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Abstract Precision inspection of free-form surface is
difficult with current industry practices that rely on
accurate fixtures. Alternatively, the measurements can be
aligned to the part model using a geometry-based registra-
tion method, such as the iterative closest point (ICP)
method, to achieve a fast and automatic inspection process.
This paper discusses various techniques that accelerate the
registration process and improve the efficiency of the ICP
method. First, the data structures of approximated nearest
nodes and topological neighbor facets are combined to
speed up the closest point calculation. The closest point
calculation is further improved with the cached facets
across iteration steps. The registration efficiency can also
be enhanced by incorporating signal-to-noise ratio into the
transformation of correspondence sets to reduce or remove
the noise of outliers. Last, an acceleration method based on
linear or quadratic extrapolation is fine-tuned to provide the
fast yet robust iteration process. These techniques have
been implemented on a four-axis blade inspection machine
where no accurate fixture is required. The tests of
measurement simulations and inspection case studies
indicated that the presented registration method is accurate
and efficient.

Keywords Optical inspection . Registration between
point set and CAD model . ICP algorithm . Approximated
nearest node . Simulated measurement

Abbreviations BIM: Blade inspection machine . CAD:
Computer aided design . CMM: Coordinate measuring
machine . ICP: Iterate closest point . MCS: Measurement
coordinate system . PCS: Part coordinate system . RMS:
Root mean square . SNR: Signal to noise ratio

1 Introduction

Precision inspection is prevalent in manufacturing to verify
that the geometric dimensions and tolerances of parts meet
the quality requirements. Under ever-increasing demands
on improving product quality and reducing production
cycle time, inspection is compelled to become fast,
accurate, and cost-effective. As of today, coordinate
measuring machines (CMM) are still the most widely
used equipment in inspection industry. A CMM is
essentially a Cartesian robot with one tactile probe.
While the CMM measures the parts in high precision,
conventional tactile probe is often limited in scanning
speed and can not cover features that are smaller than the
stylus diameter [1–3]. The tactile probe is especially
cumbersome in measuring parts with free-form surfaces as
it is difficult to maintain continuous contact with the
surfaces. In these cases, non-contact measurements are
commonly used for fast acquisition of surface shape
without physically touching the part. The actual speed and
accuracy of non-contact measurements vary with different
technologies. For instance, the x-ray or CT scan can reveal
the inside structure blocked by the outside surface, but have
relatively coarse accuracy. On the other hand, a variety of
modern non-contact range scanners, ranging from pattern
projection to laser probes, offer improved inspection speed
and accuracy [4].

Achieving speed, accuracy, and repeatability is the major
challenge to a portable and flexible inspection system.
Ideally, such a system would automatically collect the
measurement and make detailed, full-scale comparisons
between the measured data and its original design. With
this capability installed on machine tool and assembly
lines, manufacturing processes can be monitored and
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controlled in a real-time fashion. In order to achieve
automatic and real-time inspection, one of the most
challenging problems is to develop an efficient method
that aligns the measurement coordinate system and the part
coordinate system.

Figure 1 shows the different coordinate systems in
inspection. The inspection data is acquired from an optical
sensor mounted on the machine. As such, the acquired
coordinate value is based on the measurement coordinate
system (MCS) as indicated by Fig. 1a. However, the part
model is designed in its own coordinate system, named the
part coordinate system (PCS), as shown in Fig. 1b. For
regular dimensions such as diameter or length, the
inspection can be performed based on the direct compar-
ison between the inspected dimensions and the specified
values; such are the cases of straight surface tolerances like
flatness. However, parts with free-form surfaces do not
have a single inspection value. In order to compare the
inspected shape with the designed part, it is necessary to
find the transformation matrix that will place the inspection
data in the appropriate orientation, known as registration in
Fig. 2.

In order to register the inspection data, industry practices
often adopt a high precision fixture to locate the part
orientation. In this approach, the part is closely attached to
the fixture. The fixture normally includes some precisely

manufactured features (e.g., balls). While the part is being
inspected, these fixture features are included as part of the
inspection data. Providing the simple geometry of these
fixture features, it is relatively easy to find the homoge-
neous transformation matrix between the machine coordi-
nate system and the part/design coordinate system [5]. The
same transformation matrix is also applied to the part data
and thus completes the appropriate orientation. While
computationally straightforward, the acquired transform
matrix from this fixture-based approach is affected by the
assembly tolerance between the fixture and the part. In high
precision inspection, it is often required to test many
iterations of fixture installation to compensate this fixture
assembly error, which can be very time-consuming. Plus, a
fixture with precise artifacts is expensive or not available at
all in some cases.

