
EÆcient Relational Storage and Retrieval of

XML Documents

Albrecht Schmidt, Martin Kersten, Menzo Windhouwer, and Florian Waas

Centre for Mathematics and Computer Science (CWI)
Kruislaan 413, 1098 SJ Amsterdam

The Netherlands
email: �rstname.lastname@cwi.nl

Abstract. In this paper, we present a data and an execution model
that allow for eÆcient storage and retrieval of XML documents in a rela-
tional database. The data model is strictly based on the notion of binary
associations: by decomposing XML documents into small, exible and se-
mantically homogeneous units we are able to exploit the performance po-
tential of vertical fragmentation. Moreover, our approach provides clear
and intuitive semantics, which facilitates the de�nition of a declarative
query algebra. Our experimental results with large collections of XML
documents demonstrate the e�ectiveness of the techniques proposed.

1 Introduction

XML increasingly assumes the role of the de facto standard data exchange format
in Web database environments. Modeling issues that arise from the discrepancy
between semi-structured data on the one hand side and fully structured database
schemas on the other have received special attention. Database researchers pro-
vided valuable insights to bring these two areas together. The solutions pro-
posed include not only XML domain speci�c developments but also techniques
that build on object-oriented and relational database technology (e.g., see [1, 6,
7, 9{11, 14{16]).

To make XML the language of Web databases, performance issues are the
upcoming challenge that has to be met. Database support for XML process-
ing can only �nd the widespread use that researchers anticipate if storage and
retrieval of documents satisfy the demands of impatient surfers.

In this paper, we are concerned with providing e�ective tools for the man-
agement of XML documents. This includes tight interaction between established
standards on the declarative conceptual level like the DOM [18] and eÆcient
physical query execution. Starting from the syntax tree representation of a docu-
ment, we propose a data model that is based on a complete binary fragmentation
of the document tree. This way, all relevant associations within a document like
parent-child relationships, attributes, or topological orders can be intuitively de-
scribed, stored and queried. In contrast to general graph databases like Lore [1],
we draw bene�t from the basic tree structure of the document and incorporate

<bibliography>

<article key="BB88">

<author>Ben Bit</author>

<title>How To Hack</title>

</article>

<article key="BK99">

<editor>Ed Itor</editor>

<author>Bob Byte</author>

<author>Ken Key</author>

<title>Hacking & RSI</title>

</article>

</bibliography>

Fig. 1. XML document and corresponding syntax tree

information about the association's position within the syntax tree relative to
the root into our data model. References such as IDREFs that escape the tree
structure are taken care of by views on the tree structure. Associations that
provide semantically related information are stored together in the binary rela-
tions of the database repository. Along with the decomposition schema we also
present a method to translate queries formulated on paths of the syntax tree
into expressions of an algebra for vertically fragmented schemas [3].

Our approach is distinguished by two features. Firstly, the decomposition
method is independent of the presence of DTDs, but rather explores the struc-
ture of the document at parse time. Information on the schema is automatically
available after the decomposition. Secondly, it reduces the volume of data irrel-
evant to a query that has to be processed during querying. Storing associations
according to their context in the syntax tree provides tables that contain seman-
tically closely related information. As a result, data relevant for a given query
can be accessed directly in form of a separate table avoiding large and expen-
sive scans over irrelevant data making associative queries with path expressions
rather inexpensive. Especially the need for hierarchical projections and semijoins
vanishes completely.

Reservations exist that a high degree of fragmentation might incur increased
e�orts to reconstruct the original document, or parts of it. However, as our
quantitative assessment shows, the number of additional joins is fully made up
for as they involve only little data volume. Our approach displays distinctly
superior performance compared to previous work.

