Efficient rectilinear Steiner tree construction with rectilinear blockages

- Source link
Z. Shen, Chris Chu, Ying-Meng Li

Institutions: Cadence Design Systems
Published on: 02 Oct 2005 - International Conference on Computer Design
Topics: Rectilinear Steiner tree, Steiner tree problem, Minimum spanning tree, Spanning tree and k-minimum spanning tree

Related papers:

- An O (nlogn) algorithm for obstacle-avoiding routing tree construction in the λ-geometry plane
- Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles
- Efficient obstacle-avoiding rectilinear steiner tree construction
- The Rectilinear Steiner Tree Problem is \$NP\$-Complete
- An-OARSMan: obstacle-avoiding routing tree construction with good length performance

Efficient Rectilinear Steiner Tree Construction with Rectilinear Blockages

Zion Shen
Cadence Design Systems 555 River Oaks Parkway San Jose, CA, 95134
zion@cadence.com

Chris C.N. Chu
Department of ECE
Iowa State University
Ames, Iowa, 50011
cnchu@iastate.edu

Ying-Meng Li

Atoptech, Inc.
2700 Augustine Drive
Santa Clara, CA 95054

Abstract

Given n points on a plane, a Rectilinear Steiner Minimal Tree ($R S M T$) connects these points through some extra points called steiner points to achieve a tree with minimal total wire length. Taking blockages into account dramatically increases the problem complexity. It is extremely unlikely that an efficient optimal algorithm exists for Rectilinear Steiner Minimal Tree Construction with Rectilinear Blockages ($R S M T R B$). Although there exist some heuristic algorithms for this problem, they have either poor quality or expensive running time.

In this paper, we propose an efficient and effective approach to solve $R S M T R B$. The connection graph we used in this approach is called spanning graph which only contains $O(n)$ edges and vertices. An $O(n \log n)$ time algorithm is proposed to construct spanning graph for $R S M T R B$. The experimental results show that this approach can achieve a solution with significantly reduced wire length. The total run time increased is negligible in the whole design flow.

1. INTRODUCTION

Given n points on a plane, a Rectilinear Steiner Minimal Tree ($R S M T$) connects these points through some extra points called steiner points to achieve a tree with minimal total wire length. Many works [1-12, 14-17] have been done on this fundamental problem in electronic design automation. However, most of them did not take blockages into consideration. In fact, today's design often contains many rectilinear routing blockages, e.g., macro cells, IP blocks, and pre-routed nets. Thus, rectilinear Steiner minimal tree construction with rectilinear blockages $(R S M T R B)$ becomes a very practical problem.

Generally, $R S M T$ is used in initial net topology creation for global routing or incremental net tree topology creation in physical synthesis. It is also utilized to estimate total wire length, congestion and timing in early design stages, like block floorplanning and cell placement. The timing and congestion information obtained from $R S M T$ can be used as a criteria in following timing and congestion driven

[^0]routing. Note that it is the problem applied hundreds of thousands times in each design flow and many times this problem comes with very large input size. $R S M T$ thus deserves much intensive research in VLSI CAD.

Unfortunately, $R S M T$ itself was first shown to be strongly NPcomplete by Garey [7] in 1977. Taking blockages into account dramatically increases the problem complexity. Thus, it is extremely unlikely that an efficient optimal algorithm exists for $R S M T R B$. Although there exist some heuristic algorithms for this problem, they have either poor quality or expensive run time.

Existing heuristics for $R S M T R B$ can be classified into three categories.

The first category is maze routing [8] based approach. Maze routing can optimally route two pin nets. However, for multi-pin nets, designers need to introduce a multi-terminal variant [9-11], which incurs a solution far from optimal. In addition, since the run time and memory used in maze routing are proportional to the size of the routing area rather than the size of actual problem (i.e., the number of pins and blockages), maze routing algorithms are inefficient in terms of run time and memory.