Alternatively, the inspection data can be registered to the
design model based on the part geometry itself. Geometry-
based registration methods are abundant in computer
graphics literature. However, many of these approaches
are proposed for the purpose of graphics where the
accuracy is not critically restricted. It remains unclear
how effective these model-based registration methods are
in the inspection, especially in the high precision inspec-
tion. In this paper, the emphasis of the geometry-based
registration will be discussed with respect to their
efficiency in precision inspection. Section 2 will review
different techniques of available registration methods.
Based on these methods and their comparison, a new
implementation of geometry-based registration is presented
in Section 3. Section 4 will introduce a four-axis optical
inspection system incorporated with the implemented
registration method. Finally, conclusions are summarized
in Section 5.

2 Registration review

The measurement is registered to the part model by
matching the correspondence set between the measurement
and the part model. The correspondence set can be
geometry elements such as holes, edges, and corners.
These geometry elements are recognized from the

Fig. 1 Different coordinate
systems in inspection.
a Measurement coordinate
system. b Part coordinate
system

Fig. 2 Inspection registration



measurement and matched to the counterpart on the part
model [6]. For the parts without distinctive geometry
elements such as free-form surfaces, the surface measure-
ments can be grouped into a set of features representing the
local geometry characteristic. For instance, Chua and Jarvis
[7] proposed a point signature representation to describe
the structural neighborhood of sample points. The point
signature is defined as a distance profile circulated around
the point and thus invariant to the part orientation. If the
signatures of two points separately from the measurement
and the part model are matched within the tolerance band, a
correspondence pair is found. In addition, Hebert [8]
introduced a spherical representation in which both the
measurement and the part model are respectively repre-
sented by a spherical mesh. The mesh is computed from the
data by deforming the standard shape objects. A surface
curvature index is stored at every node of the mesh. The
advantages of the spherical representation include compar-
ing two meshes without combinatorial search and handling
occlusions and partial views. Moreover, Yamany and Farag
[9] presented a surface signature representation to convert
the 3D surfaces into 2D surface images from certain points.
The registration is performed by matching the generated
surface images. Sun and Abidi [10] discussed a surface
matching method based on the surface fingerprint that is
defined by the 2D projection of geodesic circles on the
tangent plane. On the other hand, given the popular
applications of artificial neural network in feature recog-
nition, the feed-forward network, the self-organizing
feature map, and the Daugman’s projection neural net
have also been used in extracting the surface features from
the measurements and matching to the part model [11–13].

The registration methods based on feature recognition
work for any initial orientation. Once the features are
extracted, the discrete matching process is straightforward,
taking into account the relative small numbers of the
features. An important factor affecting the performance of
these methods is the density of the sample. The denser the
sample point cloud is, the more accurately the features are
extracted. Unfortunately, the dense point cloud is often
acquired with the sacrifice of the sample quality. As such,
the feature-based registration alone is not sufficient for
precision inspection.

Providing a close initial pose, the part measurement is
often refined in an iteration-based optimization process
[14, 15], such as the iterative closest point (ICP) method
[16]. Given a point cloud of measurement P and a nominal
part model, the ICP algorithm works in three basic steps:
(1) Compute the closest correspondence point p′ on the part
model for each measurement point p; (2) Calculate the
transformation matrix T that minimizes the sum of square
errors between the measurement point set and the

correspondent set, i.e.,
Pn
i¼1

p
0
i � T � p1

�� ��2�n; and

(3) Apply the transformation matrix to repeat the first
step until the objective value decreases less than the
threshold value. In the second step, the closed-form
solution with unit quaternions [17] can be used to acquire

the rotation and transition vector of two correspondent sets,
though the singular value decomposition is also possible
[18]. Besl and McKay [16] proved that the ICP method will
monotonically converge to the local minimum. In addition,
they presented an extrapolation method to accelerate the
iteration when four previous transformation vectors are
well aligned. However, the most computationally intensive
operation, the first step to calculate the closest points, was
not addressed in detail.

