
Efficient, Reliable, and Secure Content Delivery

by

Yin Lin

Department of Computer Science
Duke University

Date:
Approved:

Bruce Maggs, Supervisor

Theo Benson

Jeffrey Chase

Ramesh Sitaraman

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2014

Abstract

Efficient, Reliable, and Secure Content Delivery

by

Yin Lin

Department of Computer Science
Duke University

Date:
Approved:

Bruce Maggs, Supervisor

Theo Benson

Jeffrey Chase

Ramesh Sitaraman

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2014

Copyright c© 2014 by Yin Lin
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Delivering content of interest to clients is one of the most important tasks of the

Internet and an everlasting research question in the field of computer networking.

Content distribution networks(CDNs) emerged in response to the rising demand of

content providers to deliver content to clients efficiently, reliably, and securely at

relatively low cost.

This dissertation explores how CDNs can achieve major performance benefits by

adopting better caching strategies without changing the network, or by collaboration

with ISPs and taking advantage of their better knowledge of network status and

topology. It discusses the emerging trends of hybrid CDN architectures and solutions

to reliability problems introduced by them. Finally, it demonstrates how CDNs

could better protect both content providers and consumers from attacks and other

malicious behaviors.

iv

To Prof. Bruce Maggs for his patience, encouragement and unwavering support

over the years.

v

Contents

Abstract iv

List of Tables xi

List of Figures xii

List of Abbreviations and Symbols xiv

Acknowledgements xv

1 Introduction 1

2 Related Work and Background 7

2.1 Content Delivery Architectures . 8

2.2 Hybrid System Reliability . 11

2.3 Content-Centric Networking . 13

3 NetSession: a Peer-Assisted CDN 15

3.1 Introduction . 15

3.2 The NetSession system . 16

3.2.1 Design Goals . 16

3.2.2 Architecture . 17

3.2.3 Example: Download Manager 18

3.2.4 The NetSession Interface . 19

3.2.5 Interaction with Edge Servers 20

3.2.6 The NetSession Control Plane 21

vi

3.2.7 Peer Selection . 22

3.2.8 Robustness . 23

3.2.9 Best Practices . 24

3.3 Measurement Study . 25

3.3.1 Data Set . 25

3.3.2 Number and Location of the Peers 26

3.3.3 Content Providers . 28

3.3.4 Available Content . 29

3.4 Benefits . 29

3.4.1 How Well Does Peer Assist Work? 29

3.4.2 Does Peer Assist Reduce Performance? 31

3.4.3 Do Peers Help Improve Global Coverage? 35

3.4.4 Summary . 36

3.5 Conclusion . 37

4 CDN-ISP Collaboration 38

4.1 Introduction . 38

4.2 Data Set . 42

4.3 Evaluation . 43

4.4 Conclusion . 46

5 Cost-Efficient Caching 47

5.1 Introduction . 47

5.2 Background and Motivation . 49

5.2.1 ICN principles and benefits 49

5.2.2 Motivation: Heavy-tailed workloads 52

5.3 Design Space for Caching . 55

vii

5.4 Benefits of Caching . 57

5.4.1 Setup . 57

5.4.2 Baseline results . 59

5.4.3 Summary of main results . 62

5.5 Sensitivity Analysis . 65

5.5.1 Single-dimension sensitivity 65

5.5.2 Best scenario for ICN-NR . 68

5.5.3 Summary of key observations 70

5.6 Conclusions . 70

6 Reliable Client Accounting for Hybrid CDNs 71

6.1 Introduction . 71

6.2 Attacks on hybrid systems . 74

6.2.1 Threat model . 74

6.2.2 Attack vectors . 74

6.2.3 Inflation attack on NetSession 75

6.2.4 Impact of the attack . 76

6.2.5 How serious is this attack? . 76

6.3 Reliable accounting . 78

6.3.1 System model . 78

6.3.2 Threat analysis . 78

6.3.3 Approach . 79

6.3.4 Require message commitment 80

6.3.5 Check logs for consistency . 80

6.3.6 Check logs for plausibility . 81

6.3.7 Control client pairings . 82

viii

6.3.8 Quarantine anomalous clients 82

6.3.9 Flag/throttle suspicious user behavior 83

6.3.10 Enforce resource limits . 84

6.3.11 Summary . 84

6.4 Application to NetSession . 85

6.4.1 Overview . 85

6.4.2 Assumptions . 86

6.4.3 Resource certificates . 86

6.4.4 Tamper-evident log . 87

6.4.5 Consistency checking . 88

6.4.6 Plausibility checking . 90

6.4.7 Statistical tests and quarantine 90

6.4.8 Limitations . 91

6.5 Evaluation . 92

6.5.1 Validation . 92

6.5.2 Experimental setup . 93

6.5.3 Cost: Traffic . 94

6.5.4 Cost: CPU . 95

6.5.5 Cost: Log storage and log upload 95

6.5.6 Cost: Log processing . 96

6.5.7 Examples of statistical tests 98

6.5.8 Effectivity . 98

6.6 Conclusion . 99

7 CDN as Security Overlay Network 100

7.1 Introduction . 100

ix

7.2 Background and Motivation . 102

7.2.1 Operation Ababil . 102

7.2.2 Perceived Impact on Akamai 103

7.2.3 Lessons Learned . 108

7.3 System Design . 109

7.3.1 Design Goals . 109

7.3.2 System Overview . 110

7.3.3 Firewall Rules . 112

7.4 Measurement Study . 113

7.4.1 Data Set . 114

7.4.2 Noises . 115

7.4.3 Repeated Attackers . 117

7.4.4 Attack Pervasiveness . 118

7.4.5 Attack Origins . 119

7.4.6 Attack Size . 121

7.5 Discussion . 122

7.5.1 Authentication Data Pre-Screening 122

7.5.2 Client Reputation Accounting 124

7.5.3 Security Analysis . 125

7.6 Conclusion . 127

8 Conclusion 128

A Pseudo-Code for Tamper Evident Log 130

Bibliography 132

Biography 141

x

List of Tables

3.1 Overall statistics for our data sets. 25

3.2 Global distribution of downloads for the ten largest customers. 27

3.3 Observed changes to the setting that enables content uploads. 30

3.4 Fraction of peers that have content uploads enabled. 30

5.1 Feature-Benefit Matrix for ICN . 51

5.2 Analysis of requests from three CDN cache clusters from different
geographical regions. 53

5.3 Comparison of simulation results for query latency on request trace
and synthetic data (with best-fit Zipf). 64

5.4 Effect of access trees arity on performance gain of ICN-NR over EDGE. 67

6.1 Types of client misbehaviors. 79

6.2 Statistical tests used with NetSession-RCA 97

7.1 Number of WAF rules triggered during a day. 115

xi

List of Figures

2.1 Content delivery taxonomy. 8

3.1 Overview of the NetSession system. 18

3.2 Global distribution of peers. 27

3.3 Overall workload characteristics. 28

3.4 Comparison of edge-only downloads and peer-assisted downloads. . . 32

3.5 Number of file copies vs. peer efficiency 33

3.6 P2P efficiency vs. number of peers. 33

3.7 Downloads of larger files are terminated more often. 34

3.8 Peer contributions in different regions. 35

4.1 Two enables for CDN-ISP collaboration. 40

4.2 Activity of CDN in two days. 44

4.3 Potential hop reduction. 45

4.4 Traffic demand by ISP network position. 45

5.1 Request popularity distribution across different geographical locations. 53

5.2 Optimal utility of different cache levels with a simplified optimization
model . 54

5.3 Cache placement strategies. 55

5.4 Request routing strategies. 56

5.5 An example network topology with four PoP nodes and their corre-
sponding access trees. 59

xii

5.6 Trace-based simulations results with proportional cache budget. . . . 63

5.7 Trace-based simulations results with uniform cache budget. 63

5.8 Sensitivity to simulation parameters. 64

5.9 Exploring the maximum performance gap between ICN-NR and EDGE 69

5.10 Bridging the performance gap between the best scenario for ICN-NR
via simple extensions to EDGE . 69

6.1 Effect of our attack on the NetSession logs. 76

6.2 Network traffic overhead in NetSession-RCA 94

6.3 Average log size per client . 96

7.1 Attacks on Akamai customers. 104

7.2 DNS traffic handled by Akamai. 104

7.3 Phase 2 DDoS attack . 105

7.4 Phase 3 DDoS attack . 106

7.5 Rate control on forward requests. 106

7.6 Phase 4 DDoS attack . 107

7.7 Observed probes employed by Operation Ababil. 107

7.8 Overview of a security overlay solution. 110

7.9 Repeated SQLi attackers during two weeks. 118

7.10 Number of targeted customers per /24 subnet 119

7.11 Number of maximum hourly attack sources for each customer. 120

7.12 Attack volume during a day. 121

xiii

List of Abbreviations and Symbols

Abbreviations

AS Autonomous system.

CCN Content-centric networking.

CDN Content distribution network.

CMS WordPress and Joomla content management systems

CP Content provider such as a software company, a media website
or an e-commerce vendor.

DoS Denial-of-service.

ICN Information-centric networking.

ISP Internet service provider.

IXP Internet exchange point.

P2P Peer-to-peer.

PoP Point of presence.

URL Uniform resource locater.

VM Virtual machine.

VPS Virtual private servers.

WAF Web application firewall.

xiv

Acknowledgements

First of all, I would like to express my sincere thanks to my advisor Bruce Maggs,

who provided full support for my five years of graduate study. Not only did he

offered abundant ideas and resources for my research, but he also taught me how

to do solid work and critical thinking. Most importantly, he has referred me to the

most successful and intelligent researchers in my field, through the collaboration with

whom I gained enormous knowledge and experience. I consider myself the luckiest

person to be able to work with him.

I am very grateful to Prof. Vyas Sekar and Prof. Ramesh Sitaraman, who

generously volunteered large amount of their precious time for our weekly meeting.

They have provided me immense help and invaluable ideas and taught me how to

become a successful researcher.

Prof. Xiaowei Yang and Prof. Romit Roy Choudhury have selflessly shared their

research ideas and suggestions with me in the fields of peer-to-peer reliability, mobile

computing and network security. Besides them, Prof. Jeff Chase and Prof. Theo

Benson have also served as my committee members and provided enormous support

during my preliminary exam and final defense.

I am indebted to my collaborators Seyed K Fayazbakhsh, Ingmar Poese, Paari-

jaat Aditya, Mingchen Zhao, Prof. Andreas Haeberlen, Prof. Peter Druschel, Prof.

Georgios Smaragdakis and many others for their great efforts to get our work pub-

lished. I also owe my special thanks to many Akamai engineers and staffs such as

xv

James Chalfant and Steve Hoey, who offered me internship opportunities at Akamai

where I gained deep insight into various components of CDN, and Bill Wishon, K

C Ng, Mangesh Kasbekar, David Gillman, Jon Thompson, who provided invaluable

data and feedback to our research.

Last but not least, I wish to thank Yu Chen, Bi Wu, Qiang Cao, Dongtao Liu,

among with other friends and colleagues. The heated discussion and group reading

with you are the most rewarding and enjoyable experience in my PhD journey.

xvi

1

Introduction

The Internet is designed to share information between different parties of interest.

The information flowing inside the Internet is a variety of content, such as web

objects (text, image and scripts), multimedia objects(audio, video, live stream),

applications(software, e-commerce), and social networks. In an oversimplified model,

the Internet is made up of producers of such content, also known as content providers

(CP), like CNN, Youtube, and Facebook that deliver their product or services to the

end-users (a.k.a. clients) over network infrastructures maintained by Internet service

providers (ISP).

In order to satisfy the soaring demand of content (Leighton, 2009), a variety of

CDNs have come into being to host content for its customers (used interchangeably

in this dissertation with “content providers”) and serve them to the clients (inter-

changeable with “end-users”) with low latency and high availability. They massively

deployed data centers across the Internet (Ager et al., 2011), often over multiple

backbones. In this way, content providers can greatly cut their capital investment

on expanding their footprint globally in order to serve their worldwide clients, but

instead leasing nodes and resources from CDNs’ existing infrastructures. The scale

1

of CDNs can be as small as a single data center such as RapidShare (Antoniades

et al., 2009), or as large as Akamai, whose data centers can be found across almost

1,000 networks in more than 1,800 locations. Some large software or service vendors

also operate their own CDNs. For example, Google (Tariq et al., 2009) uses tens of

data centers to deliver their products and services; Microsoft Azure operates in 24

locations; Amazon AWS owns 6 data centers over more than 20 locations.

The dominance of the total Internet traffic by CDNs and the important role

they play can never be overestimated. Studies (Gerber and Doverspike, 2011; Poese

et al., 2010) show that more than half of the North American and a European tier-1

carrier’s traffic are contributed by various CDNs. Google is claimed to be responsible

for more than 10% of the total Internet inter-domain traffic (Labovitz et al., 2010).

20% of the global web traffic is contributed by Akamai (Nygren et al., 2010). As

another example, during its busy hours, Netflix is reported to utilize more than 30%

of North America’s total traffic (Inc., 2011).

With its growing popularity and importance, CDNs have been seeking ways to

meet the ever-growing demand, provide better performance, promise higher avail-

ability, enable greater deployment agility, and reduce the operating and capital costs

to guarantee their places in the competitive content distribution markets (Qureshi

et al., 2009). Many innovations and new architectures have appeared during the past

a few decades. Hybrid, or ”peer-assisted” CDNs try to break the boundary between

traditional infrastructure-based and peer-to-peer (P2P) data transfers. They are

trying to combine the merits of both architectures. The P2P component of a hybrid

CDN can shift some workload to clients’ machines by leveraging their hardware and

bandwidth resources. The dedicated servers, the centrally managed elements, on the

other hand, serve as a strong and reliable backup delivery mechanism and ensures

high availability as traditional CDNs. The design and case study of a hybrid CDN

is described in Chapter 3.

2

CDNs can also achieve more efficient delivery by actively collaborating with ISPs,

who own and thus have a better view of the networks. There are two good incentives

for CDNs to seek such collaborations. On the one hand, it takes time for CDNs

to find the most cost-efficient locations to deploy their new servers (Nygren et al.,

2010), and ISPs can offer physical or virtual machines to CDNs that greatly reduces

their need to expand footprints physically and statically. On the other hand, in

order to best serve end users, CDNs have to assign servers that are closest to them.

However, CDNs do not perfectly know real-time network topology and status, and

may make sub-optimal assignments or slow adjustments to link congestions. ISP, as

the network operator, can provide extremely helpful recommendations for CDNs in

this regard. A framework for such collaboration is proposed in Chapter 4.

Another popular idea for efficient content delivery, as an alternative to CDNs, is

the information-centric networking (ICN). It was brought up more than twenty years

ago and has seen significant renewed interest recently. The resurgence of this idea

was triggered largely by Jacobson et al. (2009)’s efforts on the CCN project, and

followed up by several workshops, conferences, and support from the industry (Li

et al., 2013; CCNIndustry, 2012). It is claimed to benefit both content providers and

end-users with better performance, enhanced security, and stronger mobility. Lying

in the center of the ICN concept is the observation that the Internet has evolved

from a means of communication to a rich pool of resources; users are more interested

in the content, agnostic of locations they are trying to connect to retrieve that con-

tent from. The traditional location-based architecture such as IP does not adapt to

this content-centric focus and introduces unnecessary addressing overhead. Besides,

the centralized content hosting or caching approaches for content delivery are also

inefficient. ICN argues that content should be cached pervasively on the routers and

network nodes that are closer to the end-users. The existing ICN proposals often re-

quire significant change to the entire network infrastructure such as ability of routers

3

to store content and the complexity introduced by these changes are questioned by

their objectors as impractical or not worthwhile. Chapter 5 discusses the possibility

of realizing most of ICN’s benefits without any changes to the network and building

an ICN that is incrementally deployable.

Innovations are always accompanied by new challenges. Several undiscovered

research problems arise with the arrival of new content delivery architectures. Main-

taining service reliability is one of these challenges. Take hybrid CDN as an example.

The peer-to-peer communication in the hybrid architecture are not directly observ-

able to the CDN operators, who wish to monitor the clients’ activities in order to

ensure their service quality and make it accountable to their customers. A malicious

or compromised client can delay or abort transfers, tamper with the content sent

to other clients, or misreport download/upload activities between peers in order to

manipulate the accounting for certain customers. Chapter 6 performed an attack

against a specific hybrid CDN to demonstrate how easy such misbehaviors can be

conducted by the clients and proposed a system that removes these vulnerabilities

and ensures accounting reliability.

Providing additional security and protection for customers is another important

responsibility for CDNs on top of efficiency and reliability. The security features are

not only highly attractive to CDNs because they can be developed as add-on services

and products that generate revenues, but also in a large part compulsory because

of the nature of CDNs being a large aggregate resource pool that falls too easy a

target for the attackers. Triukose et al. (2009) show that because a CDN maintain a

separate connection with the origin server from that with the client, a smart attacker

could abuse these decoupled TCP connections to amplify workload and bandwidth

consumption on the origin server thanks to the existence of the CDN. The goal CDNs

attempt to achieve is twofold. On the one hand, CDNs want to minimize the impact

of attacks on their deployed servers so that they can promise resilient and consistent

4

performance. On the other hand, they also need to direct the least malicious or

malformed traffic to the servers that hold original content and therefore make their

customers “hidden” from attackers. One way to achieve this goal is to set up a

virtual network, known as the “overlay network”, on top of Internet (referred to as

the “underlay”) as an isolation. Other mechanisms include dropping packets on non-

service ports, building rule-based application layer firewalls and so on. Chapter 7

makes a case study of a security overlay network design and proposes mechanisms

to mitigate DoS attacks at the edges.

This dissertation covers three major aspects of content delivery: efficiency, relia-

bility and security. It examines the existing systems and technologies that have been

proposed or implemented to achieve these qualitative goals, discusses their advan-

tages and shortcomings, and suggests frameworks to overcome the challenges faced

by these systems. It researches three approaches to more efficient content delivery,

namely hybrid CDNs, CDN-ISP collaboration and ICN by studying example systems,

measuring industry datasets, and performing trace-driven simulations. It discusses

reliability problems involved with hybrid CDNs and proposes a prototype to address

them. With respect to security, it analyzes data collected from an example industry

solution to better understand attacks on CDNs in the real world. It also discusses

ways that CDNs can better protect their customers.

The rest of this dissertation is organized as follows: Chapter 2 lays out the back-

grounds of various CDNs and briefly reviews related research work. The efficiency,

reliability and security aspects of content delivery are discussed in Chapter 3-5, Chap-

ter 6 and Chapter 7, respectively. Chapter 3 demonstrates how CDNs can achieve

better performance by integrating P2P elements and gives the case study of NetSes-

sion, a concrete hybrid CDN design. Chapter 4 discusses how CDNs can perform

better by collaborating with ISPs. Chapter 5 shows how the qualitative benefits of

ICN, another efficient content delivery approach, can be gained without changing

5

existing networks. Chapter 6 examines potential reliability problem in accounting

hybrid CDNs. Chapter 7 studies the security overlay networks. Chapter 8 concludes

the dissertation.

6

2

Related Work and Background

This chapter provides a background for works discussed in this dissertation and give

an overview of research efforts in the content distribution area. It is reported (Ager

et al., 2012; Gerber and Doverspike, 2011; Labovitz et al., 2010; Poese et al., 2010)

that delivery of content dominates today’s Internet traffic, which is growing at a

skyrocketing 30% rate each year (Networking and Index., 2013). Various CDN ar-

chitectures, which are overlays that build upon existing network infrastructure, have

emerged to deal with the rising demand for content and meet the requirement of

scalability and reliability required by commercial-grade applications. These archi-

tectures can be categorized by operating parties, such as independent entities, ISPs,

content providers, self-organized clients, or combinations of the above. An overview

of these architectures are given in Section 2.1. Among them is the hybrid CDN

that incorporates a peer-to-peer network and is discussed in great detail in this dis-

sertation because of its outstanding popularity and wide adoption by the industry

recently. The reliability and accountability of P2P or hybrid network has been ex-

plored by immense amounts of research and are briefly enumerated in Section 2.2.

Finally, as a promising alternative to CDNs, ICN is a relatively novel concept that

7

attempts to align the Internet’s more location-centric architecture with its more

content-centric nature, and thus achieve better caching efficiency and less addressing

overhead. Section 2.3 introduces major prior work in this area.

2.1 Content Delivery Architectures

This section categorizes CDN architectures according to their major participants and

the resulting taxonomy is provided in Figure 2.1.

Figure 2.1: Content delivery taxonomy.

Independent CDNs: Independent CDNs have a solid business relationship with

content providers and host data for them that are delivered to end users around the

world. Depending on the scale of an independent CDN, there can be three approaches

to deploy their servers.

Small CDNs, one-click hosters, and applications running in public clouds usually

distribute their content from a single central location. This approach benefit CDNs

with the economics of lightweight deployment (Armbrust et al., 2009), flexibility of

multihoming (Goldenberg et al., 2004), and connectivity of IXPs (Ager et al., 2012),

but also has the risk of single point of failure (Slashdot, 2011). It also suffers from

severe network latency with distributed end-user locations.

8

CDNs such as EdgeCast, BitGravity and Limelight and cloud providers such

as Microsoft Azure and Amazon CloudFront adopts another approach. They deploy

several large data centers that are often IXP members to establish direct connectivity

to a large number of networks. The approach also benefit from improved reliability

by eliminating the single point of failure problem.

The third approach consists of highly distributed servers that scatter across a

large number of networks. It is employed by large CDNs such as Akamai to leverage

replication of content and locations for high availability and flexibility. It can balance

traffic across different locations and thus react quickly to crowds and enjoy improved

latency.

Peer-to-peer: P2P network was first promulgated as a collaborative resource shar-

ing environment where each participating network node, known as “peers”, acts both

as a consumer and a supplier of resources, as opposed to the traditional client-server

model where client nodes only consume resources from a centralized server without

contributing to others. The history of P2P can be traced back to the early 1960s with

the invention of APRANET (McQuillan and Walden, 1977) and has seen significant

development recently by protocols such as BitTorrent (Cohen, 2003). Despite the

copyright and privacy concerns that come along with it and perhaps the declining of

it by certain regions of the world, P2P is still a significant contributor to the total In-

ternet traffic and has been proven to scale extremely well during flash crowds (Yang

and de Veciana, 2004).

Hybrid CDNs: Hybrid CDNs are an effort to combine the merits of traditional

client-server and peer-to-peer architecture. In a hybrid CDN, content are broken into

chunk that can be retrieved both from the CDN’s servers and from other end-users

who have installed the CDN’s client software. In order to coordinate the clients,

the CDN set aside a group of servers, called control plane servers, to direct the

client softwares to download which chunks from which peers. Examples of commer-

9

cial hybrid CDNs include LiveSky (Yin et al., 2009), who delivers streaming video,

Thunder (Dhungel et al., 2012), an application aggregator with high penetration in

China, and NetSession (Zhao et al., 2013), a low cost solution developed by Akamai

to deliver software updates and large files for its customers. Hybrid CDNs highlight

its leverage of end-users’ hardware and bandwidth resource for better scalability and

cost reduction on CDNs’ and content providers’ side. A recent studies (Huang et al.,

2008a) showed that as much as 80% of the traffic can be shifted from CDNs’ servers

to the end-users without hurting their download experience.

ISP-operated CDNs: ISPs have witnessed the success and rapid growth of CDNs

who deploy servers and data centers inside their networks, and are motivated to

build their own CDNs for their enormous revenue generation potential. Examples

of ISPs starting to create their own CDNs include AT&T, Verizon and their CDN

architectures generally follow those of independent CDNs except for a less distributed

deployment. Other examples include Telefonica and Level3 (Laoutaris et al., 2009,

2011), who have large footprints around the world and are also building their own

CDNs for efficient global content distribution. ISP-operated CDNs benefit from their

ownership of the last mile network and its closeness to the end-users.

Licensed CDNs: Licensed CDNs are partnerships between CDNs and ISPs to

combine the former one’s steady customer base with the latter one’s large end-user

base. In this business model, the CDN provides content delivery software that runs

on servers owned by the ISP. The servers collect logs for its service and reports them

back to the CDN. The revenue derived from content providers are divided between

the two parties. This architecture saves the ISP from the difficulty to negotiate

directly with a large number of content providers and the CDN from necessity for

vast hardware and network investment to expand its footprint.

Application-based CDNs: Large content providers have also demonstrated inter-

est to build their own CDN to server their clients. Software giants such as Google

10

have generated such enormous traffic that they are considering rolling out their own

content delivery system to amortize te cost. In order to achieve this, Google has

deployed numerous data centers that sit upon high speed backbone networks and

connects with major ISPs via IXPs and private peering. Netflix has also launched its

own CDN called Open Connect Network (OCN, 2012) with a BGP interface through

which ISPs can advertise their mapping of subnets to Open Connect Network servers.

Meta CDNs: Large content providers may contract with multiple CDNs to achieve

best availability and global coverage nowadays. Meta-CDNs have come into being as

a broker to help them select best CDNs by collecting performance metrics from the

end-users. Examples of meta-CDNs include Cedexis and Conviva (Dobrian et al.,

2011). They benefit content providers by selecting an alternative CDN when a CDN

is not performing well or is not assigning the optimal server to serve an end-user.

CDN Federations: CDN federations have formed, usually among small CDNs or

ISPs, to reduce investment cost on footprint expansion and to strengthen individual

CDNs’ negotiating power with the content providers and ISPs. Members of a CDN

federation can populate its content to their partners’ servers in locations where they

have no footprint. The transit cost is incurred only once for replicating the content

and all end-users in the new location can be served with low latency. Operator

Carrier Exchange (OCX) is an example of CDN federation (Rayburn, 2011).

2.2 Hybrid System Reliability

The concept of peer-assisted CDN has been explored by both academia (Peterson

and Sirer, 2009; Freedman, 2010) and industry (Vu et al., 2010; Yin et al., 2009).

Lu et al. (2012) makes a good comparison of these systems. The benefits of the hy-

brid design were foreseen by studies (Huang et al., 2008b; Karagiannis et al., 2005)

about a decade ago and have been proven by recent measurements on commercial

hybrid CDNs such as LiveSky (Yin et al., 2009), PPLive (Vu et al., 2010) and Net-

11

Session (Zhao et al., 2013).

