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Abstract. In this paper, we extend the reduced-basis approximations developed earlier for linear

elliptic and parabolic partial differential equations with affine parameter dependence to problems

involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field

variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approx-

imation which then permits an efficient offline-online computational decomposition. We first review

the coefficient function approximation procedure: the essential ingredients are (i) a good collateral

reduced-basis approximation space, and (ii) a stable and inexpensive interpolation procedure. We

then apply this approach to linear nonaffine and nonlinear elliptic and parabolic equations; in each

instance, we discuss the reduced-basis approximation and the associated offline-online computa-

tional procedures. Numerical results are presented to assess our approach.
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1. Introduction

The design, optimization, control, and characterization of engineering components or systems often re-

quires repeated, reliable, and real-time prediction of selected performance metrics, or “outputs,” se 1; typical

Keywords and phrases: Reduced-basis methods, parametrized PDEs, non-affine parameter dependence, offine-online proce-

dures, elliptic PDEs, parabolic PDEs, nonlinear PDEs

1 Massachusetts Institute of Technology, Room 3-264, Cambridge, MA USA
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“outputs” include forces, critical stresses or strains, flowrates, or heat fluxes. These outputs are typically

functionals of a field variable, ue(µ) — such as temperatures or velocities — associated with a parametrized

partial differential equation that describes the underlying physics; the parameters, or “inputs,” µ, serve to

identify a particular configuration of the component or system — geometry, material properties, boundary

conditions, and loads. The relevant system behavior is thus described by an implicit input-output relation-

ship, se(µ), evaluation of which demands solution of the underlying partial differential equation (PDE).

The abstract formulation for an elliptic problem can be stated as follows: given any µ ∈ D ⊂ R
P , we

evaluate se(µ) = ℓ(ue(µ)), where ue(µ) ∈ Xe is the solution of

a(ue(µ), v;µ) = f(v;µ), ∀v ∈ Xe. (1)

Here D is the parameter domain in which our P -tuple (input) parameter µ resides; Xe(Ω) is an appropriate

Hilbert space; Ω is a bounded domain in IRd with Lipschitz continuous boundary ∂Ω; f(·;µ), ℓ(·) are

Xe-continuous linear functionals; and a(·, ·;µ) is a Xe-continuous bilinear form.

In actual practice, of course, we do not have access to the exact solution; we thus replace ue(µ) with a

“truth” approximation, u(µ), which resides in (say) a suitably fine piecewise-linear finite element approxi-

mation space X ⊂ Xe of very large dimension N . Our “truth” approximation is thus: given any µ ∈ D, we

evaluate s(µ) = ℓ(u(µ)), where u(µ) ∈ X is the solution of

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X. (2)

We shall assume — hence the appellation “truth” — that the discretization is sufficiently rich such that u(µ)

and ue(µ) and hence s(µ) and se(µ) are indistinguishable at the accuracy level of interest. The reduced-

basis approximation shall be built upon this reference (or “truth”) finite element approximation, and the

reduced-basis error will thus be evaluated with respect to u(µ) ∈ X. Our formulation must be stable and

efficient as N → ∞.

We now turn to the abstract formulation for the controlled parabolic case. For simplicity, in this paper we

will directly consider a time-discrete framework associated to the time interval I ≡]0, tf ]. We divide Ī ≡ [0, tf ]

into K subintervals of equal length ∆t =
tf

K and define tk ≡ k∆t, 0 ≤ k ≤ K ≡
tf

∆t , and I ≡ {t0, . . . , tK};
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for notational convenience, we also introduce K ≡ {1, . . . ,K}. We shall consider Euler-Backward for the

time integration; we can also readily treat higher-order schemes such as Crank-Nicolson [12]. The “truth”

approximation is thus: given any µ ∈ D, we evaluate the output s(µ, tk) = ℓ(u(µ, tk)), ∀k ∈ K, where

u(µ, tk) ∈ X satisfies

m(u(µ, tk), v) + ∆t a(u(µ, tk), v;µ) = m(u(µ, tk−1), v) + ∆t f(v;µ) b(tk), ∀v ∈ X, ∀k ∈ K, (3)

with initial condition (say) u(µ, t0) = u0(µ) = 0. Here, f(·, µ) and ℓ(·) are Y e-continuous (Xe ⊂ Y e) linear

functionals, m(·, ·) is a Y e-continuous bilinear form, and b(tk) is the control input. We note that the output,

s(µ, tk), and the field variable, u(µ, tk), are now functions of the discrete time tk, ∀k ∈ K.

Our goal is the development of numerical methods that permit the rapid yet accurate and reliable prediction

of these PDE-induced input-output relationships in real-time or in the limit of many queries — relevant,

for example, in the design, optimization, control, and characterization contexts. To achieve this goal we

will pursue the reduced-basis method. The reduced-basis method was first introduced in the late 1970s

for the nonlinear analysis of structures [1, 25] and subsequently abstracted and analyzed [5, 11, 28, 33] and

extended [16, 18, 26] to a much larger class of parametrized partial differential equations. The foundation

of the reduced basis method is the realization that, in many instances, the set of all solutions u(µ) (say, in

the elliptic case) as µ varies can be approximated very well by its projection on a finite and low dimensional

vector space: for sufficiently well chosen µi, there exist coefficients ci = cN
i (µ) such that the finite sum

∑N
i=1 ciu(µi) is very close to u(µ) for any µ.

More recently, the reduced-basis approach and also associated a posteriori error estimation procedures

have been successfully developed for (i) linear elliptic and parabolic PDEs that are affine in the parameter

[13,20,21,29,40] — the bilinear form a(w, v;µ) can be expressed as

a(w, v;µ) =

Q
∑

q=1

Θq(µ) aq(w, v), (4)

where the Θq : D → IR and aq(w, v), 1 ≤ q ≤ Q, are parameter dependent functions and parameter-

independent bilinear forms, respectively; and (ii) elliptic PDEs that are at most quadratically nonlinear in

the first argument [24, 38, 39] — in particular, a(w, v;µ) satisfies (4) and is at most quadratic in w (but
3



of course linear in v). In these cases a very efficient offline-online computational strategy relevant in the

many-query and real-time contexts can be developed. The operation count for the online stage — in which,

given a new parameter value, we calculate the reduced-basis output and associated error bound — depends

on a low power of the dimension of the reduced-basis space N (typically small) and Q; but it is independent

of N , the dimension of the underlying “truth” finite element approximation.

Unfortunately, if a is not affine in the parameter this computational strategy breaks down; the online

complexity will still depend on N . For example, for general g(x;µ) (here x ∈ Ω and µ ∈ D), the bilinear

form

a(w, v;µ) ≡

∫

Ω

∇w · ∇v +

∫

Ω

g(x;µ) w v (5)

will not admit an efficient (online N -independent) computational decomposition. In a recent CRAS note [4],

we introduce a technique that recovers the efficient offline-online decomposition even in the presence of

nonaffine parameter dependence. In this approach, we develop a “collateral” reduced-basis expansion

gM (x;µ) for g(x;µ) and then replace g(x;µ) in (5) with some necessarily affine approximation gM (x;µ) =

∑M
m=1 ϕM m(µ)qm(x). The essential ingredients are (i) a “good” collateral reduced-basis approximation

space, W g
M = span{qm(x), 1 ≤ m ≤ M}, (ii) a stable and inexpensive (N -independent) interpolation pro-

cedure by which to determine the ϕM m(µ), 1 ≤ m ≤ M , and (iii) an effective a posteriori estimator with

which to quantify the newly introduced error terms. In this paper we shall expand upon the brief presenta-

tion in [4] and furthermore address the treatment of nonaffine parabolic problems; we shall also extend the

technique to elliptic and parabolic problems in which g is a nonaffine nonlinear function of the field variable

u — we hence treat certain classes of nonlinear problems.

A large number of model order reduction (MOR) techniques [2,7,8,22,27,32,36,41] have been developed

to treat nonlinear time-dependent problems. One approach is linearization [41] and polynomial approxima-

tion [8, 27]. However, inefficient representation of the nonlinear terms and fast exponential growth (with

the degree of the nonlinear approximation order) of the computational complexity render these methods

quite expensive, in particular for strong nonlinearities; other approaches for highly nonlinear systems (such

as piecewise-linearization) [32, 35] suffer from similar drawbacks. It is also important to note that most
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MOR techniques focus only on temporal variations; the development of reduced-order models for parametric

applications — our focus here — is much less common [6,9].

This paper is organized as follows: In Section 2 we present a short review of the “empirical interpolation

method” – coefficient function approximation — introduced in [4]. The abstract problem formulation,

reduced-basis approximation, and computational considerations for linear coercive elliptic and linear coercive

parabolic problems with nonaffine parameter dependence are then discussed in Section 3 and Section 4,

respectively. We extend these results in Section 5 to monotonic nonlinear elliptic PDEs and and in Section 6

to monotonic nonlinear parabolic PDEs. Numerical results are included in each section in order to confirm

and assess our theoretical results. (Note that, due to space limitations, we do not present in this paper

associated a posteriori error estimators; the reader is referred to [4, 12, 23, 37] for a detailed development of

this topic.)

2. Empirical Interpolation

2.1. Coefficient–Function Procedure

We begin by summarizing the results in [4]. We consider the problem of approximating a given µ-

dependent function g( · ;µ) ∈ L∞(Ω), ∀µ ∈ D, of sufficient regularity by a reduced-basis expansion

gM ( · ;µ); here, L∞(Ω) ≡ {v | ess supv∈Ω |v(x)| < ∞}. To this end, we introduce the nested sample

sets Sg
M = {µg

1 ∈ D, . . . , µg
M ∈ D}, and associated nested reduced-basis spaces W g

M = span {ξm ≡

g(x;µg
m), 1 ≤ m ≤ M}, in which our approximation gM shall reside. We also introduce the best approxima-

tion g∗M ( · ;µ) ≡ arg minz∈W g
M
‖g( · ;µ)−z‖L∞(Ω) and the associated error ε∗M (µ) ≡ ‖g( · ;µ)−g∗M ( · ;µ)‖L∞(Ω).

(More generally, we can work in a Banach space B that in our context will be L∞(Ω) or L2(Ω). Then

g ∈ C0(D;B) and the forthcoming construction of Sg
M is effected with respect to the B norm.)

The construction of Sg
M and W g

M is based on a greedy selection process. To begin, we choose our first

sample point to be µg
1 = arg maxµ∈Ξ

g ‖g( · ;µ)‖L∞(Ω), and define Sg
1 = {µg

1}, ξ1 ≡ g(x;µg
1), and W g

1 =

span{ξ1}; here Ξg is a suitably large but finite-dimensional parameter set in D. Then, for M ≥ 2, we set µg
M =

arg maxµ∈Ξ
g ε∗M−1(µ), and define Sg

M = Sg
M−1 ∪µg

M , ξM = g(x;µg
M ), and W g

M = span{ξm, 1 ≤ m ≤ M}. In

essence, W g
M comprises basis functions from the parametrically induced manifold Mg ≡ {g( · ;µ) | µ ∈ D}.
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Thanks to our truth approximation, the optimization for g∗M−1( · ;µ) and hence ε∗M−1(µ) is a standard linear

program.

