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Abstract

A multi-agent system consists of a collection of agents that interact with each other to fulfil their

tasks. Individual agents can have different motivations for engaging in interactions. Also, agents

can possibly recognise the goals of the other participants in the interaction. To successfully in-

teract, an agent should exhibit the ability to balance reactivity, pro-activeness (autonomy) and

sociability. That is, individual agents should deliberate not only on what they themselves know

about the working environment and their desires, but also on what they know about the beliefs

and desires of the other agents in their group. Multi-agent systems have proven to be a useful

tool for modelling and solving problems that exhibit complex and distributed structures. Exam-

ples include real-time traffic control and monitoring, work-flow management and information

retrieval in computer networks.

There are two broad challenges that the agent community is currently investigating. One is

the development of the formalisms for representing the knowledge the agents have about their

actions, goals, plans for achieving their goals and other agents. The second challenge is the

development of the reasoning mechanisms agents use to achieve autonomy during the course of

their interactions.

Our research interests lie in a model for the interactions among the agents, whereby the

behaviour of the individual agents can be specified in a declarative manner and these specifica-

tions can be made executable. Therefore, we investigate the methods that effectively represent

the agents’ knowledge about their working environment (which includes other agents), to derive

unrealised information from the agents’ knowledge by considering that the agents can obtain

only a partial image of their working environment. The research also deals with the logical

xi



xii ABSTRACT

reasoning about the knowledge of the other agents to achieve a better interaction.

Our approach is to apply the notions of modality and non-monotonic reasoning to formalise

and to confront the problem of incomplete and conflicting information when modelling multi-

agent systems. The approach maintains the richness in the description of the logical method

while providing an efficient and easy-to-implement reasoning mechanism. In addition to the

theoretical analysis, we investigate n-person argumentation as an application that benefits from

the efficiency of our approach.

Keywords

multi-agent systems, defeasible logic, non-monotonic reasoning, artificial intelligence

Australian and New Zealand Standard Research Classifica-

tions (ANZSRC)

• 080101- Adaptive Agents and Intelligent Robotics: 50%.

• 080203- Computational Logic and Formal Languages: 50%.
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1
Introduction

In this chapter, we briefly explain the concept of a multi-agent system and the general issues

related to the development of multi-agent systems. We then introduce our approach to the

problem of knowledge representation and reasoning by considering the condition of incomplete

and conflicting information. At the end, we present the outline of the work presented in the

thesis.

1.1 Multi-agent systems

1.1.1 A glance at the field

Multi-agent systems could not be reduced to simple collections of individual agents, because

the agents in the systems interact with each other by different fashions to fulfil their designated

1



2 INTRODUCTION

tasks. The major topic of multi-agent researches is to investigate the interactions between the

agents, which are computational entities having the ability to act autonomously in their environ-

ment on behalf of their owners. Autonomous actions imply that the agents could work out the

sequences of actions required to achieve their designated objectives at a certain level of optimi-

sation. In other words, agents are aware of their activities and do not simply follow pre-assigned

procedures towards the objectives.

Technically, interactions among the agents are carried out by the exchange of messages so

that agents can gain more knowledge about their environment and other agents to fulfil their

goals. Coordination is a very important and interesting type of interaction. Coordination is con-

sidered in a shared environment where agents need to coordinate to solve a problem. According

to Weiss (1999), there are two kinds of coordination, cooperation and competition. In coopera-

tion, the agents work as a team to achieve their common goals; the agents in a team succeed or

fail together. However, in competition, the agents’ goals may be in conflict with each other. As

a result, the individual agents try to maximise their benefits at the cost of the other agents’.

Multi-agent systems are a useful tool for modelling and solving problems having complex

structures, such as real-time traffic control and monitoring (Burmeister et al., 1997; Dresner and

Stone, 2004; Durfee, 1996; Fischer, 1996; Ljungberg and Lucas, 1992), work-flow management

in enterprise (Huhns and Singh, 1998; Merz et al., 1997; Singh and Huhns, 1999), information

retrieval over the Internet (Decker et al., 1997; Sycara et al., 1996; Zhang and Lesser, 2006) and

electronic commerce (Schrooten and de Velde, 1997; Sierra, 2004; Tsvetovatyy et al., 1997).

The multi-agent approach can offer robust (no human intervention) and flexible solutions, be-

cause individual agents can autonomously work towards goals and, more interestingly, can

interact with each other to complete the tasks.

1.1.2 General issues

Successfully building multi-agent systems involves a number of challenging issues. In fact,

resolving those issues requires support from many disciplines, such as economics, philosophy,

logic and social sciences. Bond and Gasser (1988) show typical aspects that should be taken

into account when designing a multi-agent system:
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• Agents should know how to represent, manipulate and distribute their goals and tasks to

other agents to coordinate and synthesise the results.

• Appropriate languages and protocols are the first requirements for agents for effective

interactions among the agents.

• Representation and reasoning about the actions, plans and knowledge of other agents are

another challenge for interacting within multi-agent systems.

• Agents need to understand how to represent and reason about the state of their interaction

processes. This helps the agents to evaluate the progress in their coordination efforts and

to improve their coordination.

Over and above those issues is the great importance of having a formal tool to describe the

multi-agent systems and the interactions between the agents to ensure that the system complies

with the specifications.

1.2 Research aims

There are two broad challenges that the agent community is currently investigating. One is the

development of formalisms for representing the knowledge the agents have about their actions,

goals and plans for achieving their goals, and other agents. The second challenge is the devel-

opment of the reasoning mechanisms which agents use to achieve autonomy during the course

of their interactions.

Our research aims to build a multi-agent framework where an agent can efficiently reason

about other agents in a group. Our framework considers the logical formalism to represent

agents’ knowledge, which is a partial image of the working environment and can contain con-

flicting information from other agents. Furthermore, we aim to construct an efficient reasoning

mechanism so that it can be easily implemented and verified. Among logical approaches, defea-

sible logic efficiently tackles the problem of incomplete and conflicting information in terms of

the representation and reasoning. Also, the majority rule (the social choice) can be a simple but

efficient method to reach a common acceptance within a group in the presence of conflicts. By
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combining the extended defeasible logic and the majority rule, our framework can efficiently

represent and effectively reason about different types of knowledge within a group of agents.