Alternatively, Chen and Medioni [15] proposed to
establish the correspondence pair by calculating the
distance between the measurement point and the tangential
plane of the correspondent point when two objects are
close enough. While the registration is the same iteration-
based process as in the ICP algorithm, there was no closed-
form solution to calculate the transformation matrix of two
correspondence sets. The standard optimization approaches
such as conjugate direction method or quasi-Newton
method would be used instead. Rusinkiewicz [19] reported
that the point-to-plane correspondence has a faster conver-
gence rate than the point-to-point correspondence, though
the overall efficiency with the closed-form solution is not
addressed.

Given monotonic convergence and straightforward
implementation, many other variants have been proposed
to improve the speed and robustness of the ICP algorithm.
For instance, Masuda [20] introduced the least median of
squares estimator to reduce the outlier effects and thus
improve the registration robustness. Similar to the point-to-
plane distance metric, no closed-form solution of two
correspondence sets is available for the least median square
metric. Alternatively, the closed-form solution could reject
the worst 10% of correspondence pairs [21], the pairs
inconsistent with neighbor distances [22], or the pairs on
mesh boundaries [23] to improve the registration robust-
ness. Based on the comparison study in [19], these
approaches have similar effects on registration accuracy
and stability by removing the outliers.

The most time-consuming operation of the iteration-based
methods is to calculate the correspondence set. In addition to
the discussed point-to-point distance and the point-to-plane
distance, Blais [24] proposed finding the correspondence
pixels of multiple views by reversing the calibration process
of the rangefinder. Since these pixels are uniquely
determined by their ray indices, the correspondence point
is directly established by finding the pixel with the same ray
index in other images. Note that the pixels with the same ray
index in two views do not necessarily represent the closest
point. This method provides a very fast way to identify the
correspondence pixels in two images as it does not require
the enumeration of all other pixels. However, this method is
directly associated with the measurement generated by the
image-based range sensors. In the case of the point-based
laser probe, a k-d tree data structure is typically used to find
the closest point. Furthermore, the k-d tree data structure can
be specifically tailored to determine the closest points in the
ICP method. For instance, Simon [25] used a data cache to
save the five closest points in the last iteration. The next
iteration would only use the cached five points. It is



interesting to note that there was no significant computation
reduction (less than 10%) in the implementation of the five-
point-cache scheme. Another nearest neighbor method is
proposed by Greenspan and Godin [26]. In this method, the
correspondences are tracked across iterations. If the distance
estimation with previous correspondence satisfies the
spherical constraints, then the k-d tree search is contained
within the limited neighborhood points. Greenspan
reported that the computation reduction became significant
after 20 iterations.

The registration can match not only the geometry but
also the detected intensity and colors. For instance, Godin
[27] proposed the iterative closest compatible point method
where the distance calculation is limited to the pairs with
the compatibility index higher than the threshold value.
Since the set of compatible points must be recomputed at
each iteration, this will be a time-consuming registration
process, slower than the standard ICP process.

In summary, although the ICP method is sensitive to the
initial orientation, it is one of the methods that by far
provide the most accurate registration result. A fair initial
orientation is often available in the applications of
precision inspection. In addition, the ICP algorithm is
easy to be implemented with many possible speed and
robustness enhancements. The next section will present an
efficient implementation of the ICP method.

3 Efficient implementation of ICP registration

Based on the review of different methods, we have
constructed a fast ICP algorithm by combining various
techniques. Note that both Simon [25] and Rusinkiewicz
[19] have presented high-speed ICP implementation for
registering multiple views of range sensors. While these
implementations have provided good case studies in
comparing various ICP techniques, the goal of their
methods was to rebuild the graphic objects based on the
3D images from the triangulation-based sensors. The
registration process has focused on aligning two or more
point sets together. The registration problem in precision
inspection is a little different as it emphasizes aligning the
measurement point set with the part model as accurate as
possible. It may be argued that the part model can be
represented by a discrete point set. But that would not be as
accurate as the registration with the part model. As such,
the techniques are different in the registration of point set
and part model. For instance, Rusinkiewicz’s implementa-
tion has significantly benefited from the projection-based
correspondence based on [24], which is not applicable in
the registration of point set and part model.