The second category is called sequential approach which typically consists of two steps. These two steps are illustrated in Figure 1. Step 1 is to construct a tree T_{1}, which is either a minimum spanning tree $(M S T)$ or a Steiner minimal tree $(S M T)$ with absence of blockages. In this example, T_{1} is an $M S T$. Step 2 is to transform T_{1} to a $R S M T$ with blockages by substituting edges around the blockages for the edges overlapped by the blockages. Generally a simple line sweep technique is applied in step 2. For example, for pin pair $\left(p_{1}, p_{4}\right)$, we have two possible L-shaped routes, r_{1} and r_{2} to interconnect p_{1} and p_{4} as illustrated in Figure 2(a) with absence of blockages. Then we sweep all blockages which overlap with these two routes and choose one route with smaller corresponding detour. As shown in Figure 2(b), route r_{2} are selected since the detour length introduced by r_{2} is smaller than that by r_{1}. This approach is commonly used in industry due to its simplicity and efficiency. However, since step 1 neglects the global view of blockages, step 2 can only locally remove overlap between T_{1} and blockages. The quality(i.e., the total wire length) of resulting $R S M T$ can be much worse than expected in many cases.

Later on, Yang et.al [12] introduced a complicated 4-process heuristics to remove the overlaps in step 2 in a clever way. However the approach still cannot avoid bad solution for many cases. This is because a bad T_{1} due to neglecting blockages in step 1 could introduce an unexpected routing detour in step 2 .

The third category consists of connection graph [13] based approaches. Typically, the approach in this category is to first construct a connection graph by pins and blockage boundaries, which guarantees that at least one rectilinear Steiner minimal (or close to minimal) tree is embedded in the graph. Then, some graph searching tech-

Figure 1: Sequential approach to solve $R S M T R B$.

Figure 2: Overlap removal in sequential approach. (a) two Lshaped routes, r_{1} and r_{2}, before overlap removal. (b) route r_{1} and r_{2} after overlap removal.
nique is used to find a $R S M T$ as a subgraph from the connection graph. Unlike sequential approach, this approach can globally catch the view of both pins and blockages in the design. Therefore, the connection graph based approach can generally achieve an optimal or near optimal $R S M T$.

The efficiency of connection graph based approach depends on the size of graph. While the accuracy or effectiveness of this approach depends on whether the graph contains a good Steiner minimal tree. Obviously, there is a trade-off between efficiency and accuracy in this approach.

In [14], a connection graph is called escape graph which is constructed by escape segments. The number of vertex in the escape graph can be $O\left(n^{2}\right)$ in the worst case, where n is the sum of pins and blockage boundaries. Even the size of a reduced escape graph is still quite huge. In [15], authors proposed a connection graph with $O(n \log n)$ vertices and edges and later on [16], they introduced an even smaller graph which contains $O(n \sqrt{\log n})$ vertices and $O\left(n \log ^{3 / 2} n\right)$ edges. The construction of the connection graph takes $O\left(n \log ^{3 / 2} n\right)$ time and memory usage.

In this paper, we will propose an efficient and effective connection graph. It is called spanning graph. We show that the spanning graph contains only $O(n)$ vertices and $O(n)$ edges, which is smaller than any previous connection graph. In addition, we show that our spanning graph can always produce a $R S M T$ with good quality. Due to the special property of the spanning graph, the construction takes only $O(n \log n)$ time and memory usage, which are also smaller than those in any previous connection graph construction.

We organize the rest of the paper as follows. In section 2 , we will formally define the problem and explain the details of the basic component in the problem. In section 3, we will first demonstrate the drawback in the escape graph and then introduce the spanning graph as a connection graph in $R S M T R B$. Section 4 and 5 describe the details of construction of spanning graph for RSMTRB. The experimental results are shown in section 6 . The paper is concluded in section 7 .

2. PROBLEM FORMULATION

Let $P=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{m}\right\}$ be a set of pins for m pin net. Let $B=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{k}\right\}$ be a set of rectangular blockages. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}=P \cup\{$ corners in $B\}$ as the vertex set in the problem, where each v_{i} has coordinates $\left(x_{i}, y_{i}\right)$. Note that each rectangular blockage has 4 corners, we have $n \leq m+4 k$. The

Figure 3: Dissect a rectilinear blockage into 3 rectangular blockages.

Figure 4: Three types of blockages: (a) Complete blockage (b) Vertical blockage (c) Horizontal blockage
rectilinear distance between v_{i} and v_{j} is given as $\left|x_{i}-x_{j}\right|+\mid y_{i}-$ $y_{j} \mid$. A $R S M T$ connects all pins through some extra points (called Steiner points) to achieve a minimal total length, while avoiding the intersection with any blockage in the design.

