path in G. If there are
several shortest paths, pick an arbitrary one. In practice, we always
pick the first one which we obtain. The edges of resulting graph
G′

s are shown as bold-faced solid segments in Figure 14. Then we
build Gs by adding edge (vi, vj) to G′

s, where vi ∈ V ′, vj ∈ V ′

and (vi, vj) ∈ E. The added edges are shown as bold-faced dashed
segments in Figure 14.

Step 4: Find minimum spanning tree Ts of Gs. If there are several
minimum spanning trees, pick an arbitrary one. See Figure 15 as an
illustration for step 4.

Step 5: Construct a Steiner tree Th from Ts by deleting edges in
Ts, if necessary, so that all the leaves in Th are pins. As illustrated
in Figure 16, in this example, we could not find any leaf which is
blockage corner point.

Step 6: Rectilinearize Th to obtain a rectilinear steiner tree Tr .
See Figure 17 as an illustration for step 6.

6. EXPERIMENTAL RESULTS
We implemented the spanning graph based RSMTRB algorithm

p3 p4

p1

9

6

p2

12

G1 T1

p3 p4

p1

p2

12

9

13

6

15

9

Figure 13: Step 2

.

p3 p4

p1

12

9

6

p2

p1

p3 p4

b2

b1

b3

b4

b5

p2

+

G

T1

Gs

p1

p4

b2

b1

b3

b4

b5

p2

p3

Figure 14: Step 3

.

Ts

p1

p4

b2

b1

b3

b4

b5

p2

p3

Gs

p1

p4

b1

b3

b4

b5

p2

p3

b2

Figure 15: Step 4

.

Th

p1

p4

b2

b1

b3

b4

b5

p2

p3

p1

p4

b1

b3

b4

b5

p2

p3

b2

Ts

Figure 16: Step 5

.

Th

p1

p4

b2

b1

b3

b4

b5

p2

p3

p1

p4

b1

b3

b4

b5

p2

p3

b2

Ts

Figure 17: Step 6

.

Figure 18: Blockage placement in test case 1

.

in C++ language. We compile and run the program on Intel Pentium
4 machine with 2.80GHz frequency and 1.5GB RAM. We pick 5 in-
dustrial test cases and randomly create blockages for these test cases.
In case a source pin is inside a blockage, we move this pin to upper-
left corner of this blockage. If sink pin is inside a blockage, we move
this pin to lowerright corner of this blockage. The statistic data of
test cases are listed in Table 1. The blockage placement for test case
1 is shown in Figure 18 as an example. We compare our approach
with the traditional sequential approach illustrated in Figure 1.

The total wire length and run time comparison is given in Table
2. The results show that our spanning graph based approach can
reduce 12.081% (on average) wire length of RSMT , comparing to
sequential approach. And the run time is only increased by 48.440%
on average.

Table 3 shows the wire length reduction percentage of different
pin nets for each test case. It is not hard to find that our approach has
most significant wire length reduction on multi-pin nets, especially
while the pin number exceeds 50. This will benefit timing closure
for the whole design. Since in general, multi-pin nets or high fanout
nets contribute most significant portion of interconnect delay in the
most timing critical path of a circuit.

Test cases 1 2 3 4 5

num of inst 158672 35601 437444 277356 450367

num of I/O pins 865 201 1774 1453 1276

num of nets 169243 36244 477380 285556 451250

2 pin net (%) 52.2 63.4 57.4 71.4 76.1

3-10 pin net (%) 42.9 32.8 21.2 16.3 16.8

11-50 pin net (%) 4.5 3.2 17.6 10.1 6.7

51-100 pin net(%) 0.34 0.47 3.50 2.01 0.36

≥ 101 pin net(%) 0.06 0.13 0.30 0.20 0.03

num of blkgs 145 37 136 539 487

Table 1: Statistics of test cases

7. CONCLUSION AND DISCUSSION
In this paper, we propose an efficient and effective approach to

construct rectilinear steiner minimum tree with rectilinear blockages.
The connection graph we used in this approach is called spanning
graph which only contains O(n) edges and vertices. An O(n log n)
time algorithm is proposed to construct spanning graph for RSMTRB.
The experimental results shows that this approach can achieve a so-
lution with significantly reduced wire length. The total run time in-
creased is negligible in the whole design flow.