Interestingly, our reasoning mechanism can tackle with the paradox of the social choice. In

addition, the framework targets to model a complex interaction between agents. That is the

dialogue between n parties (agents), where agents argue to reach a majority acceptance not only

for a conclusion but also for its explanation (proof of the conclusion). Our extended reason-

ing mechanism allows agents to efficiently tackle with the emergent and possibly conflicting

knowledge from other agents during the course of dialogue. We have succeeded to construct

a multi-agent framework with simple representation and efficient implementation. The frame-

work allows us to reason about other agents and to model dialogue between n agents using

existing techniques namely defeasible logic and the social choice with a minimal overhead.

In particular, our research interests are for a model where the interaction among the agents

and the behaviour of the individual agents can be specified in a declarative manner and those

specifications can be executable. Therefore, we investigate the methods that effectively repre-

sent the agents’ knowledge about their working environment (which includes other agents), to

derive unrealised information from the agents’ knowledge by considering that the agents can

obtain only a partial image of their working environment.

Our research also investigates the integrations between the notions of modality and non-

monotonic reasoning to formalise and confront the problem of incomplete and conflicting in-

formation when modelling multi-agent systems. The approach maintains the richness in the

description of the logical method while providing an efficient and easy-to-implement reasoning

mechanism.

To balance between the expressiveness and the computational tractability, we extend the

formalism of defeasible logic by Billington (1993) to capture different types of agents’ knowl-

edge. Also, we develop the reasoning strategies to identify beliefs common to a group of agents

and to solve the conflicting knowledge obtained from other agents. As a result, our agents can

reason about the others and, hence, achieve a better interaction.

The computational efficiency is another concern for our model. We can show that the com-

plexity of the extended reasoning mechanism is proportional to the size of the agents’ knowl-

edge – that is, the multiplication of the number of rules and of the literals constituting an agent’
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knowledge. Besides the theoretical analysis, we investigate n-person argumentation as an ap-

plication that benefits from the efficiency of our technique.

Resulting from our research, we initiate the Defeasible Rule Markup (DRM) to facilitate

the exchange over the Internet of the descriptions of the agents’ behaviour. In addition, we

develop a Java-based package supporting defeasible reasoning over the DRM descriptions. The

package also aims at the interactions between the modal notions in the reasoning process. The

differences in the interactions result in different types of agents. The simple approach is to

separate modal notions into different layers. Then, the interaction is predefined when designing

the agents. However, the more complex and flexible method is to define the interaction itself as

a parameter of the reasoning process. That is our goal in the continuing development.

1.3 Thesis outline

The thesis contains a total of seven chapters. In the next three chapters, we present an overview

of the modelling of the multi-agent systems (Chapter 2), especially using logical approaches

(Chapter 3). In these two chapters, we aim for a ‘trade-off’ between the expressiveness of

the modelling tools and the computational tractability of the implementation, especially when

capturing the incomplete and conflicting information. With respect to this issue, defeasible logic

(Chapter 4) has proven an efficient method. Our modelling technique for the agents’ interaction

based on defeasible logic is presented in Chapter 5, followed by an application of n-person

argumentation in Chapter 6. We conclude the thesis in Chapter 7. The detailed structure of the

thesis is as follows.

Chapter 2 sketches some of the basic elements of multi-agent systems. In particular, we

briefly introduce the concept of intelligent agents that is the basic building block for any multi-

agent system. We then elaborate the interaction among the autonomous agents. The chapter

ends with the different techniques for modelling multi-agent systems. Chapter 3 provides a

brief on the formal tools for the description and the control of the behaviour of the individual

agents in addition to a group of agents. The chapter starts with the classes of logic to represent

the different aspects of the agents’ knowledge. We then present logic programming approaches

to implement the multi-agent systems.
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Chapter 4 introduces defeasible logic following the formalisation of Billington (1993) and

the extension of the logic with ambiguity propagation. The logic provides a simple but very

efficient model for confronting the problem of incomplete and conflicting information. The

chapter continues with the investigation of the different implementations of defeasible logic.

Finally, the chapter is concluded with a discussion on the relationship between defeasible logic

and logic programming when dealing with incomplete and conflicting information.

Chapter 5 proposes a formal framework, DL-MAS, based on the defeasible logic for multi-

agent systems. The framework aims to provide a declarative and executable model of agents’

knowledge, in particular, the knowledge commonly shared by agents, and that obtained from

other agents. In the new framework, the actions of an individual agent are constrained to a

general expectation of the group of agents by balancing the desires of an individual with the

beliefs of the majority. To have a fine-grained model of ‘mental attitudes’ and social actions,

the DL-MAS is extended with modal notions including Belief, Intention and Obligation. In this

model, our agents have the ability to discover the ‘conventions’ of the group by exploring the

majority of the mental attitudes of the group.

In detail, we first introduce our modelling technique to represent the knowledge base of the

agents including the meta-knowledge about the agents’ importance. Also, we describe details

of the DL-MAS reasoning mechanism and its implementation. We show that the extended

reasoning mechanism does not increase the computational complexity of defeasible reasoning.

Next, we show the integration of modal notions into our DL-MAS framework, following by the

overview of research works related to our system. The chapter ends with a summary of research

results.

Chapter 6 presents an application in n-person argumentation where the agents benefit from

the efficiency of the representation and the reasoning technique of the DL-MAS. During the ar-

gumentation, our agents exploit the knowledge that other agents expose and, therefore, pursue

a reasoning strategy to promote and defend its arguments. In this chapter, we first investigate

the construction of the arguments using defeasible reasoning with respect to ambiguous infor-

mation. Second, we present the technique to model n-person argumentation with regard to the

DL-MAS. We relate our approach with other research works, then summarise the chapter.

Chapter 7 concludes the thesis with a summary of the main contributions and a discussion
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on future research issues.

1.4 Bibliography note

Most of the research presented in the thesis has been published in some form. The main result

of Chapter 5 on the method for knowledge representation and reasoning, DL-MAS, has been

accepted at the RIVF 2008 IEEE International Conference in Vietnam (Pham et al., 2008a). It

has also appeared as a poster paper at the Doctoral Consortium in the KR 2008 International

Conference, Australia. Chapter 6 is the combination of Pham et al. (2008b,c) respectively,

presented at the International Workshop on Non-monotonic Reasoning held in Australia and

the Pacific Rim International Conference on Multi-agents.