2.1 Rectilinear blockages

If all boundaries of a blockage are either horizontal or vertical, we call this blockage as rectilinear blockage. Note that each rectilinear blockage can be dissected into a set of rectangular blockages (see Figure 3 as an example). In the rest of paper, for simplicity, we assume each blockage to be rectangular.

2.2 Directional blockages

In multi-layer routing, there exist three types of blockages. The first one is called complete blockage which blocks all vertical and horizontal metal layers in its obstructed area. A complete blockage requires all routes must detour around it. The second type is denoted as vertical blockage in which all vertical layers in obstructed area are blocked while a certain number of horizontal layers are still available for routing. The routes are allowed to horizontally pass through the obstructed area, while not allowed in vertical direction. The third type is called horizontal blockage, where routes can still vertically pass through the obstructed area. These three types of directional blockages are illustrated in Figure 4.

3. ESCAPE GRAPH VS. SPANNING GRAPH

3.1 Redundancy in escape graph

As we mentioned in Section 1, a connection graph can catch the global view of both blockages and pins. And the efficiency of this approach highly depends on the size of the connection graph. In other words, a good connection graph is able to describe all necessary geometrical relationship between pins and blockages using as few edges as possible. In [14], the connection graph is called escape graph, which is constructed by escape segments. Escape segments are formed by horizontal and vertical lines extending from pins and blockage boundaries, and ending with their abutment to either a blockage boundary or the internal perimeter of the routing region. The number of vertex in the escape graph can be $O\left(n^{2}\right)$ in the worst case. An example is shown in Figure 5. The collection of the escape segments (shown as dashed segments) composes the escape graph. And the graph preserves a good $R S M T$ for a multi-pin net. However, we notice that most of edges and vertices are redundant in the escape graph for finding a $R S M T$. For example, instead of using

Figure 5: Escape graph

Figure 6: Eight regions defined for each point in spanning graph.

13 edges, 3 edges (shown as solid segments) are enough to represent the connection relationship between the blockage b_{2} and pin p_{2} in the corresponding connection graph.

3.2 Spanning graph

In [17], a spanning graph is introduced as an intermediate step in minimal spanning tree construction. Given a set of points on the plane, a spanning graph is an undirected graph over the points that contains at least one minimal spanning tree. The number of edges in the graph is called the cardinality of the graph.

The construction of spanning graph is illustrated in Figure 6. From each point p, a plane can be divided into 8 regions by horizontal, vertical and $\pm 45^{\circ}$ lines through p. It can be proved that the rectilinear distance between any two points in one region is always smaller than the maximal distance from them to p. Due to the cycle property of a minimal spanning tree, that is, the longest edge on any cycle should not be included in any minimal spanning tree, which means only the closest point to p in each region needs to be connected to p. Considering all given points, the connections will form a spanning graph of cardinality $O(n)$. In other words, spanning graph is able to describe the relative geometrical relationship between points in the plane using $O(n)$ edges.

Enlightened by the spanning graph in $M S T$ construction, we borrow and revise this idea to solve RSMTRB. The details are presented in following section.

4. SPANNING GRAPH BASED APPROACH IN $R S M T R B$

4.1 Search regions

In general spanning graph, each point p corresponds to 8 regions which are divided by the horizontal, vertical and $\pm 45^{\circ}$ lines going through p. Then we search each region and find the closest point in each region and connect it to p. While in RSMTRB, for each blockage b_{i}, we divide the whole plane into 8 regions as shown in Figure 7(a). Each corner of blockage b_{i} has 3 neighboring search

(a)

(b)

Figure 7: Search regions for blockage and pin

Figure 8: Visible points in search region for different blockages
regions which are adjacent to this corner. We call these three regions as neighboring search regions for a given corner point. For example, the neighboring search regions for the lowerleft corner p_{1} in Figure $7(a)$ are R_{8}, R_{1} and R_{2}. For each pin p, we divide the whole plane into 4 search regions. The corresponding neighboring search regions for p are R_{1}, R_{2}, R_{3} and R_{4} as shown in Figure 7(b).
For each $v \in V$, we connect the closest visible point in v 's each neighboring search region to v. Note that the visible point in each search region could be different for complete blockage and directional blockage. For example, between Figure 8(a) and Figure 8(b), the only difference is that the blockage b_{3} is a complete blockage in Figure 8(a) while a vertical blockage in Figure 8(b). The search region R_{2} for blockage b_{4} is denoted as the area enclosed by the dashed segments. Obviously, the search region in Figure $8(b)$ is larger than that in Figure 8(a). In Figure 8(a), there exists only 1 visible point in region R_{2} of b_{4}. While in Figure 8(b), there are 4 visible points in R_{2} of b_{4}.

