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Efficient Region Tracking With Parametric
Models of Geometry and Illumination

Gregory D. Hager, Member, IEEE, and Peter N. Belhumeur, Member, IEEE,

Abstract—As an object moves through the field of view of a camera, the images of the object may change dramatically. This is not
simply due to the translation of the object across the image plane. Rather, complications arise due to the fact that the object
undergoes changes in pose relative to the viewing camera, changes in illumination relative to light sources, and may even become
partially or fully occluded. In this paper, we develop an efficient, general framework for object tracking—one which addresses each
of these complications. We first develop a computationally efficient method for handling the geometric distortions produced by
changes in pose. We then combine geometry and illumination into an algorithm that tracks large image regions using no more
computation than would be required to track with no accommodation for illumination changes. Finally, we augment these methods
with techniques from robust statistics and treat occluded regions on the object as statistical outliers. Throughout, we present
experimental results performed on live video sequences demonstrating the effectiveness and efficiency of our methods.

Index Terms—Visual tracking, real-time vision, illumination, motion estimation, robust statistics.
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1 INTRODUCTION

ISUAL tracking has emerged as an important compo-
nent of systems in several application areas including

vision-based control [1], [2], [3], [4], human-computer inter-
faces [5], [6], [7], surveillance [8], [9], agricultural automa-
tion [10], [11], medical imaging [12], [13], and visual recon-
struction [14], [15], [16]. The central challenge in visual
tracking is to determine the image configuration of a target
region (or features) of an object as it moves through a cam-
era’s field of view. This is done by solving what is known as
the temporal correspondence problem: the problem of
matching the target region in successive frames of a se-
quence of images taken at closely-spaced time intervals.
The correspondence problem for visual tracking has, of
course, much in common with the correspondence prob-
lems which arise in stereopsis and motion estimation. It
differs, however, in that the goal is not to determine the
exact correspondence for every image location in a pair of
images, but rather to determine, in a global sense, the
movement of an entire target region over a long sequence of
images.

What makes tracking difficult is the potential variabil-
ity in the images of an object over time. This variability
arises from three principle sources: variation in target
pose or target deformations, variation in illumination, and
partial or full occlusion of the target. When ignored, any
one of these three sources of variability is enough to cause
a tracking algorithm to lose its target. Thus, the two prin-

cipal challenges for visual tracking are to develop accurate
models of image variability and to design effective and
computationally efficient tracking algorithms which use
these models.

In this article, we develop a framework for modeling im-
age variability due to motion and illumination. In the case
of motion, all points in the target region are presumed to be
part of the same object allowing us the luxury—at least for
most applications—of assuming that these points move
coherently in space. This permits us to develop low-order
parametric models for the image motion of points within a
target region—models that can be used to predict the
movement of the points and track the target through an
image sequence. In the case of illumination, we exploit the
observations of [17], [18], [19] to model image variation due
to changing illumination by low-dimensional linear sub-
spaces. We then show that these models can be incorpo-
rated into an efficient estimation algorithm which estab-
lishes temporal correspondence of the target region by si-
multaneously determining both motion and illumination
parameters. Finally, in the case of partial occlusion, we ap-
ply results from robust statistics [20] to develop automatic
methods of rejecting occluded pixels in a computationally
efficient manner. The result is a family of region-tracking
algorithms which can easily track large image regions (for
example the face of a user at a workstation) at a 30 Hz
frame rate using no special hardware other than a standard
digitizer.

The tracking algorithms developed in this paper are
based on minimizing the sum-of-squared differences (SSD)
between two regions. Although this idea has been success-
fully employed in many contexts including stereo matching
[21], optical flow computation [22], and visual motion
analysis [23], previous SSD-based tracking algorithms have
suffered from a variety of limitations. Many algorithms
have modeled the motion of the target region as pure
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translation in the image plane [16], [3]. This implicitly as-
sumes that the underlying object is translating parallel to
the image plane and is being viewed orthographically.
While computationally efficient, over a long sequence these
assumptions are often violated [23]. More elaborate track-
ing algorithms have included parametrized models for ar-
ticulation [24], [25] or nonrigid deformations [26], [27] as
well as linear image subspaces [28], [29]. However, the re-
sulting algorithms rely on nonlinear optimization tech-
niques which require from several seconds to several min-
utes per frame to compute. Furthermore, none explicitly
address the problem of illumination changes. In fact,
many algorithms avoid issues related to illumination by
estimating and accumulating changes from frame to
frame. As a result any error in motion estimation between
any two frames is subsequently propagated through the
entire sequence.

Another well-established route toward efficient tracking
is to detect and track only a sparse collection of features (or
contours) [30], [11], [31], [32], [33]. As such methods use
local detection of areas of high contrast change, they tend to
be insensitive to global changes in the intensity and/or
composition of the incident illumination. However, in
many situations persistent, strong edges are sparsely dis-
tributed throughout the image of the target. This sparseness
makes it difficult to establish edge correspondences without
strong geometric constraints [33], [31] or an accurate pre-
dictive model [11], [30]. In contrast, region-based methods
such as those developed in this article make direct and
complete use of all available image intensity information,
thereby eliminating the need to identify and model a spe-
cial set of features to track. By incorporating illumination
models and robust estimation methods into an efficient cor-
respondence algorithm, the performance of our region
tracking algorithms appears to be comparable to that
achieved by edge-based methods, thereby making region-
based methods an effective complement to local feature-
based algorithms.

The remainder of this article is organized as follows.
Section 2 establishes a framework for posing the problem of
region tracking for parametric motion models and describes
conditions under which an efficient tracking algorithm can
be developed. Section 3 then shows how models of illumi-
nation can be incorporated with no loss of computational
efficiency. Section 4 details modifications for handling par-
tial target occlusion via robust estimation techniques. Sec-
tion 5 presents experimental results from an implementa-
tion of the algorithms. Finally, Section 6 presents a short
discussion of performance improving extensions to our
tracking algorithm.