The early design and implementation of the defeasible rule markup have been shown in

Governatori and Pham (2005a,b). In the following development, we consider the interaction

between the modal notions (Governatori et al., 2008). A simplified version of modal reasoning

is used in an extension of the DL-MAS (Pham et al., 2008a).
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Overview of multi-agent systems

Multi-agent systems have been investigated since the 1980’s to investigate complex distributed

problems where the approach of a single agent is not feasible, because of the limitation on

knowledge and computing resources of one agent. Agents in a multi-agent system are required

to interact with each other to obtain the solutions to the problems, despite the fact that they

pursue their own goals and autonomously execute their tasks. Their interactions can be either to

collectively work on the problems or coordinate their activities or share information. According

to Sycara (1998), typical characteristics of multi-agent systems are:

• Each agent has partial information of its environment and a limited capability to solve the

problem; thus the agent has a limited viewpoint.

• There is no system global control.

• Data is spread across the agents in the system.

9
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• Computation is asynchronous.

This chapter intends to sketch some basic elements of the multi-agent systems. To start

with, we briefly introduce the concept of intelligent agents, which is the basic building block

for any multi-agent system. Next, we elaborate the interactions among the autonomous agents.

The ability to interact distinguishes the agents from other computing entities and enables these

agents to investigate complex problems. The chapter ends with the different methods for mod-

elling multi-agent systems, in particular, capturing the interactions.

2.1 Intelligent agent

The notion of intelligent agent has attracted a great interest of researchers and developers in

the field of computer science in the past decades. Recently, the concept of intelligent agent has

offered a promising recipe for building highly abstract and complex systems like semantic grid

systems. Arguably, one of the most important abilities of an agent is that an agent can work

autonomously in a dynamic environment. In other words, an agent can accomplish a designed

task without human’s intervention. Agents can realise for themselves what to do on behalf of

their owner to fulfil their allocated tasks, and more interestingly to cope with changes in their

working environment.

2.1.1 Agent definition

Interestingly, there is no single definition of an agent. Depending on the application domains

and the functionality of the agents, there are several types and definitions of agents, such as,

interface agents or reactive agents. Perhaps, the definition of Wooldridge and Jennings (1995a)

is the most well-known, ‘An agent is a computer system that is situated in some environment,

and that is capable of autonomous action in this environment to meet its design objectives’.

It is a non-trivial task to evaluate whether the behaviour of an agent is as intelligent as a

human being. To some extent, it would be helpful to investigate the characters of the agents to

clarify this ‘magic’ concept.
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2.1.2 Agent attributes

According to Wooldridge and Jennings (1995a), intelligent agents should exhibit the following

abilities:

• Reactivity: intelligent agents are able to perceive their environment, and respond in a

timely fashion to changes that occur in it, to satisfy their design objectives.

• Pro-activeness: intelligent agents are able to exhibit goal-directed behaviour by taking the

initiative to satisfy their design objectives.

• Social ability: intelligent agents are capable of interacting with other agents (and possibly

humans) to satisfy their design objectives.

These attributes would not be too difficult to achieve if the agents operated in a static en-

vironment or the agents could have complete information about their world. In fact, a number

of computer programs can satisfy these three attributes. For example, event-driven programs

can interact not only with a human, but also with other programs to accomplish their goals.

However, if the context of the programs changes, the designers are likely to restructure these

programs to cope with the changes. To maintain autonomy, the agents should deliberate and

then take a reasonable action to react to a change in their working environment or from other

agents. It is also important that the action should be performed at an appropriate time with

respects to the agents’ objectives.

2.1.3 A conceptual model

The agent type we are interested in is that of rational agents, because of their abilities to reason

about their working environment and also about their actions to change their environment.

The conceptual model of a rational agent is depicted in Figure 2.1. Perhaps, a hardware

robot would be a very good example to describe the operations of the agent. Every robot

can be equipped with sensors and actuators. Correspondingly, each individual agent has input

and output modules that allow the agent to perceive information about the environment and

to perform an action in response to a change in the environment. To reach a certain level of
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FIGURE 2.1: Conceptual model of rational agent

autonomy, the agent should consider the actions to be executed. In an abstract way, a decision

could be achieved by passing perceived information through the reasoning mechanism, which

is composed of an inference engine and a knowledge base. The knowledge base can be built

by the designer and/or by accumulating perceptions from the environment. For agents with a

learning capability, their knowledge base can be enlarged by feedbacks from the environment

after their interactions.

As can be seen from the conceptual model, the working environment of an agent may be

changed not only by some external events, but also by actions of the agent itself. In addition,

the agent can obtain a partial picture of the environment, possibly because of its interests and/or

the limitations of sensors. Those factors impose difficulties on the decision-making process of

the agent. Actually, the degree of the agent’s rationality mainly depends on the quality and the

sophistication of this process.
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2.2 Interactions of the agents

Interaction among the agents is an interesting and important phenomenon in multi-agent sys-

tems. Through interactions, agents can influence each other’s decision-making process and

contribute to knowledge evolution of the group. In this section, we first sketch out the essential

concepts of the interaction among the agents. Next, we introduce the notion of coordination and

we discuss the role of communication and possible constraints on the agents’ interactions.

2.2.1 Interaction definition

Interaction is a very distinct and frequent behaviour of a living group. Members in a group can

interact with one another to learn the way to the source of food or learn about the existence of

dangers. On the one hand, this behaviour allows the group to collect individual resources or to

have the capacity to fulfil tasks that the individual members cannot afford to achieve. On the

other hand, interaction allows the knowledge within a group to evolve by passing information

from member to member.

The interacting ability of autonomous computational entities is a key topic in the field of dis-

tributed artificial intelligence, in particular, multi-agent systems. This ability of the individual

agents allows the multi-agent systems to model and tackle very complex problems, such as air

traffic management, and distinguishes multi-agent systems from other systems in the distributed

artificial intelligent field. Abstractly, interaction among agents can be considered as a sequence

of actions executed by the agents to influence one another in future behaviours (Ferber, 1999;

Weiss, 1999, pp 2–3). These actions can impact directly on the working environment observed

by the agents or change the ‘mind’ of involved agents as in information exchange.

According to Ferber (1999); Huhns and Stephens (1999), the motivations of an interaction

between the agents can result from dependency among the goals, resources and the capacity of

these agents. During interactions, the actions are not randomly performed by the agents, but

are deliberated based on their understanding about other agents for obtaining a desired state.

However, the goal state can be private to a single agent and is not necessarily shared by all the

other agents participating in the interaction.
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2.2.2 Coordination

Coordination is an important type of interaction that has attracted much effort and the intentions

of the multi-agent systems research community. This special activity among agents is either to

collect more knowledge about their working environment for pursuing their goals or to gather

resources and capacity from other agents to execute their tasks. Essentially, coordination can

be considered as a sequence of actions involving a group of agents such that individual agents

can coherently behave as a unit (Huhns and Stephens, 1999; Nwana et al., 1997).