A few natural questions may be raised as follows. First, why do we not apply $\pm 45^{\circ}$ lines in defining $R S M T R B$ search region? If $\pm 45^{\circ}$ lines are applied, each corner and pin has 6 and 8 search regions, respectively. We find that in practice, the total number of edges for spanning graph by our method is actually very close to the one by the method where $\pm 45^{\circ}$ lines are applied. However, ignoring these $\pm 45^{\circ}$ lines can greatly simplify the construction of spanning graph.

Second, why do we only consider 3 neighboring search regions for each corner p of blockage b ? This is because for any visible point q in the rest 5 search regions of b, we can always find another corner p^{\prime} of b such that q lies in one search region of p^{\prime} and a shortest path from p to q can always be obtained by making p^{\prime} as an intermediate point in the path.
In addition, for each point p, why do we only consider the connection with its visible points? The reason is that between the visible region and invisible region, there must exist at least one intermedi-

Figure 9: Example of invisible region for point p
ate blockage such that the point p can always reach the points in invisible region by making use of the boundaries of the intermediate blockage(s) as part of the shortest path. As an example in Figure 9, region R_{2} of blockage b_{2} is invisible to the upperleft corner p of b_{1}. However, any point in R_{2} of b_{2} can be reached from p by using boundaries of b_{2} as part of the shortest path.

4.2 Spanning graph construction in $R S M T R B$

First, from blockage set B, we find out a subset B_{s} which includes each blockage lying within or intersected by the bounding box of net. Let V_{s} be a point set which includes all corners of B_{s} and pins of a given net. Our initial spanning graph G has V_{s} as its vertices and all blockage boundary segments of B_{s} as its edges. Then, we incrementally build the graph by applying a sweep line based edge connection among vertices in V_{s}. For any point $v \in V_{s}$, we only connect at most one visible point v^{\prime} in each neighboring search region to v, where $v^{\prime} \in V_{s}$ and v^{\prime} is the closest point to v in the corresponding neighboring search region.

Based on an $O(n \log n)$ sweep line algorithm proposed in [17], we propose a revised sweep line algorithm to construct spanning graph in $R S M T R B$. Our construction algorithm consists of four passes. Each pass performs edge connection for a pair of search regions of V_{s}. For sake of simplifying the exposition, we only present the detail procedures of Pass one which performs edge connection for search region R_{2} and R_{6} of all corner points.

First, all points in V_{s} are sorted by their x coordinates in nondecreasing order. Note that for each blockage, lowerleft corner shares the same x coordinate as upperleft corner and lowerright corner shares the same x coordinate as upperright corner. We only need to sort left boundary and right boundary segment of each blockage instead of point by point to speed up sorting process. Note that a fundamental operation of sweep line algorithm is to keep an active set A of v such that all points in A are visible to v. We thus build an active set A and dynamically keep A by adding and deleting points for set A. Starting with an empty set A, we check each point v_{i} in the sorted list $V_{s s}$. If v_{i} is not a lowerleft corner of a blockage (i.e., v is either a pin or one of the other three corners of a blockage), we just add v_{i} into set A, otherwise we perform edge connection for v_{i} as follows. Suppose v_{i} is the lowerleft corner of blockage b_{j}. We first pick the point v_{i+1} which is right after v_{i} in the list of $V_{s s}$. Note that v_{i+1} must be the upperleft corner point of b_{j} due to the attribute of our sorted list $V_{s s}$. Then, we check each point a in A. If point a lies in region R_{2} of b_{j}, we add this point to another set A_{s}. If b_{j} is not a vertical blockage, we delete this point from A. After that, we find out two points q and q^{\prime} from A_{s} which are closest to v_{i} and v_{i+1}, respectively, in rectilinear distance. Finally, we add two edges, $\left(v_{i}, q\right)$ and $\left(v_{i+1}, q^{\prime}\right)$, into graph G. Note that q and q^{\prime} could be the same point in A_{s}. Before we move to the next point in $V_{s s}$, we vacate set A_{s}.