With these in mind, we will discuss an efficient ICP
algorithm to register point clouds with the part model. Like
many approaches, the closest point is computed on the
approximated mesh model instead of the surface model. An
approximated nearest neighbor data structure [28] was
adopted to save the nodes of the part mesh model. The
closest facet of each measurement point is cached across
iterations. The closest distance is acquired first from the

cached facet and its direct neighbors. If the correspondence
pair is not perpendicular to the currently closest facet, a
global search is initiated based on the approximated nearest
neighbor representation. In addition, the iterations are
accelerated in a similar scheme as [16]. These steps are
further discussed in the following sections.

3.1 Compute the closest point

The free-form surfaces are typically represented as NURBS
or other analytical forms. The most accurate distance is
obviously the distance based on the analytical solution. But
the analytical solution is a fairly sophisticated and slow
optimization process. The common practice is to approx-
imate the surfaces with the facet models. Investigation of
the optimal facet approximation is beyond the scope of this
paper. Our implementation has adopted a standard faceting
module in the ACIS solid modeler. The distance of the
measurement points to the surface model is then approxi-
mated by the distance to the facet model.

Once the facet model is available, a brute-force search
that calculates the distances of the query point to all facets
is possible but unacceptably slow when the number of
facets is significant. Another alternative is to first identify
the closest node to the query point, then compute the
distance of the query point to the neighbor facets. It is very
important to note that the closest node and its direct
neighbor facets do not necessarily provide the closest
distance. Figure 3 shows such an example. The distance of
the point A to the mesh model is zero. But the calculation
based on the closest node provided the wrong distance as
indicated by the red line. Similarly was the point B. These
wrong distances would affect the registration accuracy as
well as the convergence rate. Thus it is necessary to build a
topological facet representation to search beyond the first
level of the neighborhood of the starting node.

With a k-d tree data structure, it takes O(log n) time to
identify the closest node to any query point q, in which n is
the number of nodes in the part facet model. The symbolic
representation has hidden the constant factor of computa-
tion time. When the number of nodes is large, it is still a
significant operation. Moreover, Fig. 3 shows that even the
closest node may not connect to the closest facet. On the

Fig. 3 The closest facet not connected to the closest node



other hand, Arya andMount [28] have shown that if a small
error is allowed (i.e., the returned node may not be the true
closest node but is close to the true node within the error
band), it is possible to significantly reduce the search time
by using a balanced box-decomposition (bbd) tree.
Assuming the true closest node is p*, the approximate
nearest node p has the distance d(p, q) as:

dðp; qÞ � 1þ "ð Þ d p�; qð Þ (1)

where ɛ is the relative error of the approximate nearest
distance with respect to the true nearest distance. The
search for the approximate closest point begins by locating
the leaf cell that contains the query point q. Next, the leaf
cells are enumerated in increasing order of the distance to
the query point. Denote p as the closest point enumerated so
far. If the current leaf cell exceeds the distance d p; qð Þ�
1þ "ð Þ; the search is terminated and returns p as an
approximated nearest point to q.

Once the approximate closest node is identified, the
computation continues to find the closest facet on the part
model. As discussed previously, the facets connected with
the closest node do not necessarily include the closest facet
to the calculated point. It is necessary to track other facets as
well. Our implementation adopted a simple data structure in
which the node, facet, and mesh are respectively defined as
in Table 1.

Like any other representations, our data structure
requires a one-time setup to build the topological
neighborhood connection before the registration process.
But the major operation during the ICP iterations, the
computation of the closest point, has benefited from the
immediate neighborhood information. Starting from
the approximate nearest node, the search process goes
through the neighbor facets in the direction of the least
distance until a local minimum distance is found. The local
minimum here is defined when no neighbor facets are
closer to the query point, or the projected correspondence
point is inside the traversed facet. The latter definition
requires less computation because it avoids the additional
neighbor checking.