Built into the heart of swarming protocols like BitTorrent (Cohen, 2003) is a

mechanism that rewards end-users according to the bandwidth they contribute. The

assumption behind the mechanism is that clients are unwilling to upload unless they

get benefits from it. A large body of research work has been unwound around devel-

oping such incentive systems that ensure fairness and encourage uploading among

participating peers. Dandelion (Sirivianos et al., 2007a) proposes a fair-exchange

protocol that prevents freeriding by crediting uploading clients with virtual curren-

cies that can be used to redeem downloads. A centralized infrastructure is involved

to circulate the currencies and blacklist malbehaving clients. Antfarm (Peterson and

Sirer, 2009) also issues virtual currencies in the form of cryptographically signed

tokens. Forgery or double-spending of the tokens can be detected by a centralized

coordinator. Unlike Dandelion, tokens in Antfarm does not only serve as a means

of payment for chunk downloads, but also as a bearer of transaction record that can

be used for accounting purposes. The bandwidth of the infrastructure servers can

then be carefully directed to maximize the aggregate bandwidth of the swarms by

extracting statistics from the tokens recycled.

The reliable accounting problem in distributed systems like P2P was earlier stud-

ied by Seuken and Parkes (2011). It is shown that a Sybil-proof solution to this

problem does not exist without help of a trusted infrastructure and with only co-

operative or rational peers. However, when Byzantine peers are considered and

when number of Sybils only constitutes a small portion of participating nodes, it

is possible to detect misbehaving peers automatically using accountability systems

like PeerReview (Haeberlen et al., 2007), which achieve fault-detection by keeping

tamper-evident logs. RCA (Aditya et al., 2012) further develops the idea and pro-

poses a reliable accounting system for hybrid systems that withstand Sybil attacks.

Many other efforts have been attempted to mitigate Sybil attacks. Following

12

(Douceur, 2002)’s suggestion of resorting to resource testing, many different type of

resources have been explored by subsequent works, such as IP addresses (Freedman

and Morris, 2002), physical location (Bazzi and Konjevod, 2005), money Margolin

and Levine (2008), and even social relationships with trusted users Yu et al. (2006,

2008, 2009). Besides resource testing, certification authorities is another source of

trust to rely on for Sybil prevention and its viability is demonstrated by Adya et al.

(2002).

Anomaly detection (Chandola et al., 2009) is another important aspect of hybrid

system reliability. Early researches include intrusion-detection systems (Denning,

1987) that can be traced back to decades ago. In a security context (Barreno et al.,

2006), studies show that frog-boiling or similar attacks (Chan-Tin et al., 2009) can

bypass anomaly detection by shifting the system’s workload gradually and thus not

leaving sudden bumps that triggers alarms. Aditya et al. (2012) cope with this

problem by adding consistency and invariant checks as a supplement to anomaly

detection, which is independent of the system’s workload.

2.3 Content-Centric Networking

Among the large body of ICN related works, the CCN/NDN and DONA projects

are highlighted by their envisioning of pervasive cache placement (Jacobson et al.,

2010). These two project differ in the way that they handle routing. In DONA,

routing is consistently done in nearest-replica fashion. In CCN/NDN, this approach

is only used for LANs; it adopts shortest path to origin for WANs. They have also

been designed to support other qualitative ICN features such as security and naming.

For example, both human-readable names and self-certifying names are supported

by NDN.

The PURSUIT (Fotiou et al., 2010) project, based on in predecessor PSIRP,

follows the publish-subscribe routing paradigm. It was a combined efforts of many

13

European universities and was completed in February 2013. Compared with CCN,

data can travel through a different path than the interest packets take in PSIRP.

Besides, PSIRP attaches zFilters (Jokela et al., 2009) to packets and thus alleviate

routers from exhausting its resources in order to keep track of interest packet states.

This is a major contribution to the network architecture revolution.

The NetInf architecture (Ahlgren et al., 2010) is another approach for ICN. It was

initially envisioned in the 4WARD project. It is also based on a name lookup reso-

lution mechanism and uses a distributed hash table. This design supports an infor-

mation abstraction model that enables multiple different representations of the same

object that can be used in an end-to-end fashion. It is suggested by Fayazbakhsh

et al. (2013) that the name resolution services of all these projects can be adapted

to not require pervasive caching and are thus incrementally deployable.

Although not strictly an ICN, the Serval project (Nordstrom et al., 2012) is also

an attempt to separate content naming from its location. It focuses on service-centric

networking and proposes an end-host stack that supports such architectures. Much

functionality of Serval is placed on end-hosts. Serval also provides API specifications

and other implementation details for integration of ICNs or service-centric networks

into the stack of state-of-art computers.

In parallel with various efforts to explore and implement novel ICN architec-

tures, another group of research have focused on evaluating the practicality and

cost-efficiency of such architectures. Perino and Varvello (2011) studies the scal-

ability of ICN-capable routers and economic concerns when deployed worldwide.

Arianfar et al. (2011) addresses privacy concerns about ICN. Ahlgren et al. (2012))

surveys legal problems with ICN such as access and copyright restrictions. Ghodsi

et al. (2011) raises doubt about the actual performance boost that ICN can provide

despite its potential in other aspects.

14

3

NetSession: a Peer-Assisted CDN

3.1 Introduction

Traditional CDNs can be divided into two classes: CDNs that rely solely upon cen-

trally managed infrastructures, and ones that requires no infrastructure at all. A

well-known example of infrastructure-based CDN is Akamai’s main CDN (Dilley

et al., 2002). It owns more than 119,000 servers in 80 countries within over 1,100 In-

ternet networks (Akamai, 2014). Infrastructure-based CDNs typically have the bene-

fit of professional administrators and amply provisioned resources—they can control

and authenticate the content they distribute, and they can achieve reliable account-

ing and ensure content integrity, but they are also expensive to scale. Peer-to-peer

CDNs, represented by BitTorrent (Cohen, 2003) must rely on resources contributed

by their peers, which means that their properties are often the exact opposite: they

are inexpensive and easy to scale but seem to be plagued by security issues and low

QoS.

NetSession is a hybrid CDN that tries to reconcile these two traditional CDNs

with very different trade-offs. Surprisingly, it is able to achieve the ‘best of both

15

worlds’: it can offer most of the benefits of both architectures while avoiding most

of the drawbacks. This is because the strengths of the infrastructure and the peers

complement each other: The infrastructure provides a central point of coordination

that can quickly match up peers and can add resources when peers cannot provide

adequate QoS; the peers provide resources and scalability, and they extend the ‘reach’

of the infrastructure to underserved areas.

Finally, we report some observations from the day-to-day operation of the NetSes-

sion system. Among other things, we discover a surprising degree of user mobility in

the system, and we describe what appear to be the effects of cloning and re-imaging

client installations.

The rest of this chapter is structured as follows: Section 3.2 describes NetSes-

sion’s design goals and implementation. Section 3.3 conducts a measurement study

providing an overview of the scale on which NetSession operates and the sorts of

content it is used to deliver. Section 3.4 analyzes of whether NetSession meets its

design goals and realizes the potential benefits of hybrid systems. We present our

conclusions in Section 3.5.

3.2 The NetSession system

NetSession system was originally developed by RedSwoosh and has been operated

by Akamai since 2007. As of October 2012, NetSession has been in service for five

years and has almost 26 million users in 239 countries.

3.2.1 Design Goals

NetSession was designed with the following three high-level goals in mind:

1. A substantial fraction of the content should be delivered by the peers.

2. Peer-assisted delivery QoS should be comparable to that of infrastructure-based

16

delivery; in particular,

(a) downloads should be no less reliable; and

(b) downloads should not be much slower.

3. The system should offer reliable accounting for services provided.

In other words, the system was meant to combine the key benefits of peer-to-peer

CDNs (scalability) and infrastructure CDNs (quality of service). The third goal was

an operational requirement: Content providers, who pay for the CDN’s services,

expect detailed logs that show the amount and the quality of the services provided.

There were also two explicit non-goals:

1. The system need not be more reliable than an infrastructure-based CDN; and

2. Peers need not contribute equally.

The first point sets realistic expectations about security; the second point reflects the

fact that the system has a large infrastructure to fall back on, so some proportion

of peers who opt out of serving content to peers would not be a concern. Serving

content reliably and with good QoS is more important than minimizing load on the

infrastructure.

3.2.2 Architecture

NetSession distributes content via an infrastructure of edge servers that are operated

by Akamai, and a number of user-operated peers that have special software, the

NetSession Interface (Section 3.2.4), installed on them. In addition to the edge

servers, the infrastructure also contains a group of NetSession-specific servers called

the NetSession control plane (Section 3.2.6), which serve as coordinators and perform

accounting, but do not directly serve any content. Figure 3.1 illustrates the high-level

interaction between these components.

17

Control plane servers
Edge servers

Clients

Clients

Figure 3.1: Overview of the NetSession system.

3.2.3 Example: Download Manager

The Download Manager (DLM) is one of several applications that use the NetSession

system; a typical use case is to distribute a large object several gigabytes in size, such

as software installation images.

When a user attempts to download an object that is distributed using DLM, she

is first asked to install the NetSession Interface if it does not exist. Once installed,

the NetSession Interface starts downloading the content from the edge servers; in

parallel, it queries the control plane for a list of nearby peers that already have a

copy of the object. If suitable peers are found, the local peer and the selected peers

attempt to contact each other and exchange as much data as possible; however, the

download from the edge servers continues in parallel. Thus, if a peer is “unlucky” and

picks peers that are slow or unreliable, the infrastructure can cover the difference, so

that user experience does not suffer as a result.

Users can pause and resume downloads, and they can continue downloads that

18

were aborted earlier, e.g., because the peer lost network connectivity or the peer’s

hard drive was full. Once the download completes, the NetSession Interface software

remains on the peer and can be reused for future downloads, and it can upload the

downloaded content to other peers.

3.2.4 The NetSession Interface

The NetSession Interface is available for Windows and Mac OS. It is implemented

as a background application which runs whenever the user is logged into their sys-

tem. This design choice is different from many P2P clients, which must be launched

explicitly by the user. The short session times that have been observed in P2P

systems (Bhagwan et al., 2003; Guo et al., 2005; Saroiu et al., 2002) suggest that

users launch the client only when they intend to download something, so the time

window in which objects can be uploaded to other peers tends to be very short. As

a persistent background application, NetSession does not have this problem, but in

return, it must take great care not to inconvenience the user. We discuss some of its

best practices in Section 3.2.9.

Whenever the NetSession Interface is active and the peer is online, it maintains

a TCP connection to the control plane. When a download is started, the peer uses

this control connection to query the control plane for other peers. The connection is

also useful for opening peer-to-peer connections through NATs, which in most cases

requires coordination between the peers; the control plane can facilitate this by

informing both endpoints using their control connection. Finally, peers use the con-

nection to learn about configuration updates, and they report usage statistics, which

are used for billing, performance monitoring, and to generate reports for customers.

Each peer has a unique GUID, which is chosen at random during installation.

NetSession uses the standard HTTP(S) protocol to download content from edge

servers; for downloads from peers, it uses a swarming protocol not unlike BitTorrent’s.

19

As in BitTorrent, objects are broken into fixed-size pieces that can be downloaded

and their content hashes verified separately, and peers exchange information about

which pieces of the file they have locally available.

A key difference to BitTorrent is the absence of an incentive mechanism: in

NetSession, peers can always obtain the content from the infrastructure, so it is not

as important to discourage “freeloading”. In fact, users of NetSession Interface are

given an option to turn off peer content uploads permanently or temporarily in the

NetSession application preferences.

3.2.5 Interaction with Edge Servers

NetSession’s HTTP(S) connections to the edge servers are used not only for down-

loading files, they also support many other critical functions.

One important function is to ensure content integrity. File pieces can be cor-

rupted in transit or on the peers; additionally, content can change over time, so it

is important that different versions are not mixed up in the same download. Edge

servers generate and maintain secure IDs of content, which are unique to each ver-

sion, as well as secure hashes of the pieces of each file. The IDs and the hashes are

provided to the peers, so they can validate the content they have downloaded. If a

peer cannot validate a file piece, it discards the piece and does not upload it to other

peers.

Another key function is authorization. Before a peer can receive content from

other peers, it must authenticate to an edge server over the HTTP(S) connection;

this yields an encrypted token that can be used to search for peers. This is done to

prevent users from downloading from peers files they are not authorized to obtain

from the infrastructure.

Finally, the HTTP(S) connections are used for configuration and reporting. A

customer-defined policy is used to decide whether a particular file may be downloaded

20

and uploaded; in addition, various configurable options apply to each download and

upload. These policies and options are securely communicated to the peers through

the trusted edge-server infrastructure. NetSession also uses information from the

trusted edge servers to prevent accounting attacks, where compromised or faulty

peers incorrectly report downloads and uploads.

3.2.6 The NetSession Control Plane

The NetSession control plane consists of a number of globally-distributed servers

that are operated by Akamai. Its main function is to coordinate between the peers.

Each control plane server runs some of the following components:

Connection node (CN): The CNs are the endpoints of the TCP connection that

each peer opens to the control plane when it is active; they receive and collect the

usage statistics that are uploaded by the peers, and they handle queries for objects the

peers wish to download. These persistent TCP connections are also used to tell peers

to connect to each other in order to facilitate sharing of content; such coordination

is necessary for both security reasons and to overcome NATs and firewalls.

Database node (DN): The DNs maintain a database of which objects are currently

available on which peers, as well as details about the connectivity of these peers.

Peers appear in the database only when a) uploads are explicitly enabled on the

peer, and b) the peer currently has objects to share.

STUN: Peers periodically communicate with STUN components over UDP and

TCP to determine the details of their connectivity (which are then stored in the DN

databases) and to enable NAT traversal. This involves a protocol with goals similar

to Rosenberg et al. (2008), but NetSession uses a custom implementation.

Monitoring nodes: Peers upload information about their operation and about

problems, such as application crash reports, to these nodes. Processing their logs

helps to monitor the network in real-time, to identify problems, and to troubleshoot

21

specific user issues during support procedures.

3.2.7 Peer Selection

When a CN receives a query for an object with peer-to-peer delivery enabled, the CN

asks the DNs to identify suitable peers that currently have a copy of the requested

object. The CN then returns information about these peers to the querying peer.

By default, up to 40 peers are returned, and if connections to some of these peers

cannot be established, additional queries are issued until a sufficient number of peer

connections succeed. Peers control the number and utilization of their connections

based on current resource availability.

The DN chooses peers using a locality-aware strategy at two different levels.

First, when peers establish their persistent TCP connection to the control plane,

they are are mapped to the closest available CN by Akamai’s DNS system. When a

CN queries the DN for peers for a specific object, it prefers to contact only local DNs,

i.e., DNs running on machines in the same network region as the CN that performs

the query. Since the same process is used when a peer registers a local copy of a

file, DNs tend to have information about their local peers. The CN/DN system is

interconnected across regions, so it is possible in principle to search for peers from

any region; however, through long-term experimentation it has been found that using

only local DNs in searches does not negatively impact performance.

Since the system is divided into less than 20 network regions, the first, region-

based selection strategy is not sufficiently fine-grained for popular content that is

available on many peers. Hence, the DNs use another level of locality-based peer

selection that is based on the geolocation of each peer. Each peer belongs to multiple

sets, based on its public IP address and the Autonomous System (AS) it is located

in. For example, a peer can simultaneously be in a universal World set, a subset for

a large geographical region, a subset for a smaller region, and a subset for its specific

22

AS.

DN selection begins with peers from the most specific set that the querying peer

belongs to, and proceeds to less specific sets until enough suitable peers are found.

An additional mechanism adds diversity: Occasionally, peers are selected from a less

specific set, with probability proportional to the specificity of the set. Also, when

a peer is selected, it is placed at the end of a peer selection list for fairness. The

selection process can be modified with a set of configurable policies.

In addition to locality and file availability, the DN also takes the connectivity of

the peers into account: it selects only peers that are likely to be able to establish a

connection with each other, e.g., based on the type of their NAT or firewall. Due to

the vast diversity in NAT implementations today, NAT hole-punching is a complex

issue, and the necessary code takes up a large fraction of the NetSession codebase.

3.2.8 Robustness

The design of NetSession employs the notions of soft state and fate sharing to provide

robustness against failures. At first glance, it might seem that the loss of CN or DN

components could be catastrophic to NetSession. Indeed, many peers rely on each

CN – over 150,000 might be connected to one simultaneously. But ultimately, all of

the data about the peers that matters is held by the peers themselves. If a CN goes

down, the peers that are connected to that CN simply reconnect to another one. If

a DN goes down, the CNs connected to that DN send a RE-ADD message to their

peers, asking them to list the files that they are storing. The CN passes these lists on

to the available DNs in order to re-populate their database. In practice, failures of

CN and DN nodes occur routinely, e.g., during server maintenance or during software

updates. In fact, when a new CN/DN software version is released, all CNs and DNs

are restarted in a short timeframe, and this does not negatively affect the service.

(In the event of an unexpectedly large-scale failure, reconnections are rate-limited to

23

ensure a smooth recovery.) Finally, if a peer is not able to connect to any CN at all,

it retrieves the content directly from the edge servers; hence, even if the entire CN

and DN infrastructure were to fail, the peers would simply fall to back to retrieving

content from the CDN infrastructure.

The client software version is centrally controlled by the CDN infrastructure,

and peers can perform automated upgrades in the background on demand. Most

of the peer population can be upgraded to a new version within one hour. The

ability to perform fast software upgrades without user interaction can help to respond

quickly to security or performance incidents. Download and upload performance is

constantly monitored, and automated alerts are in place to notify 24/7 service of

network engineers in case of a large-scale problem.

3.2.9 Best Practices

Since NetSession uses resources that are provided by the peers, it must carefully

consider the users’ interests. NetSession obtains consent from users through its

EULA, and Akamai provides users with information about what the NetSession

Interface is, and what it does. The software includes both a control panel user

interface and a command line utility that enable users to determine what the software

is doing, which files it is currently storing, which applications are using it, etc. These

tools also allow users to turn uploading on or off, and it comes with an uninstaller.

To avoid inconveniencing users, the NetSession Interface is designed to stay in the

background as much as possible. For example, peers do not proactively download

content; they only share objects that their user has previously requested. Uploads

are rate-limited, and each object is uploaded at most a limited number of times by

each peer. Finally, peers monitor the utilization of the local network connections and

throttle or pause uploads when the connections are used by other applications. While

it is important for users to experience good download performance, the performance

24

Table 3.1: Overall statistics for our data sets.

Control plane logs:

Time period covered 10/01 – 10/31, 2012
Log entries 4,150,989,257
Number of GUIDs 25,951,122
Control plane servers 197
Distinct URLs 4,038,894
Distinct IPs 133,690,372
Downloads initiated 12,508,764

Geolocation data:

Distinct IPs 133,690,372
Distinct locations 34,383
Distinct domains 31,383
Distinct countries 239

of uploads is intentionally limited by using custom protocols.

Users do not benefit directly from the bandwidth they donate, but NetSession

offers a number of indirect benefits; for instance, the DLM enables users to resume

aborted downloads and to download from multiple sources simultaneously. Also,

peer-assisted downloads require fewer resources from the infrastructure and can thus

be offered at a lower price; content providers can pass on these savings, e.g., by

displaying fewer ads.

3.3 Measurement Study

We now turn to the question how well NetSession, as one instance of a peer-assisted

CDN, is able to deliver the potential benefits of a hybrid architecture, and how well it

is able to avoid the corresponding risks. To answer this question, we have performed

a measurement study that is based on a set of logs from the production system.

3.3.1 Data Set

Our logs cover the month of October 2012. At a high level, they contain information

about downloads and information about logins. When a peer downloads a file from

NetSession, the CN records information about the download, including the GUID of

25

the peer, the name and size of the file, the CP code (number identifying a specific

account of a customer that is offering the file), the time the download started and

ended, and the number of bytes downloaded from the infrastructure and from peers.

This information is used for accounting and billing purposes. Additionally, when a

peer opens a connection to the control plane, the CN records the peer’s current IP

address, its software version, and whether or not uploads are enabled on that peer.

To localize the peers geographically and in the network, we also obtained geoloca-

tion data from a commercial IP address geolocation service1 about each IP address

that appears in the trace. This data includes a country code, the name of a city

and state, a latitude/longitude pair, a timezone, and a network provider name. The

granularity of the location information varies by region; in the United States, loca-

tions are typically at the city/suburb granularity. For instance, the data set contains

218 unique locations in the state of Pennsylvania.

To protect customer privacy, the data in our logs have been anonymized by

hashing the file names, IP addresses, and GUIDs. Table 3.1 shows some overall

statistics for our data set.

3.3.2 Number and Location of the Peers

We begin by giving an overview of the NetSession deployment as of October 2012,

to illustrate the number and geographic distribution of the peers, as well as the

type of content being served. The one-month trace contains about 25.95 million

distinct GUIDs. (Recall that the NetSession software chooses a GUID when it is

first installed, so the number of GUIDs should correspond roughly to the number of

peers.) On a typical day, between 8.75 and 10.90 million of the GUIDs connect to

the control plane at least once. The system has been growing steadily over time; for

comparison, a trace from October 2010 contained 14.19 million distinct GUIDs, or

1 Name removed for anonymity purposes.

26

Figure 3.2: Global distribution of peers.

Table 3.2: Global distribution of downloads for the ten largest customers.

Americas Asia
Europe Africa Oceania

US East US West Other India China Other
Customer A – – 12% 6% 6% 18% 51% 4% 3%
Customer B 2% 1% 1% 11% – 61% 6% 17% 1%
Customer C 13% 6% 15% 1% – 8% 55% 1% 2%
Customer D 22% 21% 6% – – 3% 45% – 3%
Customer E 5% 3% 8% 2% 1% 29% 48% 2% 3%
Customer F – – – – – – 100% – –
Customer G 8% 3% 12% 2% 8% 20% 45% 2% 2%
Customer H 6% 4% 7% 4% 2% 20% 53% 2% 2%
Customer I 5% 2% 18% – – 15% 57% 1% 1%
Customer J 42% 24% 14% – – 5% 10% 1% 3%
All customers 7% 4% 11% 3% 2% 20% 46% 4% 2%

slightly more than half the number in our trace.

Figure 3.2 shows the global distribution of the peers as a “bubble plot”: the size of

each bubble corresponds to the number of peers whose first connection to the system

was from that particular location. Most of the peers are located in North America

(27%) and Europe (35%), but there are also sizable groups of peers in South America

and Asia. Overall, we observed connections from 239 different countries across all

continents, so NetSession is a truly global system.

27

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10
C

D
F

 (
%

)

Object size (GB)

Infrastructure-only
All
Peer-assisted

(a) Request distrib. by object size

1

10

100

1K

10K

100K

 1 10 100 1000 10000 100000

#
 D

o
w

n
lo

a
d
s

Download rank

(b) Content popularity

 0

 2

 4

 6

 8

 1 8 15 22 29

D
o
w

n
lo

a
d
s
 (

T
B

/h
o
u
r)

Day in October 2012

GMT
Local time

(c) Bytes served over time

Figure 3.3: Overall workload characteristics.

3.3.3 Content Providers

Each file in NetSession is offered by a specific content provider—usually a large cor-

porate customer. To illustrate how these customers are using the system, we selected

the downloads served by the ten largest customers (here identified as Customers A

28

through J), we associated each download with one of ten regions, and we counted

the number of downloads per customer per region.

Table 3.2 show the results. Generally, we find that roughly half of the downloads

occur in Europe. However, the downloads distribution depends on customer. Cus-

tomer B’s content, for example, is far more popular in Asia except China and Africa.

Customer J’s content is mostly requested from within the United States.

3.3.4 Available Content

Overall, we observed downloads for 4,038,894 distinct objects in our trace. Fig-

ure 3.3(a) shows the distribution of requests for objects of a given size, for peer-

assisted, infrastructure only, and all requests in NetSession. Peer-assisted downloads

are strongly biased towards large files; 73% of peer-assisted requests are for objects

larger than 500MB. Because the benefits of peer assist are most pronounced for large

objects, content providers tend to enable it on such objects. The object popularity

distribution and temporal request pattern in NetSession’s workload are shown in

Figure 3.3(b) and (c). As expected, the former shows the nearly ubiquitous power

law, while the latter shows the usual diurnal patterns.

3.4 Benefits

Next, we focus on three questions that can be answered quantitatively based on

our data, namely: 1) How well does peer assist work? 2) Does peer assist affect

performance and reliability? And, 3) does peer assist help improve the CDN’s global

coverage?

3.4.1 How Well Does Peer Assist Work?

Recall that NetSession peers are not required to contribute bandwidth: users are

free to disable uploads to peers by changing their preferences in the NetSession GUI.

29

Table 3.3: Observed changes to the setting that enables content uploads.

Uploads
Nodes

Number of changes
initially... 0 1 ě 2
Disabled 15,913,255 99.96% 0.03% 0.01%
Enabled 7,395,867 98.11% 1.80% 0.09%

Table 3.4: Fraction of peers that have content uploads enabled, classified by the
customer from whom they have downloaded their first file.

Customer A B C D E F G H I J

P2P (%) ă1 20 2 94 2 45 47 ă1 91 ă1‘

This is a major difference to pure peer-to-peer systems like BitTorrent, which include

incentive mechanisms like tit-for-tat to encourage uploading. In the literature, it is

often assumed that users are “rational” and will avoid uploading if they don’t benefit

from it (Cohen, 2003; Piatek et al., 2007); it is therefore natural to ask whether

NetSession peers are willing to contribute any bandwidth at all.

Do the peers contribute resources? To answer this question, we used the login

records in our data set to determine the fraction of peers that have uploads enabled.

Since the NetSession binary is available in two versions, one with uploads initially

enabled and one with uploads initially disabled (as chosen by the content provider

who bundles the binary), we also check whether users changed this setting between

logins, and if so, how often.

Tables 3.3 and 3.4 show our results. About 31% of the peers have uploading

enabled, but the setting is rarely changed—more than 99% of the peers keep their

initial setting throughout our trace. As Table 3.4 shows, the initial setting depends

on the content provider from who the user first downloaded the binary. Most users

simply stick with whatever the default is. This tendency is well known in UI de-

sign (Mackay, 1991), but it also suggests that users either don’t care enough about

30

the uploads to change the setting or are not aware of the choice, despite its mention

in the NetSession user agreement.

Uploading in peer-to-peer CDNs carries the risk of legal exposure and/or degraded

network performance (Sirivianos et al., 2007b). As a peer-assisted CDN, NetSession

can avoid the first problem because its content is centrally controlled and vetted, and

its back-off mechanism (Section 3.2.9) can avoid the second problem by consuming

bandwidth only when the connection is idle. We speculate that this is part of the

reason why most users don’t seem to turn off peer uploads when they are enabled

initially.

How much can be offloaded to the peers? As a peer-assisted CDN, NetSession

can offload some of the bandwidth needed to satisfy the download requests to the

peers. Content providers can control on a per-file basis whether or not peer-to-peer

downloads are allowed. In our trace, we found that peer-to-peer downloads were

enabled for only 1.7% of the files, but these downloads accounted for 57.4% of the

downloaded bytes overall.