An example is shown in Figure 10. The bold-faced segments are the edges added to graph G after edge connection is performed for R_{2} of all corner points. Since search region R_{6} has the reverse sweep sequence, we can make use of the same sorted list $V_{s s}$ to perform edge connection for R_{6} in Pass one. Similarly, in Pass two, we perform edge connection for search region R_{4} and R_{8} of blockages after sorting V_{s} in a non-decreasing order with their y coordinates. In Pass three, we perform similar edge connection for R_{1} and R_{5} of blockages and R_{1} and R_{3} of pins after sorting V_{s} in non-decreasing $x+y$. Similarly, in Pass four, edge connection is performed for search region R_{3} and R_{7} of blockages and R_{2} and R_{4} of pins after V_{s} is sorted in non-decreasing $y-x$.

In order to achieve $O(n)$ running time, the active sets A and A_{s} must be efficiently maintained so that searching, deletion, and insertion each can be done in $O(\log n)$ time. The spanning graph after four passes is shown in Figure 11. The algorithm of spanning graph construction in $R S M T R B$ is summarized in Algorithm 1. The detail procedure of edge connection for search region R_{2} is summa-

Figure 10: Edge connection for region R_{2}.

Figure 11: Complete spanning graph
rized in Algorithm 2.

```
Algorithm 1: Spanning graph construction in \(R S M T R B\)
Input: \(V_{s}\)
sort \(V_{s}\) by non-decreasing \(x\);
perform edge connection for \(R_{2}\) and \(R_{6}\) of all corners;
sort \(V_{s}\) by non-decreasing \(y\);
perform edge connection for \(R_{4}\) and \(R_{8}\) of all corners;
sort \(V_{s}\) by non-decreasing \(x+y\);
perform edge connection for \(R_{1}\) and \(R_{5}\)
    of all corners and \(R_{1}\) and \(R_{3}\) of all pins;
sort \(V_{s}\) by non-decreasing \(y-x\);
perform edge connection for \(R_{3}\) and \(R_{7}\)
    of all corners and \(R_{2}\) and \(R_{4}\) of all pins;
Return:spanning graph \(G\) for \(V_{s}\)
```


5. $R S M T$ CONSTRUCTION

After we complete the spanning graph $G=(V, E)$, we apply a heuristic to construct an $R S M T$ based on the graph G. The heuristic consists of following six steps. An example is shown from Figure 12 to Figure 17 to illustrate each step.

Step 1: Let P be a set of pins for a net. We construct a complete undirected graph $G_{1}=\left(V_{1}, E_{1}\right)$ from G and P in such a way that $V_{1}=P$ and for each edge $\left(v_{i}, v_{j}\right) \in E_{1}$, the length on the edge $\left(v_{i}, v_{j}\right)$ is equal to the length of the shortest path from v_{i} to v_{j} in graph G. See Figure 12 as an illustration for step 1. The length of edge $\left(p_{1}, p_{3}\right)$ in G_{1} is the length of the shortest path from p_{1} to p_{3}

```
Algorithm 2: edge connection for \(R_{2}\)
Input: a sorted \(V_{s s}\) with non-decreasing \(x\).
\(A=\phi\);
For each \(v_{i} \in V_{s s}\{\)
if \(\left(v_{i}\right.\) is a not a lowerleft corner of \(\left.b_{j}\right)\{\)
        add \(v_{i}\) to \(A\);
else \{
        if \((A!=\phi)\{\)
        \(A_{s}=\phi ;\)
            if ( \(b_{j}\) is not a vertical blockage)
                delete points from \(A\) which are located in \(R_{2}\) of \(v_{i}\);
            add the points located in \(R_{2}\) of \(v_{i}\) to \(A_{s}\);
            if \(\left(A_{s}!=\phi\right)\{\)
                    find point \(q\) and \(q^{\prime}\) from \(A_{s}\) which are closest to
                        \(v_{i}\) and \(v_{i+1}\), respectively;
                add new edge \(\left(v_{i}, q\right)\) and \(\left(v_{i+1}, q^{\prime}\right)\) to graph \(G\);
            \}
        \}
\}
\}
```


Figure 12: Step 1
in graph G, which is shown in bold-fased segments.
Step 2: Find the minimum spanning tree T_{1} of G_{1}. If there exist several minimum spanning trees, pick an arbitrary one. In practice, we always pick the first one which we obtain. See Figure 13 as an illustration for step 2.