The closest point computation can also be accelerated
with a caching technique across iterations. Rather than

caching the closest points [25], we store the closest facet of
each point inO(n) space. The search of the next ICP iteration
starts with the cached facet instead of computing the closest
node. If the cached facet or its neighbor is the local minimum
for the query point, the closest distance is returned and the
cache is refreshed. As the registered point cloud gets closer
to the part model, the closest point often falls inside the
cached facet or its neighbors that saved the computation of
approximate nearest node. Note that the point cloud may not
be close to the part model during the early stages of ICP
iterations. It is not recommended to completely rely on the
cached facet to compute the closest point. In our
implementation, the computation switches back to the
approximate nearest node search if the cached facet and its
immediate neighbors do not provide the local minimum
distance. As such, many incorrect local minimum distances
are avoided, especially in the early iterations.

With the techniques of approximate nearest node and
cached facets, the computation time of the closest points is
significantly reduced. All samples in the point cloud can be
taken into account to achieve the maximum accuracy at a
fast convergence rate. To further improve the robustness of
the registration process, the correspondence pair is
considered outliers if the closest distance is more than
three standard deviation away from the average closest
distance. The correspondence pair with the closest point
locating on the surface edge requires more caution. While
the removal of these pairs may speed up the convergence
rate as indicated in [19], it is also possible to remove the
correct information from the registration process. An
exaggerated case is the registration of a misaligned flat
face. The disregarded point outside the surface may
significantly affect the final registration accuracy.

3.2 Transform the correspondence set
with signal-noise-ratio

The typical methods to register two correspondence sets
include the unit quaternion [17] and singular value
decomposition [18]. The unit quaternion method is also
integrated with the linear vector acceleration in [16]. Our
registration method adopts the unit quaternion with an
additional weight factor derived from the sensor’s signal-
to-noise ratio.

The point-based sensor in our inspection system is a
laser sensor based on conoscopic holography. The detected
distance is proportional to the pattern frequency of
equidistant linear fringes proportional in the conoscopic
figure [29]. Any influence on the fringe frequency will also
affect the measurement accuracy, e.g., target surface finish,
laser incidence angle, standoff distance, etc. The signal-to-
noise ratio (SNR) of the measurement represents the
overlap of the fringe frequency from received laser beams.
The 100% SNR means all received laser beams have
generated exactly the same fringe pattern. The SNR value
accompanies each individual point, and provides a
confidence value by which weights can be assigned. As

Table 1 A simple facet model for efficient neighborhood search

Class CNode {
CTypedPtrList<CObList, CNode *> NeighborNodes;
CTypedPtrList<CObList, CFacet *> NeighborFacets;
};
Class CFacet {
CTypedPtrList<CObList, CNode *> Nodes; // nodes in CCW
};
Class CMesh {
CTypedPtrArray<CObArray, CNode *> MeshNodes;
CTypedPtrArray<CObArray, CFacet *> MeshFacets;
};



such, the root of mean square error of the registration
process is:

RMS Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

SNRi � pi � Q qið Þk k2
s

(2)

Where, n is the number of the correspondent pairs, pi is
the correspondence closest point of the measurement qi on
the design model with the signal-to-noise ratio SNRi. Q ¼
QR;QTf g is the 7-element transformation vector, the first
four of which QR is the rotation unit quaternion and the last
three elements QT as the transition vector, Q qið Þ ¼ QR �
qi � QT : . In addition, the root square can be removed to
facilitate the optimization process. As such, the objective is
to minimize the following function:

Xn
i¼1

SNRi � pi � QR � qi � QT
�� ��2 (3)

The centroid of the measurement point cloud with the
signal-to-noise ratio is:

p ¼
Xn
i¼1

SNRi � pi
,Xn

i¼1

SNRi

Similarly,

q ¼
Xn
i¼1

SNRi � qi
,Xn

i¼1

SNRi

Denote the new coordinates based on the centroids as

p
0
i ¼ pi � p; q

0
i ¼ qi � q

Then the objective function can be written as

Xn
i¼1

SNRi � p
0
i � QR � q

0
i � QT 0�� ��2

or

Xn
i¼1

SNRi � p
0
i � QR � q

0
i

�� ��2

�
Xn
i¼1

2SNRi� p
0
i � QR � q

0
i

�� ��þ QT 0�� ��2

�
Xn
i¼1

SNRi (4)

Since

Xn
i¼1

SNRi � p0
i ¼ 0;