2 Data Model and Algebra

XML documents are commonly represented as syntax trees. With string and int
denoting sets of character strings and integers and oid being the set of unique
object identi�ers, we can de�ne an XML document formally (e.g., see [19]):

o4 o6 o11

o10 o12

o13

o14

o15

o5o3 o8

o9

o2 o7

o1

article,article,"BB88"
key

"BK99"
key

bibliography,

cdata,

"How to Hack"

string string

editor,

cdata, cdata,

author,

cdata,

author,

"Bob Byte" "Ken Key"

string string string

cdata,

"Ben Bit" "Hacking & RSI"

title,

cdata,

string

title,author,

"Ed Itor"

Fig. 2. Syntax tree of example document

De�nition 1. An XML document d = (V;E; r; labelE ; labelA; rank) is a rooted
tree with nodes V and edges E � V �V and a distinguished node r 2 V , the root
node. The function labelE : V ! string assigns labels to nodes, i.e., elements;
labelA : V ! string ! string assigns pairs of strings, attributes and their
values, to nodes. Character Data (CDATA) are modeled as a special `string'
attribute of cdata nodes, rank : V ! int establishes a ranking between sibling
nodes. For elements without any attributes labelA maps to the empty set.

Figure 1 shows an XML document which describes a fragment of a bibliogra-
phy; the corresponding syntax tree is displayed in Figure 2. The representation
is largely self-explanatory, oi denote object identi�ers (OIDs) whose assignment
is arbitrary, e.g., depth-�rst traversal order. We apply the common simpli�ca-
tion not to di�erentiate between PCDATA and CDATA nor do we take rich
datatypes into account. Note that OID assigned nodes represent only elements
and not attributes.

2.1 Preliminaries

Before we discuss techniques how to store a syntax graph as a database instance,
we introduce the concepts of associations and path summaries. They identify
spots of interest and constitute the basis for the Monet XML Model.1

De�nition 2. A pair (o; �) 2 oid� (oid[int[string) is called an association.

The di�erent types of associations describe di�erent parts of the tree: associa-
tions of type oid�oid represent edges, i.e., parent-child relationships. Attribute
values (including character data, represented by vertices with label `string',
that start from `cdata' labelled nodes) are modeled by associations of type
oid � string, while associations of type oid � int are used to preserve the
topology of a document.

1 We chose the name Monet XML Model because the home-grown database engine
Monet [3] serves as implementation platform.

De�nition 3. For a node o in the syntax tree, we denote the sequence of labels
along the path (vertex and edge labels) from the root to o with path(o).

As an example, consider the node with OID o3 in Figure 2; its path is bibli-
ography

e
! article

e
! author. The corresponding character data string \Ben Bit"

has path bibliography
e
! article

e
! author

e
! cdata

a
! string, where

e
! denotes

edges to elements and
a
! to attributes.

Paths describe the schematic position of the element in the graph relative to
the root node, and we use path(o) to denote the type of the association (�; o).
The set of all paths in a document is called the document's path summary.

2.2 The Monet XML Model

As we pointed out at the beginning, the question central to querying XML doc-
uments is how to store the syntax tree as a database instance that provides
eÆcient retrieval capabilities. Given De�nition 1 the tree could be stored using
a single database table for the parent-child relations (similar to [17]), another one
for the elements labels and so on. Though space e�ective, such a decomposition
makes querying expensive by enforcing scans over large amounts of data irrele-
vant to a query instance, since structurally unrelated data are possibly stored in
the same tables. Even if the query consist of a few joins only, large data volumes
may have to be processed (see [9] for a discussion of storage schemes of this
kind).

We pursue a rather di�erent approach using the structures de�ned above,
i.e., storing all associations of the same type in the same binary relation. A
relation that contains the tuple (�; o) is named path(o), and, conversely, a tuple
is stored in exactly one relation. This idea results in the following de�nition:

De�nition 4. Given an XML document d, the Monet transform is a quadruple
Mt(d) = (r;R;A;T) where

R is the set of binary relations that contain all associations between nodes;
A is the set of binary relations that contain all associations between nodes and

their attribute values, including character data;
T is the set of binary relations that contain all pairs of nodes and their rank;

r remains the root of the document.