Step 3: Construct the subgraph G_{s} of G as follows. First we construct an intermediate subgraph $G_{s}^{\prime}=\left(E^{\prime}, V^{\prime}\right)$ of G by replacing each edge in T_{1} by its corresponding shortest path in G. If there are several shortest paths, pick an arbitrary one. In practice, we always pick the first one which we obtain. The edges of resulting graph G_{s}^{\prime} are shown as bold-faced solid segments in Figure 14. Then we build G_{s} by adding edge $\left(v_{i}, v_{j}\right)$ to G_{s}^{\prime}, where $v_{i} \in V^{\prime}, v_{j} \in V^{\prime}$ and $\left(v_{i}, v_{j}\right) \in E$. The added edges are shown as bold-faced dashed segments in Figure 14.

Step 4: Find minimum spanning tree T_{s} of G_{s}. If there are several minimum spanning trees, pick an arbitrary one. See Figure 15 as an illustration for step 4.

Step 5: Construct a Steiner tree T_{h} from T_{s} by deleting edges in T_{s}, if necessary, so that all the leaves in T_{h} are pins. As illustrated in Figure 16, in this example, we could not find any leaf which is blockage corner point.

Step 6: Rectilinearize T_{h} to obtain a rectilinear steiner tree T_{r}. See Figure 17 as an illustration for step 6.

Figure 13: Step 2

Figure 14: Step 3

Figure 15: Step 4

6. EXPERIMENTAL RESULTS

We implemented the spanning graph based $R S M T R B$ algorithm

Figure 16: Step 5

Figure 17: Step 6

Figure 18: Blockage placement in test case 1
in C++ language. We compile and run the program on Intel Pentium 4 machine with 2.80 GHz frequency and 1.5 GB RAM. We pick 5 industrial test cases and randomly create blockages for these test cases. In case a source pin is inside a blockage, we move this pin to upperleft corner of this blockage. If sink pin is inside a blockage, we move this pin to lowerright corner of this blockage. The statistic data of test cases are listed in Table 1. The blockage placement for test case 1 is shown in Figure 18 as an example. We compare our approach with the traditional sequential approach illustrated in Figure 1.
The total wire length and run time comparison is given in Table 2. The results show that our spanning graph based approach can reduce 12.081% (on average) wire length of $R S M T$, comparing to sequential approach. And the run time is only increased by 48.440% on average.
Table 3 shows the wire length reduction percentage of different pin nets for each test case. It is not hard to find that our approach has most significant wire length reduction on multi-pin nets, especially while the pin number exceeds 50 . This will benefit timing closure for the whole design. Since in general, multi-pin nets or high fanout nets contribute most significant portion of interconnect delay in the most timing critical path of a circuit.

Test cases	1	2	3	4	5
num of inst	158672	35601	437444	277356	450367
num of I/O pins	865	201	1774	1453	1276
num of nets	169243	36244	477380	285556	451250
2 pin net (\%)	52.2	63.4	57.4	71.4	76.1
$3-10$ pin net (\%)	42.9	32.8	21.2	16.3	16.8
11-50 pin net (\%)	4.5	3.2	17.6	10.1	6.7
51-100 pin net(\%)	0.34	0.47	3.50	2.01	0.36
≥ 101 pin net(\%)	0.06	0.13	0.30	0.20	0.03
num of blkgs	145	37	136	539	487

Table 1: Statistics of test cases

7. CONCLUSION AND DISCUSSION

In this paper, we propose an efficient and effective approach to construct rectilinear steiner minimum tree with rectilinear blockages. The connection graph we used in this approach is called spanning graph which only contains $O(n)$ edges and vertices. An $O(n \log n)$ time algorithm is proposed to construct spanning graph for $R S M T R B$. The experimental results shows that this approach can achieve a solution with significantly reduced wire length. The total run time increased is negligible in the whole design flow.

Since our heuristic is graph-based, it can be easily modified to handle other metrics. A possible extension is to construct timing aware routing tree topology for a net among routing blockages.