2 TRACKING MOVING OBJECTS

In this section, we describe a framework for the efficient
tracking of a target region through an image sequence.
We first write down a general parametric model for the
set of allowable image motions and deformations of the
target region. We then pose the tracking problem as the
problem of finding the best (in a least squares sense) set
of parameter values describing the motions and defor-

mations of the target through the sequence. Finally, we
describe how the best set of parameters can be efficiently
computed.

2.1 On Recovering Structured Motion
Let I(x, t) denote the brightness value at the location x = (x, y)

t

in an image acquired at time t and let —xI(x, t) denote the
spatial gradient at that location and time. The symbol t0

denotes an identified “initial” time and we refer to the im-
age at time t0 as the reference image. Let the set 5 = {x1, x 2,
º, xN} be a set of N image locations which define a target
region. We refer to the brightness values of the target region
in the reference image as the reference template.

Over time, the relative motion between the target object
and the camera causes the image of the target to shift and to
deform. Let us model the image motion of the target region

of the object by a parametric motion model f(x; m) param-

eterized by m = (m1, m2, º, mn)
t
, with f(x; 0) = x and N > n. We

assume that f is differentiable in both m and x. We call m the
motion parameter vector. We consider recovering the motion
parameter vector for each image in the tracking sequence as

“tracking the object.” We write m*(t) to denote the ground

truth values of these parameters at time t, and m(t) to de-
note the corresponding estimate. The argument t will be
suppressed when it is obvious from its context.

Suppose that a reference template is acquired at time t0

and that initially m*(t0) = m(t0) = 0. Let us assume for now
that the only changes in subsequent images of the target are
completely described by f, i.e., there are no changes in the

illumination of the target. It follows that for any time t > t0,

there is a parameter vector m*(t) such that

I(x, t0) = I(f(x; m*(t)), t) for all x Œ 5.               (1)

This is a generalization of the so-called image constancy as-
sumption [34]. Thus, the motion parameter vector of the tar-
get region can be estimated at time t by minimizing the
following least squares objective function

O I t I tm m1 6 2 73 8 2 74 9= -
Œ

Â f x x
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5

.                    (2)

For later developments, it is convenient to rewrite this
optimization problem in vector notation. To this end, let us
consider images of the target region as vectors in an N-
dimensional space. The image of the target region at time t,
under the change of coordinates with parameters m, is
written as
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This vector is subsequently referred to as the rectified image
at time t with parameters m. We also make use of the partial
derivatives of I with respect to the components of m and the
time parameter t. These are written as
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where 1 £ i £ n.
Using this vector notation, the image constancy assump-

tion (1) can be rewritten as

I(m
*
(t), t) = I(0, t0)

and (2) becomes

O(m) = iI(m, t) - I(0, t0)i
2
.                           (6)

In general, (6) is a nonconvex objective function. Thus, in
the absence of a good starting point, this problem will usu-
ally require some type of costly global optimization proce-
dure to solve [35].

In the case of visual tracking, the continuity of motion
provides such a starting point. Suppose that, at some arbi-

trary time t > t0, the geometry of the target region is de-

scribed by m(t). We recast the tracking problem as one of

determining a vector of offsets, dm, such that m(t + t) = m(t) +

dm from an image acquired at t + t. Incorporating this modi-
fication into (6), we redefine the objective function as a

function on dm

O(dm) = iI(m(t) + dm, t + t) - I(0, t0)i
2
.                (7)

If the magnitude of the components of dm are small,
then it is possible to apply continuous optimization pro-
cedures to a linearized version of the problem [29], [34],
[21], [36], [23]. The linearization is carried out by expand-
ing I(m + dm, t + t) in a Taylor series about m and t,

I(m + dm, t + t) = I(m, t) + M(m, t) dm + t It(m, t) + h.o.t,    (8)

where h.o.t denotes higher-order terms of the expansion,
and M is the Jacobian matrix of I with respect to m, i.e., the
N ¥ n matrix of partial derivatives which can be written in
column form as

M(m, t) = [Im1(m, t)|Im2(m, t)| º |Imn(m, t)].             (9)

As the expression above indicates, the values of the partial
derivatives are a function of the evaluation point (m, t).
These arguments will be suppressed when obvious from
their context.

By substituting (8) into (7) and ignoring the higher-order
terms, we have

O(dm) < iI(m, t) + M dm + t It - I(0, t0)i
2
.             (10)

With the additional approximation

t It(m, t) < I(m, t + t) - I(m, t),

(10) becomes

O(dm) < i M dm + I(m, t + t) - I(0, t0)i
2
.             (11)

Solving the set of equations —O = 0 yields the solution

dm = -(M
t
M)-

1
 M

t
 [I(m, t + t) - I(0, t0)],            (12)

provided the matrix M
t
M evaluated at (m, t) has full rank.

When this is not the case, we are faced with a generaliza-
tion of the aperture problem, i.e., the target region does not
have sufficient structure to determine all of the elements of

m uniquely. Further discussion of this point can be found in
Section 2.4.

In subsequent developments, it will be convenient to de-
fine the error vector

e(t + t) = I(m(t), t + t) - I(0, t0).

Incorporating this definition into (12), we see that the solu-
tion of (6) at time t + t given a solution at time t is

m(t + t) = m(t) - (M
t
M)-

1
 M

t
 e(t + t).          (13)

It is important to note at this point that the solution for dm is
homogeneous in e. Thus, while errors in calculating M may
affect stability or speed of convergence, they do not affect
the stationary points of (13).