Encoding the path to a component into the name of the relation often achieves
a signi�cantly higher degree of semantic fragmentation than implied by plain
data guides [10]. In other words, we use path to group semantically related
associations into the same relation. As a direct consequence of the decomposition
schema, we do not need to introduce novel features on the storage level to cope
with irregularities induced by the semi-structured nature of XML, which are
typically taken care of by NULLs or overow tables [7]. Moreover, it should be
noted, that the complete decomposition is linear in the size of the document with
respect to running time. Concerning memory requirements, it is in O(h), h being

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le
=
f
ho
1
;
o
2
i;
ho
1
;
o
7
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

a
u
th
o
r
=
f
ho
2
;
o
3
i;
ho
7
;
o
1
0
i;
ho
7
;
o
1
2
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

a
u
th
o
r

e !

cd
a
ta
=
f
ho
3
;
o
4
i;
ho
1
0
;
o
1
1
i;
ho
1
2
;
o
1
3
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

a
u
th
o
r

e !

cd
a
ta

a !

st
ri
n
g
=
f
ho
4
;
\
B
en
B
it
"
i;
ho
1
1
;
\
B
o
b
B
y
te
"
i;
ho
1
3
;
\
K
en
K
ey
"
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

ti
tl
e
=
f
ho
2
;
o
5
i;
ho
7
;
o
1
4
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

ti
tl
e

e !

cd
a
ta
=
f
ho
5
;
o
6
i;
ho
1
4
;
o
1
5
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

ti
tl
e

e !

cd
a
ta

a !

st
ri
n
g
=
f
ho
6
;
\
H
ow
to
H
a
ck
"
i;
ho
1
5
;
\
H
a
ck
in
g
&
R
S
I"
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

ed
it
o
r
=
f
ho
7
;
o
8
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

ed
it
o
r

e !

cd
a
ta
=
f
ho
8
;
o
9
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

e !

ed
it
o
r

e !

cd
a
ta

a !

st
ri
n
g
=
f
ho
9
;
\
E
d
It
o
r"
ig
;

bi
bl
io
gr
a
p
h
y

e !

a
rt
ic
le

a !

ke
y
=
f
ho
2
;
\
B
B
8
8
"
i;
ho
7
;
\
B
K
9
9
"
ig
g

T
a
b
le
1
.
M
o
n
et
tr
a
n
sf
o
rm
M
t

o
f
th
e
ex
a
m
p
le
d
o
cu
m
en
t

the height of the syntax tree, in addition to the space the binary relations in
the database engine occupy, i.e., it is not necessary to materialize the complete
syntax tree.

Proposition 1. The above mapping is lossless, i.e., for an XML document d
there exists an inverse mapping M�1

t such that d and M�1
t (Mt(d)) are isomor-

phic.

A sketch of the proof of Proposition 1 is given in the appendix. Table 1 shows
the Monet transform of the example document.

In addition to the relational perspective we adhered to so far, the Monet
transform also enables an object-oriented perspective, i.e., object being inter-
preted as node in the syntax tree, which is often more intuitive to the user and
is adopted by standards like the DOM [18]. Particularly in querying, approaches
that bear strong similarities with object-oriented techniques have emerged. Given
the Monet transform, we have the necessary tools at hand to reconcile the rela-
tional perspective with the object-oriented view.

It is natural to re-assemble an object with OID o from those associations
whose �rst component is o: e.g., the node with OID o2 is easily converted into
object(o2) = fkeyho2; \BB88"i; author ho2; o3i; titleho2; o5ig, an instance of a suit-
ably de�ned class article with members key , author and title. However, XML is
regarded as an incarnation of the semi-structured paradigm. One consequence of
this is that we cannot expect all instances of one type to share the same struc-
ture. In the example, the second publication does have an editor element whereas
the �rst does not. We therefore distinguish between two kinds of associations:
(strong) associations and weak associations. Strong associations constitute the
structured part of XML { they are present in every instance of a type; weak as-
sociations account for the semi-structured part: they may or may not appear in
a given instance. Objects o2 and o7 reect this: o7 has a editor member whereas
o2 has not. Therefore, we de�ne the following:

De�nition 5. An object corresponding to a node o in the syntax tree is a set of
strong and weak associations fA1ho; o1i; A2ho; o2i; : : : g.

The next question we address directly arises from the modeling of objects:
How can we re-formulate queries from an object-oriented setting to queries in
relational Monet XML?