The key quantity of interest is the peer efficiency of the system, i.e., the fraction

of bytes that are downloaded from the peers. In our trace, the average peer efficiency

for peer assisted downloads was 71.4%. This is a very good result, given that, even

in a peer-assisted download, NetSession never exclusively downloads from the peers;

there is always at least one connection to the infrastructure, to guarantee progress

independent of the peers.

3.4.2 Does Peer Assist Reduce Performance?

Are peer assisted downloads slower? NetSession relies on peer downloads, which

are limited by the peer reliability and the upstream bandwidth of broadband access

networks, to which many of NetSession’s peers are connected. This bandwidth is

typically much smaller than the downstream bandwidth (Dischinger et al., 2007).

31

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

%
 o

f
d
o
w

n
lo

a
d
s

Average download speed (Mbps)

AS X / Edge only
AS X / >50% P2P
AS Y / Edge only
AS Y / >50% P2P

Figure 3.4: Comparison of edge-only downloads and peer-assisted downloads.

Hence, it is natural to ask how the performance of peer-assisted downloads compares

to those that are served by the infrastructure.

Figure 3.4 makes this comparison for downloads from the two networks with the

most downloads, AS X and AS Y. We identified all downloads from these networks

where either a) all the bytes came from the edge servers, or b) at least 50% of the

bytes came from peers. We then averaged the speed of each download across its

entire length; the figure shows the results as a CDF.

We find that, although the peer-assisted downloads are somewhat slower, the

speed is still quite high, with most downloads occurring at rates of multiple Mbps.

When comparing the performance across networks, we find that the biggest differ-

ences between peer assisted and infrastructure download speeds occur in the networks

with the highest link bandwidths. One possible explanation is the high asymmetry

of most high-speed broadband links (fast downstream and slow upstream), which

would limit the available bandwidth from nearby peers.

How many peers are needed for good performance? Achieving good peer

efficiency in a peer-assisted download requires a sufficient number of peers who have

a copy of the requested file. We now ask how many copies are needed to achieve a

32

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

P
e
e
r

e
ff
ic

ie
n
c
y
 (

%
)

File copies registered by peers in October 2012

Figure 3.5: Number of file copies vs. peer efficiency

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
e
e
r

e
ff
ic

ie
n
c
y
 (

%
)

Number of peers initially returned by the control plane

Figure 3.6: P2P efficiency vs. number of peers.

good peer efficiency.

NetSession does not use predictive caching—i.e., a peer only downloads a file

when it is requested by the local user. Once a file has been downloaded, the peer

keeps it in a local cache for a certain amount of time and informs the control plane

that it is willing to upload this file to other peers (if uploading is enabled). This

creates entries in the DN log, and we counted these entries for each file to estimate

how many copies of that file were available. We also calculated the average peer

33

 0

 5

 10

 15

 20

 25

 30

<10MB 10-100MB 100MB-1GB >1GB

P
a
u
s
e
 r

a
te

 (
%

)

Infrastructure-only
Peer-assisted

All

Figure 3.7: Downloads of larger files are terminated more often.

efficiency for each file.

Figure 3.5 shows how the average peer efficiency varied with the number of copies

(the error bars show the 20th and 80th percentile). We found that, with less than

50 available copies, peer efficiency was below 10%, but rose rapidly after that, and

reached 80% for approximately 10,000 copies.

Another way to look at this question is to ask how many peers need to assist

in a given download to achieve the highest efficiency. To answer this question, we

grouped the downloads by the number of peers that the DN initially suggested to

the downloading peer, and we computed the average peer efficiency for each group.

Figure 3.6 shows our results. We find that 80% peer efficiency is generally reached

with about 25–30 peers.

Are peer-assisted downloads less reliable? To answer this question, we exam-

ined the eventual outcome of each download initiated in our trace. The logs can

show three kinds of outcomes: a download can complete, it can fail, or it can be

aborted/paused by the user and never resumed. When a download fails, the log also

shows a specific cause; we divided these into system-related causes (e.g., too many

corrupted content blocks) and other causes (e.g., the user’s disk is full).

34

Figure 3.8: Peer contributions in different regions.

We find that 94% of the infrastructure-only downloads eventually complete, but

only 92% of the peer-assisted downloads. At first glance, this discrepancy suggests

that peer-assisted downloads are less reliable. However, the rate of system-related

failures is very small (0.1% for infrastructure-only versus 0.2% for peer-assisted), but

infrastructure-only downloads are paused or terminated less often than peer-assisted

ones (3% versus 8%).

A closer look reveals that the termination rate increases with the length of the

download. While the download speed for infrastructure-only and peer-assisted down-

loads is approximately the same, the latter are typically used for larger files (see Fig-

ure 3.3(a) earlier), which naturally take longer to download. As Figure 3.7 shows,

larger downloads are terminated more often, regardless of whether or not they involve

peers—hence the discrepancy.

3.4.3 Do Peers Help Improve Global Coverage?

In theory, a hybrid CDN has another advantage over its infrastructure-based coun-

terparts: it may be easier to obtain a globally distributed population of peers than

to establish a truly global infrastructure. Thus, it should be possible for a hybrid

35

system to provide better service for customers in under-served regions, where the

closest infrastructure nodes are far away, but peers may be nearby.

To test whether this is the case for NetSession, we aggregated the completed

downloads on a per-country basis, and we counted the number of bytes served by the

infrastructure and by the peers. We then classified each country into one of three

groups, which are shown as colored dots in Figure 3.8: countries where the infrastruc-

ture serves bytes more than the peers (circle), less than 50% of the peers (square),

or between 50% and 100% of the peers (plus). Since not all content providers use

peer-assisted downloads, and the popularity of the providers varies between regions,

we show results for one typical, P2P-enabled provider here.

We find that, for NetSession, the picture is mixed: although the peers tend to

contribute more in some regions, such as Africa and South America, the contributions

do not vary much overall. We suspect that this is because NetSession relies on edge

servers from Akamai’s main CDN, which already has very good coverage around the

globe.

Another potential benefit of a large peer population is that downloading peers

might find a copy of the requested content within their local network, e.g., in a

corporate LAN. In October 2012 this case appears to have been rare, but this could

change, e.g., when NetSession is used to distribute large software updates.

3.4.4 Summary

NetSession demonstrates that peer-assisted CDNs can indeed deliver the key benefits

of both peer-to-peer and infrastructure-based CDNs: they can offload a considerable

fraction of the traffic to the peers, without a significant loss of speed or reliability.

NetSession’s 80% peer efficiency depends on many factors that may be different in

other systems, but it provides a lower bound on what peer-assisted CDNs can achieve

in a large-scale commercial deployment.

36

3.5 Conclusion

This chapter presented a measurement study of NetSession, a large commercial CDN

to determine how well a practical system can deliver the benefits and avoid the risks

of hybrid architectures.

Our results show that NetSession is able to deliver the key benefits of a hybrid

architecture: it can offload a high fraction (70–80%) of the traffic to peers, but can

also offer good performance and high reliability.

Overall, our findings suggest that a hybrid architecture is an attractive design

point for a CDN. The infrastructure and the peers can deliver many of their key

benefits, and they can complement one another to avoid many of their key weak-

nesses. NetSession’s performance shows what is possible in this space, although it

only represents a lower bound; other systems may be able to do even better.

37

4

CDN-ISP Collaboration

4.1 Introduction

Economics, especially cost reduction, is a main concern today in content delivery as

Internet traffic grows at a annual rate of 30% (Networking and Index., 2013). More-

over, commercial-grade applications delivered by CDNs often have requirements in

terms of end-to-end delay (Krishnan et al., 2009). Faster and more reliable con-

tent delivery results in higher revenues for e-commerce and streaming applications

(Leighton, 2009; Nygren et al., 2010) as well as user engagement (Dobrian et al.,

2011). Despite the significant efforts by CDNs to improve content delivery perfor-

mance, end-user mis-location and the limited view of network bottlenecks are major

obstacles to improve end-user performance.

Content Delivery Cost: CDNs strive to minimize the overall cost of delivering

voluminous content traffic to end-users. To that end, their assignment strategy is

mainly driven by economic aspects such as bandwidth or energy cost (Liu et al., 2012;

Qureshi et al., 2009). While a CDNs will try to assign end-users in such a way that

the server can deliver reasonable performance, this does not always result in end-

38

users being assigned to the server able to deliver the best performance. Moreover,

the intense competition in the content delivery market has led to diminishing returns

of delivering traffic to end-users. Part of the delivery cost is also the maintenance

and constantly upgrade of hardware and peering capacity in many locations (Nygren

et al., 2010).

End-user Mis-location: DNS requests received by the CDN name servers originate

from the DNS resolver of the end-user, not from the end-user themselves. The

assignment of end-users to servers is therefore based on the assumption that end-users

are close to the used DNS resolvers. Recent studies have shown that in many cases

this assumption does not hold (Liu et al., 2012; Qureshi et al., 2009). As a result,

the end-user is mis-located and the server assignment is not optimal. As a response,

DNS extensions have been proposed to include the end-user IP information (Otto

et al., 2012).

Network Bottlenecks: Despite their efforts to discover the paths between the

end-users and their servers to predict performances (Nygren et al., 2010; Krishnan

et al., 2009), CDNs have limited information about the actual network conditions.

Tracking the ever changing network conditions, i.e., through active measurements

and end-user reports, incurs an extensive overhead for the CDN without a guarantee

of performance improvements for the end-user. Without sufficient information about

the network paths between the CDN servers and the end-user, a user assignment

performed by the CDN can lead to additional load on existing network bottlenecks,

or even create new ones.

Given the trends regarding server resources and increasing user demand, content

delivery systems have to address two fundamental problems. The first is end-user to

server assignment problem, i.e., how to assign users to the appropriate servers. The

key enabler for addressing this problem is informed user-server assignment or in short

user-server assignment. It allows a CDN to receive recommendations from a network

39

ISP

Pos A

CDN Server C

CDN Server A
Pos B

ClientClientClientClient

CDN Server B

I
S
P

M
C
1

I
S
P

M
C
2

I
S
P

M
C
3

Figure 4.1: Informed User-Server Assignment: Assigning a user to an appro-
priate CDN server among those available (A, B, C), yields better end-user perfor-
mance and traffic engineering. In-network Server Allocation: A joint in-network
server allocation approach allows the CDN to expand its footprint using additional
and more suitable locations (e.g., microdatacenters MC1, MC2, MC3) inside the
network to cope with volatile demand. User-server assignment can also be used for
redirecting users to the new servers.

operator, i.e., a server ranking based on performance criteria mutually agreed upon

by the ISP and CDN. The CDN can utilize these recommendations when making

its final decision regarding end-user to server assignments. This enabler takes full

advantage of server and path diversity, which a CDN has difficulty exploring on its

own. Moreover, it allows the coordination of CDNs, content providers, and ISPs at

the scale of seconds or even per request. Any type of CDN can benefit from this

enabler including ISP-operated CDNs. The advantage of our enabler in comparison

with other CDN-ISP (DiPalantino and Johari, 2009; Jiang et al., 2009a) and ISP-

P2P (Xie et al., 2008) cooperation schemes is that no routing changes are needed.

The second is server allocation problem, i.e., where to place the servers and

content. The key enabler is in-network server allocation, or in short server alloca-

tion, where the placement of servers within a network is coordinated between CDNs,

40

ISPs, and content providers. This enabler provides an additional degree of freedom

to the CDN to scale-up or shrink the footprint on demand and thus allows it to

deliver content from additional locations inside the network. Major improvements

in content delivery are also possible due to the fact that the servers are placed in a

way that better server the volatile user demand. The application of this enabler is

two-fold. One, it helps the CDN in selecting the locations and sizes of server clusters

in an ISP when it is shipping its own hardware. The second application is suitable for

more agile allocation of servers in cloud environments. Multiple instances of virtual

servers running the CDN software are installed on physical servers owned by the ISP.

As before, the CDN and the ISP can jointly decide on the locations and the number

of servers. A big advantage of using virtual machines is that the time scale of server

allocation can be reduced to hours or even minutes depending on the requirements of

the application and the availability of physical resources in the network. User-server

assignment can also be used for redirecting users to the new servers. We provide the

high-level intuition for both enablers in Figure 4.1.

Until now, both problems have been tackled in a one-sided fashion by CDNs.

We believe that to improve content delivery, accurate and up-to-date information

should be used during the server selection by the CDN. This also eliminates the need

for CDNs to perform cumbersome and sometimes inaccurate measurements to infer

the changing conditions within the ISP. We also believe that the final decision must

still be made by the CDN. In this chapter , we argue that the above enablers (a)

are necessary to enable new CDN architectures and take advantage of server vir-

tualization technology, (b) allow fruitful coordination between all involved parties,

including CDNs, CPs, and ISPs in light of the new CDN-ISP alliances, (c) enable the

launch of new applications jointly by CDNs and ISPs, and (d) can significantly im-

prove content delivery performance. Such performance improvements are crucial as

reductions in user transaction time increase revenues by significant margins (Kohavi

41

et al., 2007).

4.2 Data Set

To evaluate the potential gains from CDN-ISP collaboration, we use traces from the

largest commercial CDN and a European tier-1 ISP.

Commercial CDN Dataset: The dataset from the CDN covers a two-week

period from 7th to 21st March 2011. All entries in the log we use relate to the

tier-1 ISP. This means that either the server or the end-user is using an IP address

that belongs to the address space of the tier-1 ISP. The CDN operates a number of

server clusters located inside the ISP and uses IPs in the IP address space of the ISP.

The log contains detailed records of approximately 62 million sampled (uniformly at

random) valid TCP connections between the CDN’s servers and end-users.

For each reported connection, it contains the time it was recorded, the server

IP address, the cluster the server belongs to, the anonymized client IP address and

various connection statistics such as bytes sent/received, duration, packet count and

RTT. The CDN operates a number of services, utilizing the same infrastructure, such

as dynamic and static web pages delivery, cloud acceleration and video streaming.

ISP Dataset: The ISP dataset contains two parts. First, detailed network

information about the tier-1 ISP, including the backbone topology, with interfaces

and link annotations such as routing weights, as well as nominal bandwidth and

delay. It also contains the full internal routing table which includes all subnets

propagated inside the ISP either from internal routers or learned from peerings. The

ISP operates more than 650 routers in about 400 locations (PoPs), and 30 peering

points worldwide. We analyzed more than 5 million routing entries to derive a

detailed ISP network view.

The second part of the ISP dataset is an anonymized packet-level trace of residen-

tial DSL connections. Our monitor, using Endace monitoring cards (Cleary et al.,

42

2000), observes the traffic of more than 20, 000 DSL lines to the Internet. We capture

HTTP and DNS traffic using the Bro IDS (Paxson, 1999). We observe 720 million

DNS messages and more than 1 billion HTTP requests involving about 1.4 million

unique hostnames. Analyzing the HTTP traffic in detail reveals that a large fraction

it is due to a small number of CDNs, including the considered CDN, hyper-giants and

one-click-hosters (Labovitz et al., 2010; Gerber and Doverspike, 2011; Maier et al.,

2009) and that more than 65% of the traffic volume is due to HTTP.

To derive the needed traffic matrices, on an origin-destination flow granularity,

we compute from the DSL traces (on a 10-minute time bin granularity) the demands

for the captured location in the ISP network. This demand is then scaled according

to the load imposed by users of the CDN to the other locations in the ISP network.

For CDNs without available connection logs, we first identify their infrastructure

locations using the infrastructure aggregation approach as proposed by Poese et

al. (Poese et al., 2010) and then scale the traffic demands according to the available

CDN connection logs.

4.3 Evaluation

In this section, we use our observations on the traffic and deployment of the large

commercial CDN inside the tier-1 ISP to quantify the potential benefits of CDN-ISP

collaboration. In Figure 4.2, we plot the normalized traffic (in log scale) from CDN

clusters over time. We classify the traffic into three categories: a) from CDN servers

inside the ISP to end-users inside the ISP (annotated ISP Ñ ISP), b) from servers

outside the ISP to end-users inside the ISP (annotated outside Ñ ISP), and c) from

CDN servers inside the ISP to end-users outside the ISP (annotated ISP Ñ outside).

We observe the typical diurnal traffic pattern and a daily stability of the traffic

pattern. Over the two week measurement period, 45.6% of the traffic belongs to the

ISP Ñ ISP category. 16.8% of the traffic belongs to the outside Ñ ISP category.

43

 0.001

 0.01

 0.1

 1

00.00 08.00 16.00 00.00 08.00 16.00 00.00

R
e
la

ti
v
e
 T

ra
ff
ic

Time of Day (10 Minute Buckets)

ISP -> ISP
Outside -> ISP

ISP -> Outside

Figure 4.2: Activity of CDN in two days.

During peak hours, outside Ñ ISP traffic can grow up to 40%. Finally, 37.6% of

the traffic is served by inside clusters to outside end-users. Our first important

observation is that a significant fraction of the CDN traffic is served from servers

outside the ISP despite the presence of many servers inside the ISP that would be

able to serve this traffic.

Figure 4.3 shows the re-allocation of traffic that would be possible using user-

server assignment. Each full bar shows the fraction of traffic currently traversing a

given number of router hops within the ISP network. In this evaluation, we only

consider the end-users inside the ISP. The bar labelled “N/A” is the traffic of the

outside Ñ ISP category. The different shaded regions in each bar correspond to

the different router hop distances after re-allocation of the traffic. Almost half of the

traffic currently experiencing 3 hops can be served from a closer-by server. Overall, a

significant fraction of the traffic can be mapped to closer servers inside the ISP. Note

that the tiny amount of traffic for router hop count 0 and 1 is due to the topology

44

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

N
/A

0 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
to

ta
l
T

ra
ff
ic

Original Hops

New Hops 0
New Hops 1
New Hops 2
New Hops 3
New Hops 4
New Hops 5
New Hops 6

Figure 4.3: Potential hop reduction.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

F
ra

c
ti
o
n
 o

f
to

ta
l
tr

a
ff
ic

PoPs sorted by volume from ISP clients

CDN Cluster present
no CDN Cluster present

Figure 4.4: Traffic demand by ISP network position.

design of the ISP network: either the traffic stays within a PoP or it has to traverse

at least two links to reach another PoP.

In Figure 4.4, we show the traffic demand towards the CDN generated by each

PoP. We observe that some PoPs originate high demand while others have limited

45

demand, if any. Manual inspection reveals that some of the PoPs with high demand

cannot be served by a close-by CDN server, while other low demand PoPs have a

cluster near by. Variations in the demand over time exhibit even more significant

mismatches between demand and CDN locations. With such a time-varying demand

and the timescales at which CDN deployments take place today, such mismatches

should be expected. We conclude that there are ample opportunities for CDNs to

benefit from collaboration with ISPs to re-arrange or expand their footprint.

4.4 Conclusion

Motivated by recent CDN and ISP alliances we revisit the problem of CDN-ISP

collaboration from a systems perspective. We identify two major enablers, namely

informed user-server assignment and in-network server allocation. Today, there is

no system to support CDN-ISP collaboration. To that end, we perform the first-

of-its-kind evaluation of CDN-ISP collaboration based on traces from the largest

commercial CDN and a large tier-1 ISP. We report on the benefits for CDNs, ISPs

and end-users. Our results show that CDN-ISP collaboration leads to a win-win

situation with regards to the deployment and operation of servers within the network,

and significantly improves end-user performance.

46

5

Cost-Efficient Caching

5.1 Introduction

The idea of information- or data-centric networking is driven by the evolution of

Internet traffic workloads. The insight here is that a user’s intent is to fetch some

data object rather connect to a specific host for data exchange. By decoupling the

data a user wants to access from how/where the data is delivered, ICN promises

several natural benefits. These include: lower response time via pervasive caching

and nearest-replica routing; intrinsic content integrity without external network-

level indicators (e.g., HTTPS); simplified traffic engineering capabilities; and better

support for mobility (Ahlgren et al., 2012; Ghodsi et al., 2011).

Unfortunately, these benefits come at a non-trivial cost. Many ICN proposals

envision a forklift upgrade to the entire network infrastructure requiring all end hosts

and network routers to support ICN as a first-order primitive. This entails adding

content stores to routers and supporting routing on content names as opposed to IP

addresses. Given that these architectures mandate wholesale changes to the network

infrastructure, it is only natural to ask if this complexity is worthwhile.

47

In order to address this question, we begin by breaking down the potential ben-

efits of ICN into two categories. The first class of quantitative benefits—lower re-

sponse time and simplified traffic engineering—arise from a combination of a per-

vasive caching infrastructure coupled with intelligent nearest-replica routing. The

second class of qualitative benefits stem from the ability to name content and ver-

ify content integrity through the naming scheme (e.g., self-certified names or digital

signatures).

Having thus dissected the potential benefits, we first focus on the quantitative

benefits. Rather than commit to any specific ICN realization, we want to analyze a

wide spectrum of caching architectures that differ in two key dimensions: placement

(e.g., edge caches vs. pervasive caching) and routing (e.g., shortest path to origin

servers vs. nearest replica routing). Using a combination of trace-driven analysis

based on request logs from three CDN clusters and large-scale simulations, we find

that:

1. On realistic request traces, the maximum performance gap between a simple

edge-based caching architecture and a full-fledged ICN architecture (i.e., with

pervasive caches and nearest-replica routing) is at most 9% with respect to

response time, network congestion, and origin server load.

2. Nearest-replica routing adds marginal (2%) value over simple shortest path

routing in ICN.

3. Using sensitivity analysis on a range of configuration parameters, we find that

the best improvement that ICN can provide is 17% over the simple edge-

caching architecture.

4. Simple extensions to the edge cache reduces even this best-case performance

gap to less than 5%.

48

Note that we are not arguing that caching is not useful or that there is no re-

dundancy in typical workloads. Our observation here is that exploiting the benefits

of cacheable workloads is far easier than we imagined. In some sense, the quantita-

tive benefits of caching largely arise from the fact that some cache exists; pervasive

caching and nearest-replica add little value for the types of heavy-tailed workloads

we expect to see.

Motivated by these findings, we analyze whether the remaining qualitative ben-

efits can be achieved without router-level support. Somewhat surprisingly, we show

that many of these benefits can be achieved using techniques that are already well

known in the content distribution community.

5.2 Background and Motivation

In this section, we begin with a brief overview of the common themes underlying

different ICN proposals (Jacobson et al., 2009, 2010; Aranda et al., 2010; SAIL,

2010). Then, we use real request logs to motivate the need to revisit some of the

assumptions about pervasive caching and nearest-replica routing.

5.2.1 ICN principles and benefits

While ICN proposals vary in the terminology, physical implementations, and APIs to

users and network operators, we identify four main themes underlying all proposals:

1. Decouple names from locations: Network applications and protocols are rearchi-

tected so that the communication abstraction is based on content lookup and

transfer in contrast to today’s host-centric abstractions.

2. Pervasive caching: In the limit, every network router also acts as a content

cache. This means that in addition to traditional forwarding responsibilities

network routers also serve requests for content that is locally cached.

49

3. Nearest replica routing: Network routing is modified to be based on the content

name rather than hosts so that requests are routed to the nearest copy of the

content. (In the worst case, this is the origin server hosting the content.)

4. Binding names to intent: An object’s name is intrinsically bound to the intent

of the content publisher and the consumer. This binding helps users (and

routers) to check the integrity and the provenance of the data without external

indicators.

The proposals differ largely in implementation details such as specific API they

expose (Ghodsi et al., 2011), which is not the focus of this dissertation; rather we

want to analyze the benefits arising from these principles.

For completeness, we enumerate the perceived benefits of ICN that have been

argued in prior work (Ghodsi et al., 2011; Ahlgren et al., 2012).

Lower response latency: A pervasive caching infrastructure naturally implies that

the requests do not need to traverse the entire network toward the origin server. In

some sense, these democratize the benefits that today’s commercial CDN infrastruc-

tures provide by caching content and serving it on behalf of their customers.

Simplified traffic engineering: An additional perceived benefit of the ubiquitous

caching infrastructure is that it also helps network operators by automatically elim-

inating content hotspots, which simplifies the traffic engineering logic necessary to

balance network load.

Security: The third key benefit of content-centric solutions is that by using content

as a first-class citizen, it intrinsically binds the user’s intent to the eventual data

being delivered without having to rely on external confirmation of the provenance or

authenticity of the data.

Support for mobility: Because all network requests are routed by content rather

than hosts, ICN also makes it easier to support mobile clients because traditional

50

Table 5.1: Feature-Benefit Matrix for ICN: the Xshows the key features of ICN that
contribute to each perceived benefit.

Feature
Benefit Decoupling

names from
location

Pervasive
Caching

Nearest-
replica
routing

Binding

Latency X X

Traffic Engg X X

Mobility X X

Ad hoc mode X X

Security X X

problems with handoffs, retransmissions, etc., simply go away.

Ad hoc modes: Another benefit of ICN is the ability of two nodes to communicate

and share content without needing any infrastructure support. Imagine a user want-

ing to share a photo between a mobile phone and a laptop; today we have unwieldy

workarounds via cloud-based services (TRA, 2013). Further imagine that they are

in an airplane without a wireless network; in this case they cannot share the content

because they do not have IP working.

Others: There are other perceived benefits such as DDoS resilience (Gasti et al.,

2012) and disruption tolerance that are less well explored in the ICN community.

These appear to be instantiations or combinations of the above benefits. For instance,

disruption tolerance seems to be a combination of the mobility support and ad hoc

mode. Similarly, DDoS resilience seems to be due to avoiding content hotspots via

universal caching.

Table 5.1 summarizes the benefits and the ICN principles contributing to each

perceived benefit. We can see that the quantitative performance benefits—low la-

tency and traffic engineering—essentially arise as a result of the pervasive caching

and nearest-replica routing infrastructure envisioned by ICN solutions. Unsurpris-

ingly, we find that this is also the topic that has received the greatest attention in the

51

ICN community. The second class of qualitative benefits such as mobility, security,

and support for ad hoc modes are rooted in the naming-related aspects of ICN (and

to a lesser degree from the nearest-replica routing).

5.2.2 Motivation: Heavy-tailed workloads

Many measurement studies have observed heavy-tailed or Zipf distributions (i.e., the

ith popular object has request probability 1

iα
for some α ą 0) in request popularities

(e.g., Breslau et al. (1999); Gill et al. (2007)). In this section, we use request logs

collected from 3 multiple vantage points of a large CDN deployment to confirm the

observations of heavy-tailed behaviors with recent workloads.