We note that the determination of µg
M requires the solution of a linear program for each parameter point

in Ξg; the computational cost thus depends strongly on the size of Ξg. In the parabolic case this cost

may be prohibitively large — at least in our current implementation — if the function g is time-varying

either through an explicit dependence on time or (for nonlinear problems) an implicit dependence via the

field variable u(µ, tk). As we shall see, in these cases the parameter sample Ξg is in effect replaced by the

parameter-time sample Ξ̃g ≡ Ξg × I; even for modest K the computational cost can be very high. We

thus propose an alternative construction of Sg
M : we replace the L∞(Ω)-norm in our best approximation by

the L2(Ω)-norm, where L2(Ω) is the space of square integrable functions over Ω; our next sample point is

now given by µg
M = arg maxµ∈Ξ

g infz∈W g
M−1

‖g( · ;µ) − z‖L2(Ω), which is relatively inexpensive to evaluate

— the computational cost to evaluate infz∈W g
M−1

‖g( · ;µ) − z‖L2(Ω) is O(MN ) + O(M3). The following

analysis is still rigorous for this alternative (or “surrogate”) construction of Sg
M , since we are working in a

finite-dimensional space and hence all norms are equivalent; in fact, the L∞(Ω) and L2(Ω) procedures yield

very similar convergence results in practice (see Section 2.3).

We begin the analysis of our greedy procedure with the following Lemma.

Lemma 2.1. Suppose that Mmax is chosen such that the dimension of span Mg exceeds Mmax; then, for

any M ≤ Mmax, the space W g
M is of dimension M .

Proof. It directly follows from our hypothesis on Mmax that ε0 ≡ ε∗Mmax
(µg

Mmax+1) > 0; our “arg max”

construction then implies ε∗M−1(µ
g
M ) ≥ ε0, 2 ≤ M ≤ Mmax, since ε∗M−1(µ

g
M ) ≥ ε∗M−1(µ

g
M+1) ≥ ε∗M (µg

M+1).

We now prove lemma 2.1 by induction. Clearly, dim(W g
1 ) = 1; assume dim(W g

M−1) = M − 1; then if

dim(W g
M ) 6= M , we have g( · ;µg

M ) ∈ W g
M−1 and thus ε∗M−1(µ

g
M ) = 0; however, the latter contradicts

ε∗M−1(µ
g
M ) ≥ ε0 > 0. �

We now construct nested sets of interpolation points TM = {x1, . . . , xM}, 1 ≤ M ≤ Mmax. We first

set x1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(x1), B1
11 = 1. Then for M = 2, . . . ,Mmax, we solve the

linear system
∑M−1

j=1 σM−1
j qj(xi) = ξM (xi), 1 ≤ i ≤ M − 1, and set rM (x) = ξM (x) −

∑M−1
j=1 σM−1

j qj(x),
6



xM = arg ess supx∈Ω |rM (x)|, qM (x) = rM (x)/rM (xM ), and BM
i j = qj(xi), 1 ≤ i, j ≤ M . It remains to

demonstrate

Lemma 2.2. The construction of the interpolation points is well-defined, and the functions {q1, . . . , qM}

form a basis for W g
M . In addition, the matrix BM is lower triangular with unity diagonal.

Proof. We shall proceed by induction. Clearly, we have W g
1 = span {q1}. Next we assume W g

M−1 =

span {q1, . . . , qM−1}; if (i) BM−1 is invertible and (ii) |rM (xM ))| > 0, then our construction may proceed

and we may form W g
M = span {q1, . . . , qM}. To prove (i), we just note from the construction procedure

that BM−1
i j = rj(xi)/rj(xj) = 0 for i < j; that BM−1

i j = rj(xi)/rj(xj) = 1 for i = j; and that
∣

∣BM−1
i j

∣

∣ =

|rj(xi)/rj(xj)| ≤ 1 for i > j since xj = arg ess supx∈Ω |rj(x)|, 1 ≤ j ≤ M . Hence, BM is lower triangular

with unity diagonal. To prove (ii) (and hence also that the xi, 1 ≤ i ≤ M, are distinct), we observe that

|rM (xM )| ≥ ε∗M−1(µ
g
M ) ≥ ε0 > 0 since ε∗M−1(µ

g
M ) is the error associated with the best approximation. �

Furthermore, from the invertibility of BM , we immediately derive

Lemma 2.3. For any M -tuple (αi)i=1,...,M of real numbers, there exists a unique element w ∈ W g
M such

that w(xi) = αi, 1 ≤ i ≤ M .

It remains to develop an efficient procedure for obtaining a good collateral reduced-basis expansion

gM (·;µ). Based on the approximation space W g
M and set of interpolation points TM , we can readily construct

an approximation to g(x;µ). Indeed, our coefficient function approximation is the interpolant of g over TM

as provided for from Lemma 2.3:

gM (x;µ) =

M
∑

m=1

ϕM m(µ) qm(x), (6)

where ϕM (µ) ∈ R
M is given by

M
∑

j=1

BM
i j ϕM j(µ) = g(xi;µ), 1 ≤ i ≤ M ; (7)

note that gM (xi;µ) = g(xi;µ), 1 ≤ i ≤ M . We define the associated error as

εM (µ) ≡ ‖g( · ;µ) − gM ( · ;µ)‖L∞(Ω). (8)

It remains to understand how well gM (x;µ) approximates g(x;µ).
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2.2. Error Analysis

2.2.1. A Priori Stability: Lebesgue Constant

To begin, we define a “Lebesgue constant” [10, 30, 34] ΛM = supx∈Ω

∑M
m=1 |V

M
m (x)|. Here, the V M

m (x) ∈

W g
M are characteristic functions satisfying V M

m (xn) = δmn, 1 ≤ m,n ≤ M , the existence and uniqueness of

which is guaranteed by Lemma 2.3; here δmn is the Kronecker delta symbol. It can be shown that

Lemma 2.4. The set of all characteristic functions
{

V M
m

}M

m=1
is a basis for W g

M . Furthermore, the two

bases qm, 1 ≤ m ≤ M , and V M
m , 1 ≤ m ≤ M , are related by

qi(x) =
M
∑

j=1

BM
j i V M

j (x), 1 ≤ i ≤ M . (9)

Proof. It is immediate from the definition of the V M
m that the set of all characteristic functions

{

V M
m

}M

m=1

is linearly independent. This set thus constitutes a basis for W g
M , in fact a nodal basis associated with the

set {xm}M
m=1. Then, we consider x = xn, 1 ≤ n ≤ M , and note that

∑M
j=1 BM

j i V M
j (xn) =

∑M
j=1 BM

j i δjn =

BM
n i = qi(xn), 1 ≤ i ≤ M ; it thus follows from Lemma 2.3 that (9) holds. �

We observe that ΛM depends on W g
M and TM , but not on µ. We can further prove

Lemma 2.5. The interpolation error εM (µ) satisfies εM (µ) ≤ ε∗M (µ)(1 + ΛM ), ∀ µ ∈ D.

Proof. We first introduce e∗M (x;µ) = g(x;µ) − g∗M (x;µ). It then follows that

gM (x;µ) − g∗M (x;µ) =
M
∑

m=1

(gM (xi;µ) − g∗M (xi;µ)) V M
m (x)

=
M
∑

m=1

((gM (xi;µ) − g(xi;µ)) + (g(xi;µ) − g∗M (xi;µ)))V M
m (x)

=
M
∑

m=1

e∗M (xi;µ) V M
m (x) . (10)

Furthermore, from the definition of εM (µ) and ε∗M (µ), and the triangle inequality, we obtain

εM (µ) = ‖g( · ;µ) − gM ( · ;µ)‖L∞(Ω) ≤ ε∗M (µ) + ‖gM ( · ;µ) − g∗M ( · ;µ)‖L∞(Ω).
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This yields, from (10),

εM (µ) − ε∗M (µ) ≤ ‖gM ( · ;µ) − g∗M ( · ;µ)‖L∞(Ω)

= ‖
M
∑

i=1

e∗M (xi;µ) V M
i (x)‖L∞(Ω)

≤ max
i∈{1,...,M}

|e∗M (xi;µ)| ΛM ;

the desired result then immediately follows from |e∗M (xi;µ)| ≤ ε∗M (µ), 1 ≤ i ≤ M . �

We can further show

Proposition 2.6. The Lebesgue constant ΛM satisfies ΛM ≤ 2M − 1.

Proof. We first recall two crucial properties of the matrix BM : (i) BM is lower triangular with unity

diagonal — qm(xm) = 1, 1 ≤ m ≤ M , and (ii) all entries of BM are of modulus no greater than unity —

‖qm‖L∞(Ω) ≤ 1, 1 ≤ m ≤ M . Hence, from (9) we can write

|V M
m (x)| =

∣

∣

∣

∣

∣

qm(x) −
M
∑

i=m+1

BM
i mV M

i (x)

∣

∣

∣

∣

∣

≤ 1 +
M
∑

i=m+1

|V M
i (x)|, 1 ≤ m ≤ M − 1.

It follows that, starting from |V M
M (x)| = |qM (x)| ≤ 1, we can deduce |V M

M+1−m(x)| ≤ 1 + |V M
M (x)| + . . . +

|V M
M+2−m(x)| ≤ 2m−1, 2 ≤ m ≤ M , and thus obtain

∑M
m=1 |V

M
m (x)| ≤ 2M − 1. �

Proposition 2.6 is very pessimistic and of little practical value (though ε∗M (µ) does often converge suffi-

ciently rapidly that ε∗M (µ) 2M → 0 as M → ∞); this is not surprising given analogous results in the theory

of polynomial interpolation [10,30,34]. In applications, the actual asymptotic behavior of ΛM is much lower

than the upper bound of Proposition 2.6; however, Proposition 2.6 does provide a theoretical basis for some

stability.

2.2.2. A Posteriori Estimators

Given an approximation gM (x;µ) for M ≤ Mmax − 1, we define EM (x;µ) ≡ ε̂M (µ) qM+1(x), where

ε̂M (µ) ≡ |g(xM+1;µ)−gM (xM+1;µ)|. In general, εM (µ) ≥ ε̂M (µ), since εM (µ) = ||g(·;µ)−gM (·;µ)||L∞(Ω) ≥

|g(x;µ) − gM (x;µ)| for all x ∈ Ω, and thus also for x = xM+1. However, we can prove
9



Proposition 2.7. If g( · ;µ) ∈ W g
M+1, then (i) g(x;µ) − gM (x;µ) = ±EM (x;µ), and (ii) ‖g( · ;µ) −

gM ( · ;µ)‖L∞(Ω) = ε̂M (µ).2

Proof. By our assumption g( · ;µ) ∈ W g
M+1, there exists κ(µ) ∈ R

M+1 such that g(x;µ) − gM (x;µ) =

∑M+1
m=1 κm(µ) qm(x). We now consider x = xi, 1 ≤ i ≤ M + 1, and arrive at

M+1
∑

m=1

κm(µ) qm(xi) = g(xi;µ) − gM (xi;µ), 1 ≤ i ≤ M + 1 .

It thus follows that κm(µ) = 0, 1 ≤ m ≤ M , since g(xi;µ) − gM (xi;µ) = 0, 1 ≤ i ≤ M, and the matrix

qm(xi)(= BM
im) is lower triangular, and that κM+1(µ) = g(xM+1;µ) − gM (xM+1;µ) since qM+1(xM+1) = 1;

this concludes the proof of (i). The proof of (ii) then directly follows from ‖qM+1‖L∞(Ω) = 1. �

Of course, in general g( · ;µ) 6∈ W g
M+1, and hence our estimator ε̂M (µ) is unfortunately a lower bound.

However, if εM (µ) → 0 very fast, we expect that the effectivity,

ηM (µ) ≡
ε̂M (µ)

εM (µ)
, (11)

shall be close to unity; furthermore, the estimator is very inexpensive – one additional evaluation of g( · ;µ)

at a single point in Ω. (Note we can readily improve the rigor of our bound at only modest additional cost:

if we assume that g(;µ) ∈ W g
M+k, then ε̂M = 2k−1 maxi∈{1,...,k} |g(xM+k;µ) − gM (xM+k;µ))| is an upper

bound for εM (µ) (see Propositions 2.6 and 2.7).)

We refer to [4,12,23] for the incorporation of these error estimators into output bounds for reduced basis

approximations of nonaffine partial differential equations.