Since our heuristic is graph-based, it can be easily modified to
handle other metrics. A possible extension is to construct timing
aware routing tree topology for a net among routing blockages.

8. REFERENCES
[1] P. Berman, U. Fossmeier, M. Kaufmann, M. Karpinski and A.

Zelikovsky. Approaching the 5/4-approximation for rectilinear Steiner
trees. Proc. European Symp. on Algorithms (ESA), Springer Verlag
Lecture Notes in Computer Science 762, pages 533-542, 1994.

[2] M. Borah, R. M. Owens, and M. J. Irwin. A fast and simple Steiner
routing heuristic. , Springer Verlag Lecture Notes in Computer Science
762, pages 533-542, 1994.

[3] M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal

on Applied Mathematics, 14, pages 255-265, 1966.

[4] F. K. Hwang and D. S. Richards and P. Winter. The Steiner tree problem.
North-Holland, annals of Discrete Mathematics 53, 1992.

[5] A. B. Kahng and G. Robins. A new class of iterative Steiner tree
heuristics with good performance. IEEE Transaction on CAD, 11, pages
1462-1465, 1992.

[6] A. Zelikovsky. An 11/6-approximation for the network Steiner tree
problem. Algorithmica, 9, pages 463-470, 1993.

[7] M. Garey and D. Johnson. The rectilinear Steiner tree problem is
NP-complete. SIAM J. Appl. Math,32, pages 826-834, 1977.

[8] C. Y. Lee. An algorithm for path connections and its application. IRE

Transaction on Electronic Computers,V.EC-10, pages 346-365, 1961.

[9] S. B. Akers. A modification of Lee’s Path Connection Algorithm. IEEE

Transaction on Electronic Computer,16(4), pages 97-98, 1967.

[10] J. Soukup. Fast Maze Router. Proceeding. of 15th Design Automation

Conference, pages 100-102, 1978.

[11] F. Rubin. The Lee Connection Algorithm. IEEE Transaction on

Computer, 23, pages 907-914, 1974.

[12] Y. Yang, Q. Zhu, T. Jing, X. Hong and Y. Wang. Rectilinear Steiner
minimal tree among obstacles. ASIC 5th Intl. Conf., Vol. 1, 21-24 pages
348-351, Oct. 2003.

[13] T. Lengauer. combinatorial Algorithms for Integrated Circuit Layout.
Wiley, England, 1990.

[14] J. Ganley and J. P. Cohoon. Routing a Multi-Terminal Critical Net:
Steiner Tree Construction in the Presence of Obstacles. Intl. Symp. on

Circuits and Systems, Vol. 1, pages 113-116, 1994.

[15] K. L. Clarkson, S. Kapoor and P. M. Vaidya. Rectilinear shortest paths
through polygonal obstacles in O(n log2

n) time. ACM Symp. on

Computational Geometry, pages 251–257, 1987.

[16] K. L. Clarkson, S. Kapoor and P. M. Vaidya. Rectilinear shortest paths

through polygonal obstacles in O(n log3/2
n) time. Unpublished

manuscript.

[17] H. Zhou, N. Shenoy, and W. Nicholls. Efficient spanning tree
construction without delaney triangulation. Information Processing

Letter, 81(5), 2002.

Total wire length (µm) Total run time (s)

Test case Sequential Ours decreased (%) Sequential Ours increased (%)

1 15174595 13855164 8.695 9.531 12.193 27.926

2 1995 1820 8.778 1.404 2.361 68.112

3 2854122 2400499 15.890 18.671 27.339 46.425

4 2452867 2051254 16.371 14.998 20.668 37.805

5 1022723 913584 10.670 13.576 21.984 61.933

On average 12.081 48.440

Table 2: Totoal wire length and run time comparison.

Test case 2 pin net(%) 3-10 pin net(%) 11-50 pin net (%) 51-100 pin net (%) ≥ 101 pin net (%)

1 4.366 14.042 15.301 22.923 29.989

2 4.619 13.990 14.935 23.494 30.492

3 6.984 19.831 21.404 27.230 32.103

4 6.972 19.983 22.398 24.506 33.840

5 4.581 15.720 18.591 20.383 31.729

On average 5.492 16.713 18.526 23.707 31.631

Table 3: Wirelength reduction percentage on nets.