2.2 An Efficient Tracking Algorithm
From (13), we see that to track the target region through the
image sequence, we must compute the Jacobian matrix
M(m, t). Each element of this matrix is given by
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where —fI is the gradient of I with respect to the compo-
nents of the vector f. Recall that the Jacobian matrix of the

transformation f regarded as a function of m is the 2 ¥ n
matrix
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By making use of (15), M can be written compactly in row
form as
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Because M depends on time-varying quantities, it may
appear that it must be completely recomputed at each time
step—a computationally expensive procedure involving the
calculation of the image gradient vector, the calculation of a
2 ¥ n Jacobian matrix, and n 2 ¥ 1 vector inner products for
each of the N pixels of the target region. However, we now
show that it is possible to reduce this computation by both
eliminating the need to recompute image gradients and by
factoring M.

First, we eliminate the need to compute image gradi-
ents. To do so, let us assume that our estimate is exact,
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i.e., m(t) = m*(t). By differentiating both sides of (1), we
obtain

—xI(x, t0) = fx(x; m)
t
 —fI(f(x; m), t),                  (17)

where fx is the 2 ¥ 2 Jacobian matrix of f treated as a func-

tion of x = (x, y)
t
,
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Combining (17) with (16), we see that M can be written as
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It follows that for any choice of image deformations, the im-
age spatial gradients need only be calculated once on the
reference template. This is not surprising given that the

target at time t > t0 is only a geometric distortion of the tar-

get at time t0, and so its image gradients are also a distor-

tion of those at t0. This transformation also allows us to

drop the time argument of M and regard it solely as a func-

tion of m.
The remaining nonconstant factor in M is a conse-

quence of the fact that, in general, fx and f
m
 involve com-

ponents of m and, hence, implicitly vary with time. How-

ever, suppose that we choose f so that f fx

−1
µ  can be fac-

tored into the product of a 2 ¥ k matrix G which depends

only on image coordinates, and a k ¥ n matrix S which

depends only on m as

fx(x; m)-
1
fm(x; m) = G(x)S(m).                    (20)

For example, as discussed in more detail below, one family
of such factorizations results when f is a linear function of
the image coordinate vector x.

Combining (19) with (20), we have
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As a result, we have shown that M can be written as a

product of an constant N ¥ k matrix M0 and a time-varying

k ¥ n matrix S.
We can now exploit this factoring to define an efficient

tracking algorithm which operates as follows:

Offline:

• � Define the target region.
• � Acquire and store the reference template.

• � Compute and store M0 and L = M M0 0
t .

Online:

• � Use the most recent motion parameter estimate m(t) to
rectify the target region in the current image.

• � Compute e(t + t) by taking the difference between the
rectified image and the reference template.

• � Solve the system S LS S
t t t td tm = +M e0 0 5 for dm,

where S is evaluated at m(t).
• � Compute m(t + t) = m(t) + dm.

The online computation performed by this algorithm is
quite small and consists of two n ¥ k matrix multiplies, k N-
vector inner products, n k-vector inner products, and an n ¥ n
linear system solution, where k and n are typically far
smaller than N.

We note that the computation can be further reduced if S
is invertible. In this case, the solution to the linear system
can be expressed as

dm = -S-t
(M0

t
M0)

-1
M0 

t
e(t + t),                   (22)

where S-t
 = (S-1)

t
 is evaluated at m(t). The factor M M M0 0

1

0
t t4 9

−

can be computed offline, so the online computation is re-
duced to n N-vector inner products and n n-vector inner
products.

2.3 Some Examples
2.3.1 Linear Models
Let us assume that f(x; m) is linear in x. Then we have

f(x; m) = A(m)x + u(m)                           (23)

and, hence, fx = A. It follows that f fx

−1
µ  is linear in the com-

ponents of x and the factoring defined in (20) applies. We
now present three examples illustrating these concepts.

Pure Translation. In the case of pure translation, the al-
lowed image motions are parameterized by the vector u =
(u, v) giving

f(x; u) = x + u.                              (24)

It follows immediately that fx and f
m
 are both the 2 ¥ 2

identity matrix and, therefore,

M0 = [Ix(t0) | Iy(t0)],                          (25)

and S is the 2 ¥ 2 identity matrix.
The resulting linear system is nonsingular if the image

gradients in the template region are not all collinear, in
which case the solution at each time step is just

d tu = - +
-

M M M e0 0

1

0
t t t4 9 0 5 .                      (26)

Note that in this case,

L = -
-

M M M0 0

1

0
t t4 9 ,

a constant matrix which can be computed offline.

Translation, Rotation, and Scale. The motion of objects
which are viewed under scaled orthography and which do
not undergo out-of-plane rotation can be modeled in the
image plane by a planar rigid motion consisting of a
translation u and a rotation through an angle q, plus scal-
ing by a factor s. We subsequently refer to this as the
RM+S model. The change of coordinates is given by

f(x; u, q, s) = sR(q)x + u,                          (27)
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where R(q) is a 2 ¥ 2 rotation matrix. After some minor al-
gebraic manipulations, we obtain

G x0 5 =
-�

! 
"
$#

1 0
0 1

y x
x y

                            (28)

and
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From this M0 can be computed using (21) and, since S is
invertible, the solution to the linear system becomes

d tm = - +
-

S
t t t tM M M e0 0 04 9 0 5

1
.                  (30)

This result can be explained as follows. The matrix M0 is the

linearization of the system about q = 0 and s = 1. At time t,

the target has orientation q(t) and s(t). Image rectification

effectively rotates the target by -q and scales by 1
s

, so the

displacements of the target are computed in the original tar-

get coordinate system. S-t
 then applies a change of coordi-

nates to rotate and scale the computed displacements from
the original target coordinate system back to the actual tar-
get coordinates.

Affine Motion. The image distortions of planar objects
viewed under orthographic projection are described by a
six-parameter linear change of coordinates. Suppose that
we define

m
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After some minor algebraic manipulations, we obtain
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Note that S is once again invertible which allows for addi-
tional computational savings as before.