2.3. Numerical Results

We consider the function g(·;µ) = G(·;µ), where

G(x;µ) ≡
1

√

(x(1) − µ(1))2 + (x(2) − µ(2))2
(12)

for x = (x(1), x(2)) ∈ Ω ≡ ]0, 1[ 2 and µ ∈ D ≡ [−1,−0.01]2. We choose for Ξg a deterministic grid of

40 × 40 parameter points over D. We take µg
1 = (−0.01,−0.01) and then pursue the empirical interpolation

2Note that the proof of (ii) ‖g( · ; µ) − gM ( · ; µ)‖L∞(Ω) ≤ ε̂M (µ) in [4] is technically correct but in fact misleading since

equality indeed always holds.
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procedure described in Section 2.1 to construct Sg
M , W g

M , TM , and BM , 1 ≤ M ≤ Mmax, for Mmax = 51. We

observe that the parameter points in Sg
M , shown in Figure 1(a), are mainly distributed around the corner

(−0.01,−0.01) of the parameter domain; and that the interpolation points in TM , plotted in Figure 1(b),

are largely allocated around the corner (0, 0) of the physical domain Ω.
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Figure 1. (a) Parameter sample set Sg
M , Mmax = 51, and (b) interpolation points xm, 1 ≤

m ≤ Mmax, for the function G(x;µ) of (12).

We now introduce a parameter test sample Ξg
Test of size QTest = 225, and define εM,max = maxµ∈Ξg

Test
εM (µ),

ε∗M,max = maxµ∈Ξg
Test

ε∗M (µ), ρM = Q−1
Test

∑

µ∈Ξg
Test

(

εM (µ)/(ε∗M (µ)(1 + ΛM ))
)

, ηM = Q−1
Test

∑

µ∈Ξg
Test

ηM (µ),

and κM ; here ηM (µ) is the effectivity defined in (11), and κM is the condition number of BM . We present

in Table 1 εM,max, ε∗M,max, ρM , ΛM , ηM , and κM as a function of M . We observe that εM,max and

ε∗M,max converge rapidly with M ; that the Lebesgue constant provides a reasonably sharp measure of the

interpolation-induced error; that the Lebesgue constant grows very slowly — and hence εM (µ) will be only

slightly larger than the min max result ε∗M (µ); that the error estimator effectivity is reasonably close to

unity3; and that BM is quite well-conditioned for our choice of basis. (For the non-orthogonalized basis

ξm, 1 ≤ m ≤ M , the condition number of BM will grow exponentially with M .) These results are expected:

although G(x;µ) varies rapidly as µ approaches 0 and x approaches 0, G(x;µ) is nevertheless quite smooth

in the prescribed parameter domain D.

3Note that the last column of the Table 1 in [4] (analogous to Table 1 here) contains an error — we purported in [4] to
report the average of ηM (µ) ≡ ε̂M (µ)/εM (µ) over Ξg

Test, but in fact we reported the average over Ξg
Test of ε̂M (µ)/ε∗

M
(µ).
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M εM,max ε∗M,max ρM ΛM ηM κM

8 1.72E – 01 8.30E – 02 0.68 1.76 0.17 3.65
16 1.42E – 02 4.22E – 03 0.67 2.63 0.10 6.08
24 1.01E – 03 2.68E – 04 0.49 4.42 0.28 9.19
32 2.31E – 04 5.64E – 05 0.48 5.15 0.20 12.86
40 1.63E – 05 3.66E – 06 0.54 4.98 0.60 18.37
48 2.44E – 06 6.08E – 07 0.37 7.43 0.29 20.41

Table 1. Numerical results for empirical interpolation of G(x;µ): εM,max, ε∗M,max, ρM , ΛM ,
ηM , and κM as a function of M .

If we exploit the L2(Ω)-norm surrogate in our best approximation we can construct Sg
M much less ex-

pensively. We present in Table 2 numerical results obtained from this alternative construction of Sg
M . The

results are very similar to those in Table 1, which implies — as expected — that the approximation quality of

our empirical interpolation approach is relatively insensitive to the choice of norm in the sample construction

process.

M εM,max ε∗M,max ρM ΛM ηM κM

8 2.69E – 01 1.18E – 01 0.66 2.26 0.23 3.82
16 1.77E – 02 3.96E – 03 0.45 4.86 0.81 7.58
24 8.07E – 04 3.83E – 04 0.43 3.89 0.28 13.53
32 1.69E – 04 3.92E – 05 0.45 7.07 0.47 16.60
40 2.51E – 05 4.10E – 06 0.43 6.40 0.25 18.84
48 2.01E – 06 6.59E – 07 0.30 8.86 0.18 21.88

Table 2. Numerical results for empirical interpolation of G(x;µ): εM,max, ε∗M,max, ρM , ΛM ,

ηM , and κM as a function of M ; here Sg
M is constructed with the L2(Ω)-norm as a surrogate

for the L∞(Ω)-norm.

3. Nonaffine Linear Coercive Elliptic Equations

3.1. Problem Formulation

3.1.1. Abstract Statement

We first define the Hilbert spaces Xe ≡ H1
0 (Ω) — or, more generally, H1

0 (Ω) ⊂ Xe ⊂ H1(Ω) — where

H1(Ω) = {v | v ∈ L2(Ω),∇v ∈ (L2(Ω))d}, H1
0 (Ω) = {v | v ∈ H1(Ω), v|∂Ω = 0}, and L2(Ω) is the space of

square integrable functions over Ω. The inner product and norm associated with Xe are given by (·, ·)Xe

and ‖ · ‖Xe = (·, ·)
1/2
Xe , respectively; for example, (w, v)Xe ≡

∫

Ω
∇w · ∇v +

∫

Ω
w v, ∀w, v ∈ Xe. The truth

approximation subspace X shall inherit this inner product and norm: (·; ·)X ≡ (·; ·)eX and ‖ · ‖X ≡ ‖ · ‖e
X .

12



In this section, we are interested in a particular form for problem (1), in which

a(w, v;µ) = a0(w, v) + a1(w, v, g(·;µ)), (13)

and

f(v;µ) =

∫

Ω

vh(x;µ) , (14)

where a0(·, ·) is a (for simplicity, parameter-independent) bilinear form, a1 : Xe ×Xe ×L∞(Ω) is a trilinear

form, and g(·;µ) ∈ L∞(Ω), h(·;µ) ∈ L∞(Ω) are prescribed functions. For simplicity of exposition, we

presume that h(x;µ) = g(x;µ).

We shall assume that a satisfies coercivity and continuity conditions

0 < α0 ≤ α(µ) ≡ inf
w∈X\{0}

a(w,w;µ)

‖w‖2
X

, ∀ µ ∈ D, (15)

γ(µ) ≡ sup
w∈X\{0}

sup
v∈X\{0}

a(w, v;µ)

‖w‖X‖v‖X
≤ γ0 < ∞, ∀ µ ∈ D; (16)

here α(µ) and γ(µ) are the coercivity constant and the continuity constant, respectively. (We (plausibly)

suppose that α0, γ0 may be chosen independent of N .) We shall further assume that the trilinear form a1

satisfies

a1(w, v, z) ≤ γ1‖w‖X ‖v‖X ‖z‖L∞(Ω), ∀ w, v ∈ X, ∀z ∈ L∞(Ω). (17)

It is then standard, given that g(·;µ) ∈ L∞(Ω), to prove existence and uniqueness of the exact solution and

the truth approximation.

3.1.2. A Model Problem

We consider the following model problem defined on the unit square Ω =]0, 1[2∈ IR2: Given the parameter

input µ = (µ(1), µ(2)) ∈ D ≡ [−1,−0.01]2, the field variable u(µ) ∈ X satisfies (2), where X ⊂ Xe ≡ H1
0 (Ω)

is a piecewise-linear finite element approximation space of dimension N = 2601. Here a is given by (13) for

a0(w, v) =

∫

Ω

∇w · ∇v, a1(w, v, g(·;µ)) =

∫

Ω

g(x;µ) w v, (18)

for g(x;µ) = G(x;µ) as defined in (12); and f is given by (14) for h(x;µ) = g(x;µ) = G(x;µ). The output

s(µ) is evaluated as s(µ) = ℓ(u(µ)) for ℓ(v) =
∫

Ω
v.
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The solution u(µ) develops a boundary layer in the vicinity of x = (0, 0) for µ near the “corner”

(−0.01,−0.01).

3.2. Reduced-Basis Approximation

3.2.1. Discrete Equations

We begin with motivating the need for the empirical interpolation approach in dealing with nonaffine

problems; indeed, we shall continue the motivation discussed in Section 1. Specifically, we introduce the

nested samples, Su
N = {µu

1 ∈ D, · · · , µu
N ∈ D}, 1 ≤ N ≤ Nmax, and associated nested Lagrangian4 [28]

reduced-basis spaces Wu
N = span{ζj ≡ u(µu

j ), 1 ≤ j ≤ N}, 1 ≤ N ≤ Nmax, where u(µu
j ) is the solution

of (2) for µ = µu
j . (In practice we orthonormalize the ζj , 1 ≤ j ≤ N, with respect to (·, ·)X so that

(ζi, ζj)X = δij , 1 ≤ i, j ≤ N ; the resulting algebraic system will then be well-conditioned.)

Were we to follow the classical recipe, the reduced-basis approximation would be obtained by a standard

Galerkin projection: given µ ∈ D, we evaluate sN (µ) = ℓ(uN (µ)), where uN (µ) ∈ Wu
N is the solution of

a0(uN (µ), v) + a1(uN (µ), v, g(·;µ)) =

∫

Ω

g(x;µ)v, ∀v ∈ Wu
N . (19)

If we now express uN (µ) =
∑N

j=1 uN j(µ)ζj and choose test functions v = ζn, 1 ≤ n ≤ N , in (19), we obtain

the N × N linear algebraic system

N
∑

j=1

(a0(ζi, ζj) + a1(ζi, ζj , g(·;µ)))uN j(µ) =

∫

Ω

g(x;µ)ζi, 1 ≤ i ≤ N. (20)

We observe that while a0(ζi, ζj) is parameter-independent and can thus be pre-computed offline,
∫

Ω
g(x;µ)ζi

and a1(ζi, ζj , g(·;µ)) depend on g(x;µ) and must thus be evaluated online for every new parameter value

µ; the operation count for the online stage will thus scale as O(N2N ), where N is the dimension of the

underlying truth finite element approximation space. The decrease in marginal cost in replacing the truth

finite element approximation space with the reduced-basis approximation will be quite modest regardless of

the dimension reduction N → N ≪ N .

To recover online N -independence, we appeal to the empirical interpolation method discussed in Section 2.

We simply replace g(x;µ) in (20) with the (necessarily) affine approximation gM (x;µ) =
∑M

m=1 ϕM m(µ)qm(x)

4We may also consider Hermitian spaces built upon sensitivity derivatives of u with respect to µ [15] or, more generally,
Lagrange-Hermitian spaces [17].
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from (6) based upon the empirical interpolation approach described in Section 2. Our reduced-basis approx-

imation is then: Given µ ∈ D, find uN,M (µ) ∈ Wu
N such that

a0(uN,M (µ), v) + a1(uN,M (µ), v, gM (·;µ)) =

∫

Ω

gM (x;µ)v, ∀v ∈ Wu
N ; (21)

we then evaluate the output estimate from

sN,M (µ) = ℓ(uN,M (µ)). (22)

We now express uN,M (µ) =
∑N

j=1 uN,M j(µ) ζj , choose as test functions v = ζn, 1 ≤ n ≤ N , and invoke (6)

to obtain

N
∑

j=1

(

a0(ζi, ζj) +
M
∑

m=1

ϕM m(µ) a1(ζi, ζj , qm)

)

uN,M j(µ) =
M
∑

m=1

ϕM m(µ)

∫

Ω

ζiqm, 1 ≤ i ≤ N, (23)

where ϕM m(µ), 1 ≤ m ≤ M , is determined from (7). We indeed recover the online N -independence: the

quantities a0(ζi, ζj), a1(ζi, ζj , qm), and
∫

Ω
ζiqm are all parameter independent and can thus be pre-computed

offline, as discussed further in Section 3.2.3.