Any individual agent in a multi-agent system has its own perception about the working

environment and other agents. Also, each agent is equipped with a certain amount of knowledge

and resources for executing its tasks. Therefore, coordination among these agents is needed to

achieve the following main goals (Jennings, 1996; Nwana et al., 1997):

• Avoiding anarchy or chaos. Because individual agents have only a partial view of the en-

vironment, their goals and knowledge are likely to conflict with others. To settle conflicts,

agents arrange bargaining or concessions of their knowledge, resources and competence.

Without a global view of the system, these activities can result in a chaos and failure to

achieve common goals.

• Fulfilment of global constraints. Usually, a group of agents maintain global constraints

that require any single agent’s compliance. Agents must be aware of these constraints and

coordinate their activities to balance between individual interests and the success of the

group.

• Collecting distributed knowledge or resources. In multi-agent systems, individual agents

may have different capabilities and specialised knowledge. Moreover, they may have

different sources of information, resources, reputation levels, responsibilities etc. The

goal’s achievement is beyond the knowledge and competence of any single agent.

• Tackling dependencies between agents’ actions. Although the goals of an agent are inde-

pendent from the other agents’ goals and that agent may not be aware of the others’ goals,

its actions may be influenced indirectly by the others in some situations. The agents in a

group have to coordinate their activities to avoid conflicts.
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There are two fundamental types of coordination namely cooperation and competition (Huhns

and Stephens, 1999). Cooperative agents work as a team by sharing their knowledge and re-

sources to accomplish common goals that the single agents cannot individually attain. The

agents will succeed or fail together. In contrast, competitive agents work against one another,

because of their conflicting goals. An individual agent tries to maximise its own benefit at the

expense of the other agents. Hence, the success of one agent results in the failure of the others.

Agents playing a chess game is a typical example of competitive interaction where each

agent tries to increase its own utility. At each move, agents compute the potential gain from that

move by pondering the response of the competing/opponent agent. However, in a negotiation

situation, interacting agents work together to maximise the utility of the system. Typically, the

resources of the system are limited and should be shared among the agents. The sole possession

of the resources can result in chaos and failure of the whole system. Consequently, agents

should balance between their own interests and that of the system. Often, agents convince each

other of their resource requirements by providing arguments.

Coordinating agents have to tackle the problem of managing dependencies between agents’

activities (Omicini and Ossowski, 2003). In particular, an agent should ponder the dependency

of its planned tasks and resources with those of other agents to attain its goals with or without

conflicts with the others. Successful coordination introduces coherent behaviour between the

agents without an explicit global control of an individual’s actions (Huhns and Stephens, 1999).

Thus, via coordination, agents are capable of achieving the global constraints and efficiently

distributing their knowledge and resources (Nwana et al., 1997). Agents without the ability to

coordinate may end up with wasted efforts and resources and fail to achieve their desired goals

(Durfee, 2004).

2.2.3 Communication

One important property of agents in a shared environment is the ability to communicate with

one another. During communication, agents can gradually construct their models of one an-

other, thus reducing uncertainties about themselves, their world or their goal (Durfee, 1999).
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As a result, communication is indispensable for the coordination of an agent’s actions and be-

haviours.

Communication must be defined at several levels in accordance with the competence of the

agents. A simple communication mechanism allows agents to exchange messages to have more

information about the working environment and other agents. In a more complex mechanism,

agents engage in a dialogue to express their interests. Therefore, the mechanism extends the per-

ception of the agents by understanding the meaning of exchanging messages. The formal study

of communication mechanisms has to deal with structuring messages from a set of symbols and

retrieving meanings of these messages (Huhns and Stephens, 1999).

A public announcement is an important phenomenon in communication among agents.

Once a message is trustfully and publicly declared within a group of agents, individual agents

not only understand what they themselves know and do not know, but can also infer the knowl-

edge and ignorance of the other agents. Furthermore, public communication is a method of

establishing common knowledge within the group, which is most critical for coordinating the

agents’ actions. A formal model of public communication without common knowledge is pro-

posed by Plaza (1989) and Gerbrandy and Groeneveld (1997) independently. Baltag et al.

(1998) present the set of axioms for the public announcement logics with common knowl-

edge. (van Ditmarsch, 2005, Chapter 4) provides a detailed investigation of the formal model

for public announcements.

Two well-known languages for agent communication are KQML (Labrou, 1997) and FIPA-

ACL (http://www.fipa.org/repository/aclspecs.html). The first stands for Knowledge Query and

Manipulation Language while the second is Foundation for Intelligent Physical Agents: Agent

Communication Language. The KQML is a message-based language for agent communication

originally devised as a means for exchanging information between different knowledge-based

systems. Because of its simplicity, the KQML is the most widely implemented and used in the

agents’ community.

FIPA-ACL is proposed by The Foundation for Intelligent Physical Agents (FIPA) to over-

come limitations of the KQML. The language is derived from Arcol (Sadek, 1991) and uses

a quantified multi-modal logic as its underlying logic. Despite its expressive power, it is very

difficult to implement the full-features of the FIPA-ACL, which limits the popularity of the
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FIPA-ACL in agent communities.

2.2.4 Interaction constraints

In human society, individual members adjust their behaviours upon encountering actions from

other members and vice versa. They also perceive that their counterparts can react in a sim-

ilar manner. Through interacting with the members of the society, an agent can discover co-

relations and constraints between the individuals’ activities and dynamically create a template

of expected behaviours to avoid chaos and waste the resources of the society. That provides

a basis for the norms and social laws of human communities, which plays a critical role in

coordination (Lewis, 1969). The work of Castelfranchi (1995) also recognises the role of the

individuals’ commitments to the group activities.

In a similar fashion to human beings, agents’ actions are not simply driven from/by their own

interests but also the interests commonly recognised by a community of agents. Essentially, a

community establishes norms as patterns of behaviours and places constraints on the actions

of its members. In some situations, an expected course of actions is enforced by punishing

the violating members. The reputation and credit of these members can be decreased from

the community’s point of view. Aware of norms and social conventions, agents adjust their

behaviours towards interests common to the community. Therefore, conflicts between agents

can be reduced and eliminated. A number of authors1 acknowledge the necessity of social

laws, conventions and norm-like mechanisms for a robust and efficient coordination in multi-

agent systems. Without the specification and enforcement of the standard behaviours in the

community, individual agents work inefficiently and may not able to fulfil the simplest tasks

because of the conflicts and interference from other agents (Shoham and Tennenholtz, 1997).