2.3.2 Nonlinear Motion Models
The separability property needed for factoring does not
hold for any type of nonlinear motion. However, consider a
motion model of the form

f x x; , ,
/

u v a
u

v ax2 7 = + +
�
! 

"
$#1 2 2 ,                  (34)

where x = (x, y)
t
. Intuitively, this model performs a quad-

ratic distortion of the image according to the equation y =

1/2ax
2
. For example, a polynomial model of this form was

used in [27] to model the motions of lips and eyebrows on a
face. Again, after several algebraic steps we arrive at

G Sx0 5 1 6=
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2

2x ax and m .         (35)

Note that this general result holds for any distortion which
can be expressed exclusively as either y = f(x) or x = g(y).
However, adding more freedom to the motion model, for
example combining affine and polynomial distortion, often
makes factoring impossible. One possibility in such cases is
to use a cascaded model in which the image is first rectified
using an affine distortion model, and then the resulting
rectified image is further rectified for polynomial distortion.

2.4 On the Structure of Image Change
The Jacobian matrix M plays a central role in the algorithms
described above, so it is informative to digress briefly on its
structure. If we consider the rectified image as a continuous
time-varying quantity, then its total derivative with respect
to time is

d

dt

d

dt t t

I
M

I
I M I= +

∂

∂
= +

m
mor & & .                  (36)

Note that this is simply a differential form of (8). Due to the

image constancy assumption (1), it follows that &I = 0  when

m = m
*
. This is, of course, a parameterized version of Horn’s

optical flow constraint equation [34].
In this form, it is clear that the role of M is to relate

variations in motion parameters to variations in brightness
values in the target region. The solution given in (13) effec-
tively reverses this relationship and provides a method for
interpreting observed changes in brightness as motion. In
this sense, we can think of the algorithm as performing cor-
relation on temporal changes (as opposed to spatial struc-
ture) to compute motion.

To better understand the structure of M, recall that in
column form, it can be written in terms of the partial de-
rivatives of the rectified image:

M = [Im1|Im2| º |Imn].                          (37)

Thus, the model states that the temporal variation in image
brightness in the target region is a weighted combination of

the vectors Imi. We can think of each of these columns
(which have an entry for every pixel in the target region) as
a “motion template” which directly represents the changes
in brightness induced by the motion represented by the
corresponding motion parameter. For example, in Fig. 1 we
have shown these templates for four canonical motions of
an image of a human face.

The development in this section has assumed that we start
with a given parametric motion model from which these
templates are derived. Based on that model, the structure of
each entry of M is given by (15) which states that

m Ii j j i, = ∇ ⋅ =f x xfµ .                                 (38)

The image gradient ∇ fI  defines, at each point in the image,

the direction of strongest intensity change. The vector fµ j

evaluated at xi is the instantaneous direction and magnitude
of motion of that image location captured by the parameter
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mj. The collection of the latter for all pixels in the region rep-

resents the motion field defined by the motion parameter mj.

Thus, the change in the brightness of the image location xi

due to the motion parameter mj is the projection of the im-
age gradient onto the motion vector. This also explains why
each pixel in the image contributes only one constraint to
the parameter computation.

More importantly, the methods described above assume
that M

t
M is full rank. Although, in general, this condition

depends on both the structure of the motion to be com-
puted and the structure of the image itself, the form of (38)
provides some insight into the rank structure of M. In par-
ticular, it follows that for M

t
M to be rank deficient, there

must exist a g Œ R
n
 such that

— = £ £=f x xfI i Nt

im4 9g 0 1, .                 (39)

Geometrically, this condition corresponds to a motion g
such that the displacement of every pixel in the image is
orthogonal to the local image gradient.

1
 Thus, we can view

the rank deficiency of M as a generalization of the well-
known aperture problem [34] in optical flow.

Finally, (38) suggests how our techniques can be used to
perform structured motion estimation without an explicit
parametric motion model. First, if the changes in images
due to motion can be observed directly (for example, by
computing the differences of images taken before and after
small reference motions are performed), then these can be
used as the motion templates which comprise M. Second, if
a one or more motion fields can be observed (for example, by
tracking a set of fiducial points in a series of training im-
ages), then projecting each element of the motion field onto
the corresponding image gradient yields motion templates
for those motion fields. The linear estimation process de-
scribed above can be used to interpret time-varying images
in terms of those basis motions.

3 ILLUMINATION-INSENSITIVE TRACKING

The systems described above are inherently sensitive to
changes in illumination of the target region. This is not sur-
prising, as the incremental estimation step is effectively
computing a structured optical flow, and optical flow

1. Note that one possibility is that the gradient at a point is zero, in which
case this is true of any motion.

methods are well-known to be sensitive to illumination
changes [34]. Thus, shadowing or shading changes of the
target object over time lead to bias, or, in the worst case,
complete loss of the target.

Recently, it has been shown that a relatively small num-
ber of “basis” images can often be used to account for large
changes in illumination [19], [18], [17], [37]. Briefly, the rea-
son for this is as follows. Consider a point p on a Lamber-
tian surface and a collimated light source characterized by a
vector s Œ R

3
, such that the direction of s gives the direction

of the light rays and isi gives the intensity of the light
source. The irradiance at the point p is given by

E = an ◊ s,                                     (40)

where n is the unit inward normal vector to the surface at p
and a is the nonnegative absorption coefficient (albedo) of
the surface at the point p [34]. This shows that the irradi-
ance at the point p, and hence the gray level measured by a
camera, is linear on s Œ R

3
.