8. REFERENCES

[1] P. Berman, U. Fossmeier, M. Kaufmann, M. Karpinski and A. Zelikovsky. Approaching the 5/4-approximation for rectilinear Steiner trees. Proc. European Symp. on Algorithms (ESA), Springer Verlag Lecture Notes in Computer Science 762, pages 533-542, 1994.
[2] M. Borah, R. M. Owens, and M. J. Irwin. A fast and simple Steiner routing heuristic., Springer Verlag Lecture Notes in Computer Science 762, pages 533-542, 1994.
[3] M. Hanan. On Steiner's problem with rectilinear distance. SIAM Journal on Applied Mathematics, 14, pages 255-265, 1966.
[4] F. K. Hwang and D. S. Richards and P. Winter. The Steiner tree problem. North-Holland, annals of Discrete Mathematics 53, 1992.
[5] A. B. Kahng and G. Robins. A new class of iterative Steiner tree heuristics with good performance. IEEE Transaction on $C A D, 11$, pages 1462-1465, 1992.
[6] A. Zelikovsky. An 11/6-approximation for the network Steiner tree problem. Algorithmica, 9, pages 463-470, 1993.
[7] M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math,32, pages 826-834, 1977.
[8] C. Y. Lee. An algorithm for path connections and its application. IRE Transaction on Electronic Computers,V.EC-10, pages 346-365, 1961.
[9] S. B. Akers. A modification of Lee's Path Connection Algorithm. IEEE Transaction on Electronic Computer,16(4), pages 97-98, 1967.
[10] J. Soukup. Fast Maze Router. Proceeding. of 15 th Design Automation Conference, pages 100-102, 1978.
[11] F. Rubin. The Lee Connection Algorithm. IEEE Transaction on Computer, 23, pages 907-914, 1974.
[12] Y. Yang, Q. Zhu, T. Jing, X. Hong and Y. Wang. Rectilinear Steiner minimal tree among obstacles. ASIC 5th Intl. Conf., Vol. 1, 21-24 pages 348-351, Oct. 2003.
[13] T. Lengauer. combinatorial Algorithms for Integrated Circuit Layout. Wiley, England, 1990.
[14] J. Ganley and J. P. Cohoon. Routing a Multi-Terminal Critical Net: Steiner Tree Construction in the Presence of Obstacles. Intl. Symp. on Circuits and Systems, Vol. 1, pages 113-116, 1994.
[15] K. L. Clarkson, S. Kapoor and P. M. Vaidya. Rectilinear shortest paths through polygonal obstacles in $O\left(n \log ^{2} n\right)$ time. ACM Symp. on Computational Geometry, pages 251-257, 1987.
[16] K. L. Clarkson, S. Kapoor and P. M. Vaidya. Rectilinear shortest paths through polygonal obstacles in $O\left(n \log ^{3 / 2} n\right)$ time. Unpublished manuscript.
[17] H. Zhou, N. Shenoy, and W. Nicholls. Efficient spanning tree construction without delaney triangulation. Information Processing Letter, 81(5), 2002.

	Total wire length $(\mu \mathrm{m})$			Total run time (s)		
Test case	Sequential	Ours	decreased (\%)	Sequential	Ours	increased (\%)
1	15174595	13855164	8.695	9.531	12.193	27.926
2	1995	1820	8.778	1.404	2.361	68.112
3	2854122	2400499	15.890	18.671	27.339	46.425
4	2452867	2051254	16.371	14.998	20.668	37.805
5	1022723	913584	10.670	13.576	21.984	61.933
On average			12.081			48.440

Table 2: Totoal wire length and run time comparison.

Test case	2 pin net(\%)	$3-10$ pin net(\%)	$11-50$ pin net (\%)	$51-100$ pin net $(\%)$	≥ 101 pin net (\%)
1	4.366	14.042	15.301	22.923	29.989
2	4.619	13.990	14.935	23.494	30.492
3	6.984	19.831	21.404	27.230	32.103
4	6.972	19.983	22.398	24.506	33.840
5	4.581	15.720	18.591	20.383	31.729
On average	5.492	16.713	18.526	23.707	31.631

Table 3: Wirelength reduction percentage on nets.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 Copyright 2005 ICCD X-XXXXX-XX-X/XX/XX ...\$5.00.