2.3 Execution Model and Algebra

The uni�ed view provided by the Monet XML model extends directly to query-
ing. For the relational layer, a multitude of operators implementing the relational
algebra, including specialties intrinsic to vertical fragmented schemas, have been
proposed. Hence, we omit a discussion of technical issues concerning bare, re-
lational query processing in the context of vertical fragmentation and refer the
interested reader to [3] for a comprehensive overview.

More interesting is the actual translation of an OQL-like query to match the
facilities of the underlying query execution engine. We only outline the trans-
lation by an example query. The process bears strong resemblance to mapping
techniques developed to implement object-oriented query interfaces on relational
databases; thus, we can resort to the wealth of techniques developed in that �eld.
See [4] for a comparative analysis of di�erent query languages for XML.

Consider the following query which selects those of Ben Bit's publications
whose titles contain the word `Hack'; the semantics of the statements are similar
to [2]:

select p

from bibliography
e
! article p,

p
e
! author

e
! cdata a,

p
e
! title

e
! cdata t

where a = \Ben Bit" and t like \Hack";
The query consists of two blocks, a speci�cation of the elements involved,

which translates to computing the proper binary relations, and constraints that
de�ne the actual processing. For resolving path expressions, we need to distin-
guish two types of variables in the from clause: variables that specify sets, p in
the example, and variables, which specify associations, a and t.

We collapse each path expression that is not available in the database by
joining the binary relations along the path speci�cation. This establishes an
association between the �rst and last element of the path. Finally, we take the
intersection of the speci�ed elements. Matching the variables against the running
example, the from clause speci�es the following elements:

p = fo2; o7g;

assoc(p! a) = f(o2; \Ben Bit"); (o7; \Bob Byte");

(o7; \Ken Key")g;

assoc(p! t) = f(o2; \How To Hack");

(o7; \Hacking & RSI")g

Queries containing regular expressions over paths directly bene�t from the avail-
ability of the path summary. Standard methods for the evaluation of regular
expressions can be applied to the textual representation of the paths and enable
the immediate selection of the candidate relations.

The evaluation of the where clause is not of particular interest in this con-
text. Though processing of binary tables di�ers from the conventional relational
model in several aspects, these di�erences have no direct impact on our method.

2.4 Optimization with DTDs

As XML documents are not required to conform to DTDs we do not assume
that they do. However, in this section we show that our data model is exible
enough to take advantage of additional domain-knowledge in the form of DTDs
or XML Schema speci�cations. Again, the �rst-class paths in Monet XML are

<!ELEMENT bibliography (article*)>

<!ELEMENT article (editor?, author*, title)>

<!ATTLIST article key CDATA #REQUIRED>

<!ELEMENT editor (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

Fig. 3. DTD for example document

the focal feature necessary for a seamless integration. We present an approach
that is similar in spirit to [14].

For motivation, consider again the example document in Figure 1 and 2
suppose we are given the DTD in Figure 3. The DTD says that each publication
may only have a single title element. Given this rule, we can collapse each path
from the publication nodes to the character data of title elements without losing
information; thus,

f bibliography
e

! article
e

! titlefho2; o5i; ho7; o14ig;

bibliography
e

! article
e

! title
e

! cdatafho5; o6i; ho14; o15ig;

bibliography
e

! article
e

! title
e

! cdata
a

! stringfho6; \How to Hack"i;

ho15; \Hacking & RSI"ig g

may be reduced to

f bibliography
e

! article
e

! titlefho2; o5i; ho7; o14ig;

bibliography
e

! article
e

! title
a

! stringfho5; \How to Hack"i;

ho14; \Hacking & RSI"i gg:

That is we take advantage of DTDs by identifying and subsequently collaps-
ing 1 : 1 relationships to reduce storage requirements and the number of joins in
query processing. The result of hierarchically joining the associations takes the
place of the original data. Some of these 1 : 1 relationships can be inferred from
a DTD, others require domain-speci�c knowledge: our common sense knowledge
of bibliographies tells us that in bibliographies the only elements whose order is
important are author and editor elements. Thus, we may, on the one hand, drop
all rank relations that do not belong to author or editor tags and furthermore
reduce the before mentioned path to:

f bibliography
e
! article

a
! titlefho2; \How to Hack"i; ho7; \Hacking & RSI"i g:

Note that we apply this technique not to the DTDs themselves to derive a
storage schema but rather simplify the paths present in the actual document
instance.