Therefore, in the absence of self-shadowing, given three
images of a Lambertian surface from the same viewpoint
taken under three linearly independent light source direc-
tions, one can reconstruct the image of the surface under a
novel lighting direction by a linear combination of the three
original images [37], [38]. In other words, if the surface is
purely Lambertian and there is no shadowing, then all im-
ages under varying illumination lie within a 3D linear sub-
space of R

N
, the space of all possible images (where N is the

number of pixels in the images).
A complication comes when handling shadowing: All

images are no longer guaranteed to lie in a linear subspace
[19]. Nevertheless, as done in [17], we can still use a linear
model as an approximation: A small set of basis images can
account for much of the shading changes that occur on
patches of nonspecular surfaces. Naturally, we need more
than three images (we use between eight and 15) and a
higher than three-dimensional linear subspace (we use four
or five) if we hope to provide good approximation to these
effects.

Returning to the problem of region tracking, suppose

now that we have a basis of image vectors B1, B2, º, Bm

where the ith element of each of the basis vectors corre-

sponds to the image location xi Œ 5. To accommodate
changes in contrast, we choose the first basis vector to be

the template image itself, i.e., B1 = I(0, t0). To model bright-

                                                    (a)                                     (b)                                    (c)                                     (d)

Fig. 1. The motion templates of a human face for four canonical motions. (a) X translation. (b) Y translation. (c) Rotation. (d) Scale.
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ness changes, we choose the second basis vector to be a

column of ones, i.e., B2 = (1, 1, º, 1)
t
.
2
 Let us choose the

remaining basis vectors by performing SVD (singular value
decomposition) on a set of training images of the target,
taken under varying illumination. We denote the collection

of basis vectors by the matrix B = [B1|B2| º |Bm] and the

corresponding parameters by the vector l = (l1, l2, º, lm)
t
.

Combining motion with illumination, the image con-
stancy constraint, (1), can now be rewritten as

I(m
*
(t), t) = I(0, t0) + Bl(t),                        (41)

and (2) becomes

O(m, l) = iI(m, t) - I(0, t0) - Bli2
.                 (42)

In short, we now have expressions which simultaneously
model both geometric and photometric image changes. By
rewriting this optimization as

O(dm, l) = iI(m(t) + dm, t + t) + Bl - I(0, t0)i
2
,         (43)

and substituting in (8) we arrive at

O(dm, l) = iMdm + Bl + I(m(t), t + t) - I(0, t0)i
2
.        (44)

Solving —O(dm,l) = 0 yields

d
t

m
l
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t

t t

1

0 5 ,              (45)

where e(t + t) = I(m(t), t + t) - I(0, t0) as before.
We would now like to apply the factoring methods of the

previous section to reduce the online computation needed
for estimation. However, letting B(x; l) denote the value for
pixel location x of Bl, from (41) we have

—xI(x, t0) = fx(x; m)
t
 —fI(f(x; m), t) - —xB(x; l).           (46)

If we follow the same steps as before in factoring M, we

find that —xB(x; l) will appear in M0, thus requiring recom-
putation of that form. In practice, we have found that, for
the specific case of illumination, these terms are small and
can be safely ignored without seriously affecting the stabil-

ity of the resulting tracking system.
3
 Ignoring these terms,

M factors as before and, since B is constant, the system can
be efficiently computed.

Further efficiencies can be realized if we are only inter-
ested in the motion parameters and hence we only need to
compute the portions of (45) pertaining to those parame-
ters. We can compute an explicit form of this expression by
first optimizing over l as a function of dm in (44) and sub-
stituting the solution back into (44). Doing so, solving the
resulting expression for dm, and writing M in factored form,
we arrive at

d tm = - +
- -

S
t t t tM NM M Ne0 0

1

04 9 0 5,             (47)

N = (1 - B(B
t
B)-

1
B

t
).                            (48)

2. In practice, choosing a value close to the mean of the brightness of the
image produces a better conditioned linear system.

3. Note that this may not hold true for other subspace decompositions
such as those used by [29].

Since N is constant, the computation needed to realize (47)
depends only on the number of motion fields to be com-
puted, not on the illumination model. As a result, we can
compute motion parameters while accounting for varia-
tions in illumination using no more online computation than
would be required to compute pure motion.

4 MAKING TRACKING RESISTANT TO OCCLUSION

As a system tracks objects over a large space, it is not un-
common that other objects “intrude” into the picture. For
example, the system may be in the process of tracking a
target region which is the side of a building when, due to
observer motion, a parked car begins to occlude a portion
of that region. Similarly the target object may rotate, caus-
ing the tracked region to “slide off” and pick up a portion
of the background. Such intrusions will bias the motion
parameter estimates and, in the long term can potentially
cause mistracking. In this section, we describe how to avoid
such problems. For the sake of simplicity, we develop a so-
lution for the case where we are only recovering motion
parameters; the modifications for combined motion and
illumination models are straightforward.

A common approach to this problem is to assume that
occlusions create large image differences which can be
viewed as “outliers” by the estimation process [29]. The
error metric is then modified to reduce sensitivity to out-
liers by solving a robust optimization problem of the form

O I f t I tR m m1 6 2 73 8 2 74 9= -
Œ

Â r x x

x

; , , 0
5

,                (49)

where r is one of a variety of “robust” regression metrics [39].
It is well-known that optimization of (49) is closely re-

lated to another approach to robust estimation—itera-
tively reweighted least squares (IRLS). We have chosen to
implement the optimization using a somewhat unusual
form of IRLS due to Dutter and Huber [20]. In order to
formulate the algorithm, we introduce the notation of an
“inner iteration” which is performed one or more times at
each time step. We will use a superscript to denote these
iterations, and refer each time step in the estimation as an
“outer iteration.”