Dataset: The CDN serves a diverse workload spanning diverse content types: reg-

ular text, images, multimedia, software binaries, and other miscellaneous content.

We focus on the logs from one day’s worth of requests from three geographically

diverse locations; Table 5.2 summarizes the key parameters across the different loca-

tions. Each entry of the logs consists of four relevant fields: an anonymized client IP,

anonymized request URL, the size of the object, and whether the object was served

locally or forwarded to a remote location.

Figure 5.1 visually confirms that request popularity is heavy tailed and close to

a Zipfian distribution; the curve is close to linear on a log-log plot. The specific

exponents and intercept of the linear fit do vary slightly across locations and content

types but the main takeaway is that object requests are still reasonably approximated

by heavy-tailed Zipfian distributions. Table 5.2 also summarizes the parameters of

the Zipf-fit that we observe across the different curves; we use these parameters to

guide our simulation settings in this study.

Why does Zipf matter?: Anecdotal evidence suggests that given Zipf workloads,

having several layers of caching or intelligent cooperative caching provides limited

improvements (Beaver et al., 2010; Wolman et al., 1999). To understand this better,

52

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

P
o
p
u
la

ri
ty

Object rank

(a) US

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

P
o
p
u
la

ri
ty

Object rank

(b) Europe

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

P
o
p
u
la

ri
ty

Object rank

(c) Asia

Figure 5.1: Request popularity distribution across different geographical locations.
While the specific exponent parameters in the models vary slightly across the different
locations we can visually see that the popularity distribution is Zipfian.

Table 5.2: Analysis of requests from three CDN cache clusters from different geo-
graphical regions.

Location Requests Zipf parameter
Asia 480K 1.06

Europe 503K 0.98
USA 965K 0.91

we begin with a simple analysis on a tree topology. A tree is small enough to be

amenable to such analysis and at the same time it is instructive because from the

view of a content origin server, the distribution topology is effectively a tree. We use

an analytical optimization model to reason about the optimal cache management

scheme—the best static placement of objects and routing of requests across the

tree given a Zipfian workload. (We do not show details due to space constraints.

53

The high-level idea here is formulate and solve the problem of deciding where to

cache specific objects and how to assign requests to different caches to minimize the

expected latency as an integer linear program.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

c
ti
o

n
 o

f
re

q
u

e
s
ts

 s
e

rv
e

d

Cache level

α = 0.7
α = 1.1
α = 1.5

Figure 5.2: Looking at the optimal utility of different cache levels with a simplified
optimization model on a binary tree with 5 levels. Level 6 here is the origin server
to which requests are sent on cache misses.

Figure 5.2 shows the total number of requests served at different levels in the tree

for request streams drawn from different Zipfian distributions. Here, level 6 denotes

the origin server. We see that the intermediary levels of the tree (i.e., levels 2–5)

add little value beyond caching at the edge or satisfying the request at the origin.

Consider the setting with α “ 0.7. In this case, the expected number of hops that a

request traverses is 0.4ˆ1`. . .`0.18ˆ6 « 3. Now, let us look at an extreme scenario

where we have no caches at the intermediate levels; i.e., all of the requests currently

assigned to levels 2–5 will now be served at the origin. In this case, the expected

number of hops will be 0.4 ˆ 1 ` 0.6 ˆ 6 “ 4. In other words, the improvement

attributed to universal caching on a tree is only 25%. Note that this is unfair to the

edge caching approach since it has 2ˆ smaller total cache capacity.

Together, these observations suggest that even if we were to enable cooperation

between different caches or try to intelligently reroute requests to a replica where

these other objects were available, the maximum benefit we would obtain is around

25%. The above reconfirmation that request workloads in the wild are Zipf and our

54

simple tree-based intuition motivates us evaluate to what extent pervasive caching

and nearest-replica lookup are really necessary to achieve the quantiative benefits of

ICN.

5.3 Design Space for Caching

The measurements and simplified analysis from the previous section raise the ques-

tion of whether the pervasive caching and nearest-replica routing are strictly neces-

sary. Given the diversity of ICN proposals, we want to avoid tightly coupling our

analysis to any specific architecture. To this end, we consider a broad design space

of caching infrastructures characterized by two high-level dimensions:

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

Content Requests Content Requests

Cache only at Edge Pervasive Caching

Figure 5.3: Example of two cache placement strategies: caches placed at select
network locations such as edge of the network or pervasively throughout the network.
The shaded nodes are routers augmented with content caches while the others are
normal routers.

1. Cache placement: The first dimension of interest is where caches are located in

the network. From the perspective of the origin server that is interested in serv-

ing content to users, the network looks like a tree of routers/caches. Figure 5.3

depicts two possible strategies in this distribution tree from the origin server.

At one extreme, every network router is also a content cache. Alternatively, we

can envision caches deployed close to the network edge. We can also consider

intermediate placement solutions; e.g., due to economic constraints operators

55

may only install caches at locations that serve a sufficiently large population (Li

et al., 2013). A related question here is the issue of cache provisioning; i.e.,

the compute and storage capacity of the various caches. For instance, we can

consider a network where all caches have the same capacity or make the caches

proportionally higher for nodes serving larger populations.

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

Shortest path to Origin Nearest-replica Routing

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

C	

C	

C	

C	

Rqst C Rqst C

Figure 5.4: Example of two request routing strategies: requests are routed along
the shortest path to the origin server and served from some available content cache
along that path or the requests are routed to the nearest cached copy (e.g., ICN).

2. Request routing: An orthogonal dimension to cache placement is how con-

tent requests are routed through the network. As representative samples, we

consider two points in Figure 5.4. In this example, a request for the object

C arrives at node R4. The origin server and possibly some other nodes have

copies of C. In the first case, a request is routed along the tree toward the

origin server until it finds a node with the desired content. In the second case,

we assume that the network routes the request based on the name toward the

closest replica. We can also consider intermediate strategies. For instance, we

can consider cooperative caching within a small search scope to lookup nearby

nodes and reverting to shortest-path routing toward the origin if these lookups

fail.

In this work, we are less concerned with the specific route discovery protocols

to populate content routing tables (Jacobson et al., 2009) or the viability of name-

56

based lookup in high-speed routers (Perino and Varvello, 2011). Since our goal is

to evaluate the potential benefit of nearest-replica routing and pervasive caching, we

conservatively assume that routing and name-based lookup have zero cost.

5.4 Benefits of Caching

In this section, we use trace-driven simulations to analyze the relative performance

of different caching architectures with respect to three key metrics: (1) response

latency ; (2) network congestion; and (3) server load.

5.4.1 Setup

We use realistic PoP-level network topologies from educational backbones and Rock-

etfuel (Spring et al., 2004). From each PoP-level topology (core network), we create

its corresponding router-level topology by considering each PoP as the root of a com-

plete k-ary tree. We refer to this as the access tree. Figure 5.5 shows an example

network topology with four PoPs. We annotate each PoP with the population of its

associated metro region and assume that the requests at each PoP are proportional

to its population.

Requests arrive at the leaves of each access tree. We assume that requests follow

a (discrete) Zipf distribution with some value of α. Within each PoP, the requests

arrive uniformly at random at one of the leaf nodes in that access tree. Each PoP

additionally serves as an origin server for a subset of the set of entire objects; the

number of objects it hosts is also proportional to the population.1 We assume that

each cache has sufficient budget (i.e., storage capacity) to host a certain number of

objects. We use different budget configurations in our simulations. Note that a PoP

node serves two roles: (1) as a (root) node in an access tree and (2) as the origin

1 We also experimented with other models such as uniform origin assignment and found consistent
results.

57

server for a set of objects. As a regular cache, we assume the PoP node has a fixed

budget, but as an origin server, we assume it has a very large cache to host all the

objects it “owns”.

Representative designs: We choose four representative designs from the broader

design space from Section 5.3.

1. ICN-SP: This assumes pervasive cache placement and shortest path routing

toward the origin server. That is, any cache along the shortest path may

respond to the request if it has the object.

2. ICN-NR: This extends ICN-SP to also add intelligent nearest-replica-based

routing. Our goal here is not to design new routing strategies or evaluate the

overhead of these content-based routing protocols. We conservatively assume

that we can route to the nearest replica with zero overhead.

3. EDGE: This is the simplest strategy where we only place caches at the “edge” of

the network. The notion of edge depends on other economic and management

related factors on whether it is viable to operate caches deep inside the network.

We simply assume it is the access router of our given topology since our goal

is to do a relative comparison between the different schemes.

4. EDGE-Coop: This uses the same placement as EDGE, but with a simple

neighbor-based cooperative lookup strategy. That is, each router can do a

scoped lookup to check if its sibling in the access tree has the object and

reroute the request to that sibling.

All representative designs use LRU for cache management. Each cache on the

path from where the object is fetched (i.e., the origin server or a cache) to the

leaf at which the request has arrived stores the object. For reasons of scalability,

58

we use a request-level simulator and thus we do not model packet-level, TCP, or

router queueing effects. Since our goal is to understand the relative performance

of the different caching architectures at a request granularity, we believe this is a

reasonable assumption. We optimistically assume that the ICN solutions incur no

lookup or discovery overhead when modeling the response latencies and network

congestion.

Figure 5.5: An example network topology with four PoP nodes and their corre-
sponding access trees.

5.4.2 Baseline results

In this section, we use trace-driven simulations using the CDN request logs and

corresponding synthetic request logs, which have similar numbers of requests, objects,

and the best-fit Zipf popularity distribution.

For the following results, we report a normalized metric w.r.t to a system without

any caching infrastructure. Thus, we focus on the improvement in response latency,

reduction in network congestion, and reduction in server load. In each case, a higher

value of the metric is better; i.e., the specific caching architecture is more beneficial.

We consider two cache budgeting policies for setting the cache size Br for each

router r . If there are a total of O objects being requested across the network of R

routers, we assume that the total cache budget of the network is F ˆ R ˆ O , for

some value of F P r0, 1s. As a baseline, we pick F “ 5% based roughly on the CDN

provisioning we observe relative to the universe of objects each CDN server sees in

59

a day. We vary the parameter in the next section.

Given this total budget, we consider two possible splits:

1. Uniform: Each router r gets a fixed cache capacity to store 5% of the universe

of all objects.

2. Population-proportional: We divide the total budget such that each PoP gets a

total budget proportional to its population and then divide this budget equally

within that access tree. In this case, the routers in expectation can store 5%

of the objects.

We have also tried other cache budgeting policies and observe results that are

qualitatively consistent. Due to space constraints, we do not report the results from

those settings.

Note that this method of dividing the budget can be viewed as unfair to the EDGE

and EDGE-Coop settings as they have a total budget that is half the capacity of

the ICN-SP and ICN-NR cases. Thus, we also consider a new setting EDGE-Norm

where we ensure that the total budgets are the same. That is, we take the EDGE

configuration and multiply the budget of the edge caches by an appropriate constant

(for example, 2 in case of binary trees) to make sure that the total cache capacity is

the same.

Response latency: We report user-perceived latency in terms of the number of

hops between the request and the location from which it was served. Figure 5.6(a)

shows the percentage improvement in query latency for the four caching architectures

(plus EDGE-Norm) in comparison to a network with no caching (i.e., all requests

are routed to the origin PoP). We make three main observations. First, the gap

between the different caching architectures is quite small (at most 9%) and this is

consistent across the different topologies. Second, EDGE-Coop consistently achieves

60

comparable latency improvement compared with ICN-NR with a maximum gap of

3%. Third, nearest replica routing (ICN-NR) does not offer significant benefits over

ICN-SP.

Figure 5.7(a) shows the latency improvement results for the case of uniform bud-

get assignment across the access tree. We see no significant change in the relative

performances of the different policies.

Network congestion: Other parallel work has focused on the interaction between

ISP traffic engineering and “content engineering” and showed that there are natural

synergies to be exploited here (Jiang et al., 2009b; Frank et al., 2012). Here, we focus

on a simpler question of network congestion under different caching architectures.

The congestion on a link is measured simply as the number of simultaneous object

transfers traversing that link.

Figure 5.6(b) shows the effectiveness of caching in reducing the congestion level

across the network. We focus on the maximum congested link in the network. Anal-

ogous to the query delay analysis, the percentage shown in each case indicates the

improvement over the base case with zero budget. Once again, we see that EDGE-

Coop delivers close to the best performance (with a maximum gap of 4%) and that

the gap between the solutions is fairly small.2 The success of edge-based approaches

in this context is particularly promising. Unlike nearest-replica routing, caching at

the edge strictly reduces traffic in the core of the network and thus eliminates any con-

cerns that ISP traffic engineering and content engineering could be in conflict (Jiang

et al., 2009b).

Figure 5.7(b) shows similar results for the case of uniform budget assignment

across the access tree.

2 The absolute improvement values for latency are typically lower than the numbers for the
congestion improvement. The reason is that we are looking at the average in the latency metric
and the maximum in the case of congestion.

61

Server Load: Next, we consider the load on the origin servers (i.e., the PoP nodes

hosting the objects) in Figure 5.6(c). The metric we use here is the percentage

reduction in the load on the origin server load with the maximum load in the network.

Once again, we see that the various cache architectures show similar performance

levels: maximum performance gap of 9% between EDGE-Coop and ICN-SP and a

2% gap between ICN-NR and ICN-SP.

Figure 5.7(c) shows the same measures for the case of uniform budget assignment

across the access tree. No significant change in relative performances of different

policies is observed.

Validating a synthetic request model: Ideally, we would like to vary the request

popularity distribution. However, one concern is whether the performance gaps we

estimate from synthetic requests log are comparable to real traces. That is, in addi-

tion to visually and statistically confirming the distribution fit in previous section,

we want to ensure that this confirmation translates into system-level performance

metrics.

To address this issue, for each request log, we also generate a synthetic request

log with the best-fit Zipf distribution. The maximum difference between the two

simulations in terms of improvement percentage over baseline is 2.74%. In Table 5.3

we show the maximum performance gap between the trace-driven simulations and

the synthetic request logs. The predicted gap of ICN-NR over EDGE in different

topologies (see Table 5.3) has a maximum value of 1.67%. The gap w.r.t congestion

and origin server load improvements are similar and not shown for brevity. These

results suggest that using Zipf-based synthetic logs is a reasonable approximation for

a real trace.

5.4.3 Summary of main results

There are three main observations:

62

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

Q
u
e
ry

 l
a
te

n
c
y
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(a)

ICN-SP
ICN-NR

EDGE
EDGE-Coop
EDGE-Norm

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

C
o
n
g
e
s
ti
o
n
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(b)

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

O
ri
g
in

 s
e
rv

e
r

lo
a
d
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(c)

Figure 5.6: Trace-based simulations results. Cache budget and origin server al-
location are set to be proportional to population. Parts (a), (b), and (c) show
improvements in query latency, congestion, and maximum origin server load, respec-
tively.

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

Q
u
e
ry

 l
a
te

n
c
y
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(a)

ICN-SP
ICN-NR

EDGE
EDGE-Coop
EDGE-Norm

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

C
o
n
g
e
s
ti
o
n
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(b)

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

O
ri
g
in

 s
e
rv

e
r

lo
a
d
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(c)

Figure 5.7: Trace-based simulations results. Cache budget and origin server al-
location are set to be uniform across the network. Parts (a), (b), and (c) show
improvements in query latency, congestion, and maximum origin server load, respec-
tively.

1. The performance gap between different caching policies on all three metrics

(i.e., query latency, congestion, and server load) is small (at most 9%).

2. The performance gap between ICN-SP and ICN-NR is negligible (at most 2%);

i.e., nearest-replica routing adds marginal value over pervasive caching.

3. Different cache provisioning regimes (i.e., population-based and uniform) do

not affect the relative performance of the methods.

63

Table 5.3: Comparison of simulation results for query latency on request trace and
synthetic data (with best-fit Zipf).

Topology Gap between ICN-
NR and EDGE on
trace (%)

Gap between ICN-
NR and EDGE on
synthetic data (%)

Abilene 6.89 7.81
Geant 5.92 6.96
Telstra 7.44 8.63
Sprint 7.09 8.76
Verio 7.40 8.94
Tiscali 7.11 8.05
Level3 6.18 7.32
ATT 7.25 8.04

-5

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Zipf α

Delay
Congestion

Origin Server Load

(a) Zipf α

-5

 0

 5

 10

 15

 20

 1e-05 0.0001 0.001 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Individual cache sizes as percentage of total objects

Delay
Congestion

Origin Server Load

(b) Cache budget

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Spatial skew

Delay
Congestion

Origin Server Load

(c) Spatial skew

Figure 5.8: Effect of varying different simulation parameters on the performance
gap between ICN-NR and EDGE. Here, we consider a fixed total cache budget across
the nodes.

64

5.5 Sensitivity Analysis

The results of the last section are based on a fixed configuration with a specific popu-

larity distribution, cache size, arity, and access tree depth etc. Future workloads and

architectures may have more diverse characteristics and cache provisioning schemes.

Therefore, in this section, we perform an extensive sensitivity analysis across different

configuration parameters using synthetically generated request traces. For clarity,

we only show results from the largest topology (AT&T) as the results are similar

across topologies.

Rather than look at all cache architectures, here we focus on the two extreme

points in this section, namely, ICN-NR and EDGE. In the following results, we report

a normalized improvement metric:

RelImprov ICN´NR ´ RelImprovEDGE

where RelImprov is the improvement over the no-caching scenario that we mentioned

in the previous section. By construction, a positive value of this measure implies ICN-

NR performs better than EDGE and a negative value implies that EDGE performs

better.

For clarity of presentation, we take the following two-stage approach. First, we

begin by analyzing the sensitivity one dimension at a time, while retaining the base-

line setup from the previous section for the remaining parameters in Section 5.5.1.

Then, we focus on the combination of parameter(s) that provides the best perfor-

mance improvement for ICN-NR in Section 5.5.2.

5.5.1 Single-dimension sensitivity

Zipf parameter α: Figure 5.8(a) shows that with increasing α, the gap between

EDGE and ICN-NR becomes less positive. This is intuitively expected–as α in-

creases, popular objects get a larger share. This reduces the value of pervasive

65

caching and nearest-replica routing because most of the requests are served from the

edge caches.

Cache budget: Next, we consider the effect of increasing the cache size in Fig-

ure 5.8(b). As before, we represent the per-router cache size as a fraction of the total

number of objects being requested. We see that the maximum improvement that

ICN-NR can provide is around 10% when each cache can store « 2% of the objects.

We also observe an interesting non-monotonic effect in the performance gap as a

function of cache size. The reason is that with very small caches, none of the caching

architectures are effective. With a sufficiently large cache (ą 10%), however, the

edge caches account for a significant fraction of the requests and thus the marginal

utility of interior caches is very low.

Spatial skew: In the previous section, we considered a homogeneous request stream

where requests at different network locations are drawn from the same object popu-

larity distribution. There are likely to be regional and local differences between the

request streams observed at different locations. Thus, we explore the effect of spatial

skew across locations in Figure 5.8(c). A spatial skew of 0 means that the requests

at all locations follow the same global popularity distribution (i.e., objects have a

unique global ranking). A spatial skew of 1, at the other extreme, implies that the

most popular object at one location may become the least popular object at some

other location.3 Figure 5.8(c) shows that as the spatial skew increases, ICN-NR out-

performs EDGE. Intuitively, with a large spatial skew, a less popular object at one

location may become popular at a nearby location. Thus, caching objects that differ

in their popularity across edge locations inside the network magnifies the benefit of

ICN-NR.

3 While the specific spatial skew metric we use is not crucial, we define it for completeness:
suppose there are O distinct objects and P PoPs, and rop denotes the rank of object o at PoP p.
Let So “ stdevpropq be the standard deviation of ranks of object o across all PoPs. Then, spatial

skew “ avgpSoq
O

, where avgp¨q represents average.

66

Table 5.4: Effect of access trees arity on performance gain of ICN-NR over EDGE.

arity Latency gain (%) Congestion gain (%) Origin load (%)

2 10.29 9.14 6.27

4 9.12 8.28 5.35

8 7.95 7.01 4.66

Access tree arity: Our baseline uses a fixed binary tree. Here, we evaluate how

the structure of the tree impacts the performance difference by changing the arity,

while keeping the total number of leaves fixed. Table 5.4 shows that as the access

tree arity increases, the performance gap between ICN-NR and EDGE decreases.

This is not surprising. With our cache budgeting mechanism, the ratio of total cache

budget between ICN-NR and EDGE in a tree of arity a is a´1

a
; with higher a this

gaps comes closer to 1. In some sense, increasing arity in this case has a similar effect

to normalizing the cache budgets in EDGE-Norm.

Other sensitivity parameters: We have also explored a range of other parame-

ters, but we do not present the results due to space constraints as their effects are

small compared to the above parameters. For completeness, we mention two other

parameters that might be relevant in practice.

First, rather than assuming unit latency cost per hop, we vary the latency model

in two ways: (1) arithmetic progression (with a positive difference) of latency toward

the core and (2) the latency of each hop at the core network is k times higher. Under

both models, the maximum performance gap between ICN-NR and EDGE is less

than 2%. This can be explained in part by the intuition from Section 5.2.2; the

intermediate levels see much fewer requests.

Second, we vary the serving capacity of caches and consider a heterogeneous

workload with requests having different sizes. In this case, each cache has a limited

serving capacity (i.e., the number of queries it can serve in a certain period of time is

limited). If a request arrives at a cache that is overloaded, this request is redirected

67

to the next cache on the query path (or the origin). Again, we see that the maximum

performance improvement of ICN-NR over EDGE in this case is less than 2%.

5.5.2 Best scenario for ICN-NR

We want to understand under what scenario ICN-NR has the best performance over

EDGE and by how much. To this end, we begin by ordering the configuration pa-

rameters in decreasing order of the magnitude of the relative improvement. Then, we

progressively change one dimension at a time to maximize the gap between ICN-NR

and EDGE in Figure 5.9. In the figure, Baseline is the first configuration that is used

in the previous section simulations. In each of the four subsequent configurations,

one of the configuration parameters is changed (while all other parameters maintain

their current values) as follows: in Alpha˚, α “ 0.1; in Skew˚, spatial skew“ 1;

in Budget-Dist˚, uniform budgeting is applied (which is slightly more favorable to

ICN-NR compared with population-based budgeting); and finally, in Node-Budget˚,

F “ 2%. (For completeness, we also tried a brute force exhaustive enumeration of

parameters and found that the best case is identical to combining the best single-

dimensional results.) We see that with the best combination of parameters, ICN-NR

can improve the performance at most 17% relative to EDGE.

The next question we ask is whether this performance gap is fundamental or we

can bridge it with simple extensions to the EDGE architecture. As we already saw

in the previous section, simple extensions such as cooperation (as in EDGE-Coop)

or doubling the budget (as in EDGE-Norm) can reduce the gap in the baseline

simulations. Figure 5.10 shows how several natural extensions to EDGE can bridge

the performance gap. In this figure, Baseline refers to EDGE without any changes;

2-Levels is EDGE augmented with one more layer of caching at the level above the

edge; Coop refers to EDGE-Coop; 2-Levels-Coops combines the features of 2-Levels

and Coop; Norm refers to EDGE-Norm; Norm-Coop is a combination EDGE-Norm

68

 0

 5

 10

 15

 20

 25

Bas
el
in
e

Alp
ha
*

Ske
w
*

Bud
ge

t-D
is
t.
*

N
od

e-
Bud

ge
t
*

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Latency
Congestion
Origin-Load

Figure 5.9: Exploring the best scenario for ICN-NR by progressively setting differ-
ent configuration parameters to yield the maximum performance gap w.r.t. EDGE.
The X axis represents cache structure configurations.

and Coop; Double-Budget-Coop is the same as Norm-Coop with the budget doubled.

There are also two points of reference in the figure: Section-4 is the set of performance

measures from Section 4 and Inf-Budget is a scenario in which both EDGE and ICN-

NR have infinite caches (i.e., each cache has enough space to store O objects).

-5

 0

 5

 10

 15

 20

Bas
el
in
e

2-
Le

ve
ls

C
oo

p

2-
Le

ve
ls
-C

oo
p

N
or

m
N
or

m
-C

oo
p

D
ou

bl
e-

Bud
ge

t-

C
oo

p Sec
tio

n-
4

In
f-B

ud
ge

t

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f

b
e
s
t

s
c
e
n
a
ri
o
 f

o
r

IC
N

-N
R

 o
v
e
r

v
a
ri
a
ti
o
n
s
 o

f
E

D
G

E
 (

%
)

Latency
Congestion
Origin-Load

Figure 5.10: Bridging the performance gap between the best scenario for ICN-NR
via simple extensions to EDGE. As points of reference, we also show the baseline
performance from Section 5.4 and a hypothetical infinite cache setting. The X axis
represents variations of EDGE.

69

5.5.3 Summary of key observations

The main observations from our sensitivity analysis are:

1. The key parameters that effect the relative performance of ICN-NR over EDGE

are Zipf α and spatial skew.

2. The best possible performance benefit of ICN-NR over EDGE (across all met-

rics) by setting the above parameters to be favorable to ICN-NR is only 17%.

3. Simple extensions to EDGE such as putting all the cache at the edge and

enabling local scoped cooperation can reduce even this best case performance

gap to 6%.

4. Doubling the edge cache sizes can in fact make EDGE better than ICN-NR.

5.6 Conclusions

Our work can be viewed as an application of the end-to-end argument—we should

impose significant changes to the network only if doing so will offer substantial per-

formance improvements Saltzer et al. (1984). If anything, we have reasons to be

optimistic about the benefits of ICN. We find that the components of ICN that

might need drastic changes to the network as envisioned by some ICN proposals

(pervasive caches and nearest-replica routing) do not appear to be fundamentally

necessary.

70

6

Reliable Client Accounting for Hybrid CDNs

6.1 Introduction

In Chapter 3, we have demonstrated that hybrid CDNs can greatly save bandwidth

for the service provider and reduce the costs of all parties involved in the content

distribution process. However, they also face an inherent challenge: By definition,

P2P communication occurs between untrusted clients, and therefore cannot be ob-

served directly by the trusted infrastructure. As a result, faulty or compromised

clients can mishandle peer communication in ways that are not observable by the

infrastructure, and they can under- or overreport peer interactions. In principle, a

compromised client may be able to censor or modify content, and inject unautho-

rized content; it may refuse, delay, or abort transfers to deny or degrade service to

other clients; and it may misreport peer transfers in an attempt to manipulate the

accounting for commercial content or services.

In practice, hybrid systems can take measures to mitigate this risk. For instance,

clients can obtain signed content hashes from the trusted infrastructure to verify

content received from peers. The infrastructure can control which clients may peer,

71

in order to make collusion of faulty clients more difficult. Client logs can be checked

and suspicious or inconsistent records excluded at some cost in logging accuracy.