Documents size in XML size in Monet XML #Tables Loading

ACM Anthology 46.6 MB 44.2 MB 187 30.4 s

Shakespeare's Plays 7.9 MB 8.2 MB 95 4.5 s

Webster's Dictionary 56.1 MB 95.6 MB 2587 56.6 s

Table 2. Sizes of document collections in XML and Monet XML format

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1A Monet XML 1.2 5.6 6.8 8.0 4.4 4.9 5.0 5.0 8.8 12.7

2A SYU / Postgres 150 180 160 180 190 340 350 370 1300 1040

1B Monet XML { 4.4 5.6 6.8 3.2 3.7 3.8 3.8 7.6 11.5

2B SYU / Postgres { 30 10 30 40 190 200 220 1150 890

Table 3. Comparison of response times for query set of SYU

3 Quantitative Assessment

We assess the techniques proposed with respect to size of the resulting database,
as well as querying and browsing the database. As application domains we chose
readily available XML document collections: the ACM SIGMOD Anthology [12],
Webster's Dictionary [8], and Shakespeare's Plays [5].

We implemented Monet XML within the Monet database server [3]. The
measurements were carried out on an Silicon Graphics 1400 Server with 1 GB
main memory, running at 550 MHz. For comparisons with related work, we used
a Sun UltraSPARC-IIi with 360 MHz clock speed and 256 MB main memory.
Database Size. The resulting sizes of the decomposition scheme are a critical
issue. Theoretically, the size of the path summary can be linear in the size of
the document as the worst case { if the document is completely un-structured.
However, in practical applications, we typically �nd large structured portions
within each document so that the size of the path summary and therefore the
number of relations remains small. Table 2 shows the database sizes for our
examples in comparison with the size of the original XML code. The third column
contains the number of tables, i.e., the size of the path summary. The last column
shows the complete time needed to parse, decompose and store the documents.

It leaps out that the Monet XML version of the ACM Anthology is of smaller
size than the original document. This reduction is due to the `automatic' com-
pression inherent in the Monet transform (tag names are stored only once as
meta information) and the removal of redundantly occurring character data.
For example there are only few di�erent publishers compared to the number of
entries in general. In the decomposition, full entries of these �elds can be re-
placed with references; this is done automatically by the DBMS. We can expect
similar e�ects to occur with other decomposition schemas, like object-oriented
mappings.
Scaling. In order to inspect the scaling behavior of our technique we varied
the size of the underlying document. In doing so, we took care to maintain the

100

101

102

103

104

102 103 104 105 106

R
es

po
ns

e
tim

e
in

 m
s

Size of database in number of publications

4 assoc
3 assoc
2 assoc
1 assoc

Fig. 4. Scaling of document

ratio of di�erent elements and attributes of the original document. We scaled
the ACM Anthology from 30 to 3 � 106 publications which corresponds to XML
source sizes between 10KB and 1GB. The database sizes and the insertion times
scaled linear in the size of the XML document.

Querying. To test for query performance under scaling we ran 4 queries consist-
ing of path expressions of length 1 through 4 for various sizes of the Anthology.
As Figure 4 shows, the response times for each query, given as a function of the
size of the document, is linear in the size of the database. Only for small sizes of
the database, the response time is dominated by the overhead of the database
system. Notice, both axes are logarithmic.

Only few of the performance analyses published so far o�er the possibility
to reproduce and compare results, which makes meaningful comparison diÆcult
at this time. The results we use to compare Monet XML against were reported
in [15] who implemented their algorithms as a front-end to Postgres. In [15], the
authors propose a set of 10 queries using Shakespeare's plays [5] as an application
domain. We refer to their approach as SYU in the following. In Table 3 we
contrasted response times of Monet XML with SYU obtained from experiments
on the abovementioned Sun Workstation.