Let dm
i
 denote the value of dm computed by the ith inner

iteration with dm
0
 = 0. Define the vector of residuals in the

ith iteration r
i
 as

r
i
 = e(t + t) - M(m)dm

i
.                        (50)

We introduce a diagonal weighting matrix W
i
 = W(r

i
) which

has entries

w r r r k Nk k
i

k
i

k
i

k
i

, / ,= = ′ ≤ ≤η ρ4 9 4 9 1 .                 (51)

The inner iteration cycle at time t + t is consists of per-
forming an estimation step by solving the linear system

S LS S
t i t t i idm +

=
1

0M W r ,                           (52)

where S is evaluated at m(t) and r
i
 and W

i
 are given by (50)

and (51), respectively. This process is repeated for k iterations.
This form of IRLS is particularly efficient for our prob-

lem. It does not require recomputation of L or S and, since
the weighting matrix is diagonal, does not add significantly
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to the overall computation time needed to solve the linear
system. In addition, the error vector e is fixed over all inner
iterations, so these iterations do not involve acquiring or
warping images.

As discussed in [20], on linear problems this procedure is
guaranteed to converge to a unique global minimum for a
large variety of choices of r. In this article, r is taken to be a
so-called “windsorizing” function [39] which is of the form

ρ τ
τ

r
r r

c r c r
0 5 = ≤

− >
%
&K
'K

2

2

2

2

/

/

if

if
                       (53)

where r is normalized to have unit variance. The parameter
t is a user-defined threshold which places a limit on the
variations of the residuals before they are considered out-
liers. This function has the advantage of guaranteeing
global convergence of the IRLS method while being cheap
to compute. The updating function for matrix entries is

η τ
τr

r

c r r
0 5 = ≤

>
%
&
'
1 if

if/
                              (54)

As stated, the weighting matrix is computed anew at
each outer iteration, a process which can require several
inner iterations. However, given that tracking is a continu-
ous process, it is natural to start each outer iteration with a
weighting matrix which is closely related to that computed
at the end of the previous outer iteration. In doing so, two
issues arise. First, the fact that the linear system we are
solving is a local linearization of a nonlinear system means
that, in cases when interframe motion is large, the effect of
higher-order terms of the Taylor series expansion will cause
areas of the image to masquerade as outliers. Second, if we
assume that areas of the image with low weights corre-
spond to intruders, it makes sense to add a “buffer zone”
around those areas before the next outer iteration to pro-
actively cancel the effects of intruder motion.

Both of these problems can be dealt with by noting that
the diagonal elements of W themselves form an image
where “dark areas” (those locations with low value) are
areas of occlusion or intrusion, while “bright areas” (those
with value one) are the expected target. Let Q(x) to be the
pixel values in the eight-neighborhood of the image coordi-
nate x plus the value at x itself. We use two common mor-
phological operators [40]

erode x
x

0 5
0 5

=
∈
max
v Q

v                              (55)

dilate x
x

0 5
0 5

=
∈
min

v Q
v .                           (56)

When applied to a weighting matrix image, erode has the
effect of removing small areas of outlier pixels, while dilate
increases their size. Between frames of the sequence we
propagate the weighting matrix forward after applying one
step of erode to remove small areas of outliers followed by
two or three steps of dilate to provide a “buffer” about
previously detected intruders.

5 IMPLEMENTATION AND EXPERIMENTS

This section illustrates the performance of the tracking algo-
rithm under a variety of circumstances, noting particularly

the effects of image warping, illumination compensation, and
outlier detection. All experiments were performed on live
video sequences by an SGI Indy equipped with a 175 Mhz
R4400 SC processor and VINO image acquisition system.

5.1 Implementation
We have implemented the methods described above within
the X Vision environment [41]. The implemented system
incorporates all of the linear motion models described in
Section 2, nonorthonormal illumination bases as described
in Section 3, and outlier rejection using the algorithm de-
scribed in Section 4.

The image warping required to support the algorithm
is implemented by factoring linear transformations into a
rotation matrix and a positive-definite upper-diagonal
matrix. This factoring allows image warping to be imple-
mented by first acquiring a rotated rectangular image re-
gion surrounding the target, and then scaling and shear-
ing the region using bilinear interpolation. The resolution
of the region is then reduced by averaging neighboring
pixels. Spatial and temporal derivatives are computed by
applying Prewitt operators on the reduced scale images.
More details on this level of the implementation can be
found in [41].

In these experiments, the algorithm is initialized by in-
teractively selecting a region to track in a live video stream.
The algorithm immediately acquires the selected region as
the reference template and performs tracking on all subse-
quent images of the stream. When an illumination basis is
used, care was taken to select the reference template to
correspond to the basis, but no automatic registration was
performed.

Timings of the algorithm
4
 indicate that it can perform frame

rate (30 Hz) tracking of image regions of up to 100 ¥ 100 pixels
undergoing affine distortions and illumination changes at
one-half resolution. Similar performance has been achieved
on a 120 Mhz Pentium processor and 70 Mhz Sun Sparc-
Station. Higher performance is achieved for smaller re-
gions, lower resolutions, or fewer parameters. For example,
tracking the same size region while computing just transla-
tion at one-fourth resolution takes just four milliseconds
per cycle.

5.2 Planar Tracking
As a baseline, we first consider tracking a non-specular
planar object—the cover of a book. Affine warping aug-
mented with brightness and contrast compensation is a
good approximation in this case (it is exact for an ortho-
graphic camera model and purely Lambertian surface). As
a point of comparison, recent work by Black and Jepson
[29] used the rigid motion plus scaling model for SSD-
based region tracking. Their reduced model is more effi-
cient and may be more stable since fewer parameters must
be computed, but it does ignore the effects of changing as-
pect ratio and shear.

We tested both the rigid motion plus scale (RM+S) and
full affine (FA) motion models on the same live video se-
quence of the book cover in motion. Fig. 2 shows the set of

4. Because of additional data collection overhead, the tracking perform-
ance in the experiments presented here is slower than the stated figures.
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motion templates (the columns of the motion matrix) for an
81 ¥ 72 region of a book cover tracked at one third resolu-
tion. The upper series of images shows several images of
the object with the region tracked indicated with a black
frame (the RM+S algorithm) and a white frame (the FA al-
gorithm).