3.2.2. A Priori Theory

We consider here the convergence rate of uN,M (µ) → u(µ). In fact, it is a simple matter to demonstrate

the optimality of uN,M (µ) in

Proposition 3.1. For εM (µ) of (8) satisfying εM (µ) ≤ 1
2

α(µ)
φ2(µ) , we have

‖u(µ) − uN,M (µ)‖X ≤

(

1 +
γ(µ)

α(µ)

)

inf
wN∈W u

N

‖u(µ) − wN‖X + εM (µ)

(

φ1(µ)α(µ) + 2φ2(µ)φ3(µ)

α2(µ)

)

; (24)

here φ1(µ), φ2(µ), and φ3(µ) are given by

φ1(µ) =
1

εM (µ)
sup
v∈X

∫

Ω
v(g(x;µ) − gM (x;µ))

‖v‖X
, (25)

φ2(µ) =
1

εM (µ)
sup
w∈X

sup
v∈X

a1(w, v; g(·;µ) − gM (·;µ))

‖w‖X‖v‖X
, (26)

φ3(µ) = sup
v∈X

∫

Ω
vgM (x;µ)

‖v‖X
. (27)
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Proof. For any wN = uN,M (µ) + vN ∈ Wu
N , we have

α(µ)‖wN − uN,M (µ)‖2
X ≤ a(wN − uN,M (µ), wN − uN,M (µ);µ)

= a(wN − u(µ), vN ;µ) + a(u(µ) − uN,M (µ), vN ;µ)

≤ γ(µ)‖wN − u(µ)‖X‖vN‖X + a(u(µ) − uN,M (µ), vN ;µ) . (28)

Note further from (2), (21), and (25)-(27) that the second term can be bounded by

a(u(µ) − uN,M (µ), vN ;µ) =

∫

Ω

vNg(x;µ) − a(uN,M (µ), vN ;µ)

=

∫

Ω

vN (g(x;µ) − gM (x;µ)) − a1(uN,M (µ), vN ; g(x;µ) − gM (x;µ))

≤ εM (µ)φ1(µ)‖vN‖X + εM (µ)φ2(µ)‖vN‖X‖uN,M (µ)‖X

≤ εM (µ)

(

φ1(µ)α(µ) + 2φ2(µ)φ3(µ)

α(µ)

)

‖vN‖X , (29)

where the last inequality derives from

α(µ)‖uN,M (µ)‖2
X ≤ a(uN,M (µ), uN,M (µ);µ)

=

∫

Ω

uN,M (µ)gM (x;µ) + a1(uN,M (µ), uN,M (µ); g(x;µ) − gM (x;µ))

≤ φ3(µ)‖uN,M (µ)‖X + εM (µ)φ2(µ)‖uN,M (µ)‖2
X , (30)

and our hypothesis on εM (µ). It then follows from (28) and (29) that

‖wN − uN,M (µ)‖X ≤
γ(µ)

α(µ)
‖wN − u(µ)‖X + εM (µ)

(

φ1(µ)α(µ) + 2φ2(µ)φ3(µ)

α2(µ)

)

, ∀ wN ∈ Wu
N . (31)

The desired result finally follows from (31) and the triangle inequality. (Note that φ1, φ2, and φ3 are bounded

by virtue of our continuity requirements.) �

We note from Proposition 3.1 that M should be chosen such that εM (µ) is of the same order as the

error in the best approximation, infwN∈W u
N
‖u(µ) − wN‖X , as otherwise the second term on the right-

hand side of (24) may limit the convergence of the reduced-basis approximation. As regards the error in

the best approximation, we note that Wu
N comprises “snapshots” on the parametrically induced manifold

Mu ≡ {u(µ) | ∀µ ∈ D} ⊂ X. The critical observations are that Mu is very low-dimensional and that Mu is
16



smooth under general hypotheses on stability and continuity. We thus expect that the best approximation

will converge to u(µ) very rapidly, and hence that N may be chosen small. (This is proven for a particularly

simple case in [21].)

3.2.3. Offline–Online Procedure

We summarize here the procedure [3, 18, 20, 29]. In the offline stage — performed only once — we first

construct nested approximation spaces W g
M and nested sets of interpolation points TM , 1 ≤ M ≤ Mmax;

we then choose Su
N

5 and solve for (and orthonormalize) the ζn, 1 ≤ n ≤ N ; we finally form and store

a0(ζj , ζi), a1(ζj , ζi, qm),
∫

Ω
ζiqm, and ℓ(ζi), 1 ≤ i, j ≤ N, 1 ≤ m ≤ Mmax. All quantities computed in the offline

stage are independent of the parameter µ; note these quantities must be computed in a stable fashion which is

consistent with the finite element quadrature points (see [23] page 173, and [12] page 132). In the online stage

— performed many times for each new µ — we first compute ϕM (µ) from (7) at cost O(M2) by appealing to

the triangular property of BM ; we then assemble and invert the (full) N ×N reduced-basis stiffness matrix

a0(ζj , ζi)+
∑

ϕM m(µ) a1(ζj , ζi, qm) to obtain uN,M, j , 1 ≤ j ≤ N , at cost O(N2M) for assembly plus O(N3)

for inversion; we finally evaluate the reduced-basis output sN,M (µ) as sN,M (µ) =
∑N

j=1 uN,M, jℓ(ζj) at cost

O(N). The operation count for the online stage is thus only O(M2 + N2M + N3).

Hence, as required in the many-query or real-time contexts, the online complexity is independent of

N , the dimension of the underlying “truth” finite element approximation space. Since N, M ≪ N we

expect significant computational savings in the online stage relative to classical discretization and solution

approaches and relative to standard Galerkin reduced-basis approaches built upon (20).

3.2.4. Numerical Results

We present here numerical results for the model problem of Section 3.1.2. We first define (w, v)X =

∫

Ω
∇w · ∇v; thanks to the Dirichlet conditions on the boundary, (w, v)X is appropriately coercive. We note

that for our particular function, g(x;µ) = G(x;µ) of (12), Sg
M , W g

M , and hence TM and BM are already

5In actual practice, our nested samples Su
N

and associated approximation spaces W u
N

are constructed by a greedy selection
process [24, 29, 39] — which relies on a posteriori error estimators for the errors ‖u(µ) − uN,M (µ)‖X and |s(µ) − sN,M (µ)| —
that ensures “maximally independent” snapshots and hence a rapidly convergent reduced-basis approximation. This sampling
strategy, in conjunction with our orthogonalization procedure, also guarantees a well-conditioned reduced-basis discrete sys-
tem [24, 29, 39]. Details of this sampling procedure and the a posteriori error estimation procedures can be found in [23] for
elliptic problems and [12] for parabolic problems.
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Figure 2. Convergence of the reduced-basis approximation for the nonaffine elliptic example.

constructed in Section 2.3. The sample set Su
N and associated reduced-basis space Wu

N are developed based

on the adaptive sampling procedure [23,39] described in footnote 5.

We now introduce a parameter sample ΞTest ⊂ D of size 225 (in fact, a regular 15 × 15 grid over D),

and define ǫu
N,M,max,rel = maxµ∈ΞTest

‖u(µ) − uN,M (µ)‖X/‖umax‖X and ǫs
N,M,max,rel = maxµ∈ΞTest

|s(µ) −

sN,M (µ)|/|smax|; here ‖umax‖X = maxµ∈ΞTest
‖u(µ)‖X and |smax| = maxµ∈ΞTest

|s(µ)|. We present in Fig-

ure 2 ǫu
N,M,max,rel as a function of N and M . We observe that the reduced-basis approximation converges

very rapidly. We also note, consistent with Proposition 3.1, the “plateau” in the curves for M fixed and

the “drops” in the N → ∞ asymptotes as M is increased: for fixed M the error in our coefficient function

approximation gM (x;µ) to g(x;µ) will ultimately dominate for large N ; increasing M renders the coef-

ficient function approximation more accurate, which in turn leads to the drops in the asymptotic error.

Figure 2 clearly suggests (for this particular problem) the optimal “N −M” strategy. We tabulate in Table 3

ǫu
N,M,max,rel and ǫs

N,M,max,rel for M chosen roughly optimally — but conservatively, to ensure that we are

not on a “plateau” for each N . We observe very rapid convergence of the reduced-basis approximation with

N,M . (Note that the convergence of the output can be further improved by the introduction of adjoint

techniques [23,24,29].)

Finally, we present in Table 4 the online computational times to calculate sN,M (µ) as a function of

(N,M); the values are normalized with respect to the computational time for the direct calculation of the

truth approximation output s(µ) = ℓ(u(µ)). We achieve significant computational savings: for a relative
18



N M ǫu
N,M,max,rel ǫs

N,M,max,rel

4 15 1.20E – 02 5.96E – 03
8 20 1.14E – 03 2.42E – 04
12 25 2.54E – 04 1.76E – 04
16 30 3.82E – 05 7.92E – 06

Table 3. Maximum relative error in the energy norm and output for the nonaffine elliptic example.

accuracy of close to 0.024 percent (corresponding to N = 8, M = 20 in Table 3) in the output, the online

saving is more than a factor of 2000.

Online time (Online) time
N M for for

sN,M (µ) s(µ)
4 15 2.39E – 04 1
8 20 4.33E – 04 1
12 25 5.41E – 03 1
16 30 6.93E – 03 1

Table 4. Online computational times (normalized with respect to the time to solve for
s(µ)) for the nonaffine elliptic example.

4. Nonaffine Linear Parabolic Equations

4.1. Problem Formulation

We will now extend the results of the previous section to parabolic problems with nonaffine parameter

dependence. The essential new ingredient is the presence of time; we shall “simply” treat time as an

additional, albeit special, parameter. We note that we do not consider adjoint formulations for the parabolic

problem in this paper — our primary focus here is on the treatment of the nonaffine and nonlinear terms.

However, adjoint techniques can be gainfully employed for reduced-basis approximations of parabolic PDEs;

see [14] for a detailed treatment of parabolic problems with affine parameter dependence by reduced-basis

primal-dual approaches.

4.1.1. Abstract Statement

The “truth” finite element approximation is based on (3) for Y e ≡ L2(Ω); as in Section 3, a and f are of the

form (13) and (14), respectively. We shall make the following assumptions. First, we assume that the bilinear

form a(·, ·;µ) is symmetric and satisfies the coercivity and continuity conditions (15) and (16), respectively.

Second, we assume that the bilinear form m(·, ·) is symmetric m(v, w) = m(w, v), ∀w, v ∈ Y e, ∀µ ∈ D;
19



Y e-coercive,

0 < σ ≡ inf
v∈Y e

m(v, v)

‖v‖2
Y e

, ∀µ ∈ D; (32)

and Y e-continuous,

sup
w∈Y e

sup
v∈Y e

m(w, v)

‖w‖Y e‖v‖Y e

≤ ρ < ∞, ∀µ ∈ D. (33)

(We (plausibly) suppose that ρ and σ may be chosen independent of N .) We also require that the linear

forms f(·;µ) : X → IR and ℓ(·) : X → IR be bounded with respect to ‖ · ‖Y e ; the former is perforce satisfied

for the choice (14). Third, and finally, we assume that all linear and bilinear forms are independent of time

— the system is thus linear time-invariant (LTI). It follows from our hypotheses that the finite element truth

solution exists and is unique (see, e.g. [31]).