The �gures display a substantial di�erence in response time showing that
Monet XML outruns the competitor by up to two orders of magnitude (rows
1A,2A). The times for SYU include a translation of XQL to SQL that is han-
dled outside the database server. To allow for this di�erence, we additionally
computed the response times relative to query 1 for both systems separately,
assuming that preprocessing costs have a constant contribution. These �gures
exhibit actual query processing time only (rows 1B,2B). Monet XML shows an

50

60

70

80

90

100

0 20 40 60 80 100 120

R
et

rie
va

l a
nd

 r
ec

on
st

ru
ct

io
n

tim
e

in
 m

s

Number of retrieved publications per author

Total response time
Query processing

Fig. 5. Response time vs. result size

increase of processing time by less than 12 ms whereas SYU is up to 1150 ms
slower than its fastest response time.

An analysis of the �gures exhibits the advantages of the Monet model. While
SYU store basically all data on a single heap and have to scan these data re-
peatedly, the Monet transform yields substantially smaller data volumes. In some
extreme cases, the query result is directly available in Monet XML without any
processing and only needs to be traversed and output. Another noticeable dif-
ference concerns the complexity of queries: the straight-forward semantics of the
Monet XML model result in relatively simple queries; conversely, the compiled
SQL statements that SYU present are quite complex.

The comparison with Lore [13] exhibited essentially the same trends on small
document instances. However, we were not able to bulkload and query larger
documents like the ACM anthology as Lore requested more than the available
1 GB main memory. In contrast, using Monet XML we engineered a system
functionally equivalent to the online DBLP server [12] that operated in less than
130 MB.

Browsing a database. Our last experiments aim at assessing the systems
capabilities with respect to browsing. As an example consider a typical query
as it is run on the Anthology server several thousand times a day: Retrieve
all conference publications for a given author. Clearly, the size of the output
may vary drastically and it is of particular interest for a browsing session that
response times are kept low independent of the size of the answer.

Figure 5 shows both the total response time including textual rendering and
response time of the repository. As expected, the time for rendering the out-
put increases signi�cantly yet linear in the result size. However, the response

time of the repository increases at signi�cantly lower rate. This is due to the
reconstruction of the associations in form of joins rather than chasing individual
chains of pointers. Even for authors with a large number of publications the
overall response time is well under one tenth of a second, which makes interac-
tive browsing a�ordable. Also note that the lower line in Figure 5 could also be
interpreted as the cost of constructing a view while the upper line additionally
includes rendering the view to textual XML.

The results presented demonstrate the performance potential of our approach
deploying fully vertical fragmentation. As the low response times show, reduc-
ing the data volume involved in single database operations on the expense of
additional joins pays very well not only in terms of overall performance but also
when scaling is an issue.

4 Conclusions

We presented a data model for eÆcient processing of XML documents. Our ex-
periences show that it is worth taking the plunge and fully decompose XML
documents into binary associations. The experimental results obtained with a
prototype implementation based on Monet underline the viability of our ap-
proach: the e�ort to reduce data volume quickly pays o� as gains in eÆciency.
Overall, our approach combines the elegance of clear semantics with a highly
eÆcient execution model by means of a simple and e�ective mapping between
XML documents and a relational schema.

Concerning future work, we will concentrate on exploring possibilities of par-
allel processing and eÆcient handling of multi-query workloads as found in typ-
ical interactive Web-based information systems. As we have seen with own ex-
periments, there is also the need for a general, standardized methodology that
allows conclusive performance analyses and facilitates comparisons of di�erent
approaches.

References

1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query
Language for Semistructured Data. International Journal on Digital Libraries,
1(1):68{88, 1997.

2. C. Beeri and Y. Tzaban. SAL: An Algebra for Semistructured Data and XML.
In International Workshop on the Web and Databases, pages 37{42, Pennsylvania,
USA, 1999.

3. P. A. Boncz and M. L. Kersten. MIL Primitives for Querying a Fragmented World.
The VLDB Journal, 8(2):101{119, 1999.

4. A. Bonifati and S. Ceri. Comparative Analysis of Five XML Query Languages.
ACM SIGMOD Record, 1(29):68{79, 2000.

5. J. Bosak. Sample XML documents. shakespeare.1.01.xml.zip, available at ftp:
//sunsite.unc.edu/pub/sun-info/standards/xml/eg/.