5
 The middle row of images shows the output of

the warping operator from the RM+S algorithm. If the
computed parameters were error-free, these images would
be identical. However, because of the inability to correct for
aspect ratio and skew, the best fit leads to a skewed image.

5. These annotations indicate the region acquired in the first stage of im-
age warping and so do not indicate distortions due to image shear.

The bottom row shows the output of the warping operator
for the FA algorithm. Here, we see that full affine warping
is much better at accommodating the full range of image
distortions. The graph at the bottom of the figure shows the
least squares residual (in squared gray-values per pixel).
Here, the difference between the two geometric models is
clearly evident.

5.3 Human Face Tracking
There has been a great deal of recent interest in face track-
ing in the computer vision literature [27], [6], [42]. Although
faces can produce images with significant variation due to

Fig. 2. Top, several images of a planar region and the corresponding warped image computed by a tracker computing position, orientation, and
scale (RM+S), and one computing a full affine deformation (FA). The image at the left is the initial reference image. Bottom, the graph of the SSD
residuals for both algorithms.
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illumination, empirical results suggest that a small number
of basis images of a face gathered under different illumina-
tions is sufficient to accurately account for most gross
shading and illumination effects [17]. At the same time, the
depth variations exhibited by facial features are small
enough to be well-approximated by an affine warping
model. The following experiments demonstrate the ability
of our algorithm to track a face as it undergoes changes in
pose and illumination, and under partial occlusion.
Throughout, we assume the subject is roughly looking to-
ward the camera, so we use the rigid motion plus scaling
(RM+S) motion model. Fig. 1 shows the columns of the
motion matrix for this model.

5.3.1 Geometry
We first performed a test to determine the accuracy of the
computed motion parameters for the face and to investigate
the effect of the illumination basis on the sensitivity of those
estimates. During this test, we simultaneously executed two
tracking algorithms: one using the rigid motion plus scale
model (RM+S) and one which additionally included an
illumination model for the face (RM+S+I). The algorithms
were executed on a sequence which did not contain large

changes in the illumination of the target. The top row of
Fig. 3 shows images excerpted from the video sequence. In
each image, the black frames denote the region selected as
the best match by RM+S and the white frames correspond
to the best match computed by RM+S+I. For this test, we
would expect both algorithms to be quite accurate and to
exhibit similar performance unless the illumination basis
significantly affected the sensitivity of the computation. As
is apparent from the figures, the computed motion pa-
rameters of both algorithms are extremely similar for the
entire run—so close that in many cases one frame is ob-
scured by the other.

In order to demonstrate the absolute accuracy of the
tracking solution, below each live image in Fig. 3 we have
included the corresponding rectified image computed by
RM+S+I. The rectified image at time zero is the reference
template. If the motion of the target fit the RM+S motion
model, and the computed parameters were exact, then we
would expect each subsequent rectified image to be identi-
cal to the reference template. Despite the fact that the face is
nonplanar and we are using a reduced motion model, we
see that the algorithm is quite effective at computing an
accurate geometric match.

Fig. 3. Top row, excerpts from a sequence of tracked images of a face. The black frames represent the region tracked by an SSD algorithm using
no illumination model (RM+S) and the white frames represent the regions tracked by an algorithm which includes an illumination model (RM+S+I).
In some cases the estimates are so close that only one box is visible. Middle row, the region within the frame warped by the current motion esti-
mate. Bottom, the residuals of the algorithms expressed in gray-scale units per pixel as a function of time.
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Finally, the graph in Fig. 3 shows the residuals of the
linearized SSD computation at each time step. As is appar-
ent from the figures, the residuals of both algorithms are
also extremely similar for the entire run. From this experi-
ment we conclude that, in the absence of illumination
changes, the performance of both algorithms is quite simi-
lar—including illumination models does not appear to re-
duce accuracy.

5.3.2 Illumination
In a second set of experiments, we kept the face nearly mo-
tionless and varied the illumination. We used an illumina-
tion basis of four orthogonal image vectors. This basis was
computed offline by acquiring ten images of the face under
various lighting conditions. A singular value decomposi-

tion was applied to the resulting image vectors and the
vectors with the maximum singular values were chosen to
be included in the basis. The illumination basis is shown in
Fig. 4.

Fig. 5 shows the effects of illumination compensation for
the illumination situations depicted in the first row. As with
warping, if the compensation were perfect, the images of
the bottom row would appear to be identical up to bright-
ness and contrast. In particular, note how the strong shad-
ing effects of frames 110 and 120 have been “corrected” by
the illumination basis.

5.3.3 Combining Illumination and Geometry
Next, we present a set of experiments illustrating the inter-
action of geometry and illumination. In these experiments,

Fig. 4. The illumination basis for the face (contrast and brightness components not shown).

Fig. 5. The first row of images shows excerpts of a tracking sequence. The second row is a magnified view of the region in the white frame. The
third row contains the images in the second row after adjustment for illumination using the illumination basis shown in Fig. 4 (for the sake of com-
parison, we have not adjusted for brightness and contrast across the sequence).
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we again executed two algorithms labeled RM+S and
RM+S+I. As the algorithms were operating, a light was pe-
riodically switched on and off and the face moved slightly.
The results appear in Fig. 6. In the residual graph, we see
that the illumination basis clearly “accounts” for the shad-
ing on the face quite well, leading to a much lower fluctua-
tion of the residuals. The sequence of images shows an ex-
cerpt near the middle of the sequence where the RM+S al-
gorithm (which could not compensate for illumination
changes) completely lost the target for several frames, only
regaining it after the original lighting was restored. Since
the target was effectively motionless during this period, this
can be completely attributed to biases due to illumination
effects. Similar sequences with larger target motions often
cause the purely geometric algorithm to lose the target
completely as shown in Fig. 7.