There are three views of norms, norms as constraints on behaviour (Conte and Castelfranchi,

1995), norms as goals (Rao and Georgeff, 1995), and norms as obligations (Vázquez-Salceda

et al., 2005). The simplest form of norms is the specification of the activities which that requires

the agents to strictly comply with Shoham and Tennenholtz (1992, 1997). Alternatively, norms

1Cohen and Levesque (1990); Jennings (1993); Jennings and Mamdani (1992); Kinny and Georgeff (1991);

Shoham and Tennenholtz (1992)
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can be considered as a filter for goals generation and selection in the reasoning process of an

agent. Norms themselves do not directly specify goals for agents to attain, but the criteria

that the agents’ behaviour should follow. As a result, the norms restrict the agents on possible

options for their goals (Castelfranchi et al., 2000).

In general, norms shape the behaviour of an individual agent and place constraints on the

goals. A norm can be represented as the obligations and rights associated with an individual

member within a community of agents. It is not necessarily to enforce an agent to follow the

community’s obligations and rights. As an autonomous entity, an agent can ponder whether

or not to comply with norms at different granules depending on its understanding of the actual

situations (Alonso, 2004). On the one hand, an agent has a strong temptation to override its

obligation to attain its goal rather than reconsidering its intention. On the other hand, an agent

can avoid adopting its obligations to eliminate bad results caused by the incompleteness of the

norms (Castelfranchi et al., 2000). Therefore, a deviant behaviour can be accepted in some

situations (Dignum, 1999).

2.3 Multi-agent system models

A multi-agent system can be considered as a set of interacting agents. From this perspective,

modelling a multi-agent system starts with the problem of a single agent. The main challenge

for modelling multi-agent systems is to determine how an agent settles conflicting interests

between itself and other agents, and also the conflicting information of a different view point.

In a reasoning model, the knowledge about other agents in the system influences what an agent

believes and, consequently, the actions executed by this agent.

For the rest, we present an overview of the different methods of modelling multi-agent sys-

tems, including the logical model, mental-attitude model, computationally-grounded model and

the game-theory model. In these models, we focus on the expressive capability and computabil-

ity features.
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2.3.1 Logical model

The main idea of the logical approach for modelling agents is to take advantage of the logical

tools in representing the working environment and desired behaviours of the agents (Russell and

Norvig, 2002; Wooldridge and Jennings, 1995a). The designer of a multi-agent system focuses

mainly on specifying what agents know about the environment possibly including other agents.

Thanks to the semantics of the logics, the designer is free from constructing the mechanism

of the system or inventing an algorithm for individual agents. Another advantage is that the

designer can check the coherence of the agents’ behaviour against the specification of these

agents before agents actually go online.

The basic construction of a logical agent includes a knowledge base containing a set of

logical statements describing the environment and a set of deduction rules representing its

decision-making process. The decision-making process of an agent is triggered to determine

an appropriate reaction, whenever the agent perceives a change in the environment. When mul-

tiple agents are involved, the knowledge about the environment also includes what an agent

knows about other agents (Kowalski, 2001). In other words, other agents are considered as

an integral part of the working environment. From the view of an agent, the execution of its

actions can significantly influence the perception of other agents and, consequently, change the

behaviours of the group. Therefore, the effect of the agents’ activities is more sophisticated and

complex.

To avoid chaos situations and to achieve coherent behaviour in the group, the logical model

has to settle individual and collective agent semantics, for example, by introducing global con-

straints on the agents’ behaviour or conventions in the group (Torroni, 2004).

Despite promising the capability of the logical approach, there are several difficulties that

are not trivial in remedying. On the one side, representing all the properties of the dynamic

and real-world environment is a challenge for the logical approach, especially when the agents

are considered as part of the environment. On the other side, the computational complexity of

the inferential process prevents an agent from reacting effectively and efficiently in a timely

manner.
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2.3.2 BDI model

One important attribute of a rational agent is the capacity to ‘initiatively achieve’ the goal with-

out human intervention. This attribute imposes agent-modelling methods to capture the concept

of the agents’ behaviour and to provide tools for understanding and predicting the behaviour. A

well-known and successful approach, the BDI model, (where BDI stands for Beliefs, Desires

and Intentions), is inspired by human attitudes towards actions. At any time, the states of an

agent are characterised by a tuple of mental attitudes including belief, intention and desire (Rao

and Georgeff, 1991, 1995).

The BDI model is inspired by the philosophical investigation by Bratman (1987) on human

practical reasoning. The beliefs of an agent essentially represent its perceptions during the

interactions with the environment. The desires or goals of an agent have long-term values

driving an agent to act. Basically, a goal is a state of the environment the agent wants to achieve.

To fulfil the goal, an agent can derive several sub-goals or alternatives. Once the agent commits

to one of these alternatives and provided that it does not conflict with the goal, the alternative

can be considered as intention. Very often, an intention is likely to lead to an action by the agent.

Also, an intention can be regarded as a short-term goal which constrains the agent’s reactivity.

In Rao and Georgeff (1991), these mental attitudes are captured by a Kripke structure (Kripke,

1963) while the dynamic activities of the agents are represented by a branching time temporal

logic (Allen and Jai, 1988).

In general, given a goal, an agent generates several options (intentions) such that the goal

can be attained. Based on the current knowledge (state of the environment), an agent may

decide to commit itself to one alternative providing that this alternative does not conflict with

the agent’s goals. From this point, further actions will be derived by the chosen alternative

until the alternative is fulfilled. There are various problems attached to the above process. The

intentions could be inconsistent with the goals or with beliefs. In some cases, it is impossible to

fulfil the intention to which an agent has committed itself. Therefore, an agent should balance

between overruling the conflicts and reconsidering its goals to maintain a reasonable level of

rationality.

The concepts of the BDI model have been implemented for multi-agent systems in PRS
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(Georgeff and Lansky, 1987), dMARS (D’Inverno et al., 1998, 2004), Jack (Age, 2001) and

AgentSpeak (Rao, 1996). However, these implementations have to relax the features of the BDI

model because of the computational tractability.