We note that the output and field variable are now functions of both the parameter µ and (discrete)

time tk. For simplicity of exposition, we assume here that m does not depend on the parameter; however,

dependence on the parameter is readily admitted [14]. We also note that the method presented here easily

extends to nonzero initial conditions, to multiple control inputs and outputs, and to nonsymmetric problems

such as the convection-diffusion equation [12].

4.1.2. Model Problem

Our particular numerical example is the unsteady analog of the model problem introduced in Section 3.1.2:

we recall that µ ∈ D ≡ [−1,−0.01]2, that Ω = ]0, 1[ 2, and that our “truth” approximation subspace

X ≡ H1
0 (Ω) is of dimension N = 2601. The governing equation for u(µ, tk) ∈ X is thus (3) with a(w, v;µ) =

a0(w, v) + a1(w, v,G(·;µ)), f(v;µ) =
∫

Ω
vG(x;µ),

m(w, v) ≡

∫

Ω

w v ; (34)

recall that G(x;µ) is given by (12). The output is given by s(µ, tk) = ℓ(u(µ, tk)), ∀k ∈ K, where ℓ(v) =
∫

Ω
v.

We shall consider the time interval Ī = [0, 2] and a timestep ∆t = 0.01; we thus have K = 200. Finally, we

assume that we are given the periodic control input b(t) = sin(2πt), t ∈ I.
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4.2. Reduced-Basis Approximation

4.2.1. Fully Discrete Equations

We first introduce the nested sample sets Su
N = {µ̃u

1 ∈ D̃, . . . , µ̃u
N ∈ D̃}, 1 ≤ N ≤ Nmax, where µ̃ ≡ (µ, tk)

and D̃ ≡ D × I; note that the samples must now reside in the parameter-time space, D̃. We then define the

associated nested Lagrangian [28] reduced-basis space

Wu
N = span{ζn ≡ u(µ̃u

n), 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (35)

where u(µ̃u
n) is the solution of (3) at time t = tk

u
n for µ = µu

n. (As in the elliptic case, the ζn are orthonor-

malized relative to the (·; ·)X inner product.)

Our reduced-basis approximation uN,M (µ, tk) to u(µ, tk) is then obtained by a standard Galerkin projec-

tion: given µ ∈ D, uN,M (µ, tk) ∈ Wu
N satisfies

m(uN,M (µ, tk), v) + ∆t
(

a0(uN,M (µ, tk), v) + a1(uN,M (µ, tk), v; gM (·;µ))
)

= m(uN,M (µ, tk−1), v) + ∆t

∫

Ω

vgM (x;µ) b(tk), ∀v ∈ Wu
N , ∀k ∈ K, (36)

with initial condition uN,M (µ, t0) = 0; here, gM (x;µ) is the coefficient function approximation defined in (6).

We then evaluate the output estimate, sN,M (µ, tk), from

sN,M (µ, tk) ≡ ℓ(uN,M (µ, tk)), ∀k ∈ K. (37)

The parameter-time sample set Su
N and associated reduced-basis space Wu

N are constructed using a “greedy”

adaptive sampling procedure summarized in footnote 5; we refer the interested reader to [14] for a detailed

discussion of this procedure.

The reduced-basis subspace defined in (35) is the span of solutions of our “truth approximation” u(µ, tk)

at the sample points Su
N . In many cases, however, the control input b(tk) is not known in advance and thus

we cannot solve for u(µ, tk) — as often arises in optimal control problems. Fortunately, we may appeal to

the LTI hypotheses in such cases and construct the space based on the impulse response [14].

As regards the convergence rate uN,M (µ, tk) −→ u(µ, tk), we can develop a priori estimates very similar in

form to the elliptic case — the sum of a best approximation result and a perturbation due to the variational
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crime associated with the interpolation of g. The result is given in Proposition A.1 in the Appendix. It

is also clear from Proposition A.1 that M should be chosen such that ǫM (µ) is of the same order as the

error in the best approximation, otherwise the perturbation term may limit the convergence of the reduced-

basis approximation. As regards the best approximation, Wu
N comprises “snapshots” on the parametrically

induced manifold Mu ≡ {u(µ, tk)|∀(µ, tk) ∈ D̃} which is very low-dimensional and smooth under general

hypotheses on stability and continuity; the best approximation uN,M (µ) should thus converge to u(µ, tk)

very rapidly.

The offline-online procedure for nonaffine linear parabolic equations is a straightforward combination of

the procedures developed for affine parabolic equations [14] and nonaffine elliptic equations (see Section 3).

For example, the online effort is O(MN2) to assemble the reduced-basis discrete system, O(N3 + KN2) to

obtain the reduced-basis coefficients at tk, 0 ≤ k ≤ K, and O(KN) to compute the output at tk, 0 ≤ k ≤ K.

(Recall that our system is LTI and hence the reduced-basis matrices are time-independent.)

4.2.2. Numerical Results

We now present numerical results for our model problem of Section 4.1.2. The sample set Sg
M and

associated basis W g
M — and hence TM and BM — for the nonaffine function approximation are constructed

as in Section 2.3. We then generate the Su
N and associated reduced-basis space Wu

N following the procedure

of footnote 5; note for parabolic problems [12], we extract our snapshots from a parameter-time sample.

In the time-dependent case we define the maximum relative error in the energy norm as ǫu
N,M,max,rel =

maxµ∈ΞTest
|||e(µ, tK)|||/|||u(µu, tK)||| and the maximum relative output error as ǫs

N,M,max,rel = maxµ∈ΞTest
|s(µ, ts(µ))−

sN,M (µ, ts(µ))|/|s(µ, ts(µ))|. Here ΞTest ⊂ D is the parameter test sample of size 225 introduced in Sec-

tion 3.2.4, µu ≡ arg maxµ∈ΞTest
|||u(µ, tK)|||, ts(µ) = arg maxtk∈I |s(µ, tk)|, and the energy norm is defined

as |||v(µ, tk)||| =
(

m(v(µ, tk), v(µ, tk)) +
∑k

k′=1 a(v(µ, tk
′

), v(µ, tk
′

); g(·;µ)) ∆t
)

1
2

, ∀v ∈ L∞(D × I;X). We

plot in Figure 3 ǫu
N,M,max,rel as a function of N and M . The graph shows the same behavior already observed

in the elliptic case: the error levels off at smaller and smaller values as we increase M . In Table 5, we present

ǫu
N,M,max,rel and ǫs

N,M,max,rel as a function of N and M ; note that the tabulated (N,M) values correspond

roughly to the optimal “knees” of the N − M -convergence curves. It is interesting to compare Table 3
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N M ǫu
N,M,max,rel ǫs

N,M,max,rel

5 8 4.12E – 02 4.23E – 02
10 16 3.12E – 03 3.03E – 03
20 24 1.97E – 04 1.79E – 04
30 32 2.46E – 05 7.65E – 06
40 40 4.27E – 06 2.21E – 06
50 48 7.48E – 07 1.29E – 07

Table 5. Maximum relative error in the energy norm and output for different values of N
and M for the nonaffine parabolic problem.

(elliptic) and Table 5 (parabolic): as expected, for the same accuracy, the requisite M is roughly the same,

since G is time-independent; however, N is larger for the parabolic case as u is a function of µ and time.
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Figure 3. Convergence of the reduced-basis approximation for the non-affine parabolic example.

In Table 6 we present, as a function of N and M , the online computational times to calculate sN,M (µ, tk)

and ∆s
N,M (µ, tk), ∀k ∈ K. The values are normalized with respect to the computational time for the direct

calculation of the truth approximation output s(µ, tk) = ℓ(u(µ, tk)), ∀k ∈ K. The computational saving is

quite significant: for a relative accuracy of roughly 0.02 percent (N = 20, M = 24) in the output, the online

time to compute sN,M (µ, tk) is about 1/1000 the time to directly calculate s(µ, tk).

5. Nonlinear Monotonic Elliptic Equations

5.1. Problem Formulation

5.1.1. Abstract Statement

Of course, nonlinear equations do not admit the same degree of generality as linear equations. We thus

present our approach for a specific class of nonlinear equations. In particular, we consider the following
23



Online time (Online) time
N M for for

sN,M (µ, tk), ∀ k ∈ K s(µ, tk), ∀ k ∈ K

5 8 6.96E – 04 1
10 16 7.61E – 04 1
20 24 1.05E – 03 1
30 32 1.25E – 03 1
40 40 1.68E – 03 1
50 48 2.06E – 03 1

Table 6. Online computational times (normalized with respect to the time to solve for
s(µ, tk), ∀ k ∈ K) for the nonaffine parabolic problem.

“exact” (superscript e) problem: for any µ ∈ D ⊂ R
P , find se(µ) = ℓ(ue(µ)), where ue(µ) ∈ Xe satisfies the

weak form of the µ-parametrized nonlinear partial differential equation

aL(ue(µ), v) +

∫

Ω

g(ue(µ);x;µ)v = f(v), ∀ v ∈ Xe. (38)

Here g(ue;x;µ) is a rather general nonaffine nonlinear function of the parameter µ, spatial coordinate x,

and field variable ue(x;µ) (we present our assumptions later); and aL(·, ·) and f(·), ℓ(·) are Xe-continuous

bounded bilinear and linear functionals, respectively — these forms are assumed to be parameter-independent

for the sake of simplicity.

Next, we recall our reference (or “truth”) finite element approximation space X(⊂ Xe) of dimension N .

Our truth approximation is then: given µ ∈ D, we find

s(µ) = ℓ(u(µ)) , (39)

where u(µ) ∈ X is the solution of the discretized weak formulation

aL(u(µ), v) +

∫

Ω

g(u(µ);x;µ)v = f(v), ∀v ∈ X . (40)

We assume that ‖ue(µ) − u(µ)‖X is suitably small and hence that N will typically be very large.

We shall make the following assumptions. First, we assume that the bilinear form aL(·, ·) : X × X → R

is symmetric, aL(w, v) = aL(v, w),∀ w, v ∈ X. We shall also make two crucial hypotheses related to well-

posedness. Our first hypothesis is that the bilinear form aL satisfies a stability and continuity condition

0 < α ≡ inf
v∈X

aL(v, v)

‖v‖2
X

; (41)
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sup
w∈X

sup
v∈X

aL(w, v)

‖w‖X‖v‖X
≡ γ < ∞ , (42)

and that f ∈ L2(Ω). For the second hypothesis we require that g : IR × Ω × D → IR is continuous in its

arguments, increasing in its first argument, and satisfies, ∀y ∈ IR, yg(y;x;µ) ≥ 0 for any x ∈ Ω and µ ∈ D.

With these assumptions, the problems (38) and (40) are indeed well-posed.

We can prove that there exists a solution ue ∈ Xe to the problem (38) first by considering the problem (38)

with g replaced by

gn(z;x;µ) =







g(z;x;µ) if |z| ≤ n
−n if z < −n
n if z > n

(43)

and then taking the limit using Fatou’s lemma (see [19]). In addition, the solution is unique: suppose indeed

that (38) has two solution, ue
1 and ue

2; this implies

aL(ue
1 − ue

2, v) +

∫

Ω

(g(u1;x;µ) − g(u2;x;µ)) v = 0, ∀ v ∈ H1
0 (Ω) ;

by choosing v = ue
1 − ue

2, we arrive at

aL(ue
1 − ue

2, u
e
1 − ue

2) +

∫

Ω

(g(u1;x;µ) − g(u2;x;µ)) (ue
1 − ue

2) = 0, ∀ v ∈ H1
0 (Ω) ;

it follows from the coercivity of aL and monotonicity of g in its first argument that ue
1 = ue

2, and hence the

solution is unique.