Clients that have repeatedly been involved in disputed or aborted transactions can

be blacklisted at some risk of blocking legitimate clients. Nevertheless, the potential

remains for compromised clients to disrupt service quality and affect logging accuracy.

There is little evidence of widespread attacks of this type against hybrid sys-

tems today. However, as these systems become more popular, it is important to

understand the risks. Therefore, we have (with permission) performed a ‘red team’

evaluation of Akamai’s NetSession system described in Chapter 3. We have identified

an attack vector that enables a single malicious client to report more than 30 GB of

fictitious download activity per hour, an amount that can be further inflated through

a Sybil attack (Douceur, 2002).

While this specific vulnerability has been removed, the underlying challenge re-

mains: a hybrid system’s accounting is based on information from untrusted peers

that is difficult to verify, and a determined attacker could find other ways to exploit

this vulnerability. The challenge also applies to other commercial hybrid content de-

livery systems, not just to NetSession, and may apply to other types of hybrid systems

as well. For example, CDNs have developed methods for owner-operated network

appliances to serve customer content and report on download activity (Lewin et al.,

2006). Unlike edge servers, which are part of the CDN’s infrastructure, these ap-

pliances are not under the administration of the CDN. Similarly, certain network

games rely on direct communication and interaction between game consoles, with

outcomes ultimately reported to a centralized infrastructure (Agarwal and Lorch,

2009). Hence, we are interested in a principled approach to reliable accounting of

client interactions.

To address this challenge, we present a method for providing reliable client ac-

counting in hybrid distributed systems. Our method uses the infrastructure nodes to

72

establish reliable facts about the clients, such as an upper bound on their available

resources (which is essential to limit the effect of Sybil attacks). Moreover, all clients

record a tamper-evident log (Haeberlen et al., 2007) of their actions and must peri-

odically upload their log to an infrastructure node; this severely restricts the ability

of malicious clients to lie without getting caught.

A key feature of our approach is the ability to quarantine suspicious clients.

Quarantined clients cannot interact with other clients, and their requests are served

directly by the infrastructure; thus, such clients are unable to misreport their actions

or disrupt other clients. A key insight is that in hybrid systems, quarantining is

safe: if an honest client is accidentally quarantined, its quality of service does not

change, it merely causes a small amount of extra load on the infrastructure. Thus,

the infrastructure can afford to err on the side of caution e.g., by using anomaly

detection techniques with high false-positive rates, which are difficult for an adversary

to escape.

To demonstrate that our approach is effective, we present RCA, a system that

applies our approach to NetSession. We report results from a trace-driven evalua-

tion, based on traces from Akamai’s production deployment. Our results indicate

that RCA increases the protocol overhead from 0.06% without RCA to 0.47% with

RCA, relative to the amount of content served, and it requires clients to maintain

approximately 550 bytes of extra information per MB of downloaded content that

must be uploaded to, and checked by, the infrastructure. We also show that RCA is

effective against a variety of attacks and misbehaviors by malicious clients.

The rest of this chapter is organized as follows: Section 6.2 demonstrates an

accounting attack on NetSession. A method for providing reliable client accounting

in hybrid distributed systems is then given in Section 6.3. Section 6.4 presents an

application of our approach to NetSession. Section 6.5 evaluates our system based

on traces from NetSession. Section 6.6 concludes this chapter.

73

6.2 Attacks on hybrid systems

In this section, we describe attacks on hybrid CDNs, including a novel class of in-

flation attacks on the reporting system. To demonstrate that existing systems are

vulnerable, we report results from a successful inflation attack on the NetSession

system.

6.2.1 Threat model

We assume that the nodes in the infrastructure (such as Akamai’s edge servers)

are correct and fully trusted by the operator. The clients, on the other hand, are

untrusted and can be compromised or fail in various ways, so we conservatively

assume that some subset of them is controlled by a malicious adversary. Clients can

communicate with infrastructure nodes and with their peers, but the infrastructure

cannot observe direct peer-to-peer communication.

We also assume that the system does not use strong identities and that mem-

bership is open, i.e., any client is allowed to join the system. In particular, this

means that the adversary can potentially mount a Sybil attack (Douceur, 2002) on

the system, e.g., by running multiple instances of the client software on the same

machine.

6.2.2 Attack vectors

There are two aspects of this model that make reliable accounting fundamentally dif-

ficult. First, the clients are not fully trusted and could tell lies, suppress information,

or mishandle the communication with their peers to deny them service. Second, a

(potentially large) fraction of the events that are to be accounted for occur directly

between the clients, where the infrastructure cannot observe them. Separately, each

of these challenges would be easy to handle: if the clients were trusted, the infras-

tructure could rely on their correct handling of requests and the accuracy of their

74

reports; if the infrastructure was directly involved in all communication (as in Aka-

mai’s infrastructure-based CDN), it could intercede when clients misbehave towards

their peers, and perform accounting based on its own records.

In the following, we focus on a novel type of accounting attack that exploits

these challenges. We will refer to this attack as an inflation attack. In an inflation

attack, the attacker causes the system to overreport the amount of service that it

has provided. Using the same technical approach, one could also mount deflation

attacks, in which the attacker would cause the amount of service to be underreported

instead.

6.2.3 Inflation attack on NetSession

To demonstrate the potential impact of inflation attacks, we carried out such an

attack on the NetSession system. The attack could be carried out easily by modifying

the NetSession client software. We decided against this approach, partly because a

modified client might have accidentally disrupted other clients or the NetSession

infrastructure, partly because we were able to carry out the attack even with an

unmodified NetSession client.

To accomplish this, we wrote a script that uses the client’s API to repeatedly

download a certain file, as well as a small proxy that interposed between our local

NetSession client and its peers. Whenever our client attempts to contact a peer,

our proxy returns a spoofed response that indicates that the peer has all of the

requested blocks, and whenever our client requests any blocks, the proxy returns the

blocks at LAN speed. This man-in-the-middle attack was possible because, unlike the

messages exchanged between clients and the infrastructure, communication between

peers was not signed. The effect of this attack was that our client would trigger

a large number of downloads, and these downloads would complete at LAN speed.

The resulting large number of downloads were reported to the infrastructure, even

75

 0

 5

 10

 15

 20

 25

 30

 35

 1 6 11 16 21 26 31

D
a

ta
 d

o
w

n
lo

a
d

e
d

fr
o

m
 t
e

s
t
a

c
c
o

u
n

t
(G

B
/h

o
u

r)

Day in December 2010

Figure 6.1: Effect of our attack on the NetSession logs.

though no content was actually transferred among the peers.

6.2.4 Impact of the attack

We obtained permission from Akamai to test our attack on the deployed NetSession

system. To avoid the risk of interfering with the production system, we targeted

a set of special files that is normally used for testing; thus, there was no risk that

legitimate clients would attempt to download files from our proxied client, or that

our attack would affect the logs of legitimate content providers. We ran our attack

for one full day; during that day, we requested files as quickly as possible. To assess

the impact of the attack, Akamai gave us access to the control plane logs for our

client’s specific GUID.

Figure 6.1 shows the reported downloads in this log. Our single modified client

was able to generate about 30 GB/hour of fictitious downloads, which show up as a

sharp spike in the figure. We note that this is a proof-of-concept attack, and that its

throughput was limited by the throughput of our proxy. Had we chosen to directly

modify the client software, we could have reported downloads at arbitrary rates.

6.2.5 How serious is this attack?

Our specific proof-of-concept attack is not difficult to prevent; indeed, the attack

as described no longer works. However, our specific attack is just one example

from an entire class of attacks; for instance, we could have reverse-engineered the

NetSession client software and directly modified the reports it sends to the NetSession

76

infrastructure. So the root of the problem runs deeper.

Moreover, the vulnerability seems to exist in hybrid systems generally; it is inher-

ent in the fact that hybrid systems must account for interactions between untrusted

clients, who cannot be relied upon to report them accurately. To prevent similar

attacks on NetSession and other hybrid systems, a more comprehensive solution is

needed. Also, to show that a simple fix is not sufficient, we briefly discuss a few

strawman solutions.

Sign all messages: Cryptography can be used to defend against man-in-the-middle

attacks, but recall that this was just a trick we used to make our proof-of-concept

attack easier to implement. Instead, an attacker could simply modify the client

software to generate whatever messages he needs it to send.

Detect software modifications: There are techniques that aim to detect whether a

client has modified software. Some of these techniques are purely software-based; for

example, certain multiplayer games scan the clients’ memory for known cheats (Punk-

buster, 2000). However, an adversary can circumvent these techniques by disabling

the scan or by reporting incorrect results. Other techniques require hardware sup-

port; for example, trusted platform modules can be used to certify that a client has

loaded a certain software image (Garfinkel et al., 2003). However, the requisite hard-

ware usually is not available on all clients, and even where it is available, it may be

able to certify only that a certain binary was loaded, not that it is still running.

Limit clients to one download per file: This would thwart our specific attack;

however, an adversary could still download many different files or create many Sybil

identities that each download the file only once.

Anomaly detection: Amassive load spike like the one in Figure 6.1 would probably

raise the CDN operator’s suspicion. However, there could be a legitimate reason for

the spike, and there is no way to establish its provenance after the fact. Thus, the

operator is caught in a dilemma: if the spike is genuine, it is probably important for

77

the content provider to know about it, so it must be left in the log; if the spike is

fake, its presence distorts the accounting, so it should be removed.

6.3 Reliable accounting

In this section, we describe our method for providing reliable accounting in hybrid

systems. Although we developed this method with NetSession in mind, it should

be applicable to other types of hybrid systems (such as P2P streaming or storage

systems). We begin with a description of the general approach and then show (in

Section 6.4) how it can be applied to NetSession.

6.3.1 System model

We consider a system that consists of a number of trusted infrastructure nodes and

a (potentially much larger) number of untrusted clients. The system offers a service

to the clients that can be provided either by the infrastructure nodes or by other

clients. The infrastructure cannot directly observe interactions between the clients.

Our goal is to provide an accounting mechanism that reliably captures client

activity. Specifically, we are interested in activity by faulty or compromised clients

that could degrade the performance of the system or distort the record of services

actually rendered.

6.3.2 Threat analysis

Next, we characterize the kinds of threats that a faulty or malicious client poses to

the rest of the system. To do this in a protocol-independent way, we model the client

as an abstract state machine that accepts requests from the local user (e.g., names of

files to download) and eventually produces responses (e.g., the contents of the file).

The state machine can send and receive messages, and it must periodically upload

a log of its actions to the infrastructure. Each state machine is expected to follow a

78

Table 6.1: Types of client misbehaviors. The last column shows the subsection that
describes the countermeasure.

F1 Fail to log exact set of messages sent or
acknowledged 6.3.4

F2 Fail to log consistent sequence of messages 6.3.5
F3 Execute illegal, or fail to execute required,

protocol action 6.3.6
F4 Faulty peers collude to report fictitious

exchanges 6.3.7, 6.3.8
F5 Render poor service to peers 6.3.8
F6 Nefarious user requests 6.3.9
F7 Sybil attack 6.3.10

specific protocol, and this protocol is not necessarily fully deterministic (e.g., clients

might be allowed to choose the peers with the highest throughput).

Table 6.1 summarizes the types of threats we consider here. Faulty or malicious

clients can fail to log the exact set of messages they have sent or acknowledged (F1),

or fail to log them in a sequence that is causally consistent (F2). They can violate

the protocol, either by making a bad state transition or by failing to make a required

state transition (F3). They can collude with faulty peers in order to report fictitious

transactions amongst each other (F4). They can deliver poor performance, e.g., by

being slow to respond to messages from peers, by aborting or delaying peer transfers,

or by sending corrupted content (F5). A user can issue nefarious content requests in

order to create artificial demand for a provider’s content or to degrade the service

quality enjoyed by other clients (F6). Finally, a user can mount a Sybil attack by

joining the system under more than one identity, in order to amplify other attacks

(F7).

6.3.3 Approach

In a fully decentralized system, it is difficult or even impossible (Seuken and Parkes,

2011) to provide reliable accounting. In a hybrid system, however, we can do better

by leveraging some of the unique characteristics of these systems, namely:

79

Trusted infrastructure: The nodes in the infrastructure are directly controlled

by the operator; Central control: The operator can prescribe a single protocol

that all the nodes must follow; Global view: The operator is able to observe the

status of all clients eventually; and Dedicated resources: The infrastructure has

the capacity to take over for under-performing or suspicious clients.

In the following, we describe a sequence of techniques for constructing a reliable

accounting mechanism that takes advantage of these characteristics. Each technique

adds some constraints on the kinds of behaviors a faulty node can manifest without

getting caught.

6.3.4 Require message commitment

First, we require clients to cryptographically sign all messages and acknowledgments

they send. Moreover, clients record the signatures of received messages and acknowl-

edgments in a log, which they periodically forward to the infrastructure. As a result,

a faulty client can no longer deny having sent or received a message it has previously

sent or acknowledged. Likewise, a faulty client cannot falsely claim that a correct

client has sent or acknowledged a message, because the faulty client would not be

able to produce the corresponding signature.

6.3.5 Check logs for consistency

Even with message commitment in place, a faulty client could give a false account of

the order in which certain events happened. For instance, a client could receive an

object from the infrastructure, acknowledge it, and then later decline a peer’s request

for the same object. In its logged record, it could claim that the peer’s request had

arrived before it received the object from the infrastructure, in order to justify its

failure to serve the object.

This form of misrepresentation can be avoided by requiring each client to maintain

80

a tamper-evident log (Haeberlen et al., 2007) of its actions. For this purpose, the log

entries form a hash chain, and the hash of the most recent log entry is included in the

signature of any message that the node signs. Thus, the node commits to its entire

event history each time it sends a message or acknowledgment. Because the logs and

all of a node’s signatures are eventually sent to and checked by the infrastructure,

a client would be caught if it ever omitted, fabricated, or manipulated events in its

logs, or gave inconsistent accounts of the sequence of events.

Each client is forced to log a single linear account of its actions that includes

all acknowledged messages sent to, or received from, correct peers. If messages are

forged, omitted, reordered, or tampered with, the client effectively makes a signed

admission of guilt.

6.3.6 Check logs for plausibility

Even when a client’s log is consistent with the logs of all other clients it has commu-

nicated with, the log can still be implausible; for example, a client A might download

a file from a peer B and then, when a third peer C requests that file from A, serve a

modified version of the file or claim that it no longer stores the file. To prevent this,

our second step is to verify that a log is plausible, i.e., it is consistent with a valid

execution of the software the client is expected to run.

We can decide whether a log is plausible by checking that it satisfies a set of

invariants, which must hold in any correct execution of the client software. Typi-

cal example invariants state that a client must only serve content it has previously

received, may only contact or accept requests from peers suggested by the infras-

tructure, etc.

81

6.3.7 Control client pairings

If clients are free to choose which clients to request services from, malicious clients can

collude to request services from each other (and thus make consistent and plausible

logs without actually doing any work), or they can ‘gang up’ on some correct clients

to deny them services. To make collusion more difficult, the infrastructure can impose

restrictions on the clients, e.g., by limiting each client i to only request services from

peers in some set Si.

Restrictions should be neither too tight nor too loose. In the above example, very

small sets Si will force the clients to contact the infrastructure frequently (e.g., to ask

for additional clients if the ones in Si fail), which increases overhead and decreases

performance, whereas very large sets Si increase the chances that a malicious client

i will find an accomplice in its set Si.

The infrastructure’s choice of Si may depend on which peers have the requested

content, which ISP a peer is connected to, and whether it has a compatible type of

NAT. Some of these factors can be influenced by a peer; for instance, a peer could

download rarely requested content in order to increase the chance that it will be

paired with a colluding peer that requests that same content. Therefore, controlling

client pairing can only mitigate but not eliminate client collusion.

6.3.8 Quarantine anomalous clients

A faulty client can degrade the service received by its peers, e.g., by providing the re-

quested services inconsistently or too slowly. Moreover, as discussed above, colluding

peers could inflate their upload activity. Our next step is to apply statistical anomaly

detection to identify potentially problematic clients, and to quarantine those clients.

Ordinarily, anomaly detection systems face a difficult tradeoff between effectivity

and the number of false positives. Our key insight is that, in the specific case of

hybrid systems, this tradeoff can be avoided by redirecting any suspicious clients to

82

the infrastructure. In other words, when a client c manifests anomalous behavior,

the infrastructure can restrict c to contacting only trusted infrastructure nodes, and

it can tell other clients not to contact c.

If c is malicious, quarantining c will ensure accurate logging because a) c’s inter-

actions with the infrastructure will be logged by the trusted nodes, and b) c cannot

plausibly log any interactions with other nodes. On the other hand, if c is correct

and its detection was a false positive, c’s requests will still be handled by the infras-

tructure, so c’s user will still receive good service. Since quarantining clients is ‘safe’

from a QoS perspective, we can perform anomaly detection aggressively and accept

a nontrivial false-positive rate, as long as the infrastructure has sufficient resources

to handle the extra load.

6.3.9 Flag/throttle suspicious user behavior

In addition to the types of client misbehaviors covered in the previous section, there

is a class of attacks that is caused solely by user activity, while the client software

behaves as expected. For instance, a user could nefariously download content from

a specific content provider, in order to drive up demand for that provider’s content.

(This type of attack would typically be combined with a Sybil attack and possibly a

botnet. Also, note that this attack is not specific to hybrid CDNs.)

Based on the tamper-evident logs collected by the system, we can perform sta-

tistical anomaly detection to identify clients whose download activity stands out in

terms of volume and content selection. A flagged client can be immediately sub-

jected to a download rate-limit by the infrastructure, pending resolution by a human

operator. At the same time, a human operator is notified of the anomaly for further

inspection and resolution. For instance, an operator can contact a content provider

to check if a sudden increase in demand (possibly from a specific set of IP addresses)

is expected.

83

6.3.10 Enforce resource limits

Some of the attacks described in the previous sections can be amplified by a Sybil

attack, where an attacker registers more than one instance of the client software

for each physical node he controls. For instance, the impact of a colluding-peers

attack or a nefarious download attack increases with the number of client instances.

Without strong user identification, we cannot effectively prevent Sybil attacks, but

we can at least constrain the aggregate amount of service that Sybils can log. For

example, we can check that, in aggregate, the activities recorded in these logs cannot

exceed the physical capacity of the adversary’s nodes.

Since a hybrid system contains trusted infrastructure nodes, we can achieve this

goal through resource testing. For example, a client could be required to demonstrate

its upstream or downstream bandwidth in a short data exchange with the infrastruc-

ture. The infrastructure could refuse to accept multiple clients with the same IP

address, and/or ask a group of clients with a common IP prefix to demonstrate that

they run on separate machines by asking each of them to simultaneously solve a

different crypto puzzle. The results could then be used to flag implausible client

activity, such as clients who claim to have exchanged data with peers in different

networks at a rate that exceeds their measured access link capacity, or clients who

claim to have exchanged data with a number of clients on the same network that

exceeds the number of separate machines they have demonstrated.

6.3.11 Summary

The cumulative effect of the above steps is to constrain what the adversary’s nodes

can do without being detected. The first four steps ensure that the adversary’s nodes

tell a ‘straight story’, i.e., send logs that are plausible, consistent with those of its

peers, and feasible given their physical resources. If the adversary fails to comply, the

infrastructure can detect this, discard the invalid logs, and blacklist the misbehaving

84

nodes. The last three steps force the adversary’s clients to behave statistically like

the overall set of nodes; if they do not, they are flagged and measures are taken to

limit any damage they might cause.

6.4 Application to NetSession

In this section, we describe the RCA system, which applies the method from Sec-

tion 6.3 to NetSession.

6.4.1 Overview

Our design instantiates each of the building blocks we have presented in Section 6.3.

We use resource certificates (Section 6.4.3) to limit the aggregate bandwidth of Sybils,

a novel implementation of tamper-evident logs that has been optimized for hybrid

systems (Sections 6.4.4 and 6.4.5) to check for consistency, a set of NetSession-

specific invariants (Section 6.4.6) to check for plausibility, and a set of statistical

tests (Section 6.4.7) for quarantining anomalous clients. The rest of this section

describes each of these building blocks in more detail.

The basic workflow in RCA is as follows. When a client i first joins RCA, it

contacts one of the control plane servers and uploads a short file to demonstrate its

link capacity; the control plane then issues the client a private key σi (for signing

messages), a public key πi, and a certificate Γi that encodes the measured capacity.

The client can then download or upload content, just as in the original NetSession

system, but it additionally maintains a tamper-evident log, which it periodically

uploads to the control plane. The control plane forwards the logs to a set of backend

servers, which process them and produce the accounting information. The control

plane also applies statistical tests to detect and quarantine anomalous clients.

85

6.4.2 Assumptions

The design of RCA relies on the following assumptions:

1. Infrastructure nodes are trusted by the operator and can only fail by crashing.

2. All nodes have access to a cryptographic hash function H.

3. Faulty clients cannot forge the signature of correct peers or of the infrastructure.

Assumption 1 seems reasonable in a centrally managed CDN like NetSession; as-

sumptions 2 and 3 are commonly assumed to hold for hash functions like SHA-256

and algorithms such as RSA, provided that the keys are sufficiently strong.

6.4.3 Resource certificates

To prevent malicious clients from reporting more activity than they physically have

the capacity to perform, RCA uses a few simple resource tests, as discussed in Sec-

tion 6.3.10.

When a client i first joins the system, it contacts one of the control plane servers

and requests a key pair, which will constitute the client’s identity for the purposes

of reporting. The control plane then exchanges some amount of data with the client,

and it measures the maximum throughput Ci that i achieves during the exchange.1

Finally, the control plane then generates a fresh key pair σi{πi and returns it to the

client, along with a certificate σP pπi, Gi, Ci, Ai, Tiq that is signed with the control

plane server’s private key σP and binds the client’s public key πi to the client’s

GUID Gi, its measured capacity Ci, its IP address Ai, and an expiration time Ti (on

the order of a few hours). When a client’s current certificate expires or its IP address

changes, the client repeats this process to obtain a fresh certificate.

1 Note that this requires two-way communication and thus prevents malicious clients from obtain-
ing certificates for spoofed addresses.

86

To prevent Sybil attackers from obtaining multiple certificates for the same IP

address, the control plane internally maintains a table with all unexpired certificates.

Suppose a client c requests a new certificate from an address Ak while there are still

unexpired certificates for Ak. Then the control plane revokes2 any certificates for Ak

whose clients are not currently logged in, and it asks the remaining clients to upload

at the same time as c. It then measures the aggregate bandwidth C of all the uploads

and issues c a certificate for the difference between C and the sum of the capacities

from the existing certificates. To defend this mechanism against malicious clients

that attempt to overload the control plane with requests for new certificates, clients

can be required to solve a puzzle (Parno et al., 2007a) before submitting a request;

the difficulty of the puzzle can be a function of the current load on the control plane.

In summary, the infrastructure ensures that there can be only one valid certificate

per IP address at a time, and that an adversary with an aggregate capacity C cannot

obtain certificates whose aggregate capacity exceeds C. Additional resource tests

could be implemented and the results included in the resource certificate.

6.4.4 Tamper-evident log

RCA requires clients to maintain a tamper-evident log of all the messages they

send and receive. Unlike previous implementations designed for decentralized sys-

tems (Haeberlen et al., 2007), a hybrid system requires different tradeoffs. On the

one hand, logs are audited exclusively by the infrastructure, which simplifies the

implementation. On the other hand, we need to aggressively minimize the overhead

for the infrastructure—particularly the number of cryptographic signatures it has

to verify—since we expect the number of clients to be orders of magnitude higher

than the number of infrastructure nodes. The pseudocode of our implementation is

2 In our setting, revocation is comparatively easy because each client has to show its current
certificate to the control plane when logging in.

87

provided in Appendix A.

Each client maintains a log of entries ek :“ phk, sk, tk, ckq, where hk is a hash value,

sk a sequence number, tk an entry type (send or recv), and ck some type-specific con-

tent. The hash values form a hash chain of the form hk :“ Hphk´1||sk||tk||ckq. When-

ever a node i sends a message, it must attach an authenticator psk, hk, σipsk ||hkqq,

which is signed with i’s private key σi and represents a commitment to the current

state of i’s hash chain. Each message must be acknowledged, and clients may have

at most nmax unacknowledged messages in flight at any given point in time. Fi-

nally, each message or acknowledgment contains enough information to verify that

its transmission has been recorded in the log. If i forges, omits, or tampers with log

entries after the fact, the infrastructure can detect this by comparing the log i has

uploaded to the authenticators i has sent to its peers.

RCA’s tamper-evident log maintains sub-chains for each pair of communicating

peers. As a result, RCA’s authenticators are cumulative, i.e., the authenticator in

a message or acknowledgment from i can be used to verify all previous messages or

acknowledgments from i, respectively. Hence, each client need only keep one pair

of authenticators for each other peer it has communicated with–rather than one

for each message it has sent or received–which dramatically reduces the number of

authenticators that must be uploaded to, and verified by, the infrastructure.

In summary, the tamper-evident log ensures that inconsistencies between logs can

be attributed to a specific misbehaving client.

6.4.5 Consistency checking

When a client i is ready to upload its log λi, it signs λi with its private key σi, and

it attaches its certificate Γi as well as the set Ai of authenticators it has collected

from other nodes. The infrastructure must then check the log for consistency and

plausibility.

88

At first glance, the consistency check seems to require cross-checking logs from

different clients. However, RCA’s tamper-evident log is structured such that, for

each message transmission, both endpoints have sufficient evidence (specifically, an

authenticator from the message or its acknowledgment) to show that the entry in

the local endpoint’s log is consistent with the entry in the remote endpoint’s log.

Thus, logs can be checked individually, which makes the log checking both efficient

and trivially scalable.

Although i uploads the above information to a specific infrastructure node, other

infrastructure nodes may also require information about i, namely authenticators or

a certificate revocation. Before checking can begin, all information about i must be

collected at a single node Hpiq, which can be chosen, e.g., via consistent hashing.

This requires a ‘shuffle’ step (similar to the one in MapReduce) in which each in-

frastructure node sends copies of its received authenticators to the nodes that are

‘responsible’ for them.

Next, the infrastructure inspects λi and checks whether a) the log is well-formed

and signed with σi; b) the certificate Γi is valid and matches σi; c) Γi was not expired

or revoked when the log was signed, d) at no point in the log were there more than

nmax unacknowledged messages, e) each of the sub-hashchains is intact, f) the end of

each sub-hashchain corresponds to one of the authenticators uploaded by i, and g)

λi is consistent with all authenticators signed with σi. The last check can be done

incrementally if more authenticators are uploaded. If any of the above checks fails,

i is clearly faulty. The GUID of a faulty client is immediately disabled so that it

cannot participate in peer-to-peer transactions or infrastructure downloads; also, the

system operator is notified.