Xn
i¼1

SNRi � q0
i ¼ 0;

the second item of Eq. 4 is zero. If the transition vector is
the difference of two centroids, i.e., QT ¼ p� QR � q;

then QT 0k k2 ¼ 0: Furthermore, according to [17], the sum
of square errors is minimized when the rotation quaternion
QR is the eigenvector corresponding to the most positive
eigenvalue of the symmetric matrix:

Sxx þ Syy þ Szz � � �
Syz � Szy Sxx � Syy � Szz � �
Szx � Sxz Sxy þ Syx �Sxx þ Syy � Szz �
Sxy � Syx Szx þ Sxz Syz þ Szy �Sxx � Syy þ Szz

2
664

3
775

where Sxx ¼
Pn
i¼1

SNRi pxi � qx
� �

pxi � qx
� �

; Sxy ¼Pn
i¼1

SNRi
pxi � qx
� �

py � qyð Þ; and so on.

3.3 Modified convergence acceleration

The ICP registration algorithm is an iteration-based process
where the point cloud is brought close to the design model
step by step until the step size ΔRMS is small enough.
Depending on the initial pose and termination threshold,

most of the registration process requires more than 50
iterations. Although non-derivative optimization methods
(e.g., Powell-Brent method) can reduce the number of
iterations, each iteration would need many more operations
of objective function evaluation. Given the fact that the
objective function evaluation is the most dominant oper-
ation, these methods would indeed increase the overall
algorithm execution time. Besl and McKay [16] have
presented an acceleration method in which the registration
vector is extrapolated with linear or parabolic fit. This
method is adopted in our implementation with simplified
steps for the acceleration length, as shown in this section.



Given three continuous registration vectors Q1, Q2, and
Q3, the direction difference in 7-d vector space can be
defined by:

θ ¼ cos�1 Q2� Q1ð Þ � Q3� Q2ð Þ
Q2� Q1k k � Q3� Q2k k

� �

If θ is small (e.g., less than 10° as suggested in [16]), a
new vector Q3′ can be used in the next iteration:

Q30 ¼ Q3þ v � Q3� Q2ð Þ
Q3� Q2k k

where v is the acceleration length, decided by linear or
quadratic extrapolation. Suppose r1, r2, and r3 are the
RMS values of Q1, Q2, and Q3, respectively. Let v1 ¼ �
Q3� Q2k k � Q2� Q1k k; v2 ¼ � Q3� Q2k k; v3 ¼ 0;
then the optimal acceleration length according to the least
square linear approximation is:

vmin li ¼ � Srv=Svv
r � v � Srv=Svv (5)

where r ¼ r1þr2þr3
3 ; v ¼ v1þv2þv3

3 ;

Srv ¼
X3
i¼1

ri � rð Þ vi � vð Þ; Svv ¼
X3
i¼1

vi � vð Þ2

On the other hand, the optimal acceleration length
according to the quadratic extrapolation is:

vmin qua

¼ v2� 1

2

� v2� v1ð Þ2 r2� r3ð Þ � v2� v3ð Þ2 r2� r1ð Þ
v2� v1ð Þ r2� r3ð Þ � v2� v3ð Þ r2� r1ð Þ (6)

The overall optimal acceleration length is

vmin ¼
(
vmin li if vmin qua � 0

Min vmin li; vmin qua

� �
Otherwise

(7)

Compared to the original acceleration method [16], the
presented approach requires three previous vectors well
aligned on the same direction instead of four vectors. The
selection rule of the acceleration step is much simpler than
the original method. In order to prevent the overshoot, vmin

is always less than 15 times the vector length Q3� Q2k k:
Note this sanity length is smaller than the value in [16], but
close to the value in [19]. In addition, Simon [25] reported
to achieve faster convergence rate by separating the
rotation and translation vectors. This was not the case in
our experience. Because the sum of square errors is directly
related to all seven parameters in the rotation and
translation vectors, the acceleration of partial parameters

(rotation only, translation only, or rotation and translation
separately) could not provide a good objective function
value in our applications. The rotation and translation
vectors were indeed in different scale affecting the sum of
square errors. But our test of normalized acceleration
provides little differences on the convergence rate and
registration accuracy. Additional details on the presented
acceleration method are present in [30].