5.1.2. A Model Problem

We consider the model problem −∇2u+µ(1)
e

µ(2)u
−1

µ(2)
= 100 sin(2πx(1)) cos(2πx(2)), where x(1), x(2) ∈ Ω =

]0, 1[2 and µ = (µ(1), µ(2)) ∈ Dµ ≡ [0.01, 10]2; we impose a homogeneous Dirichlet condition on the boundary

∂Ω. The output of interest is the average of the field variable over the physical domain. The weak formulation

is then stated as: given µ ∈ D, find s(µ) =
∫

Ω
u(µ), where u(µ) ∈ X = H1

0 (Ω) ≡ {v ∈ H1(Ω) | v|∂Ω = 0} is

the solution of

∫

Ω

∇u · ∇v +

∫

Ω

µ(1)
eµ(2)u − 1

µ(2)
v = 100

∫

Ω

sin(2πx(1)) cos(2πx(2)) v, ∀v ∈ X . (44)

Our abstract statement (39) and (40) then obtains for

aL(w, v) =

∫

Ω

∇w · ∇v, f(v) = 100

∫

Ω

sin(2πx(1)) cos(2πx(2)) v, ℓ(v) =

∫

Ω

v, (45)
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(a) (b)

Figure 4. Numerical solutions at typical parameter points for the nonlinear elliptic prob-
lem: (a) µ = (0.01, 0.01) and (b) µ = (10, 10).

and

g(y;x;µ) = µ(1)
eµ(2)y − 1

µ(2)
. (46)

Note that µ(1) controls the strength of the sink term and µ(2) the strength of the nonlinearity. Clearly, g

satisfies our hypotheses.

We present in Figure 4 two typical solutions obtained with the finite element “truth” approximation space

X of dimension N = 2601. We see that when µ = (0.01, 0.01), the solution has two negative peaks and two

positive peaks with similar height (this solution is very similar to that of the problem in which g(u;µ) is

zero). However, as µ increases, the negative peaks remain largely unchanged while the positive peaks are

strongly rectified as shown in Figure 4(b) for µ = (10, 10): as µ increases the exponential function µ(1)e
µ(2)u

damps the positive part of u(µ), but has no effect on the negative part of u(µ).

5.2. Reduced-Basis Approximation

5.2.1. Discrete Equations

We first motivate the need for incorporating the empirical interpolation procedure into the reduced-basis

method to treat nonlinear equations. If we were to directly apply the Galerkin procedure of the linear affine

case, our reduced-basis approximation would satisfy

aL(uN (µ), v) +

∫

Ω

g(uN (µ);x;µ)v = f(v), ∀v ∈ Wu
N . (47)
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Observe that if g is a low order [18, 38] polynomial nonlinearity of u, we can then develop an efficient

offline-online procedure. Unfortunately, this strategy can not be applied to high-order polynomial and non-

polynomial nonlinearities: the operation count for the on-line stage will scale as some power of N , the

dimension of the truth finite element approximation space; the computational advantage relative to classical

approaches using advanced iterative techniques is no longer obvious and in any event real-time response can

not be guaranteed.

We seek an online evaluation cost that depends only on the dimension of reduced-basis approxima-

tion spaces and the parametric complexity of the problems — and not on N . Towards that end, we

first construct nested samples Sg
M = {µg

1 ∈ D, · · · , µg
M ∈ D}, associated nested approximation spaces

W g
M = span{ξm ≡ g(u(µg

m);x;µg
m), 1 ≤ m ≤ M} = span{q1, . . . , qM}, and nested sets of interpolation

points TM = {x1, . . . , xM} for 1 ≤ M ≤ Mmax following the procedure of Section 2.1. Then for any given

w ∈ X and M , we approximate g(w;x;µ) by gw
M (x;µ) =

∑M
m=1 ϕM m(µ)qm(x), where

∑M
j=1 BM

i j ϕM j(µ) =

g(w(xi);xi;µ), 1 ≤ i ≤ M .

We may now approximate g(uN,M ;x;µ) — as required in our reduced-basis projection for uN,M (µ) — by

g
uN,M

M (x;µ). Our reduced-basis approximation is thus: Given µ ∈ D, we evaluate

sN,M (µ) = ℓ(uN,M (µ)), (48)

where uN,M (µ) ∈ Wu
N satisfies

aL(uN,M (µ), v;µ) +

∫

Ω

g
uN,M

M (x;µ)v = f(v), ∀ v ∈ Wu
N . (49)

We now turn to the computational complexity.

5.2.2. Offline–Online Procedure

The most significant new issue is efficient calculation of the nonlinear term g
uN,M

M (x;µ), which we now

elaborate in some detail. We first expand our reduced-basis approximation and coefficient-function approx-

imation as

uN,M (µ) =
N
∑

j=1

uN,M j(µ)ζj , g
uN,M

M (x;µ) =
M
∑

m=1

ϕM m(µ)qm . (50)
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Inserting these representations into (49) yields

N
∑

j=1

AN
i juN,M j(µ) +

M
∑

m=1

CN,M
i m ϕM m(µ) = FN i, 1 ≤ i ≤ N ; (51)

where AN ∈ R
N×N , CN,M ∈ R

N×M , FN ∈ R
N are given by AN

i j = aL(ζj , ζi), 1 ≤ i, j ≤ N , CN,M
i m =

∫

Ω
qmζi, 1 ≤ i ≤ N, 1 ≤ m ≤ M , and FN i = f(ζi), 1 ≤ i ≤ N , respectively. Furthermore, ϕM (µ) ∈ R

M is

given by

M
∑

k=1

BM
m kϕM k(µ) = g(uN,M (xm;µ);xm;µ), 1 ≤ m ≤ M

= g
(

N
∑

n=1

uN,M n(µ)ζn(xm);xm;µ
)

, 1 ≤ m ≤ M . (52)

We then substitute ϕM (µ) from (52) into (51) to obtain the following nonlinear algebraic system

N
∑

j=1

AN
i juN,M j(µ) +

M
∑

m=1

DN,M
i m g

(

N
∑

n=1

ζn(xm)uN,M n(µ);xm;µ
)

= FN i, 1 ≤ i ≤ N , (53)

where DN,M = CN,M (BM )−1 ∈ R
N×M .

To solve (53) for uN,M j(µ), 1 ≤ j ≤ N , we may apply a Newton iterative scheme: given a current iterate

ūN,M j(µ), 1 ≤ j ≤ N, we find an increment δuN,M j , 1 ≤ j ≤ N, such that

N
∑

j=1

(

AN
i j + ĒN

i j

)

δuN,M j(µ) = FN i −
N
∑

j=1

AN
i j ūN,M j(µ)

−
M
∑

m=1

DN,M
i m g

(

N
∑

n=1

ζn(xm)ūN,M n(µ);xm;µ
)

, 1 ≤ i ≤ N ; (54)

here ĒN ∈ R
N×N must be calculated at every Newton iteration as

ĒN
i j =

M
∑

m=1

DN,M
i m g1

(

N
∑

n=1

ζn(xm)ūN,M n(µ);xm;µ
)

ζj(xm), 1 ≤ i, j ≤ N , (55)

where g1 is the partial derivative of g with respect to its first argument. Finally, the output can be evaluated

as

sN,M (µ) =
N
∑

j=1

uN,M j(µ)LN j , (56)

where LN ∈ R
N is the output vector with entries LN j = ℓ(ζj), 1 ≤ j ≤ N . Based on this strategy, we can

develop an efficient offline-online procedure for the rapid evaluation of sN,M (µ) for each µ in D.
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The operation count of the online stage is essentially the predominant Newton update component (54):

at each Newton iteration, we first assemble the right-hand side and compute ĒN of (55) at cost O(MN2)

— note we perform the sum in the parenthesis of (55) before performing the outer sum; we then form and

invert the left-hand side (Jacobian) of (54) at cost O(N3). The online complexity depends only on N , M ,

and the number of Newton iterations; we thus recover N independence of the online stage.

5.2.3. Numerical Results

We first define (w, v)X =
∫

Ω
∇w · ∇v and thus obtain α = 1. We next construct Sg

M and W g
M with the

L2(Ω)-norm surrogate approach on Ξg, where Ξg is a regular 12 × 12 grid over D. We then generate the

sample set Su
N and associated reduced-basis space Wu

N using the adaptive sampling construction [23] over

the grid Ξg — but note for this nonlinear problem, our selection process is based directly on the energy norm

of the true error (not an error estimate), e(µ) = u(µ) − uN,M (µ), since the “truth” solutions u(µ) must be

computed and stored for µ ∈ Ξg as part of the empirical interpolation procedure.

We now introduce a parameter test sample ΞTest of size 225 (a regular 15×15 grid) and define εu
N,M,max,rel =

maxµ∈ΞTest ‖eN,M (µ)‖X/‖umax‖X and εs
N,M,max,rel = maxµ∈ΞTest |s(µ)− sN,M (µ)|/|smax|, where ‖umax‖X =

maxµ∈ΞTest
‖u(µ)‖X and |smax| = maxµ∈ΞTest

|s(µ)|; note that ΞTest is larger than (and mostly non-coincident

with) Ξg. We present in Figure 5 εu
N,M,max,rel as a function of N and M . We observe very rapid convergence

of the reduced-basis approximation. Furthermore, the errors behave very similarly as in the linear example:

the errors initially decrease, but then “plateau” in N for a particular value of M ; increasing M effectively

brings the error curves down. We also tabulate in Table 7 ǫu
N,M,max,rel and ǫs

N,M,max,rel for values of (N,M)

close to the “knees” of the convergence curves of Figure 5. We see that sN,M (µ) converges very rapidly.

N M ǫu
N,M,max,rel ǫs

N,M,max,rel

4 5 6.53E – 03 2.11E – 02
8 10 1.05E – 03 2.38E – 03
12 15 7.34E – 05 1.26E – 04
16 20 1.30E – 05 2.79E – 05
20 25 5.05E – 06 8.00E – 06

Table 7. Maximum relative error in the energy norm and output for different values of
(N,M) for the nonlinear elliptic problem.
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Figure 5. Convergence of the reduced-basis approximation for the nonlinear elliptic problem.

Online time (Online) time
N M for for

sN,M (µ) s(µ)
4 5 6.32E – 05 1
8 10 1.76E – 04 1
12 15 3.12E – 04 1
16 20 5.14E – 04 1
20 25 7.80E – 04 1

Table 8. Online computational times (normalized with respect to the time to solve for
s(µ)) for the nonlinear elliptic example.

We present in Table 8 the online computational times to calculate sN,M (µ) as a function of (N,M).

The values are normalized with respect to the computational time for the direct calculation of the truth

approximation output s(µ) = ℓ(u(µ)). The computational savings are much larger in the nonlinear case:

for an relative accuracy of 0.0126 percent (N = 12, M = 15) in the output, the reduction in online cost is

more than a factor of 3000; this is mainly because the matrix assembly of the nonlinear terms for the truth

approximation is computationally very expensive. However we must also recall that, in the nonlinear case,

the reduced-basis offline computations are much more extensive since we must solve the truth approximation

over the large sample Ξg when constructing Sg
M .
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6. Nonlinear Parabolic Equations

6.1. Problem Formulation

We now extend the results of the previous section to the time-dependent case and consider nonlinear

parabolic problems. Similar to Section 4 we directly consider a time-discrete framework: we divide the time

interval Ī ≡ [0, tf ] into K subintervals of equal length ∆t =
tf

K and define tk ≡ k∆t, 0 ≤ k ≤ K ≡
tf

∆t , and

I ≡ {t0, . . . , tk}; for the time integration we consider Euler-Backward. We also include a control input, b(tk),

in the formulation of the problem.