Extensions of the BDI architecture arise from studying the interactions between the au-

tonomous agents. Agents are required to balance their individual goals and the goals shared by

their group. The agents’ behaviour is not simply constrained simply by their internal intentions

and desires, but also by their commitments to the group (Castelfranchi, 1995), common con-

ventions and norms within the group (Broersen et al., 2001; Castelfranchi et al., 2000; Cavedon

and Sonenberg, 1998; Dignum et al., 2002; Lacey and Hexmoor, 2003).

The BDI model is one of the most used models in the agent research community . This

model provides an insight into the decision-making process of an agent. Furthermore, the model

facilitates building agent systems, because of its clear definition of agent functionality. Despite

the expressive representation of the agents’ rationality, the full-featured implementation of the

BDI model is still ongoing research because of the computational cost of representation and

reasoning with modalities. The limitations of the formal construction of the BDI model raise

the need for a method of agents’ specification that can be computed by a computer program.

That is the main motivation for the birth of the computationally-grounded model presented in

the following section.

2.3.3 Computationally grounded model

Essentially, the model of a multi-agent system is not only required to clearly explain (model) the

behaviour of the agents in the system, but also it needs to be able to ‘compute’ this behaviour.

It is also critical that a model can be implemented and assessed by the designer. The interpreted

system originated by Fagin et al. (2003); Halpern and Fagin (1989) is the very first model

allowing the use of the computational properties of a computer program to give meanings to

the formulas in the model. Thus, the interpreted system is a computationally-grounded model

(Wooldridge, 2000).

According to the interpreted system approach, a multi-agent system may contain n different

agents. Each agent has its own states (local states from the system’s viewpoint), which represent
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the information being accessed by the agent. Because the agents have to operate in some kind

of environment, it is necessary to have an environmental state. In fact, this is the external

information related to running the agents. A global state of a system with n agents is a tuple

of the form (se,s1, . . . ,sn), where se is the state of the environment and si|i = 1 . . .n is the local

state of agent i.

At run-time, the system changes from one state to another. Then, a run is identified as a

function mapping from time to global states. The initial global state is presented by r(0), the

next one by r(1) and so on. A referenced point to a global state of the system can be represented

as a pair of run and time (r,m) such that

r(m) = (se,s1, . . . ,sn)

At the time m, the references to a state of the environment, re, and a state of agent i, ri, are

represented respectively as follows:

re(m) = se

ri(m) = si| i = 1 . . .n

An interpreted system I consists of a pair (R,π), where R is a system over a set G of global

states and π is an interpretation for formulas in Φ over G , which assigns truth values to the

primitive propositions at a global state. The function π is defined as

∀p ∈Φ∧ s ∈ G π(s)(p) ∈ {true, f alse}

It is noticed that the global state s can be represented by a pair of run r and time m.

To determine the knowledge of the agents, the interpreted systems (R,π) can be linked

to a Kripke structure as: a set of worlds S representing states; Evaluation function π; Binary

relations κi|i = 1 . . .n over S.

If there are two existing global states s and s
′

for a relation κi such that si = s
′
i then agent i

can conclude its knowledge. Also, this condition can be rewritten as ri(m) = r
′
i(m

′
). Informally

speaking, agent i cannot distinguish between two states s and s
′
. An equivalence relation has

been established between the two states. For agent i the equivalence relation (reflexive, symmet-

ric and transitive) between those states s and s
′
is represented by s∼i s

′
or (r,m)∼i (r

′
,m
′
). With

respect to the Kripke structure, agent i can derive knowledge by using the following formulas:
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Iff (I ,r
′
,m
′
) |= ϕ ∀(r′,m′) such that (r,m)∼i (r

′
,m
′
) then (I ,r,m) |= Kiϕ

where ϕ: a formula in Φ.

Common knowledge can be modelled based-on the operator E, which means everyone

knows:

Iff (I ,r,m) |= Kiϕ for i = 1 . . .n then (I ,r,m) |= Eϕ

where E: knowledge in the system having n agents.

Thus, common knowledge about ϕ , Cϕ , is defined as

Iff (I ,r,m) |= Ekϕ for k = 1,2, . . . then (I ,r,m) |=Cϕ

Agents perform their actions based-on their local states as specified by their protocols. Es-

sentially, a protocol is a function that maps an agent’s local states to its possible actions. An

interaction between agents could be regarded as a joint action that is identified by a joint pro-

tocol. Basically, a joint protocol consists of every individual agent’s protocol with respect to

the environment. The effect of a joint action is captured by the transform function τ mapping a

global state to new one.

τ(ae,a1,a2, . . . ,an)(se,s1, . . . ,sn) = (s
′
e,s
′
1, . . . ,s

′
n)

where ae : action that changes the environment

ai : action of agent i

Interpreted systems have introduced a novel method of representing multi-agent systems

by using set of states of agents and the environment over linear time. These states can be

interpreted as the computational properties of a program describing the behaviour of the agents

in the system. The knowledge of an agent is modelled as states that are indistinguishable over

the running steps. The agents’ actions are motivated by the knowledge acquired during the

course of the interactions. The success of the interactions is achieved, provided that the common

knowledge states are recognised by agents.

Wooldridge (2000) extends the interpreted system model by considering the visibility func-

tion of the agents. This function reflects the individual agents’ perception of the working en-

vironment. Essentially, given the actual environmental state, the individual agents can have
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different evaluations. Thus, the knowledge states of the agents depend on the transparent levels

of the environmental states. Similarly, the KBC model (Su et al., 2005) captures the agents’

subjectivity about the perceived information from the environment including the visible and

invisible parts. However, the KBC favours the internal modelling of the agents’ knowledge

states. An agent can Know or Believe or feel Certain about a piece of information. By observ-

ing the change in the environment, individual agents may not be aware of the imprecision of

their sensor. Also, a single agent can speculate on inaccessible parts of the environment.

2.3.4 Game theory model

Game theory created by Neumann and Morgenstern (1953) models the economical behaviours

of rational agents. During encounters with other agents, a rational agent tries to maximise the

outcome of its actions by considering the decisions of the others in its reasoning process. The

early work of Aumann (1976) provides the initial connections between game theory and agent

studies. Over repeated interactions, an individual agent can perceive what the involved agents

believe and discover the knowledge common to the agents; therefore, it can reason with these

pieces of information. Naturally, multi-agent decision-making in strategic situations is resolved

by the game theory (Osborne and Rubinstein, 1994). Representing multi-agent systems by

game theory provides a meaningful and formal view for modelling the agents’ interactions and

predicting the agents’ behaviours. Different types of interactions in multi-agent systems have

been modelled because of the work of Genesereth et al. (1986); Rosenschein and Genesereth

(1985); Rosenschein and Zlotkin (1994).