4 Registration in a four-axis inspection machine

A four-axis inspection machine is presented in Fig. 4.
Three linear stages are adopted to provide x, y, z
movements. The laser sensor is attached to the linear
stage system. The part is placed on a rotation stage that can
rotate 360 degrees. The data from the sensor and the stages
are collected via the controller to provide the 3D position of
measurement points. Aiming at the part family of turbine
blades, the system is named the blade inspection machine
(BIM) as one critical component of next-generation
reconfigurable manufacturing systems that provides cost-
effective comprise between production capability and
functionality in response to rapid market change [31].

The BIM employed the point-based Optimet sensor
(Optimet, Israel). The sensor probe can be reconfigured
with different lens at different accuracy and working
ranges. For instance, the 25 mm lens offers 3 μm
measurement accuracy and 0.7 mm working range; and
the 100 mm lens has less than 35 μm measurement
accuracy but 70 mm working range. The larger working
range will allow more flexibility in planning the probe
path. The Optimet sensor also provides the signal-to-noise
ratio (SNR) as the quality metric of measurement. A filter
may be implemented to filter out the measurements with
low SNR values (e.g., less than 70%). In addition, the
sensor has wide incidence allowance over reflective or
textured surfaces.

Fig. 4 Four-axis inspection machine



Note that the presented system does not necessarily
include the fixture as the part may be placed on the rotary
stage held by its own weight. For each view at the specified
rotation angle, the non-contact measurements are collected
and automatically aligned with the part model at the
minimized root of mean square errors. In the applications
of reverse engineering, the multiple views are first
registered together to compare the part model with a
complete measurement [32]. However, the registration of
multiple views would introduce additional computation
errors due to the discrete point representation. Therefore, in
our application, each view is registered directly to the CAD
model. Although it is argued that the registration of
separate views and part model may underestimate the part
error, this underestimation effect is negligible with care-
fully planned view positions. In addition, the registration of
point set and part model can be based on the best fit of
selected surfaces. As such, the registration of separate
views and part model can guarantee the almost-zero-error
alignments.

In order to assess the error of registration algorithm, a
simulation program was established to mimic the part
measurements with inspection errors. During simulation,
the positions of the part, the sensor probe, the linear stages,
and the rotary stage are characterized by Gaussian
distributions as well as the sensor detections. As the
measurements are simulated from the intersecting hit of the
virtual laser ray and the digital part surface, the inspection
error is determined by the mean value and standard
deviation of these Gaussian distributions. For instance, if
the positions had zero standard deviation, the inspection
would have had no error at all. While this is not possible in
the actual inspection process where the acquired measure-
ment includes the part manufacturing error, the sensor
detection error, the stage position error, and the fixture
position error, the simulation provides a virtual test-bed
environment to generate the measurement point cloud with
controllable errors. These simulated measurements can
then be used to verify the accuracy and effectiveness of
automatic registration methods.

Fig. 5 Registration with simulated measurements. a Misaligned measurements. b Registered measurements. c “Perfect” measurements
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Assuming a perfectly manufactured turbine blade with
the fixture position error, the simulated measurement was
misaligned with the part model as shown in Fig. 5a. The
points were colored in different grades (from blue, green to
red) to reveal the deviated distance. The sign of the distance
indicated the location (inside or outside) of the measure-
ment point with respect to the surface. The overall root of
mean square errors (RMS) of the measurements was
0.222 mm due to the fixture position error in Fig. 5a. Then
the registration was applied to automatically align the
measurements to the part model. The RMS of the simulated
measurements reduced to 0.001 mm after the registration
with the minimum and maximum deviation at −0.004 mm
and 0.004 mm, respectively, as shown in Fig. 5b.
According to the previous discussion, the registration
includes the error of facet approximation. This error could
be evaluated by simulating perfect measurements (without
any fixture or other errors) on a perfect part. Such a simulated
measurement would not need any registration. Figure 5c

shows that this “perfect” measurement has 0.002 mm RMS
error, with the minimum and maximum deviation at
−0.006 mm and 0.004 mm, respectively. Compared to this
“perfect” measurement, the registered measurement actually
has smaller RMS value. This is because the registration
process automatically adjusts the deviation distribution to
minimize the RMS value as indicated in Fig. 6, where the
graph of Fig. 6a shows the normally distributed deviations of
the registered measurement and Fig. 6b is the distribution of
non-registered “perfect” measurement. In spite of this subtle
difference, the colored deviation map of registered measure-
ment in Fig. 5b provides a pattern consistent with the one of
the “perfect” measurement in Fig. 5c. With this in mind, it
could be concluded that the fixture position error has been
compensated in Fig. 5b. The registration error due to the
numerical iterations was nearly negligible.