6. P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A Query Lan-
guage and Optimization Techniques for Unstructured Data. In Proc. of the ACM
SIGMOD Int'l. Conf. on Management of Data, pages 505{516, Montreal, Canada,
1996.

7. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistructured Data with
STORED. In Proc. of the ACM SIGMOD Int'l. Conf. on Management of Data,
pages 431{442, Philadephia, PA, USA, 1999.

8. M. Dyck. The GNU version of The Collaborative International Dictionary of
English, presented in the Extensible Markup Language. Available at http://

metalab.unc.edu/webster/.
9. D. Florescu and D. Kossmann. Storing and Querying XML Data Using an RDBMS.

Data Engineering Bulletin, 22(3), 1999.
10. R. Goldman and J. Widom. Dataguides: Enabling Query Formulation and Opti-

mization in Semistructured Databases. In Proc. of the Int'l. Conf. on Very Large
Data Bases, pages 436{445, Athens, Greece, 1997.

11. C. Kanne and G. Moerkotte. EÆcient Storage of XML Data. In Proceedings of the
16th International Conference on Data Engineering, page 198, 2000.

12. M. Ley. DBLP Bibliography. http://www.informatik.uni-trier.de:8000/~ley/
db/.

13. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database
Management System for Semistructured Data. ACM SIGMOD Record, 3(26), 1997.

14. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.
Relational Databases for Querying XML Documents: Limitations and Opportu-
nities. In Proc. of the Int'l. Conf. on Very Large Data Bases, pages 302{314,
Edinburgh, UK, 1999.

15. T. Shimura, M. Yoshikawa, and S. Uemura. Storage and Retrieval of XML Doc-
uments Using Object-Relational Databases. In Database and Expert Systems Ap-
plications, pages 206{217. Springer, 1999.

16. Software AG. Tamino { Technical Description. Available at http://www.

softwareag.com/tamino/technical/description.htm.
17. R. van Zwol, P. Apers, and A. Wilschutz. Implementing semi-structured data

with MOA. In Workshop on Query Processing for Semistructured data and Non-
Standard Data Formats (in conjunction with ICDT), 1999.

18. W3C. Document Object Model (DOM). Available at http://www.w3.org/DOM/.
19. W3C. Extensible Markup Language (XML) 1.0. Available at http://www.w3.org/

TR/1998/REC-xml-19980210.

A Appendix

Proof of Proposition 1. De�nition 4 introduces the Monet transformMt(d) =
(r;R;A;T) of a document d. For a document d the sets R;A and T are com-
puted as follows:

for elements:

R =
[

(oi;oj ;s)2 ~E

[path(oi)
e
! s]hoi; oji;

for attributes including CDATA:

A =
[

(oi;s1;s2)2labelA

[path(oi)
a
! s1]hoi; s2i;

for ranking integers:

T =
[

(oi;i)2rank

[path(oi) ! rank]hoi; ii
�
;

where E and labelE are combined into one set

~E = f(o1; o2; s)j(o1; o2) 2 E; s = labelE(o2)g;

labelA is interpreted as a set � oid�string�string as well as rank � oid�int,
and [expr] means that the value of expr is a relation name. To see that the
mapping given in de�nition 4 is lossless we give the inverse mapping. Given an
instance of the Monet XML model Mt(d) we can reconstruct the original rooted
tree d = (V;E; r; labelE ; labelA; rank) in the following way (second-last(p) returns
the second-last component of path p).

1. V =
�
oij(9R 2 R)(9oj 2 oid) : Rhoi; oji

	
,

2. E =
�
(oi; oj)j(9R 2 R) : Rhoi; oji

	
,

3. r remains,
4. labelE =

�
(oi; s)j(9R 2 R)(9oj 2 oid)(9s 2 string) : Rhoi; oji ^

second-last(R) = s
	
,

5. labelA =
�
(oi; s1; s2)j(9A 2 A) : Ahoi; s2i ^ last(A) = s1

	
,

6. rank =
�
(o; i)j(9T 2 T) : T ho; ii

	
.