5.3.4 Tracking With Outliers
Finally, we illustrate the performance of the method when
the image of the target becomes partially occluded. We
again track a face. The motion and illumination basis are

the same as before. In the weighting matrix calculations, the
pixel gray-scale variance was set to five (about what is ob-
served in our camera) and the outlier threshold was set to a
conservative value of five variance units.

The sequence is an “office” sequence which includes
several “intrusions” including the background, a piece of
paper, a telephone and a soda can. As before we executed
two versions of the tracker, the nonrobust algorithm from
the previous experiment (RM+S+I) and a robust version
(RM+S+I+O). Fig. 8 shows the results. The upper series of
images shows the region acquired by both algorithms (the
black frame corresponds to RM+S+I, the white to
RM+S+I+O). As is clear from the sequence, the nonrobust
algorithm is disturbed significantly by the occlusion,
whereas the robust algorithm is much more stable. In fact, a
slight motion of the head while the soda can is in the image
caused the nonrobust algorithm to mistrack completely. The
middle series of images shows the output of the warping
operation for the robust algorithm. The lower row of im-
ages depicts the weighting values attached to each pixel in
the warped image. Dark areas correspond to “outliers.”

Fig. 6. Top, an excerpt from a tracking sequence containing changes in both geometry and illumination. The black frame corresponds to the algo-
rithm without illumination (RM+S) and the white frame corresponds to the algorithm with an illumination basis (RM+S+I). Note that the algorithm
which does not use illumination completely loses the target until the original lighting is restored. Bottom, the residuals, in gray-scale units per pixel, of
the two algorithms as a light is turned on and off.

Fig. 7. A run combining illumination and geometry in which the algorithm without illumination compensation (black frame) loses the target while the
algorithm with illumination compensation (white frame) does not.
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Note that, although the occluded region is clearly identified
by the algorithm, there are some small regions away from
the occlusion which received a slightly reduced weight.
This is due to the fact that the robust metric used introduces
some small bias into the computed parameters. In areas
where the spatial gradient is large (e.g., near the eyes and
mouth), this introduces some false rejection of pixels. At the
same time, intruding regions of a similar intensity as the
face are not rejected as seen in the lower left of the left-most
column of images.

It is also important to note that the dynamical per-
formance of the tracker is reduced by including out-
liers. Large, fast motions tend to cause the algorithm to
“turn off” areas of the image where there are large gra-
dients, slowing convergence. At the same time, per-
forming outlier rejection is more computationally inten-
sive as it requires explicit computation of both the mo-
tion and illumination parameters to calculate the resid-
ual values.

Fig. 8. The first row of images shows excerpts of a tracking sequence with occurrences of partial occlusion. The black frame corresponds to the
algorithm without outlier rejection (RM+S+I) and the white frame corresponds to the algorithm with outlier rejection (RM+S+I+O). The second row
is a magnified view of the region in the white frame. The third row contains the corresponding outlier images where darker areas mark outliers.
The graph at the bottom compares the residual values for both algorithms.
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6 DISCUSSION AND CONCLUSIONS

We have shown a straightforward and efficient solution to
the problem of tracking regions undergoing geometric dis-
tortion, changing illumination, and partial occlusion. The
method is simple and efficient, yet robust to reasonable
deviations from underlying motion and illumination mod-
els. For example, although we have modeled the face as a
rigid object undergoing limited motion in our experiments,
the algorithm can still track the subject as he or she is
changing expression or, as illustrated in the previous sec-
tion, performing out-of-plane rotations.

Although the focus in this article has been on parameter
estimation techniques for tracking using image rectification,
the same estimation methods can be used for directly con-
trolling devices. For example, instead of computing a pa-
rameter estimate m, the incremental solutions dm can be
used to control the position and orientation of a camera so
to stabilize the target image by active motion. Hybrid com-
binations of camera control and image warping are also
possible.

One possible objection to the methods is the requirement
that the change from frame to frame is small (generally
within a few pixels), limiting the speed at which objects can
move. Luckily, there are several means for improving the
dynamical performance of the algorithms. One possibility is
to include a model for the motion of the underlying object
and to incorporate prediction into the tracking algorithm.
Likewise, if a model of the noise characteristics of images is
available, the updating method can modified to incorporate
this model. In fact, the form of the solution makes it straight-
forward to incorporate the estimation algorithm into a Kal-
man filter or similar iterative estimation procedure.

Performance can also be improved by operating the
tracking algorithm at multiple levels of resolution. One
possibility, as is used by many authors [29], [23], is to per-
form a complete coarse to fine progression of estimation
steps on each image in the sequence. Another possibility,
which we have used successfully in prior work [41], is to
dynamically adapt resolution based on the motion of the
target. That is, when the target moves quickly estimation is
performed at a coarse resolution, and when it moves slowly
the algorithm changes to a higher resolution. The advan-
tage of this approach is that it not only increases the range
over which the linearized problem is valid, but it also re-
duces the computation time required on each image when
motion is fast.

We are actively continuing to evaluate the performance
of these methods, and to extend their theoretical underpin-
nings. One area that still needs attention is the problem of
determining an illumination basis online, i.e. while tracking
the object. Initial experiments in this direction have shown
that online determination of the illumination basis can be
achieved, although we have not included such results in
this paper. As in [29], we are also exploring the use of basis
images to handle changes of view or aspect not well ad-
dressed by warping.

We are also looking at the problem of extending the
method to utilize shape information on the target when
such information is available [43]. In particular, it is well
known [44] that under orthographic projection, the image

deformations of a surface due to motion can be described
with a linear motion model. This suggests that our methods
can be extended to handle such models. Furthermore, as
with the illumination basis, it may be possible to estimate
the deformation models online, thereby making it possible
to efficiently track arbitrary objects under changes in illu-
mination, pose, and partial occlusion.
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