89

6.4.6 Plausibility checking

When a client’s log passes the consistency check, we know that its recorded sequence

of messages is consistent with the log of other clients. However, the messages in the

log do not necessarily correspond to a valid execution of the client software. To detect

misbehaving nodes, RCA checks each log to see if it satisfies the following invariants,

which capture the essence of RCA’s swarming protocol. Specifically, clients

1. may only exchange data with peers or edge servers that were suggested to them

by the infrastructure;

2. may only serve data they have already downloaded;

3. must not modify blocks before serving them;

4. must serve blocks they have available (i.e., blocks they store and for which

peering is enabled); and

5. may only request blocks they do not already store.

If the log does not satisfy all of the invariants, RCA disables the GUID of the client

and notifies the system operator. Otherwise, RCA identifies, for each uploaded data

block, the content provider that owns the corresponding file, and it tallies, for each

content provider, the number of bytes that were uploaded on its behalf, minus any

bytes that would exceed the bandwidth in the client’s resource certificate.

6.4.7 Statistical tests and quarantine

RCA’s control plane continually maintains statistics about the download and upload

activities of each client, such as its IP address, its geolocation, or the number of

bytes downloaded and uploaded during the last k days. The control plane uses this

data and a set of statistical tests to identify anomalous clients.

90

When a client i is flagged as anomalous, the infrastructure quarantines i and

redirects any future download requests from i to the infrastructure nodes. The client

will continue to receive service, however; RCA merely ensures that any interactions

with i involve at least one trusted endpoint, so i’s actions can be accounted accurately.

(Logs produced by i before the quarantine will still be accepted, provided that they

pass all the other tests.) In other cases, the infrastructure merely notifies a human

operator for resolution.

There are many kinds of statistical tests that could be useful. For example, tests

can be based on an client’s own actions (e.g., downloading unusually many bytes),

deviations from the actions of related clients (e.g., sudden load spike in a certain

geolocation, but not in nearby geolocations), changes in file popularity, etc. More

advanced tests could be based on machine learning or techniques from the botnet

literature, e.g., BotGrep (Nagaraja et al., 2010). In Section 6.5.7, we describe and

validate a small set of statistical tests for the NetSession system.

6.4.8 Limitations

RCA’s tamper-evident log is only guaranteed to detect inconsistencies in message

exchanges when at least one of the two endpoints is an honest node; if the infras-

tructure (unknowingly) pairs up two colluding clients, one of them can claim to have

downloaded a large part of the file from the other without actually having done

so. Controlling client pairing, applying statistical tests, and quarantining help to

mitigate this limitation.

A second limitation is related to the use of anomaly detection. Since the operator

usually does not know which clients are malicious, he can only base the statistical

test on the observed behavior of all clients, which is only safe as long as the fraction

f of clients controlled by a single adversary is small. If f is large, the adversary can

slowly change the behavior of his clients over the course of several weeks or months,

91

analogous to a frog-boiling attack (Chan-Tin et al., 2009); this might prompt the op-

erator to adjust the statistical tests, which would progressively relax the constraints

on the adversary. However, we expect that in practice, few adversaries would have

both the required number of clients and the necessary patience.

6.5 Evaluation

To evaluate RCA, we implemented a clone of the NetSession client and infrastructure

software, called NetSession-Base, which includes all functionality required for our ex-

periments. NetSession-Base is complete enough to run on the Internet. However,

we perform most of our experiments in a network emulation environment, which

can run hundreds of NetSession-Base clients on a single machine. The network em-

ulator models bandwidth (upstream and downstream) and propagation delay, but

not packet loss. Emulations are driven by a trace that defines the node character-

istics (geolocation, link capacities, IP and GUIDs) as well as the workload, i.e., the

downloads and their precise timing.

We then added RCA’s defenses, including the tamper-evident log, the consistency

and plausibility checks, the statistical checks, and the client quarantine. We use RSA

with 1024-bit keys for the cryptographic signatures. We will refer to the system with

defenses enabled as NetSession-RCA.

6.5.1 Validation

The goal of our first experiment is to verify that our clone matches the behavior of

the Akamai NetSession system closely enough so that we can use the NetSession-Base

system as a baseline in subsequent experiments. For this purpose, we used Akamai’s

NetSession client to download a 760 MB file in the live system, and used Wireshark

to capture the network traffic from and to the client.

From the captured network traffic, we then compiled a trace that replicates this

92

download in the emulator, such that the same proportion of data are downloaded

from the same number of peers and the infrastructure. We then ran NetSession-Base

using this trace, and we measured the client’s control and data traffic exchanged with

each peer and the infrastructure. The results were all within 1% of those obtained

with Akamai’s NetSession.

6.5.2 Experimental setup

For the following experiments, we used a 30-day trace from Akamai’s live NetSession

system recorded in December, 2010. The trace includes an identifier and size for each

object requested, the time when the download was initiated and completed, and the

number of bytes downloaded from other peers. Our network emulator cannot scale

to the entire workload recorded in the trace, so we used a sample that includes all

downloads initiated by a randomly chosen subset of 500 clients.

We assigned client link capacities by randomly sampling from a measured distri-

bution of download and upload speeds in residential broadband networks (Dischinger

et al., 2007).

The NetSession traces do not record how many and which peers were actually

used in a download, or how many bytes were obtained from each. In any case,

because our emulation only includes a small sample of the actual peers, it would not

include many of the peers who actually uploaded to one of the peers in the sample.

Instead, our emulation assumes that all peers in our sample can serve all files to

other peers. The infrastructure suggests a random set of emulated peers for each

download, and the swarming protocol dynamically requests content from this set

of peers based on the observed bandwidth. Since our evaluation is not concerned

with the dynamics of the swarming protocol, this approximation does not affect the

results. To be conservative, we fixed the overall ratio of bytes downloaded from peers

versus bytes downloaded from the infrastructure to 80%; based on our observations

93

0.00 %

0.05 %

0.10 %

0.15 %

0.20 %

0.25 %

0.30 %

NetSession-Base NetSession-RCA

O
v
e

rh
e

a
d

Logs uploaded to Infrastructure
Client-Infra: Hash, Seq#, NodeID
Client-Infra: Signature
Client-Infra: Protocol
Client-Peer: Hash, Seq#, NodeID
Client-Peer: Signature
Client-Peer: Swarming protocol

Figure 6.2: Network traffic overhead, normalized to the size of the downloaded
content. For each system, the figure shows the communication with the infrastructure
(left bar) and with peers (right bar).

from the trace, this will overestimate the overhead of our system.

6.5.3 Cost: Traffic

To quantify the additional bandwidth requirements of NetSession-RCA, we measured

a) the total number of bytes downloaded as actual payload by all clients, and b)

total number of bytes transmitted in the system. The difference between the two

numbers is an estimate of the bandwidth overhead of the system relative to the actual

payload bytes; it was 0.06% for NetSession-Base and 0.47% for NetSession-RCA. This

amounts to a 7.8-fold increase in bandwidth overhead for NetSession-RCA.

While the relative increase in overhead is substantial, it is important to note

that the absolute bandwidth requirement is still modest. The average per-peer

bandwidth requirement is only 192 KB/day for NetSession-RCA and 26 KB/day

for NetSession-Base. In return, NetSession-RCA provides much more fine-grained

and reliable information about peer behavior than NetSession-Base.

Figure 6.2 shows a more detailed breakdown of the results. Both NetSession-

RCA and NetSession-Base exchange some control messages with peers and with the

infrastructure; the corresponding amount of traffic is small and identical in both

systems. RCA adds an authenticator and an acknowledgment for each message. The

94

overhead is higher for the infrastructure traffic because the number of messages is

higher: in addition to the data blocks, this traffic also contains a number of small

control messages. Finally, clients must upload their logs to the infrastructure.

6.5.4 Cost: CPU

NetSession-RCA requires more client CPU than NetSession-Base, because it must

generate and verify the signatures in authenticators. Because NetSession is intended

to run in the background without inconveniencing the user, this additional compu-

tation must not consume more than a small fraction of the CPU.

To estimate the cost, we measured the number of signature generations and verifi-

cations performed by clients as part of the download activity. We then benchmarked

RSA-1024 signature generation and verification on a single core of an Intel Xeon

X5650 CPU, and we used these benchmarks to estimate the additional CPU load

that would be caused by these operations. The maximum additional CPU load over

all clients was never more than 0.5%.

6.5.5 Cost: Log storage and log upload

NetSession requires each client to maintain a log, and to periodically upload this log

to the control plane. However, NetSession-RCA’s log is considerably more detailed

because it keeps track of individual messages, whereas NetSession-Base’s log merely

records occasional download progress reports. In both cases, the exact size depends

on the client’s activity.

To quantify the amount of log data, we ran NetSession-Base and NetSession-

RCA with log uploading disabled; thus, each of 500 clients kept its entire 30-day

log on its local disk. We then examined the log sizes at the end of the experiment.

The average log size was 2.5 MB; the 5th and 95th percentiles were at 1.4 MB and

3.4 MB, respectively. The largest log was 86 MB. If we (conservatively) estimate the

95

 0

 20

 40

 60

 80

 100

 120

 140

Total Client-Infra Peer-peer

A
v
g

 l
o

g
 d

a
ta

 p
e

r
c
lie

n
t
p

e
r

d
a

y
 (

k
B

)

Other bookkeeping
Sequence numbers

Node IDs
Other hashes

Message headers
Block hashes

Authenticators

Figure 6.3: Average log size per client

average download activity per client at 1 GB per month, a larger deployment with

100 million GUIDs would generate about 1.8 TB of logs per day. This corresponds

to only 18 kB of logs per client per day.

Figure 6.3 provides a detailed breakdown of the log contents collected from the

clients. A comparison with Figure 6.2 shows that the log is considerably smaller

than a complete message trace; this is because a) the log contains only a hash of

each data block rather than the actual bytes (which are known to the infrastructure

anyway), and b) the log does not contain every single authenticator, but only the

most recent one for each client.

Each client periodically uploads its log to the control plane and then deletes the

entries once they have been acknowledged. Thus, the amount of storage that is

needed locally on each client depends on the upload interval. With daily uploads,

less than a MB of storage is required. Since every logged byte must eventually be up-

loaded, the amount of network traffic generated by the uploads is largely independent

of the upload interval.

6.5.6 Cost: Log processing

Once the logs have been uploaded, the infrastructure must perform the consistency

and plausibility checks described in Section 3.2. The required processing time de-

pends on what actions are recorded in each log, but we expect it to be correlated

96

Table 6.2: Statistical tests used with NetSession-RCA, along with the additional load
(#bytes served) they place on the infrastructure due to quarantined clients.

Which peers are quarantined? Parameters +Load

T1 IP has downloaded ą N1 k1 “20 1.00%
bytes during the last k1 days N1 “15.2G

T2 IP has been used by ą g2 k2 “ 1 0.57%
GUIDs during the last k2 days g2 “ 2

T3 GUID has downloaded ą N3 k3 “ 20 0.99%
bytes during the last k3 days N3 “10.4G

T4 GUID has downloaded ą N4 k4 “ 20 0.92%
files during the last k4 days N4 “ 140

T5 GUID failed to validate ą N5 k5 “ 1 1.00%
bytes during the last k5 days N5 “200K

Tests T1–T5 combined 2.81%

with the overall log size.

To estimate the overhead, we performed the consistency and invariant checks on

each of the logs produced by the clients. We measured the total processing time,

as well as the fraction of time spent on consistency and invariant checks. Since

we expect cryptographic operations to be a major factor, we separately measured

the time spent verifying signatures (recall that the infrastructure does not generate

signatures).

On average, about 0.78 MB’s worth of log data was processed per second on a

single CPU. 9% of the time was spent on consistency checking and 91% on invariant

checking; overall, signature verifications accounted for about 3% of the processing

time. Log processing can easily be parallelized, e.g., using MapReduce.

Based on these results, we estimate that a deployment with 100 million GUIDs

would require about 28 extra machines to process the logs. For comparison, NetSes-

sion’s current log processing system requires around 10 machines. Both estimates

assume that the machines are fully utilized; in practice, log processing is one of

several jobs that runs on a larger cluster.

97

6.5.7 Examples of statistical tests

Developing a full set of statistical tests for NetSession would require a detailed char-

acterization of its workload, which is beyond the scope of this chapter. However, we

use the set of simple tests in Table 6.2 to illustrate the general principle. These tests

are fully automated; they are designed to constrain clients who collude to overreport

uploads or deliver bad service to peers. We expect that more sophisticated tests will

be based on detailed workload characteristics, e.g., channel switching patterns (Cha

et al., 2008) or the clients’ response to the quarantine.

More aggressive tests reduce the amount of misbehavior an adversary can get

away with, but they also increase the load on the infrastructure due to false positives.

To give a rough impression of how aggressive our simple tests could be, we used the

12/2010 trace to determine, for each test, the set of parameters that a) causes at most

1% additional load on the infrastructure, and among those, the one that b) constrains

the adversary the most. These parameters, and the resulting load increases, are also

shown in Table 6.2. Note that a given client can trigger more than one test; hence,

the load increase from a set of tests is lower than the sum of the increases from the

individual tests.

6.5.8 Effectivity

As a sanity check for the NetSession-RCA implementation, we injected a set of sample

attacks. Specifically, we injected five inflation attacks and one corruption attack: In

blatant liars, one client uploaded a fabricated log claiming to have downloaded 1 TB.

In collusion, two clients continuously requested files and then reported that they had

downloaded them from each other, regardless of which clients the infrastructure

suggested. In flash mob, five clients joined the system simultaneously and rapidly

requested rare files, ‘faking’ downloads whenever the infrastructure paired up two

of them. In leechers, five clients joined the system simultaneously and downloaded

98

random files as quickly as possible. In Sybil attack, one client joined the system

with five GUIDs; the first GUID downloaded a rare file, and the others then tried

to download the same file from each other. Finally, in confused clients, one client

uploaded malformed log entries.

In all cases, the system behaved as expected. Logs from faulty clients were

discarded, clients with abnormal behavior were quarantined, and the uploads affected

by flash mob and Sybil attackers were effectively capped. In particular, blatant liars

and confused clients were caught by our consistency checks (Section 6.4.5), collusion

was detected by the plausibility checks (Section 6.4.6), flash mob was identified by

resource certificates (Section 6.4.3), and finally leechers and Sybil attack were flagged

by statistical checks (Section 6.4.7).

6.6 Conclusion

In this chapter, we have examined a fundamental challenge in commercial P2P-

infrastructure hybrids: how to reliably account for the actions of untrusted clients.

In current hybrid systems, malicious peers can report fictitious content downloads

and degrade the system’s quality of service. We described and evaluated RCA, a

system that leverages the unique characteristics of P2P-infrastructure hybrids to

limit the loss of accounting accuracy and service quality resulting from faulty or

malicious clients. RCA reliably discovers all misreporting and protocol violations by

individual clients, and it can automatically quarantine potentially colluding clients,

at a moderate cost in terms of bandwidth and load on the infrastructure.

99

7

CDN as Security Overlay Network

7.1 Introduction

Modern businesses are suffering from great revenue losses due to pervasive cyber

attacks such as distributed denial of service (DDoS), SQL injection, and cross site

scripting. Successful attacks could result in leakage of commercial secrets and clients’

privacy, unavailable or degradation of online services. These attacks are growing both

in size and scale. For example, Arbor Networks reported that the average size of a

DDoS has increased by 20% from a year ago to 1.77 Gbps in the first quarter of

2013 (Kerner, 2013).

Unfortunately, the Internet architecture is not inherently designed to offer any

defense against even the simplest forms of attack such as SYN-flooding. In response

to which, many researches have been done to mitigate attacks such as DDoS flooding.

These efforts can be roughly divided into three categories.

The first category try to detect and filter out bad traffic before links get congested.

For example, Ioannidis and Bellovin (2002) suggested a way to notify upstream

routers to drop attack packets in order to mitigate DDoS attacks as close to source as

100

possible. Liu et al. (2011) proposed an architecture where access routers are set aside

to listen on feedbacks from bottlenecked routers and police network traffic. However,

this approach requires router support and fundamental networking changes, and is

usually not powerful enough to withstand attacks that utilize large scale of botnets.

The second category require senders to obtain permissions before putting packets

onto networks (Machiraju et al., 2002; Yaar et al., 2004; Anderson et al., 2004;

Yang et al., 2005). Some of them are based on the proof-of-work paradigm and

rely on resource testing (Parno et al., 2007b). The problem with this approach is

its introduction of significant computational overhead on both clients and the origin

servers for doing cryptographies. Furthermore, it is usually too cost-inefficient for

individual content or service providers to afford the additional server and bandwidth

reserved to tackle with sudden burst of attacks.

The third approach, namely security overlay network, are proposed in order to

address the above concerns. The security overlay are infrastructures provided by

CDN that shield victim server from attackers. Bad traffic are filtered out by the

overlay nodes and not forwarded to the secret origin server being protected. This

approach greatly benefit from scale of economics, such as shared expertise and high

cost efficiency for individual businesses.

In this chapter, we conduct a close examination of the CDN security overlay

designs as a cyber attack combating mechanism. We show that the approach is a

better solution for business entities because it can offload attack traffic at the edge

and thus cloak the origin servers from the attackers. We further discuss extensions

to maximize benefits provided by this approach.

The remaining of this chapter is organized as follows: Section 7.2 lays out the

background and motivation for security overlays. Section 7.3 gives a description

of design goals and architecture of a typical security overlay network. Section 7.4

conducts a measurement study of an example system. Based on the design goals and

101

results of the study, two improvements to the system are proposed in Section 7.5.

Finally, we conclude the chapter in Section 7.6.

7.2 Background and Motivation

This section gives a case study of a series of real-world DoS attacks dubbed ”Op-

eration Ababil’ and how it affects the performance of CDN and origin servers. The

important role CDNs play in today’s Internet security and the motivation for an

”always-on” security overlay network are then discussed.

7.2.1 Operation Ababil

Operation Ababil is a sequence of Distributed Denial of Service (DDoS) attacks

towards various American financial institutions. Despite suspicion of Iran govern-

ment’s involvement, the cyber attacks are largely believed to be carried out by a

group named Qassam Cyber Fighters (QCF). The group has announced four waves

of attacks by the time this dissertation is written. This chapter focus on their security

natures rather than its economic consequences.

Regardless of phases, the majority of QCF’s attack traffic are initiated from

BroBot botnet, which consists of compromised WordPress and Joomla content man-

agement systems (CMS) and virtual private servers(VPS). Compared to vulnerable

home computers and other botnets, the BroBot attracts QCF group with its high

supply of vulnerable servers and availability of server bandwidth.

Phase 1 attacks was announced in September 2012 and ended approximately a

month later. The attacks target one bank per day usually on the main or search

pages of its website. UDP garbage flood of packets that contain large blocks of

repeating ‘A’s (0x41) are used to saturate Internal DNS servers of various CDNs and

financial organizations. The hacktivist group has also began to use HTTP dynamic

contents to circumvent static caching defenses in the late part of the first phase.

102

Starting from December 12th, 2012 and ending on January 29th, 2013, phase 2

of Operation Ababil is characterized by more extensive BroBot usage and cunning

firewall bypassing techniques. For example, query strings with valid argument names

and random values are added to evade filtering. Random query string are appended

to PDF file names of the victims’ websites to form an attack request. Also, burst

probes are employed to cheat rate-limiting controls. BroBot nodes are observed to

be sending high volume of attack traffic (up to 18 million requests per second) during

the short burst period and resume attack after a long dormancy of hours or even

days.

Phase 3 lasts from late February to mid May of 2013. Compared with previous

phases, this wave of attack are more focus on layer 7. During phase 4, which be-

gins in late July of 2013 and is still ongoing, more complex obfuscation has been

observed. Inside Botnet, more CMS vulnerability has been discovered and exploited;

fake plugins have been used to infect multiple files.

All phases of Operation Ababil have caused disrupted or degraded service of

multiple financial institutions such as Bank of America, Chase Bank and New York

Stock Exchange and have presented researchers with new challenges on Internet

security.

7.2.2 Perceived Impact on Akamai

CDNs served as the front line defense to many financial organization targeted by

QCF and witnessed the phase evolutions of Operation Ababil. We used data and

charts collected by Akamai during each phase of Operation Ababil to exemplify

CDNs’ perception of this attack series.

In the recent years, Akamai has observed rapid growth in both number and

scale of DoS attacks (Figure 7.1). The attacks are originating from all geographical

locations and a single attack can move between different geographies. A typical

103

Figure 7.1: Attacks on Akamai customers.

attack size is around 10 Gbps while large attack can consume a total bandwidth of

more than 100 Gbps.

Figure 7.2: DNS traffic handled by Akamai.

Figure 7.2 show the impact of a phase 1 attack on Akamai’s DNS servers back in

September 2012. The attack lasts for about 4.5 hours and traffic during peak hour

is 23 Gbps, nearly 10,000 time of normal traffic size. The attack packets are missing

valid DNS headers and stuffed with abnormally large payload (around 1400 bytes).

The packets are directed towards UDP port 53 paralleled SYN-flood against TCP

port 53 in order to disrupt normal DNS service.

An example of phase 2 attack successfully mitigated by Akamai is presented in

Figure 7.3 (Sitaraman et al., 2014). The website in concern was hit by an access rate

of 9000 pages/sec during the attack as compared to a normal rate of 50 pages/sec,

leaving a sudden spike in Akamai’s security monitor. Over 90% of the attackers’

104

(a) Traffic spike due to DDoS attack.

(b) Attack traffic filtered out by edge servers.

Figure 7.3: Phase 2 DDoS attack

requests were denied by firewall rules and not forwarded, saving the origin from the

significant surge of traffic.

On March 5, 2013 morning, Akamai faced one of the largest attack wave of phase

3 Ababil. Figure 7.4(a) is a real-time graph generated by Akamai security monitor,

which provide direct insight on the attack patterns and size. As can be seen from the

graph, the pear attack traffic is greater than 4 million requests/min, pouring 70 times

normal traffic volume in to the CDN’s edge servers. The assault lasted for around 20

minutes and more than 2000 agents are identified to have been participated, and 80%

of the agents were new IP addresses that had not participated in earlier campaigns.

The attack has been focused on PDF files with random query parameters, marketing

pages for new customers and login pages of many financial organization website.

Fortunately enough, the security overlay provided by Akamai immediately realize

105

(a) Traffic spike due to DDoS attack.

(b) Origin performance.

Figure 7.4: Phase 3 DDoS attack

Figure 7.5: Rate control on forward requests.

the attack by counting the number of forward request to origin server (Figure 7.5),

and 1700 new IP addresses are blacklisted without operator’s involvement because of

excessive forward requests. Most of the remaining attack traffic is blocked by various

custom rules. As a result, the traffic forwarded to origin server remained below 1%

of the link capacity; the origin availability stayed at 100% throughout the attack,

and its application performance was as fast as normal (response time around 2.5

seconds), as can be seen from Figure 7.4(b).

On July 31, 2013, Akamai successfully crushed another DDoS attempt as part of

Operation Ababil’s phase 4 plan(Figure 7.6). The attack are slightly more intensive

than the last example, with traffic size greater than 4.4 million requests/min. More

106

(a) Traffic spike due to DDoS attack.

(b) Origin performance.

Figure 7.6: Phase 4 DDoS attack

than 3000 bots are exploited. The attack targets many marketing webpages such

as “details.do” as well as the DNS infrastructures. The attack immediately trig-

gers alert of the live security monitor, at the attention of which Akamai promptly

exchanged intelligence with affected customers, harvested and blocked new bot IP

addresses upon approval from the customers. The result is zero negative availabil-

ity or performance impact on the customers’ origin server by the attack. Average

response time remains 2 seconds before, after and throughout the attack.

Figure 7.7: Observed probes employed by Operation Ababil.

The tactic of pre-attack reconnaissance employed by QCF described in Sec-

107

tion 7.2.1 has also been recognized in Akamai’s security monitor. As shown in Fig-

ure 7.7, the short burst high speed probes used by attackers to test vulnerability of

the site leaves several sharp peaks in the graph. If a site falters to the probes, QCF

announce that they will attack the financial institution and return later with a full

scale attack. If the site is resilient, they will move on and start probing others.

7.2.3 Lessons Learned

Operation Ababil and Akamai’s observation leave us with invaluable experience to

fight cyber attacks of new era. First of all, due to recent attack sizes, infrastructure

capacity build out is no not economical, and may not work any more, a cloud-based

security layer is critical.

Second, the burst speed of attacks has become too fast for reactive mitigation.

Besides, the burst probe example tells us that quick reaction and not exposing vul-

nerability can prevent site from larger scale of attacks from hacktivists. Therefore,

a proactive “always-on” defense is absolutely necessary.

Third, as Operation Ababil has evolved to focus more on layer 7 attack techniques,

network layer defenses along are no longer sufficient. It is important for firewalls

to have full visibility in to application layer request structure for accurate attack

identification. Besides, balcklisting known IP attackers is not enough and cloud-

based rate control needs to be established against layer 7 flooding attacks.

Fourth, evidence show that a majority of attack traffic are targeted towards login

pages of bank customers. It is a good practice to combine rate controls with request

validation strategies and edge validation offload.

Last but least, many of the assaults we observed so far are utilizing modified

query string to “break” CDNs’ caching and thus requiring CDNs to forward requests

to the origin. It is crucial for CDN to ignore query strings that attached to a static

resource.

108

7.3 System Design

To withstand challenges posed by modern cyber attacks such as the Operation Ababil

and follow security considerations summarized in Section 7.2.3, we present a typical

”always-on” defense solution that can be deployed on most of today’s CDN security

overlays.

7.3.1 Design Goals

The system is designed to provide the following functionalities:

1. Cloak origin servers from attackers and offload as much attack traffic from

them as possible.

2. Offer fine-grained, customer specific rate control ability.

3. Detect and deflect malicious application level traffic.

4. Provide ”always-on” protection and real-time defense, instead of analyzing for

attacks offline or taking mitigation measures after performance degradation has

been observed.

The first point sets the utter goal of the system. The second and third point

specifies the network and application layer protection the system must provide, re-

spectively. The last point suggests that the system must provide live service. Besides

the functional features above, the system must also meet the following operational

requirements by the content providers.

1. Flexibility to adjust defense policies per customer.

2. Ability to apply patches for new web site vulnerabilities.

109

In other words, the customers using the security product must have full control

and freedom to adjust and formulate security measures in accordance with conditions

specific to their own sites.