In what follows, we introduce an abstract representation of a multi-agent system corre-

sponding to (Wooldridge, 2002, pp 105–128). In a multi-agent system, every agent has its own

preferences and desires about how the world should be. The knowledge of the agents about the

world can be represented by a set of states, Ω or outcomes.

Ω = {ω1,ω2, . . .}

Each state is associated with a real value showing how the agent prefers the state. According

to this representation, states are distinguished by the associated benefit (utility value). Formally,
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mapping states to the preference values is performed by the utility function:

Un : Ω 7→ℜ

where n : agent n;

ℜ : set of real number

An agent n can perform an action ai from its action set An. Then, this leads to a transition

in the agents’ state Ω and produces a new outcome. Since each agent can decide its own action

autonomously, different combinations of agents’ actions result in different outcomes.

(a1,a2, . . . ,aN) 7→ ω
′

where ai: an action performed by agent mechanism based i

The agent evaluates the benefit of an action using its decision exclusively on the actions but

not the knowledge about the environment. The higher utility an action brings back, the more

likely that the action will be selected. To acquire the optimal benefit, an agent should ponder

outcomes of all possible actions with regard to other agents.

During the course of the actions, an individual agent can follow an action set An (strategy)

that can produce an optimal outcome. That is, the agent can possibly obtain the maximum

benefit from the sequence of actions. In the best case, one agent could discover such a strategy

that dominates the others by producing better utility values for every single action. However, it

is not always possible to detect such strategy or, simply, this strategy does not exist. Therefore,

the solution can be the strategy such that none of agents in the group can improve its benefit

by changing its own strategy. In the case that all agents follow that strategy, an equilibrium

occurs in the system and is named the Nash equilibrium (Nash, 1950). This equilibrium has

been proved to be very important to predict the behaviours of rational agents.

The game-theory model is traditionally based on the assumption that every agent in the

system shares the common knowledge about strategies (possible sequences of actions) and the

utility scheme (benefit/cost for actions). Also, an agent does not have any limitation on its

computational resources to determine the optimal outcome of its actions. These assumptions

are not always practical in multi-agent systems and raise concerns of computer scientists on

the Nash equilibrium (Halpern, 2008) despite the refinements, such as that of Osborne and
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Rubinstein (1994). In general, it is not adequate to simulate human-like preferences with a

simple order over states of ‘affairs’, especially in multi-criteria preference (Russell and Norvig,

2002). Therefore, the game theory model has limitations in capturing the cooperative behaviour

of agents.

However, the strategic reasoning of the game theory is most desirable in the study of multi-

agent systems. Pondering the effect of individual actions on other members is very critical.

There are several works that integrate the game theory in their logical formalisms. Boella and

van der Torre (2006, 2007) consider whether or not agents adopt their obligations as a violation

game played by agents within a community. Meanwhile, Roth et al. (2007) examines the effect

of exposing the evidence in a legal game that enables the players to construct their winning

strategy. The approach for the combination is alternating-time temporal logics.

Alternating-time temporal logics, ATL, is first introduced in Alur et al. (1997) and extended

in Alur et al. (2002). The ATL is one method incorporating the game-theoretic evaluation into

the quantification of the time-branching computational paths that are considered as the possible

outcomes of the interactions of the players in the concurrent game settings. The ATL provides a

natural tool for specifying multi-agent systems. Several useful concepts, such as safety, liveness

and the fairness of an action, can be formally specified by the ATL operators. In multi-agent

systems, the ATL can be used to describe, synthesise and verify the general properties of the

system. Nevertheless, the ATL approach requires complete information on the game that an

individual agent totally knows about the utility function used by the other agents. In other

words, all agents have the same configuration of the game. This requirement is not realistic in

many practical situations. In addition, the computational cost for the ATL is very expensive.

The complexity of the satisfiability problem is EXPTIME-complete (van Drimmelen, 2003;

Walther et al., 2006).

2.3.5 Discussions

It is undeniable that game theory has proved to be very useful for modelling the agents’ be-

haviour by using formal and sound notions that allow heuristic and clear-cut experiments. The
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game theory models well the interactions among the agents and provides a meaningful explana-

tion of the motivations of the agents towards their interactions. However, the game theory has

serious limits when representing multi-agent systems, imposing shortcomings on the agent’s

reasoning about the interactions, especially cooperation.

According to game theory, the interactions among the agents are represented as a set of

states, where every state is associated with a utility or benefit. To obtain an optimal action,

the agents should investigate all possible actions taken by every agent in the system. Then,

the size of the state space is exponential to the number of agents and possible actions in the

systems. It is really impractical to represent a large system. Moreover, this representation

cannot capture all aspects of an agent’s information (Halpern, 2003), such as the beliefs or

goals or strategies followed by other agents. In other words, the game theory only captures the

knowledge about rewards, which agents can acquire from their actions. The agent turns out to

consider the benefit/cost instead of the reasoning about the goals, preferences and motivations.

As a result, game theory does not guarantee a true cooperation, because a satisfactory notion

of the cooperation needs the modelling of the agent’s cognitions, and especially of its goals

(Castelfranchi, 1997).

Differing from game theory, the logical methods can describe the cognitive properties of

the agents by using the corresponding modalities. Therefore, these methods ensure rich and

expressive representations for different kinds of agents’ information, such as beliefs, goals and

intentions. The meaning of the representation is determined by the possible world semantics,

where different pieces of agents’ information are formalised by a set of possible worlds with

an accessibility relation holding between them. Despite the fact that possible world semantics

is well studied and can well capture the agents’ knowledge and uncertainty, it is not yet clear

how to define the mappings from the abstract accessibility relations, used to characterise the

agents’ state, to concrete computational models. Regarding this issue, Wooldridge (2000) has

showed that interpreted systems are computationally-grounded. That is, given an interpreted

system I , characterised by a set of states over linear time, and a description system Φ, possi-

bly verified by I . If system I constitutes a set of computer programs then system Φ is known

as computationally-grounded. This property of interpreted systems is very important from the
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engineers’ view. It is possible to build a computer system from the specifications of the con-

ceptual model of the multi-agent system. Furthermore, these specifications can be mapped to

logical properties and they can be verified.

The complexity of the logical model including the BDI model depends on the types of logics

being used to model agents’ actions and states of the environment. To obtain the tractability of

the agents’ rationality, there are trade-offs between expressive capability and computational

complexity (Dantsin et al., 2001). Regarding this issue, the cost of computing the equilibrium

among the agents’ actions amounts to the space of possible states. Essentially, the problem can

be seen as a search to find an optimal path through all possible combinations of the agents’

state. That is a NP-hard problem.