The actual measurement was performed on the blade
inspection machine. A preliminary transformation from the
measurement coordinate system to the part coordinate

Fig. 7 Turbine blade inspection. a Registered front view. b Registered back view

Fig. 8 Formed part inspection. a Registered front view. b Registered back view



system was acquired in the stage of machine setup. As we
are heading to the low-precision-fixture or non-fixture
inspection process, this preliminary transformation would
not completely align the measurements with the part
model. Instead, the model-based registration method could
be applied to fine-tune the alignment of measurements, in
which the preliminary transformation was used as the
initial pose of the registration process. Figure 7 shows two
registered measurements, the front and back views of a
turbine blade. The part has the 0.1 mm surface tolerance.
As shown by a number of highlighted dots with positive
deviations in the figure, the bottom of the airfoil is found to
be protruded from the nominal part shape. Furthermore,
one side of the platform is away from the model (indicated
by the positive deviations) and another side is inside the
part (indicated by the negative deviations). This illustrates
that the whole platform is shifted in relative to the airfoil
position. It is worth noting that such a complete and precise
inspection of free-form surfaces is very difficult and time-
consuming for CMM inspection. The fixture-based
industry practice that measures a few cross sections of
the airfoil would not detect the part errors as shown in
Fig. 7.

The blade inspection machine can also measure other
parts with free-form surfaces and difficult fixture setup.
Figure 8 depicts the registered measurements of a formed
part. The front view shows that one side of the part is
slightly twisted as the top is inside the part model (negative
deviations) and the bottom is outside (positive deviations).
Note that there are some black points in the colored
deviation map. These are the outliers that are excluded
from the RMS calculation. The outliers are defined as the
inspection points with the absolute distance beyond three
standard deviations of all measurements with respect to
their signed distances.

The execution time and the deviated distance after
registration are listed in Table 2. The test was performed on
a home PC with 1.8 GHz Pentium4 CPU and 512 MB
RAM. For the sake of comparison, the registration results
from a commercial package are also listed in the brackets of
the table. Note that both the BIM registration and the
commercial package started at the same initial poses. The
same three-sigma outlier filter was applied to the calcula-
tion of RMS, min, and max distances. In the tested
applications, the BIM registration was found faster than the
commercial package. The registration of simulated mea-
surements revealed that the BIM registration could
accurately bring the measurements close to the model
while the commercial package could not.

5 Conclusion

This paper discussed an efficient registration method for
the precision inspection of free-form surfaces. Different
from the reverse engineering or graphics application where
multiple views are registered together to provide a
complete 3D model, the registration in precision inspection
focuses on comparing the measurements with the part
model at the maximum accuracy. The ICP algorithm is a
popular method for this purpose. We have studied various
techniques that accelerate the registration process and
improve the efficiency of the ICP method. First, the
combination of approximated nearest nodes and topologi-
cal neighbor facets can significantly speed up each closest
point calculation. The closest point calculation is further
improved with the cached facets across the iteration steps.
The registration method was enhanced by incorporating the
signal-to-noise ratio into the transformation of correspon-
dence sets. As such the outliers would have less or no effect
in the weighted registration process. Last, an acceleration
method based on linear or quadratic extrapolation can be
fine-tuned to provide the fast yet robust iterative solution.

These techniques have been implemented in a four-axis
blade inspection machine with no requirement of precision
fixtures. The virtual simulation was also established to
verify the registration correctness. These simulated mea-
surements indicated that the implemented registration
algorithm is fast and precise. A turbine blade part and a
formed part are measured on the blade inspection machine.
The registered measurement reveals part defects that are
very difficult to detect with current industrial practices.
With this promising progress, future work includes the test
of a registration algorithm on more precision inspection
applications.
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