6.1.1. Abstract Statement

We directly consider the “truth” approximation here. Our problem is based on the nonlinear elliptic

problem (40) discussed in Section 5: Given a parameter µ ∈ D, we evaluate the output of interest

s(µ, tk) = ℓ(u(µ, tk)), ∀k ∈ K (57)

where the field variable u(µ, tk) ∈ X, ∀k ∈ K,6 satisfies the weak form of the nonlinear parabolic partial

differential equation

m(u(µ, tk), v) + ∆t aL(u(µ, tk), v) + ∆t

∫

Ω

g(u(µ, tk);x;µ) v

= m(u(µ, tk−1), v) + ∆t f(v) b(tk), ∀v ∈ X, ∀k ∈ K, (58)

with initial condition (say) u(µ, t0) = 0. (If an explicit scheme such as Euler-Forward is used, we then arrive

at a linear system for u(µ, tk) but now burdened with a conditional stability restriction on ∆t. In that case,

the discrete reduced-basis system is inheritedly linear.) We assume that aL and m are symmetric and satisfy

the coercivity conditions (41) and (32) and continuity conditions (42) and (33). We also require the linear

forms f(·) and ℓ(·) are bounded with respect to ‖ · ‖Y e . Since the focus of this section is the treatment of

the nonlinearity g(u(µ, t);x;µ), we assume for simplicity that m, a, f , and ℓ are parameter independent.

6We note that the field variable, u(µ, tk), is of course also a function of the spatial coordinate x. In the sequel we will use
the notation u(x; µ, tk) to signify this dependence whenever it is crucial.
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Similarly as in the steady case, assuming that g : IR×Ω×D → IR is continuous in its arguments, increasing

in its first argument, and satisfies ∀y ∈ IR, yg(y;x;µ) ≥ 0 for any x and µ, it is a classical result of nonlinear

analyses (truncation and monotonicity) to prove well-posedness of this problem (see [19]).

6.1.2. Model Problem

Our particular numerical example is the unsteady analog of the elliptic model problem introduced in

Section 5.1.2: we have µ = (µ(1), µ(2)) ∈ Dµ ≡ [0.01, 10]2, the spatial domain is the unit square, Ω =]0, 1[2,

and our “truth” approximation finite element space X = H1
0 (Ω) has dimension N = 2601. The field variable

u(µ, tk) ∈ X thus satisfies (58) with

m(v, w) ≡

∫

Ω

v w, aL(v, w) ≡

∫

Ω

∇v · ∇w, f(v) ≡ 100

∫

Ω

v sin(2πx(1)) cos(2πx(2)), (59)

and

g(u(µ, tk);µ) = µ(1)
eµ(2) u(µ,tk) − 1

µ(2)
. (60)

The output s(µ, tk) is evaluated from (57) with ℓ(v) =
∫

Ω
v. We shall consider the time interval Ī = [0, 2]

and a timestep ∆t = 0.01; we thus have K = 200. The control input is given by b(tk) = sin(2πtk), t ∈ I.

6.2. Reduced-Basis Approximation

6.2.1. Fully Discrete Equations

We first introduce the nested sample sets Sg
M = {µ̃g

1 ∈ D̃, . . . , µ̃g
M ∈ D̃}, 1 ≤ M ≤ Mmax and Su

N = {µ̃u
1 ∈

D̃, . . . , µ̃u
N ∈ D̃}, 1 ≤ N ≤ Nmax, where µ̃ ≡ (µ, tk) and D̃ ≡ D × I. Note that, since g(·;x;µ) is a function

of the field variable u(µ, tk), the sample set Sg
M must now also reside in parameter-time space D̃; in general,

Su
N 6= Sg

M and in fact N 6= M . We define the nested collateral reduced-basis space

W g
M = span{ξn ≡ g(u(µ̃g

n);x;µ), 1 ≤ n ≤ M} = span{q1, . . . , qM}, 1 ≤ M ≤ Mmax, (61)

and nested set of interpolation points TM = {x1, . . . , xM}, 1 ≤ M ≤ Mmax; here u(µ̃g
n) is the solution of

(58) at time t = tk
g
n for µ = µg

n. Next, we define the associated nested Lagrangian [28] reduced-basis space

Wu
N = span{ζn ≡ u(µ̃u

n), 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (62)

where u(µ̃u
n) is the solution of (58) at time t = tk

u
n for µ = µu

n.
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Our reduced-basis approximation uN,M (µ, tk) to u(µ, tk) is then given by: given µ ∈ D, uN,M (µ, tk) ∈ Wu
N

satisfies

m(uN,M (µ, tk), v) + ∆t aL(uN,M (µ, tk), v) + ∆t

∫

Ω

g
uN,M

M (x;µ, tk) v

= m(uN,M (µ, tk−1), v) + ∆t f(v) b(tk), ∀v ∈ Wu
N , ∀k ∈ K, (63)

with initial condition uN,M (µ, t0) = 0; here, g
uN,M

M (x;µ, tk) is the approximation to g(uN,M (µ, tk);x;µ) given

by

g
uN,M

M (x;µ, tk) =
M
∑

m=1

ϕMm(µ, tk) qm(x) (64)

where the coefficients ϕMm(µ, tk) are determined from

M
∑

j=1

BM
ij ϕMj(µ, tk) = g(uN,M (xi;µ, tk);xi;µ), 1 ≤ i ≤ M, (65)

and BM
ij = qj(xi), 1 ≤ i, j ≤ M . Finally, we evaluate the output from

sN,M (µ, tk) = ℓ(uN,M (µ, tk)), ∀k ∈ K. (66)

(Note that, contrary to the previous sections, ϕM (µ, tk) now also depends on time.)

At this point we should remark that our current approach of constructing the sample set Sg
M and associated

reduced-basis space W g
M in the nonlinear parabolic case is computationally very expensive. The reason,

related to our greedy adaptive sampling procedure proposed in Section 2.1, is twofold. First, we need to

calculate and store the “truth” solution u(µ, tk) at all times tk ∈ I on the grid Ξg in parameter space.

In our numerical example Ξg is of size 144 — we thus need to solve (58) 144 times and store 144 × 200

“truth” solutions u(µ, tk)! Second, as pointed out in Section 2.1, to determine the next sample point µ̃g
n in

Ξ̃g ≡ Ξg × I, requires the solution of a linear program for all µ ∈ Ξ̃g if g is time-varying — as is inherently

the case in the nonlinear context.7 Since this computation is too expensive in our current implementation,

we revert to the least squares surrogate in this section — in choosing this approach we in fact rely on our

numerical comparison in Section 2.1 showing that we can expect similar results.

7Note that in the linear nonaffine parabolic case the function g depended only on x and µ and not on time.
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6.2.2. Offline–Online Procedure

The offline-online decomposition follows directly from the corresponding procedures for linear nonaffine

parabolic problems (see Section 4) and nonlinear elliptic problems (see Section 5). In summary, the operation

count (per Newton iteration per timestep) in the online stage is O(MN2 + N3); the system is of course no

longer “LTI”.

We remark that, in actual practice, M can be quite large — and in fact much larger than N . We can

reduce M without sacrificing accuracy by splitting the time interval I into several smaller subintervals I1, . . . ,

II such that I =
⋃

i=1,I Ii. We then construct, in the offline stage, I separate samples sets Sg
M i, 1 ≤ i ≤ I,

and associated reduced-basis spaces W g
M i, 1 ≤ i ≤ I, on each interval Ii, 1 ≤ i ≤ I. In the online stage

we simply “switch” to the corresponding sample — and hence TM , BM , and DN,M — as time progresses.

This approach renders the offline computation more expensive (and online storage more extensive), but can

increase the online efficiency considerably while retaining the desired accuracy.

6.2.3. Numerical Results

We now present numerical results for our model problem of Section 6.1.2. We construct Sg
M and hence

W g
M with the surrogate least squares approach on Ξ̃g = Ξg × I, where Ξg is a regular 12×12 grid over D. We

generate the sample set Su
N and associated reduced-basis space Wu

N using an adaptive sampling procedure

— but note for this nonlinear parabolic problem, our selection process is based directly on the energy norm

of the true error (not an error estimate), e(µ, tk) = u(µ) − uN,M (µ, tk), since the “truth” solutions u(µ, tk)

are stored for µ ∈ Ξg.

We now define the maximum relative error in the energy norm ǫu
N,M,max,rel = maxµ∈ΞTest

|||e(µ, tK)|||/|||u(µu, tK)|||

and the maximum relative output error ǫs
N,M,max,rel = maxµ∈ΞTest

|s(µ, ts(µ))− sN,M (µ, ts(µ))|/|s(µ, ts(µ))|.

Here ΞTest ⊂ D is the parameter test sample of size 225 introduced in Section 5.2.3, µu ≡ arg maxµ∈ΞTest
|||u(µ, tK)|||,

ts(µ) = arg maxtk∈I |s(µ, tk)|, and the energy norm is defined as |||v(µ, tk)||| ≡
(

m(v(µ, tk), v(µ, tk))+

∑k
k′=1 aL(v(µ, tk

′

), v(µ, tk
′

)) ∆t
)

1
2 , ∀v ∈ L∞(D × I;X).

We plot in Figure 6 ǫu
N,M,max,rel as a function of N for different values of M . We observe the same

behavior as in the nonlinear elliptic case. We note, however, that M is now much larger compared to the
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N M ǫy
N,M,max,rel ǫs

N,M,max,rel

1 10 3.82E – 01 1.00E – 00
5 30 1.36E – 02 1.91E – 02
10 50 1.62E – 03 1.46E – 04
20 80 1.46E – 04 1.67E – 05
30 110 1.88E – 05 5.16E – 06
40 140 4.94E – 06 1.56E – 06

Table 9. Relative error in the energy norm and output for the nonlinear parabolic problem.

nonlinear elliptic model problem due to the time dependence; we recall that in the linear nonaffine elliptic

and parabolic cases the required M was the same since the nonaffine coefficient function did not depend on

time. In Table 9, we present ǫu
N,M,max,rel and ǫs

N,M,max,rel as a function of N and M . We observe very rapid

convergence of the reduced-basis approximation; for N = 20 and M = 80 the error in the output is less than

one percent.
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Figure 6. Convergence of the reduced-basis approximation for the nonlinear parabolic problem.

In Table 10 we present, as a function of N and M , the online computational times to calculate sN,M (µ, tk)

and ∆s
N,M (µ, tk), ∀k ∈ K. The values are normalized with respect to the computational time for the direct

calculation of the truth approximation output s(µ, tk) = ℓ(u(µ, tk)), ∀k ∈ K. The reduction in online

response time is considerable. We again caution that the offline computations necessary in the nonlinear

case are very extensive — primarily due to the sampling procedure for Sg
M . However, if a many-query

context, or a clear demand for real-time response, can justify the offline cost, the reduced-basis methods can

be very gainfully employed.
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Online time (Online) time
N M for for

sN,M (µ, tk), ∀ k ∈ K s(µ, tk), ∀ k ∈ K

1 10 6.62E – 05 1
5 30 1.19E – 04 1
10 50 1.74E – 04 1
20 80 3.88E – 04 1
30 110 7.20E – 04 1
40 140 1.22E – 03 1

Table 10. Online computational times (normalized with respect to the time to solve for
s(µ, tk), ∀k ∈ K) for the nonlinear parabolic problem.
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[18] K. Ito and S. S. Ravindran. A reduced-order method for simulation and control of fluid flows. Journal of Computational

Physics, 143(2):403–425, July 1998.
[19] J.L. Lions. Quelques Methods de Resolution des Problemes aux Limites Non-lineares. Dunod, 1969.

36



[20] L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V. Rovas. Output bounds for reduced-basis approximations of
symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris, Série I, 331(2):153–158, July 2000.

[21] Y. Maday, A. T. Patera, and G. Turinici. Global a priori convergence theory for reduced-basis approximation of single-
parameter symmetric coercive elliptic partial differential equations. C. R. Acad. Sci. Paris, Série I, 335(3):289–294, 2002.