7.3.2 System Overview

The overlay network sit between end users and origin servers maintained by con-

tent providers to provide protection and offload attack traffic. Together with the

CDN’s account managers, a content provider can retrieve real-time security report

and control firewall policies through its management portal. Figure 7.8 illustrates

the high-level interaction between the security solution and different parties.

Figure 7.8: Overview of a security overlay solution.

To quickly filter out Internet noise and crude network layer attacks with minimum

CPU consumption, a simple firewall is configured on all edge servers as a first defense

line. The firewall acts on basic IP table rules and drops all traffic towards non-service

ports. It can mitigate attacks that do not target service ports such as 40 and 443.

SYN cookies (Bernstein, 1996) are also enabled on the edge servers to provide coarse

SYN flood protection.

In order to deter more advanced attack, another firewall is set up on the applica-

110

tion layer. Instructed by a predefined rule set, the firewall inspects various fields in

both HTTP requests to identify potential attacks before they are served. Customers

have two options for the CDN to handle HTTPS request. In the first option, the

CDN simply acts as a proxy and forward encrypted packets to the origin. the CDN

is working in limited mode in this option and perform only simple tasks such as rate

control and IP blacklisting. In the other option, the customer allow the CDN to hold

a private key for SSL encryption between the client and the edge server. The private

key does not need to be the same as the one held by the customer. With this option,

the firewall is able to provide full protect for HTTPS requests as well.

Rules are basic units in the firewall to define characteristics of an attack. Each

rule is a set of preconditions on request messages. For example, an SQL injection

(SQLi) rule could be defined as violated if quote marks are discovered in the argument

values of a query string. The precondition specified by a rate limiting rule could be

that the same IP address send more than 50 ordinary requests or 10 requests with

extremely large payload size within any 1 second’s period. Note that there could

be tens of rules used to define the same attack type (e.g., SQLi), and preconditions

used in different rules may overlap. A classification of rules adopted by the firewall

is described in Section 7.3.3.

Violation of a rule does not necessarily assures an attack, but adds suspicion

to the request in concern. Each rule is associated with an anomaly score and an

attack category such as SQLi, XSS, or protocol violation. Within each category, a

total score is obtained by summing up the anomaly scores of all violated rules. If

the total exceeds a predefined threshold, the request is then classified as an attack.

Otherwise, the request is simply logged for future reference and continue to be served

by the edge. Multiple thresholds are defined for different categories of attack and

their values are specified in the customer’s configuration file.

Once an attack is identified, an action needs to be taken against it. If the action

111

is to alert, the CDN server will not deny the request, but only generate an alert

and continue processing the HTTP request. If the action is to deny, the request will

simply be dropped, resulting in an HTTP 403 response.

In order to adopt security measures that best suit its site, each content provider

can supply a configuration file that defines a set of policies. A policy specifies rules

to be checked, criteria to define an attack and action to take once the attack is

identified. Attack definition criteria can take different forms. The customer can

define violation of certain rules as an attack disregarding the anomaly score. It can

also take advantage of score testing system and supply thresholds explained before.

For example, a customer can define attacks as requests that violate any rule described

in the configuration file. Alternatively, it can define them as requests that have more

than an SQLi score of 20 or a cross site scripting (XSS) score of 30.

A policy is mapped to target resources by policy matching conditions, which are

based on path, filename and file extension of the requested resource. This allows

content providers to have fine grained security control on different categories of their

contents, and complete flexibility to make policy adjustment and exceptions.

Besides the layer 3 and layer 7 firewalls, the security overlay can also include

some other features such as DNS infrastructure defense, and connectivity constraint

enforcer. The discussion about these components is beyond the scope of this disser-

tation.

7.3.3 Firewall Rules

A typical application firewall rule set maintained by the CDN are consisted of three

major components, namely the core rule set (CRS), rate control rules and custom

rules. The CRS covers a wide range of common attacks such as SQLi, XSS, Trojans

on top of:

Bad Robots: Requests generated by attack tools such as HULK, DirtJumper that

112

do not follow web crawling rules.

Protocol Anomalies: Empty or missing important fields such as Host, User-Agent

in HTTP header.

Protocol Violations: Requests inconsistent with HTTP protocol such as having

a body content with GET or HEAD method, not supplying Content-Length with

POST method.

HTTP Policy: Some customers may post special constraints on HTTP requests as

part of their site policy, such as not allowing accessing URL with certain extension,

forbidding certain HTTP method, or requiring HTTP/1.1.

Request Limits: Restriction on length and size argument names and values in the

query string.

Outbound: Information or source code leakage from the edge or origin server.

Miscellaneous: Unclassified attacks such as PHP code injection, Unix system com-

mand injection, HTTP response splitting attack.

Rate control rules perform two functions. First, it blocks requests from geogra-

phies where the customer provides no service. Second, it blacklist IP based on known

intelligence and rate limit policies. These rules are the main fighters against DDoS

attacks.

The custom rules are formulated by two sources. On one hand, the CDN’s security

group may consistently investigate newly emerged hack tools, recent attack attempts

and release hot fixes by laying out new custom rules as “virtual patches”. On the

other hand, customers are also able to formulate their private security rules specific

to their own site.

7.4 Measurement Study

In this section, we analyze the traffic blocked by an example implementation of

system described in Section 7.3 — Akamai’s “Web Application Firewall” (WAF).

113

The core rule set of WAF are developed on the base of ModSecurity’s CRS (Ristic,

2010) with adjustments and extensions.

7.4.1 Data Set

The data used for this study is taken from WAF logs in April 2014. Each log entry

is a record of client request that violates one or more WAF rules. Major information

stored in each entry include:

1. Timestamp.

2. Source IP, port and geolocation information.

3. Target customer and host name. The customer can be further mapped into

Akamai vertical and market segment, which are classification of content pro-

viders by their industries. Market segments are general industries such as media

& entertainment, commerce, and high tech, while Akamai vertical provides

finer grained division such as gaming, media, hotel & travel, automotive and

software. There are a total of 7 market segments and 21 Akamai verticals

touched by the data set.

4. HTTP headers such as User-Agent, HTTP Version, Referrer.

5. Rules violated. For each violated rule, the suspicious part of request is dumped.

A detailed violation reason is also provided such as “argument value contains

restricted string ’and’” or “IP 12.34.56.78 exceeds 38 message units/sec”.

On a typical day, around 30 million requests are blocked and each request triggers

1.5 rules on average. Table 7.1 shows a break down of rules triggered in each risk

1 Include protocol anomaly, protocol violation, HTTP policy and request limits.

2 Mainly custom rules.

114

Table 7.1: Number of WAF rules triggered during a day.

Rule category # Requests denied # Distinct IPs blocked
SQLi 428,274 73,003
XSS 35,013 15,424

Bad robots 70,116 520
Invalid HTTP1 1,787,654 642,032

Outbound 5,213,408 68,357
Rate limit 8,736,078 13,649

IP/Geo block 16,205,770 228,181
Others2 12,074,042 584,441

Total 30,489,702 1,468,913

group on April 30th, 2014. A request or a source IP can show up and thus be tallied

in different risk groups, resulting in a total smaller than the sum of all above rows.

According to a recent press release (WAFAccuracy, 2011), the WAF rules are able

to achieve an 96% accuracy based on MCC scoring, which is high enough to assume

that most requests recorded in our data set are real attacks.

During the study, we found that different rule category exhibits very distinct

characteristics. Due to space limitations, the rest of this section focuses on four of

the most popular attack types in today’s Internet: SQLi, XSS, bad robots, and rate

limit, the last of which is a good proxy for and therefore used interchangeably with

DDoS attacks in this chapter.

7.4.2 Noises

During this study, we manually inspected around 100 attack interception records to

verify the authenticity and nature of each attack. Different attack records can be

snapshots of the same wave of attack. The records we picked come from two sources:

1. Randomly sampled records from different rule categories.

2. Records pertaining to periods, customers or attack origins that demonstrate

unusual patterns (such as traffic burst period, content provider being persis-

115

tently attacked, etc.)

While the majority of records we investigated looks like illegitimate traffic, we

cannot confirm authenticity of many records due to lack of request message body

and understanding of its purpose. However, we are able to verify the part of the

log that does not constitutes attacks. We classify the non-attack records into the

following categories.

False positives: False positives are legitimate requests that are expected in a cus-

tomer’s website normal operation but mistakenly intercepted by WAF. Sometimes

they are results of paranoid or unsound rules. For example, there is a rule defining

“%0a” and “%0d” in HTTP header as hints for HTTP response splitting attack,

while these ASCII characters can be found in various types of normal cookies. As

another example, there is a customer who banned requests of any resources that

contain “.cookie” out of concern about XSS attacks. However, he did not realize his

website relies on “jquery.cookie.js”, a javascript of jQuery plugin. As a result, all

his end-users are blocked by WAF from accessing that file and thus unable to utilize

certain jQuery features.

Other times false positives can be caused by situations specific to certain web

pages. For example, we discovered that an ASP webpage of a customer has been

alarmed as an XSS attack target by a large number of origins with unusual frequency.

The WAF log reported that the request bodies contain various keywords such as

“substring”, “alert”, “javascript” that are highly correlated with XSS attacks. A

closer examination of the ASP page reveals that the dynamic web page is actually

deployed by the customer to collect bugs on their website and the users are submitting

faulting javascripts. Not surprisingly, without knowledge about the ASP’s use cases,

WAF thinks the clients are uploading scripts to compromise another website and

prevented these “malicious” attempts without hesitation. The poor customer never

116

had a chance to receive the bug report and thus fixing faulty web pages.

Akamai keeps tracing and fixing false positives by loosing unnecessary rule con-

ditions or setting up policy exceptions for specific customers.

Customer misconfiguration: Customer misconfiguration are caused by buggy

codes or faulty website configuration on the content provider’s side. For example, we

observed that a vast number of source IPs are requesting a web page containing query

strings whose values recursively refer to the URL itself. The requests are classified as

XSS attempts and blocked byWAF. However, it is not caused by malicious clients but

rather by a javascript bug on the customer’s website which generates the recursive

URL. It is appropriate for Akamai to block these malformed requests but blacklisting

source IPs are not necessary.

Crawler activities: Despite Akamai’s efforts to let through certain well-known

legitimate web crawler, we are still able to see a considerable number of their activities

in the WAF log, most in the bad robots category. By reverse DNS the source IPs,

we are able to compile a list of index spiders. On the top of list is Google, followed

by a few telecommunication companies.

7.4.3 Repeated Attackers

We first investigate how patient attackers are. In order to answer this question, we

picked a two-week period and stores all IP address that appear in the source field

for each during the first day. Starting from the second day, we count the number of

source IPs that appeared the day before and the number of IPs that are ever seen in

the previous days. The measurement study is done for each separate rule category.

Because the graphs of different categories are similar, we only show our results for

SQLi in Figure 7.9.

The figure shows that there is a considerable amount of attackers who participated

in more than a day’s assault. The percentage of attackers that has ever seen before

117

Figure 7.9: Repeated SQLi attackers during two weeks. One bar stands in front
of the other.

converges at around 50% as more days are measured. This supports the effectiveness

of IP blacklisting even with the advancement of cyber attack techniques today. The

number of IPs that participate in two consecutive day’s attacks floats around 20%

of total IP address population.

7.4.4 Attack Pervasiveness

One interesting aspect of attacks that we have special advantage to learn from a

CDN’s perspective is their outreach and pervasiveness. To partly alleviate DHCP

effect, we aggregate user’s IP address into /24 subnets. The subnets are then sorted

by the number of customer accounts they attacked during a day and presented in

Figure 7.10.

As can be seen from the graph, the number of targeted accounts varies across

different rule categories. Each bad robots attack targets a wide range of customers

probed by the attacker, which is expected by its definition. The SQLi category

characterized by a few attacks extensively exploring vulnerability on the Internet

and the majority concentrated on a single site. DDoS and XSS attacks are similar

in their dedication to paralyze very few victims.

118

(a) SQLi (b) XSS

(c) Bad robots (d) DDoS

Figure 7.10: Number of targeted customers per /24 subnet

It is also worth noticing from the graph that regardless of extensiveness of attacks

from the same subnet, they are usually directed towards the same industry. This

means a customer can potentially gain extra protection value from CDN by raising

site security level when it is alerted of attacks towards its peers.

7.4.5 Attack Origins

Another interesting fact one might be interested to learn is the other way around,

i.e. how many machines or botnets are involved in an attack towards a single site.

Lacking more supporting evidence to distinguish attacks waged by different entities,

we make a crude assumption that all malicious requests towards the same customer

during a 60-minute window are originated from the same attacker.

Under this over-simplistic assumption, we counted the maximum number of dif-

ferent origin IP addresses and /24 subnets observed for each customer during a day.

119

Figure 7.11 shows all customers affected by each of the four rule categories, ranked

by number of sources tallied in the above mentioned way.

(a) SQLi (b) XSS

(c) Bad robots (d) DDoS

Figure 7.11: Number of maximum hourly attack sources for each customer. Note
that the vertical axis is in log scale except for bad robots category.

Reading from the graph, each rule category have some customer targeted by a

vast number of machines during the peak hour. Top customers from both SQLi and

DDoS categories have received attacks from more than 1000 IP addresses during

an hour. However, there are still around half of the customers in each category face

attacks from no more than one IP addresses each hour, suggesting distributed attacks

do not dominate all attack traffic. Last but not least, it is observed that bad robot

attacks usually utilize multiple machines within the same subnet, probably due to

web crawling activity from the same data center.

120

7.4.6 Attack Size

In Figure 7.12, we tallied all attack requests in each 10-minute window during a day.

We present three overlapping bars to denote the number of new IPs, total number of

IPs and number of requests inside each window. New IPs are defined as IP addresses

that involve in the attack during the time window, but have never been seen before

during the day. The total traffic, including both good requests and the ones blocked

by WAF, are also provided in the graph as a reference curve.

(a) SQLi (b) XSS

(c) Bad robots (d) DDoS

Figure 7.12: Attack volume during a day.

By its nature and definition, DDoS attack are characterized by huge traffic origi-

nating from each source. To the opposite is XSS, where each IP address only makes

one attempt during 10 minutes’ period. It is also noticed that SQLi attack has

the most IP addresses involved, with each making around 5 attack attempts before

quiting.

121

The figure also suggests that attacks from same IP usually last less than 10

minutes, as the “new IPs” bars almost overlap the “IPs” bars. The only exception

is bad robots, where an IP blocked by WAF can come back later in the day. DDoS

attacks somewhat stand between the two, with the majority IP addresses seen in

each time window being new ones and minor revisiting source IPs.

7.5 Discussion

Based on the conclusion from our observation of Operation Ababil and measurement

study of WAF, this section discusses potential real-time attack mitigation strategies

that could be incorporated into CDN security overlays.

7.5.1 Authentication Data Pre-Screening

One of the lessons we learned in Section 7.2.3 is that rate controls needs to be com-

plemented by request validation strategies edge validation offload in order to combat

the tendency of attack focus on various customers’ login pages. The validation pro-

vided by firewalls so far are mostly upon traffic patterns. Very loose rate limiting

can be applied in fear of blocking good clients. Therefore, a smart attacker can issue

moderate amount of legitimate login requests with randomly guessed user names and

passwords from a vast botnet to penetrate the CDN’s shield and overload the origin

server’s bandwidth and computation resource.

Pre-screening of authentication data from CDN’s side comes with no trivial so-

lution due to two major constraints. On one hand, according to some CDN insiders,

most banks do not wish to impose any efforts on their clients during the whole

authentication process. Challenge-response test systems such as CAPTCHA will de-

teriorate user experience. Proof-of-work schemes such as speak-up (Walfish et al.,

2006) and Portcullis (Parno et al., 2007b) may cause public discomfort about us-

ing the bank’s service, when their competitors do not require this significant extra

122

consumption of end users’ hardware resource. On the other hand, customers are

cautious about potentially revealing their clients’ credentials or commercial secrets,

and therefore reluctant to share their private key or user database with the CDN.

In response to these requirements, we propose here a method for CDN to inspect

authentication information in the login requests and offload unauthorized ones from

the origin server. The scheme works for both HTTP and the second connection

establishment model of HTTPS as discussed in Section 7.3.2, where the CDN uses

its own private key to establish a secure connection with the end user and can see

any message communicated between the two parties.

In order to anonymize user credentials from CDN, a javascript is embedded in

the login web page to encrypt authentication data with the bank’s public key us-

ing asymmetric cryptography such as RSA, before submitting the request. In the

meanwhile, the bank provides CDN with a list of all possible cipher texts that could

contain legitimate identities. The list can be exchanged on a daily basis is not re-

quired to be up-to-date all the time. When the CDN receives the request, it performs

an integrity check as the system described in Section 7.3.2 currently performs. Mal-

formed requests are directly dropped. The cipher text is then matched against the

list compiled by the bank as the pre-authentication step. If a match is found, the

request is forwarded to the origin for actual authentication. Otherwise, the request

will be dropped to a low priority channel with other requests who failed the cipher

text check, which is under stringent rate limiting control.

When the request arrives at the origin server, the bank decrypts the data and

attaches an authentication token to the cookie if the credentials are valid. If the

previous pre-authentication is a failure and the CDN sees the authentication cookie,

it will add the cipher text onto the list. Once a user holds the authentication token,

he can freely communicate with the site with a loose rate limiting policy by the CDN.

If the result is negative, the bank respond with an authentication failure. The CDN

123

will also be able to see the response and remove the credentials’ cipher text from the

list if the pre-authentication is a success.

7.5.2 Client Reputation Accounting

As suggested in Section 7.4.3, a considerable percentage attackers will reappear days

whether they are successful or not. The case study in Section 7.2.1 also showed the

tendency of hacktivists to partition their attack activities with intervals of dorman-

cies.

While IP blacklisting is effective against certain repeated attackers, CDNs have

to use this tool with extreme caution and only in the case of absolute certainty.

Permanently blocking an innocent IP addresses by accident means unavailability

and lose of a customer for the content provider. On the other hand, if an attacker

has successfully caused performance degradation on the edge or origin server but left

uncaught, even if the rate limiting control and various WAF rules comes into play

and block the source temporarily, he may come back after a long period dormancy

and inflict the same damage again.

These observations and concerns motivate a design of system to keep track of

misbehaving end users. The design proposed here are based on the existing client

reputation studies and functions in a way similar to FortiGate (2013). Both IP ad-

dress and device fingerprinting can be used as client identity. A separate profile

is maintained for each suspicious end user. We define certain types of attack con-

texts such as bots, DDoS’ers, and scanners. Each violation contribute penalty scores

towards one or more such categories in the client’s profile according to the configu-

ration file and based on the rules triggered. The score testing system described in

Section 7.3.2 will also help decide the penalty points accrued.

Besides the above mentioned sources, some observations during our manual in-

spection of WAF data set will also help decide likelihood of a real attacker. For

124

example, we noticed that the same person triggering a rule many times with differ-

ent payloads has a high chance to be a real attacker; and if the he targets multiple

sites, the chance is even higher. As another example, sending PHP pages to a site

that does not run PHP at all is a clear clue of an attack.

After accumulating knowledge about a client based on his behaviors, a more

complete picture is formed on his profile. The CDN and content providers can then

make informed decisions and impose more appropriate policies on the client based

on his intent and evilness exhibited from the profile.

7.5.3 Security Analysis

We start with analyzing security properties with design in Section 7.5.1. In order

for attackers to penetrate edge server and reach origin server, the attacker need to

included encrypted credentials in the login request to pass integrity check; otherwise

the package is dropped by WAF.

If the attacker does have an account with the protected customer, either by

stealing or legally obtaining it, any anomalies in the future can be associated with

the account, which is then at the bank’s disposal. Moreover, the attacker will not be

take advantage of multiple botnet nodes to saturate origin server’s capacity because

simultaneous login into the same account from multiple location is correlated with

identity theft and will likely cause freezing of the account, preventing further requests

from getting through freely.

If the attack does not have a valid account, the request will arrive origin at the

rate specified by the rate limiting policy of the low priority channel, which is supposed

to be set too low to make any observable impact on origin’s performance.

We now discuss the case where the list of credentials held by the CDN is slightly

out-of-date. There are two types of anomalies that can happen. First, a credentials’

entry can be in the CDN’s list but not in the bank’s. This can only be cause by

125

the bank’s modifying or deleting an account. In the first case, the bank will still be

able to trace down the misbehaving account as long as it maintains a history. Under

both circumstances, the bank will issue an authentication failure in the response, at

the notice of which CDN will remove the corresponding entry and further visit with

those credentials will be put on rate limit. Second, an entry can be in the bank’s

database but no the CDN’s. In this case, the account is valid and should not be

on rate limit channel in the future. This is realized by CDN’s observation of the

authentication token, which is issued by the bank upon successful authentication.

Throughout the whole process, the CDN only sees credentials encrypted creden-

tials by an asymmetric public key, the authentication tokens and the failure notice.

The authentication result is not a privacy for the bank as long as the CDN cannot

figure out the credentials. The irreversibility of client credentials and the bank’s pri-

vate key from cipher texts the CDN sees is guaranteed by proper choose of encryption

algorithm and the property of asymmetric cryptography.

Next, we prove the viability of the client reputation accounting system. The

score used by the system is in its essence an evaluation of the accumulated damage a

client has attempted to inflict the edge and the origin server with, be it done during

a single-shot burst, steady attack over time, or probes interspersed with dormant

periods as in Operation Ababil. Therefore, the hacktivist cannot hide his intent by

maneuvering the timing of his attacks. He can neither manipulate the attack strength

of each attack such as splitting sensitive query strings into two requests to explore the

vulnerability of a site without exceeding the sensitivity threshold currently defined

by WAF, because the two scores are still credited towards his profile despite they

are not classified as attacks individually. The only exploit that would succeed is

assaults that do not trigger any existing rules or have undervalued scores compared

with actual damage they cause, which is technically difficult and will diminish with

the everlasting adjustment and improvement of rules.

126

7.6 Conclusion

In this chapter, we have studied Operation Ababil, a most recent large-scale attack

series towards financial institutions, and its impact on Akamai CDN. Our observation

show that the CDN is able to offload the majority of attack traffic during each phase

of the attack series and leave origin servers’ availability and performance untouched.

We then follow up with a design of general security overlay solution to shield content

providers.

Our study of four popular attacks recorded by a commercial CDN firewall product

shows that attackers have a tendency to revisit a site even if his first attempts are

blocked. We noticed several unique attack patterns between different attack types.

Based on these insights, we presented two components to enhance the existing CDN

security mechanisms and keep DDoS traffic further away from origin servers.

127

8

Conclusion

In this dissertation, we have approached content delivery, one of the most important

component of today’s Internet, from three qualitative angles, namely its efficiency,

reliability and security.

We first investigates three means to improve content delivery’s cost efficiency. The

first way is through hybrid CDN. We examined a large commercial hybrid CDN and

show how such architectures can achieve better performance with the same amount

bandwidth consumption of infrastructure, by offloading high percentage of traffic to

the peers. We also cleared a previous concern about hybrid architectures’ impact on

inter-ISP traffic by showing that the cross AS traffic is balanced even with hybrid

CDN.

The second way to achieve more efficient content delivery is through CDN-ISP

collaboration, which enables in-network server allocation and informed user-server

assignment. We argued that most of the existing content delivery architectures can

benefit from these two capabilities offered by CDN-ISP collaboration.

The third way to efficient content delivery is the concept of information-centric

network. We summarized the main benefits of ICN as well as its fatal weakness —

128

the requirement of significant network change. By close examination and trace-based

simulation, we discovered that the benefits claimed by many ICN architectures can

still be achieved without going through the proposed major change to network. Espe-

cially, pervasive caching and nearest-replica routing are not fundamentally necessary.

We then turned to reliability problems introduced by the above emerging con-

tent delivery trends. We used an actual attack to demonstrate potential severity

of accounting reliability problems in hybrid CDNs. We then suggested peer review

based system to address these challenges. Our evaluation show that the system can

discover all peer misbehaviors in a hybrid CDN with moderate overhead.

Finally, we studied the security challenges faced by today’s Internet and how

CDN can mitigate overwhelmingly large attack traffic before it reaches origin. We

start by presenting a CDN’s perception of a famous DDoS attack series and show

the importance of an ”always-on” security overlay. We then conduct a measurement

study of a commercial security solution deployed on overlay networks and proposed

two enhancement schemes based on the results of measurement study.

129

Appendix A

Pseudo-Code for Tamper Evident Log

1: pso,pro,psi,pri : set Ź Previous hash value

2: pending : vector of list of (seq, msg) Ź Pending msgs

3: sendqueue : vector of list of msg Ź Send queue

4: lsa,lra : vector of (seq, hash, sig) Ź Authenticators from clients

5: log : list of (h, s, t, c) Ź Log

6: top-hash : hash Ź Current top of the hash chain

7: top-seq: int Ź Most recent sequence number

8: function log-append(t, c)

9: (top-seq, save) Ð (top-seq + 1,top-hash)

10: top-hash Ð H(save || top-seq || t || c)

11: log Ð log + (top-hash, top-seq, t, c)

12: return (save, top-hash, top-seq)

13: function send(m, i, j)

14: sendqueue[j].append(m)

15: maybe-send-next(j)

16: function maybe-send-next(j)

17: if not sendqueue[j].empty and |pending[j]| ămax then

18: m Ð sendqueue[j].first

130

19: (h,pso[j],s) Ð log-append(send, j ||m ||pso[j])

20: net-send(j, send ||m ||h || s ||σi(s ||pso[j]))

21: pending.append(s, m)

22: function recv(m, i, j)

23: if m is send || x ||h1 || s || sig then

24: h Ð H(h1 || s || send || x ||pso[j])

25: if valig-sig(sig, seq ||h, j) then

26: (lra[j], psi[j]) Ð ((seq ||h || sig), h)

27: (h2,pro[j],s2)Ðlog-append(recv,j || x ||pro[i])

28: net-send(j, ack || s || s2 ||h2 ||σi(s2 ||pro[j]))

29: else if m is ack || s || s2 ||h3 || sig3 then

30: if Dmout: pending.first is (s,mout) then

31: h Ð H(h3 || s2 ||recv || i ||mout ||pri[j])

32: if validsig(sig3, s2 ||h || sig3) then

33: (lsa[j],pri[j]) Ð ((s2, h, sig3), h)

34: pending.remove(s, mout)

35: maybe-send-next(j)

131

Bibliography

Aditya, P., Zhao, M., Lin, Y., Haeberlen, A., Druschel, P., Maggs, B., and Wishon,
B. (2012), “Reliable client accounting for hybrid content-distribution networks,” .

Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R., Douceur, J. R.,
Howell, J., Lorch, J. R., Theimer, M., and Wattenhofer, R. P. (2002), “FARSITE:
Federated, Available, and Reliable Storage for an Incompletely Trusted Environ-
ment,” in Proc. OSDI.

Agarwal, S. and Lorch, J. R. (2009), “Matchmaking for online games and other
latency-sensitive P2P systems,” in Proc. SIGCOMM.

Ager, B., Mühlbauer, W., Smaragdakis, G., and Uhlig, S. (2011), “Web Content
Cartography,” in IMC.

Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., and Willinger, W. (2012),
“Anatomy of a Large European IXP,” in SIGCOMM.

Ahlgren, B., D’Ambrosio, M., Dannewitz, C., Eriksson, A., Golić, J., Grönvall, B.,
Horne, D., Lindgren, A., Mämmelä, O., Marchisio, M., Mäkelä, J., Nechifor, S.,
Ohlman, B., Pentikousis, K., Randriamasy, S., Rautio, T., Renault, E., Seitten-
ranta, P., Strandberg, O., Tarnauca, B., Vercellone, V., and Zeghlache, D. (2010),
“Second NetInf Architecture Description,” http://www.4ward-project.eu/.

Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., and Ohlman, B. (2012),
“A survey of information-centric networking,” Communications Magazine, IEEE,
50, 26 –36.

Akamai (2014), “Facts & Figures,” http://www.akamai.com/html/about/facts_

figures.html.

Anderson, T., Roscoe, T., and Wetherall, D. (2004), “Preventing Internet denial-
of-service with capabilities,” ACM SIGCOMM Computer Communication Review,
34, 39–44.

Antoniades, D., Markatos, E., and Dovrolis, C. (2009), “One-click Hosting Services:
A File-Sharing Hideout,” in IMC.

132

http://www.4ward-project.eu/
http://www.akamai.com/html/about/facts_figures.html
http://www.akamai.com/html/about/facts_figures.html

Aranda, P. A., Zitterbart, M., Boudjemil, Z., Ghader, M., Garcia, G. H., Johnsson,
M., Karouia, A., Lazar, G., Majanen, M., Mannersalo, P., Martin, D., Nguyen,
M. T., Sanchez, S. P., Phelan, P., Ponce de Leon, M., Schultz, G., Sllner, M.,
Zaki, Y., and Zhao, L. (2010), “Final Architectural Framework,” http://www.

4ward-project.eu/.

Arianfar, S., Koponen, T., Raghavan, B., and Shenker, S. (2011), “On preserv-
ing privacy in content-oriented networks,” in Proceedings of the ACM SIGCOMM
workshop on Information-centric networking, ICN ’11, pp. 19–24.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee,
G., Patterson, D. A., Rabkin, A., Stoica, I., and Zaharia, M. (2009), “Above the
Clouds: A Berkeley View of Cloud Computing,” UC Berkeley Technical Report
EECS-2009-28.

Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and Tygar, J. D. (2006), “Can
machine learning be secure?” in Proc. AsiaCCS.

Bazzi, R. A. and Konjevod, G. (2005), “On the establishment of distinct identities
in overlay networks,” in PODC, pp. 312–320.

Beaver, D., Kumar, S., Li, H. C., Sobel, J., Vajgel, P., and Inc, F. (2010), “Finding
a Needle in Haystack: Facebook’s Photo Storage,” in In Proc. of OSDI.

Bernstein, D. J. (1996), “SYN cookies,” .

Bhagwan, R., Savage, S., and Voelker, G. M. (2003), “Understanding Availability,”
in Proc. IPTPS.

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. (1999), “Web caching and
Zipf-like distributions: evidence and implications,” in INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE.

CCNIndustry (2012), “Emerging Network Consortium Brings Industries To-
gether to Innovate with Content-Centric Networking (CCN),” http://www.

mach.com/en/News-Events/Press-Room/Press-Releases/Emerging-Network-

Consortium-Brings-Industries-Together-to-Innovate-with-Content-

Centric-Networking-CCN.

Cha, M., Rodriguez, P., Crowcroft, J., Moon, S., and Amatriain, X. (2008), “Watch-
ing television over an IP network,” in Proc. IMC.

Chan-Tin, E., Feldman, D., Kim, Y., and Hopper, N. (2009), “The Frog-Boiling
Attack: Limitations of Anomaly Detection for Secure Network Coordinates,” in
Proc. SecureComm.

133

http://www.4ward-project.eu/
http://www.4ward-project.eu/
http://www.mach.com/en/News-Events/Press-Room/Press-Releases/Emerging-Network-
http://www.mach.com/en/News-Events/Press-Room/Press-Releases/Emerging-Network-
Consortium-Brings-Industries-Together-to-Innovate-with-Content-
Centric-Networking-CCN

Chandola, V., Banerjee, A., and Kumar, V. (2009), “Anomaly detection: A survey,”
ACM Comput. Surv., 41, 15:1–15:58.

Cleary, J., Donnelly, S., Graham, I., McGregor, A., and Pearson, M. (2000), “Design
Principles for Accurate Passive Measurement,” in pam.

Cohen, B. (2003), “Incentives Build Robustness in BitTorrent,” in P2PEcon Work-
shop.

Denning, D. E. (1987), “An intrusion-detection model,” IEEE Trans. on Software
Engineering, 13, 222–232.

Dhungel, P., Ross, K. W., Steiner, M., Tian, Y., and Hei, X. (2012), “Xunlei: Peer-
Assisted Download Acceleration on a Massive Scale,” in PAM.

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. (2002),
“Globally Distributed Content Delivery,” IEEE Internet Computing, 6, 50–58.

DiPalantino, D. and Johari, R. (2009), “Traffic Engineering versus Content Distri-
bution: A Game-theoretic Perspective,” in INFOCOM.

Dischinger, M., Haeberlen, A., Gummadi, K. P., and Saroiu, S. (2007), “Character-
izing Residential Broadband Networks,” in Proc. IMC.

Dobrian, F., Awan, A., Stoica, I., Sekar, V., Ganjam, A., Joseph, D., Zhan, J., and
Zhang, H. (2011), “Understanding the Impact of Video Quality on User Engage-
ment,” in SIGCOMM.

Douceur, J. R. (2002), “The Sybil Attack,” in Proc. IPTPS.

Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B.,
Ng, K., Sekar, V., and Shenker, S. (2013), “Less pain, most of the gain: incremen-
tally deployable ICN,” in Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pp. 147–158, ACM.

FortiGate (2013), “Monitoring your network using client reputation,”
http://docs.fortinet.com/d/fortigate-monitoring-your-network-using-client-
reputation.

Fotiou, N., Nikander, P., Trossen, D., and Polyzos, G. C. (2010), “Developing Infor-
mation Networking Further: From PSIRP to PURSUIT,” in BROADNETS, pp.
1–13.

Frank, B., Poese, I., Smaragdakis, G., Uhlig, S., and Feldmann, A. (2012), “Content-
aware Traffic Engineering,” CoRR, abs/1202.1464.

Freedman, M. J. (2010), “Experiences with CoralCDN: A Five-Year Operational
View,” in Proc. NSDI.

134

Freedman, M. J. and Morris, R. (2002), “Tarzan: a peer-to-peer anonymizing net-
work layer,” in Proc. ACM CCS.

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D. (2003), “Terra: A
Virtual Machine-Based Platform for Trusted Computing,” in Proc. SOSP.

Gasti, P., Tsudik, G., Uzun, E., and Zhang, L. (2012), “DoS and DDoS in Named-
Data Networking,” CoRR, abs/1208.0952.

Gerber, A. and Doverspike, R. (2011), “Traffic Types and Growth in Backbone
Networks,” in OFC/NFOEC.

Ghodsi, A., Shenker, S., Koponen, T., Singla, A., Raghavan, B., and Wilcox, J.
(2011), “Information-centric networking: seeing the forest for the trees,” in Pro-
ceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pp.
1:1–1:6.

Gill, P., Arlitt, M., Li, Z., and Mahanti, A. (2007), “YouTube Traffic Characteriza-
tion: A View From the Edge, IMC,” in In: Proc. of IMC.

Goldenberg, D., Qiuy, L., Xie, H., Yang, Y., and Zhang, Y. (2004), “Optimizing
Cost and Performance for Multihoming,” in SIGCOMM.

Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., and Zhang, X. (2005), “Measurements,
Analysis, and Modeling of BitTorrent-like Systems,” in Proc. IMC.

Haeberlen, A., Kuznetsov, P., and Druschel, P. (2007), “PeerReview: Practical Ac-
countability for Distributed Systems,” in SOSP.

Huang, C., Li, J., Wang, A., and Ross, K. W. (2008a), “Understanding Hybrid
CDN-P2P: Why Limelight Needs its Own Red Swoosh,” in NOSSDAV.

Huang, C., Wang, A., Li, J., and Ross, K. W. (2008b), “Understanding hybrid CDN-
P2P: why Limelight needs its own Red Swoosh,” in Proc. NOSSDAV.

Inc., S. (2011), “Global Broadband Phenomena,” Research Report http://www.

sandvine.com/news/global_broadband_trends.asp.

Ioannidis, J. and Bellovin, S. M. (2002), “Implementing pushback: Router-based
defense against DDoS attacks,” .

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., and
Braynard, R. L. (2009), “Networking named content,” in Proceedings of the 5th
international conference on Emerging networking experiments and technologies,
CoNEXT ’09, pp. 1–12.

135

http://www.sandvine.com/news/global_broadband_trends.asp
http://www.sandvine.com/news/global_broadband_trends.asp

Jacobson, V., Thornton, J. D., Smetters, D. K., Zhang, B., Tsudik, G., claffy,
k., Krioukov, D., Massey, D., Papadopoulos, C., Abdelzaher, T., Wang, L.,
Crowley, P., and Yeh, E. (2010), “Named Data Networking (NDN) Project,”
http://named-data.net/techreport/TR001ndn-proj.pdf.

Jiang, W., Zhang-Shen, R., Rexford, J., and Chiang, M. (2009a), “Cooperative Con-
tent Distribution and Traffic Engineering in an ISP Network,” in SIGMETRICS.

Jiang, W., Zhang-Shen, R., Rexford, J., and Chiang, M. (2009b), “Cooperative
content distribution and traffic engineering in an ISP network,” in Proceedings
of the eleventh international joint conference on Measurement and modeling of
computer systems, SIGMETRICS ’09.

Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., and Nikander, P.
(2009), “LIPSIN: line speed publish/subscribe inter-networking,” in SIGCOMM
’09, pp. 195–206.

Karagiannis, T., Rodriguez, P., and Papagiannaki, K. (2005), “Should Internet ser-
vice providers fear peer-assisted content distribution?” in Proc. IMC.

Kerner, S. M. (2013), “DDoS Attacks: Growing, but How Much?” .

Kohavi, R., Henne, R. M., and Sommerfield, D. (2007), “Practical Guide to Con-
trolled Experiments on the Web: Listen to Your Customers not to the HiPPO,”
in KDD.

Krishnan, R., Madhyastha, H., Srinivasan, S., Jain, S., Krishnamurthy, A., Ander-
son, T., and Gao, J. (2009), “Moving Beyond End-to-end Path Information to
Optimize CDN Performance,” in IMC.

Labovitz, C., Lekel-Johnson, S., McPherson, D., Oberheide, J., and Jahanian, F.
(2010), “Internet Inter-Domain Traffic,” in SIGCOMM.

Laoutaris, N., Smaragdakis, G., Rodriguez, P., and Sundaram, R. (2009), “Delay
Tolerant Bulk Data Transfers on the Internet,” in SIGMETRICS.

Laoutaris, N., Sirivianos, M., Yang, X., and Rodriguez, P. (2011), “Inter-Datacenter
Bulk transfers with NetStitcher,” in SIGCOMM.

Leighton, T. (2009), “Improving Performance on the Internet,” CACM, 52, 44–51.

Lewin, D. M., Maggs, B., and Kloninger, J. J. (2006), “Internet Content Delivery
Service with Third Party Cache Interface Support. U.S. Patent Number 7,010,578,”
.

Li, L., Xu, X., Wang, J., and Hao, Z. (2013), “Information-Centric Network in an
ISP,” http://tools.ietf.org/html/draft-li-icnrg-icn-isp-01.

136

http://named-data.net/techreport/TR001ndn-proj.pdf
http://tools.ietf.org/html/draft-li-icnrg-icn-isp-01

Liu, H. H., Wang, Y., Yang, Y., Wang, H., and Tian, C. (2012), “Optimizing Cost
and Performance for Content Multihoming,” in SIGCOMM.

Liu, X., Yang, X., and Xia, Y. (2011), “NetFence: preventing internet denial of
service from inside out,” ACM SIGCOMM Computer Communication Review, 41,
255–266.

Lu, Z., Wang, Y., and Yang, Y. R. (2012), “An Analysis and Comparison of CDN-
P2P-hybrid Content Delivery System and Model,” JCM, 7, 232–245.

Machiraju, S., Seshadri, M., and Stoica, I. (2002), “A scalable and robust solution
for bandwidth allocation,” in Quality of Service, 2002. Tenth IEEE International
Workshop on, pp. 148–157, IEEE.

Mackay, W. E. (1991), “Triggers and barriers to customizing software,” in Proc. CHI.

Maier, G., Feldmann, A., Paxson, V., and Allman, M. (2009), “On Dominant Char-
acteristics of Residential Broadband Internet Traffic,” in IMC.

Margolin, N. B. and Levine, B. N. (2008), “Financial Cryptography and Data Secu-
rity; Chapter ”Quantifying Resistance to the Sybil Attack”,” Springer-Verlag.

McQuillan, J. M. and Walden, D. C. (1977), “The ARPA network design decisions,”
Computer Networks (1976), 1, 243–289.

Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., and Borisov, N. (2010), “Bot-
Grep: finding P2P bots with structured graph analysis,” in Proceedings of the
19th USENIX conference on Security.

Networking, C. G. V. and Index., C. (2013), “Forecast and Methodology, 2012-2017.”
http://www.cisco.com.

Nordstrom, E., Shue, D., Gopalan, P., Kiefer, R., Arye, M., Ko, S., Rexford, J.,
, and Freedman, M. J. (2012), “Serval: An End-Host Stack for Service-Centric
Networking,” in Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, NSDI’12.

Nygren, E., Sitaraman, R. K., and Sun, J. (2010), “The Akamai Network: A Platform
for High-performance Internet Applications,” SIGOPS Oper. Syst. Rev., 44.

OCN (2012), “Announcing the Netflix Open Connect Network,” http://blog.

netflix.com/2012/06/announcing-netflix-open-connect-network.html.

Otto, J. S., Sánchez, M. A., Rula, J. P., and Bustamante, F. E. (2012), “Content
Delivery and the Natural Evolution of DNS - Remote DNS Trends, Performance
Issues and Alternative Solutions,” in imc.

137

http://www.cisco.com
http://blog.netflix.com/2012/06/announcing-netflix-open-connect-network.html
http://blog.netflix.com/2012/06/announcing-netflix-open-connect-network.html

Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B. M., and Hu, Y.-C. (2007a),
“Portcullis: Protecting connection setup from denial-of-capability attacks,” in
Proc. SIGCOMM.

Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B., and Hu, Y.-C. (2007b),
“Portcullis: protecting connection setup from denial-of-capability attacks,” ACM
SIGCOMM Computer Communication Review, 37, 289–300.

Paxson, V. (1999), “Bro: A System for Detecting Network Intruders in Real-Time,”
Com. Networks.

Perino, D. and Varvello, M. (2011), “A reality check for content centric networking,”
in Proceedings of the ACM SIGCOMM workshop on Information-centric network-
ing, ICN ’11, pp. 44–49.

Peterson, R. S. and Sirer, E. G. (2009), “Antfarm: efficient content distribution with
managed swarms,” in Proc. NSDI.

Piatek, M., Isdal, T., Anderson, T., and Krishnamurthy, A. (2007), “Do Incentives
Build Robustness in BitTorrent?” in Proc. NSDI.

Poese, I., Frank, B., Ager, B., Smaragdakis, G., and Feldmann, A. (2010), “Improv-
ing Content Delivery using Provider-Aided Distance Information,” in IMC.

Punkbuster (2000), “Major Features in PunkBuster,” http://www.evenbalance.

com/index.php?page=info.php.

Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., and Maggs, B. (2009), “Cut-
ting the Electric Bill for Internet-scale Systems,” in SIGCOMM.

Rayburn, D. (2011), “Telcos and Carriers Forming New Federated CDN Group
Called OCX (Operator Carrier Exchange).” StreamingMediaBlog. com.

Ristic, I. (2010), ModSecurity Handbook, Feisty Duck.

Rosenberg, J., Mahy, R., Matthews, P., and Wing, D. (2008), “Session Traversal
Utilities for NAT (STUN),” RFC 5389 (Proposed Standard).

SAIL (2010), “Scalable and Adaptive Internet Solutions (SAIL),” http://www.

sail-project.eu/.

Saltzer, J. H., Reed, D. P., and Clark, D. D. (1984), “End-to-end arguments in
system design,” ACM Trans. Comput. Syst., 2, 277–288.

Saroiu, S., Gummadi, K., and Gribble, S. (2002), “A Measurement Study of Peer-
to-Peer File Sharing Systems,” in Proc. MMCN.

138

http://www.evenbalance.com/index.php?page=info.php
http://www.evenbalance.com/index.php?page=info.php
http://www.sail-project.eu/
http://www.sail-project.eu/

Seuken, S. and Parkes, D. C. (2011), “On the Sybil-Proofness of Accounting Mech-
anisms,” in Proc. NetEcon.

Sirivianos, M., Park, J. H., Yang, X., and Jarecki, S. (2007a), “Dandelion: Cooper-
ative Content Distribution with Robust Incentives,” in Proc. USENIX ATC.

Sirivianos, M., Park, J. H., Chen, R., and Yang, X. (2007b), “Free-riding in BitTor-
rent Networks with the Large View Exploit,” Tech. Rep. CECS-07-01, University
of California, Irvine.

Sitaraman, R. K., Kasbekar, M., Lichtenstein, W., and Jain, M. (2014), “Overlay
Networks: An Akamai Perspective,” .

Slashdot (2011), “Slashdot: Major Outage At the Amazon
Web Services,” http://slashdot.org/story/11/04/21/1515238/

major-outage-at-the-amazon-web-services.

Spring, N., Mahajan, R., Wetherall, D., and Anderson, T. (2004), “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., 12.

Tariq, M., Zeitoun, A., Valancius, V., Feamster, N., and Ammar, M. (2009), “An-
swering What-if Deployment and Configuration Questions with Wise,” in SIG-
COMM.

TRA (2013), “Your Gadgets Are Slowly Breaking the Internet,” http://www.

technologyreview.com/news/509721/your-gadgets-are-slowly-breaking-

the-internet/.

Triukose, S., Al-Qudah, Z., and Rabinovich, M. (2009), “Content delivery net-
works: protection or threat?” in Computer Security–ESORICS 2009, pp. 371–389,
Springer.

Vu, L., Gupta, I., Nahrstedt, K., and Liang, J. (2010), “Understanding overlay
characteristics of a large-scale peer-to-peer IPTV system,” ACM Trans. Multim.
Comp. Comm. Appl., 6, 31:1–31:24.

WAFAccuracy (2011), “Improvements to Akamai Kona Site Defender Shown to Yield
One of Industry’s Most Accurate WAFs,” http://www.akamai.com/html/about/

press/releases/2014/press_020414.html.

Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., and Shenker, S. (2006),
“DDoS defense by offense,” in ACM SIGCOMM Computer Communication Re-
view, vol. 36, pp. 303–314, ACM.

Wolman, A., Voelker, G. M., Sharma, N., Cardwell, N., Karlin, A., and Levy, H. M.
(1999), “On the Scale and Performance of Cooperative Web Proxy Caching,” in
ACM Symposium on Operating Systems Principles, pp. 16–31, ACM New York.

139

http://slashdot.org/story/11/04/21/1515238/major-outage-at-the-amazon-web-services
http://slashdot.org/story/11/04/21/1515238/major-outage-at-the-amazon-web-services
http://www.
technologyreview.com/news/509721/your-gadgets-are-slowly-breaking-
the-internet/
http://www.akamai.com/html/about/press/releases/2014/press_020414.html
http://www.akamai.com/html/about/press/releases/2014/press_020414.html

Xie, H., Yang, Y. R., Krishnamurthy, A., Liu, Y. G., and Silberschatz, A. (2008),
“P4P: Provider Portal for Applications,” in SIGCOMM.

Yaar, A., Perrig, A., and Song, D. (2004), “An endhost capability mechanism to mit-
igate DDoS flooding attacks,” in Proceedings of the IEEE Symposium on Security
and Privacy.

Yang, X. and de Veciana, G. (2004), “Service Capacity of Peer to Peer Networks,”
in INFOCOM.

Yang, X., Wetherall, D., and Anderson, T. (2005), “A DoS-limiting network archi-
tecture,” ACM SIGCOMM Computer Communication Review, 35, 241–252.

Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C., Zhang, H., and Li, B. (2009),
“Design and deployment of a hybrid CDN-P2P system for live video streaming: ex-
periences with LiveSky,” in Proceedings of the 17th ACM international conference
on Multimedia, pp. 25–34, ACM.

Yu, H., Kaminsky, M., Gibbons, P. B., and Flaxman, A. (2006), “SybilGuard: de-
fending against Sybil attacks via social networks,” in Proc. SIGCOMM ’06.

Yu, H., Gibbons, P. B., Kaminsky, M., and Xiao, F. (2008), “SybilLimit: A Near-
Optimal Social Network Defense against Sybil Attacks,” in Proc. IEEE S&P.

Yu, H., Shi, C., Kaminsky, M., Gibbons, P. B., and Xiao, F. (2009), “DSybil: Op-
timal Sybil-Resistance for Recommendation Systems,” in Proceedings of the 2009
30th IEEE Symposium on Security and Privacy, pp. 283–298, Washington, DC,
USA, IEEE Computer Society.

Zhao, M., Aditya, P., Chen, A., Lin, Y., Haeberlen, A., Druschel, P., Maggs, B.,
Wishon, B., and Ponec, M. (2013), “Peer-assisted content distribution in Aka-
mai netsession,” in Proceedings of the 2013 conference on Internet measurement
conference, pp. 31–42, ACM.

140

Biography

Yin Lin was born in Fuzhou, China on September 24th, 1986. He defended his PhD

thesis at Duke University in June 2014. He received his master degree on Computer

Science from the same school in 2012 and his B.S. degree in Software Engineering

from Shanghai Jiao Tong University, China in 2009. He was rewarded James B.

Duke fellowship during years of his graduate study. He is expected to join VMware

at Palo Alto after he graduates.

141

	Abstract
	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Acknowledgements
	1 Introduction
	2 Related Work and Background
	2.1 Content Delivery Architectures
	2.2 Hybrid System Reliability
	2.3 Content-Centric Networking

	3 NetSession: a Peer-Assisted CDN
	3.1 Introduction
	3.2 The NetSession system
	3.2.1 Design Goals
	3.2.2 Architecture
	3.2.3 Example: Download Manager
	3.2.4 The NetSession Interface
	3.2.5 Interaction with Edge Servers
	3.2.6 The NetSession Control Plane
	3.2.7 Peer Selection
	3.2.8 Robustness
	3.2.9 Best Practices

	3.3 Measurement Study
	3.3.1 Data Set
	3.3.2 Number and Location of the Peers
	3.3.3 Content Providers
	3.3.4 Available Content

	3.4 Benefits
	3.4.1 How Well Does Peer Assist Work?
	3.4.2 Does Peer Assist Reduce Performance?
	3.4.3 Do Peers Help Improve Global Coverage?
	3.4.4 Summary

	3.5 Conclusion

	4 CDN-ISP Collaboration
	4.1 Introduction
	4.2 Data Set
	4.3 Evaluation
	4.4 Conclusion

	5 Cost-Efficient Caching
	5.1 Introduction
	5.2 Background and Motivation
	5.2.1 ICN principles and benefits
	5.2.2 Motivation: Heavy-tailed workloads

	5.3 Design Space for Caching
	5.4 Benefits of Caching
	5.4.1 Setup
	5.4.2 Baseline results
	5.4.3 Summary of main results

	5.5 Sensitivity Analysis
	5.5.1 Single-dimension sensitivity
	5.5.2 Best scenario for ICN-NR
	5.5.3 Summary of key observations

	5.6 Conclusions

	6 Reliable Client Accounting for Hybrid CDNs
	6.1 Introduction
	6.2 Attacks on hybrid systems
	6.2.1 Threat model
	6.2.2 Attack vectors
	6.2.3 Inflation attack on NetSession
	6.2.4 Impact of the attack
	6.2.5 How serious is this attack?

	6.3 Reliable accounting
	6.3.1 System model
	6.3.2 Threat analysis
	6.3.3 Approach
	6.3.4 Require message commitment
	6.3.5 Check logs for consistency
	6.3.6 Check logs for plausibility
	6.3.7 Control client pairings
	6.3.8 Quarantine anomalous clients
	6.3.9 Flag/throttle suspicious user behavior
	6.3.10 Enforce resource limits
	6.3.11 Summary

	6.4 Application to NetSession
	6.4.1 Overview
	6.4.2 Assumptions
	6.4.3 Resource certificates
	6.4.4 Tamper-evident log
	6.4.5 Consistency checking
	6.4.6 Plausibility checking
	6.4.7 Statistical tests and quarantine
	6.4.8 Limitations

	6.5 Evaluation
	6.5.1 Validation
	6.5.2 Experimental setup
	6.5.3 Cost: Traffic
	6.5.4 Cost: CPU
	6.5.5 Cost: Log storage and log upload
	6.5.6 Cost: Log processing
	6.5.7 Examples of statistical tests
	6.5.8 Effectivity

	6.6 Conclusion

	7 CDN as Security Overlay Network
	7.1 Introduction
	7.2 Background and Motivation
	7.2.1 Operation Ababil
	7.2.2 Perceived Impact on Akamai
	7.2.3 Lessons Learned

	7.3 System Design
	7.3.1 Design Goals
	7.3.2 System Overview
	7.3.3 Firewall Rules

	7.4 Measurement Study
	7.4.1 Data Set
	7.4.2 Noises
	7.4.3 Repeated Attackers
	7.4.4 Attack Pervasiveness
	7.4.5 Attack Origins
	7.4.6 Attack Size

	7.5 Discussion
	7.5.1 Authentication Data Pre-Screening
	7.5.2 Client Reputation Accounting
	7.5.3 Security Analysis

	7.6 Conclusion

	8 Conclusion
	A Pseudo-Code for Tamper Evident Log
	Bibliography
	Biography