[22] M. Meyer and H. G. Matthies. Efficient model reduction in non-linear dynamics using the karhunen-loève expansion and
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Appendix

We consider here the rate at which uN,M (µ, tk) converges to u(µ, tk) for the nonaffine linear parabolic case.

As for the elliptic case, the interpolation-induced error will be measured through the functions φ1(µ), φ2(µ)

and φ3(µ) of (25)-(27) together with a comparison with respect to some best fit of u(µ, .) by elements of Wu
N .

The natural measure for the best fit is the “m+∆ta” norm. We thus introduce the projector πN defined by

m(v − πN (v), wN ) + ∆ta(v − πN (v), wN ) = 0, πN (v) ∈ Wu
N ,∀wN ∈ Wu

N ,∀v ∈ X .
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We can then prove

Proposition 6.1. For εM (µ) of (8) satisfying εM (µ) < α(µ)/(4φ2(µ)) (say), the error e(µ, tk) ≡ u(µ, tk)−

uN,M (µ, tk) satisfies

σ ‖e(µ, tk)‖2
Y +

α(µ)

2
∆t

k
∑

k′=1

‖e(µ, tk
′

)‖2
X ≤ Υ(µ) ∆t

k
∑

k′=1

b(tk
′

)2

+ 8ρ ‖u(µ, tk) − πN [u(µ, tk)]‖2
Y + (8γ(µ) + 4α(µ))∆t

k
∑

k′=1

‖u(µ, tk
′

) − πN [u(µ, tk
′

)]‖2
X , (A.1)

where

Υ(µ) =
18

α(µ)
εM (µ)2

(

φ1(µ)2 + φ2(µ)2
2 φ3(µ)2

α(µ)2

)

.

Proof. To begin, we note from (3) and (36) that

m(e(µ, tk) − e(µ, tk−1), v) + ∆t a(e(µ, tk), v;µ)

= ∆t

(
∫

Ω

v(g(x;µ) − gM (x;µ)) b(tk) + a1(uN,M (µ, tk), v; g(·;µ) − gM (·;µ))

)

, ∀ v ∈ Wu
N . (A.2)

with initial condition e(µ, t0) = 0, since u(µ, t0) = uN,M (µ, t0) = 0 by assumption. It then follows that

m(e(µ, tk), v) + ∆t a(e(µ, tk), v;µ) = m(e(µ, tk−1), v) + ∆t a(e(µ, tk−1), v;µ) − ∆t a(e(µ, tk−1), v;µ)

+ ∆t

(
∫

Ω

v(g(x;µ) − gM (x;µ)) b(tk) + a1(uN,M (µ, tk), v; g(·;µ) − gM (·;µ))

)

, ∀ v ∈ Wu
N . (A.3)

Let us set now wN (µ, tk) = πN [u(µ, tk)] and choose v = eN (µ, tk) ≡ wN (µ, tk) − uN,M (µ, tk) in (A.3). We

obtain

m(eN (µ, tk), eN (µ, tk)) + ∆t a(eN (µ, tk), eN (µ, tk);µ)

= m(eN (µ, tk−1), eN (µ, tk)) + ∆t a(eN (µ, tk−1), eN (µ, tk);µ) − ∆t a(e(µ, tk−1), eN (µ, tk);µ)

+ ∆t

(
∫

Ω

v(g(x;µ) − gM (x;µ)) b(tk) + a1(uN,M (µ, tk), v; g(·;µ) − gM (·;µ))

)

= m(eN (µ, tk−1), eN (µ, tk)) − ∆t a(u(µ, tk−1) − wN (µ, tk−1), eN (µ, tk);µ) − ∆t a(e(µ, tk−1), eN (µ, tk);µ)

+ ∆t

(
∫

Ω

v(g(x;µ) − gM (x;µ)) b(tk) + a1(uN,M (µ, tk), v; g(·;µ) − gM (·;µ))

)

. (A.4)
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It thus follows that

m(eN (µ, tk), eN (µ, tk)) − m(eN (µ, tk−1), eN (µ, tk−1)) + ∆t a(eN (µ, tk), eN (µ, tk);µ)

≤ ∆t a(u(µ, tk−1) − wN (µ, tk−1), u(µ, tk−1) − wN (µ, tk−1);µ)

+2∆t

(
∫

Ω

v(g(x;µ) − gM (x;µ)) b(tk) + a1(uN,M (µ, tk), v; g(·;µ) − gM (·;µ))

)

, (A.5)

which after summing from k′ = 1 to k leads to

m(eN (µ, tk), eN (µ, tk)) + ∆t
k
∑

k′=1

a(eN (µ, tk
′

), eN (µ, tk
′

);µ)

≤ ∆t
k−1
∑

k′=1

a(u(µ, tk
′

) − wN (µ, tk
′

), u(µ, tk
′

) − wN (µ, tk
′

);µ)

+2∆t
k
∑

k′=1

(

φ1(µ) |b(tk
′

)| + φ2(µ) ‖uN,M (µ, tk
′

)‖X

)

εM (µ) ‖eN (µ, tk)‖X , (A.6)

where the last inequality follows from (25) and (26). We take the square root of what we have obtained

{

m(eN (µ, tk), eN (µ, tk)) + ∆t
k
∑

k′=1

a(eN (µ, tk
′

), eN (µ, tk
′

);µ)

}1/2

≤

{

∆t
k−1
∑

k′=1

a(u(µ, tk
′

) − wN (µ, tk
′

), u(µ, tk
′

) − wN (µ, tk
′

);µ)

}1/2

+

{

2 ∆t
k
∑

k′=1

(

φ1(µ) |b(tk
′

)| + φ2(µ) ‖uN,M (µ, tk
′

)‖X

)

εM (µ) ‖eN (µ, tk)‖X

}1/2

, (A.7)

so a triangular inequality gives

{

m(u(µ, tk) − uN,M (µ, tk), u(µ, tk) − uN,M (µ, tk))

+∆t
k
∑

k′=1

a(u(µ, tk
′

) − uN,M (µ, tk
′

), u(µ, tk
′

) − uN,M (µ, tk
′

);µ)

}1/2

≤ 2

{

m(u(µ, tk) − wN (µ, tk), u(µ, tk) − wN (µ, tk))

+∆t

k
∑

k′=1

a(u(µ, tk
′

) − wN (µ, tk
′

), u(µ, tk
′

) − wN (µ, tk
′

);µ)

}1/2

+

{

2 ∆t
k
∑

k′=1

(

φ1(µ) |b(tk
′

)| + φ2(µ) ‖uN,M (µ, tk
′

)‖X

)

εM (µ) ‖eN (µ, tk)‖X

}1/2

. (A.8)
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We now note that ‖eN (µ, tk)‖X ≤ ‖u(µ, tk) − wN (µ, tk)‖X + ‖e(µ, tk)‖X and recall the identity (for c ∈

IR, d ∈ IR, ̺ ∈ IR+)

2 |c| |d| ≤
1

̺2
c2 + ̺2 d2, (A.9)

which we apply four times: first, with c = εM (µ)φ1(µ) |b(tk)|, d = ‖u(µ, tk) − wN (µ, tk)‖X , and ̺2 = α(µ);

second, with c = εM (µ) φ1(µ) |b(tk)|, d = ‖e(µ, tk)‖X , and ̺2 = α(µ)/8; third, with c = εM (µ)φ2(µ) ‖uN,M (µ, tk)‖X ,

d = ‖u(µ, tk) − wN (µ, tk)‖X , and ̺2 = α(µ) ; and fourth, with c = εM (µ) φ2(µ) ‖uN,M (µ, tk)‖X , d =

‖e(µ, tk)‖X , and ̺2 = α(µ)/8. We can then bound the last term of (A.6) by

2 ∆t
k
∑

k′=1

(

φ1(µ) |b(tk
′

)| + φ2(µ) ‖uN,M (µ, tk
′

)‖X

)

εM (µ) ‖eN (µ, tk)‖X

≤ εM (µ)2
9

α(µ)

(

φ1(µ)2 ∆t
k
∑

k′=1

b(tk
′

)2 + φ2(µ)2∆t
k
∑

k′=1

‖uN,M (µ, tk
′

)‖2
X

)

+2∆t α(µ)
k
∑

k′=1

‖u(µ, tk
′

) − wN (µ, tk
′

)‖2
X + ∆t

α(µ)

4

k
∑

k′=1

‖e(µ, tk
′

)‖2
X . (A.10)

We next use v = uN,M (µ, tk) in (36), invoke the Cauchy-Schwarz inequality for m(uN,M (µ, tk), uN,M (µ, tk−1))

and apply (A.9) with c = m1/2(uN,M (µ, tk), uN,M (µ, tk)), d = m1/2(uN,M (µ, tk−1), uN,M (µ, tk−1)), and

̺ = 1, to get

m(uN,M (µ, tk), uN,M (µ, tk)) − m(uN,M (µ, tk−1), uN,M (µ, tk−1))

+2∆t a(uN,M (µ, tk), uN,M (µ, tk);µ)

≤ 2 ∆t

∫

Ω

(uN,M (µ, tk)gM (x;µ)) b(tk)

+2∆t a1(uN,M (µ, tk), uN,M (µ, tk); g(x;µ) − gM (x;µ))

≤ 2 ∆t φ3(µ) ‖uN,M (µ, tk)‖X |b(tk)| + 2 ∆t εM (µ) φ2(µ) ‖uN,M (µ, tk)‖2
X

≤
∆t

α(µ) − 2 φ2(µ) εM (µ)
φ3(µ)2 b(tk)2 + ∆t α(µ) ‖uN,M (µ, tk)‖2

X , (A.11)

where the second inequality follows from (26) and (27), and the last inequality from (A.9) with c =

φ3(µ) b(tk), d = ‖uN,M (µ, tk)‖X , and ̺ = α(µ) − 2 φ2(µ) εM (µ); note that ̺ > 0 from our assumption
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on εM (µ). Invoking (15) and summing (A.11) from k′ = 1 to k we obtain

m(uN,M (µ, tk), uN,M (µ, tk)) + ∆t
k
∑

k′=1

a(uN,M (µ, tk
′

), uN,M (µ, tk
′

);µ)

≤
φ3(µ)2

α(µ) − 2 φ2(µ) εM (µ)
∆t

k
∑

k′=1

b(tk)2. (A.12)

From the coercivity of m and a, and our assumption on εM (µ) it then directly follows that

∆t
k
∑

k′=1

‖uN,M (µ, tk
′

)‖2
X ≤

φ3(µ)2

α(µ)(α(µ) − 2 φ2(µ) εM (µ))
∆t

k
∑

k′=1

b(tk)2

≤
2 φ3(µ)2

α(µ)2
∆t

k
∑

k′=1

b(tk)2. (A.13)

From (A.8) and invoking (A.10) and (A.13) we obtain

m(e(µ, tk), e(µ, tk) + ∆t
k
∑

k′=1

a(e(µ, tk
′

), e(µ, tk
′

);µ)

≤ 8m(u(µ, tk) − wN (µ, tk), u(µ, tk) − wN (µ, tk))

+8∆t
k
∑

k′=1

a(u(µ, tk
′

) − wN (µ, tk
′

), u(µ, tk
′

) − wN (µ, tk
′

);µ)

+4∆t α(µ)
k
∑

k′=1

‖u(µ, tk
′

) − wN (µ, tk
′

)‖2
X + ∆t

α(µ)

2

k
∑

k′=1

‖e(µ, tk
′

)‖2
X

+Υ(µ) ∆t
k
∑

k′=1

b(tk
′

)2, (A.14)

where

Υ(µ) =
18

α(µ)
εM (µ)2

(

φ1(µ)2 + φ2(µ)2
2 φ3(µ)2

α(µ)2

)

.

The desired result then directly follows from the fact wN (µ, tk) is the projection of u(µ, tk) with respect to

the m + ∆ta norm. �
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