3
Logics for multi-agent systems

The concept of an agent facilitates the representation and manipulation of large and complex

systems that are composed of interacting and evolving computational entities. However, this re-

quires a formal tool that eases the description and the control of the behaviour of the individual

agents as well as a group of agents. Logical approaches are most suitable to tackle these require-

ments, because they are unambiguous and flexible in expressing specification. Furthermore, the

logical approaches are endowed with computational models for verifying the specification.

In this chapter, we first provide an overview of the classes of logics to represent different

aspects of the agents’ knowledge. At the end, we present logic programming approaches for

implementing the multi-agent systems.

29
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3.1 Logics as knowledge representation

As an autonomous computational entity, an agent performs an action based on what the agent

knows about its working environment and the other agents. In addition, by taking an action,

an agent tries to fulfil its desires and satisfy the constraints with other agents. During the inter-

action with the working environment and other agents, an agent can obtain more information

that enriches its knowledge base. However, the knowledge base is just a model (often incom-

plete) of the actual world. That supposes an agent has to confront the problem of the emerging

information in the reasoning process.

In this section, we first present the modal logics that have been proved to be useful and pow-

erful in representing the attitudes of the agents towards actions. Using modal logics enables

an agent to differentiate the epistemic states of information (belief and knowledge). An agent

can reason about the change in its epistemic structure and that of the other agents. Further-

more, modal logics can capture concepts such as conventions and norms, which put some levels

of constraints into the behaviour of individual agents. Finally, non-monotonic logics directly

approach the problem of the incompleteness of the agents’ knowledge.

3.1.1 Modal logics

A modal logic, originally invented by Lewis (1918), qualifies the truth of the modal expressions,

such as possibility and necessity p (p is a statement). Informally, modal logics deal with the

logical expressions that could be true (possibility) in some cases or always true (necessity) in

every case, such as the beliefs and knowledge of an agent. An understanding of modal logic is

particularly valuable in the formal analysis of a philosophical argument, where expressions from

the modal family are both common and confusing. To some extent, modal logic is similar to

classical logic except for two new modal operators: � for Necessarily; ♦ for Possibly. Typically,

these operators relate to each other by:

�p→¬♦¬p and ♦p→¬�¬p

In addition to necessity and possibility, the modal operators are used to capture different notions,

such as knowledge, change and obligation. In other words, necessity and possibility can have
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different interpretations depending on the domain of interest. Logics for knowledge are known

as epistemic logics and those for change are called dynamic logics. Logics for obligation are

named as deontic logics. The designer of the modal logics should provide a method to interpret

the properties of the modal operators. The properties of the modal operators can be investigated

by a syntactical approach using modal axioms. Essentially, the modal axioms describe the

modal formulas that are valid according to some criteria. The criteria of validity are often

constructed by the designer of the modal systems that represent the interesting consequences of

the systems. In the next section, we introduce essential axioms of the modal systems.

Modal axioms

Modal logics are equipped with typical axioms as below:

TABLE 3.1: Essential axioms of modal logics

Name Axiom

K (�p→ q)→ (�p→�q)

T �p→ p

4 �p→��p

D �p→ ♦p

B p→�♦p

5 ♦p→�♦p

These axioms are used as important seeds to build up a logical system. A composition

of modal axioms provides a particular meaning for the modal operators. Therefore, different

compositions create several logical systems. For example, epistemic logic is based on the KT 45

axioms. Within the context of the agent systems, the T axiom can be interpreted as ‘an agent

knows what is true’. The 4 axiom (known as positive-introspection axiom) can be expressed as

‘agents know about what they know’ whilst the D axiom - agents ‘believe in what they know’.

In normative concepts, �p means an agent ought to comply with the obligation p. But it is

questionable that the agent believes in the obligation that an agent ought to adopt as represented

by the 4 axiom. However, it makes sense that anything that is obliged is then permitted as by
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the D axiom.

A logical system is to prove exactly the valid statements stable in the language describing

the specifications of the system. The soundness and completeness are important properties of

a logical system. That is, every statement proven using the logical system is valid and every

valid statement has a proof in the system. Eventually, this is a powerful point for the logical

approach to model a system in the sense that the correctness of the system’s behaviour is always

guaranteed.

Formal semantics for a logic system provide a definition of the validity by characterising the

truth behaviour of the sentences in a system. The traditional truth tables, in the propositional

logic, have limitations in the interpretation of modal logics. Simple true and false values could

not fully represent the nature of the modality. Instead of truth tables, the semantics are repre-

sented by possible worlds. Possible worlds can be illustrated as a graph of points with directed

edges. A point in the graph represents a world where a logic sentence is true. However, this

sentence may be invalid in some other worlds. To validate the agent’s arguments, the systems

apply an evaluation function for each individual argument over the possible worlds. necessity

p, denoted as�p, is valid in all possible worlds, while a possibility p, denoted as ♦p, is valid in

at least one world. In the following section, we present the semantics of modal logics by using

the Kripke possible worlds.

Kripke Structures

The semantics of modal logics can be interpreted by using the Kripke structure (Kripke, 1959).

Basically, a Kripke structure M for a set of logic statements Φ is defined by a tuple of W , υ , R

as follows:

M =(W,ω,R)

where W : a non empty set

υ : υ(ω, p) 7→ {True,False}|ω ∈W and p ∈Φ

R⊆W ×W
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W is a set of worlds or possible worlds, υ is evaluation function, R are sets of binary relations

over W . The proposition p in Φ is true at a world ω in a Kripke structure M is denoted as:

(M,ω) |= p iff υ(p,ω) = true

Then, we have

(M,ω) |= p∧q iff (M,ω) |= p and (M,ω) |= q

(M,ω) |= p∨q iff (M,ω) |= p or (M,ω) |= q

(M,ω) |=�p iff (M,ω
′
) |= p ∀ω

′
such that (ω,ω

′
) ∈ R

(M,ω) |= ♦p iff (M,ω
′
) |= p ∃ω

′
such that (ω,ω

′
) ∈ R

A Kripke structure can be represented by a directed graph. Each node in the graph represents

a world in the Kripke structure and is labelled with propositions that are true in this world. The

nodes are connected by directed edges. For instant, given a structure:

M =(W,υ ,R) such that

W = {s1,s2,s3} ;

Φ = {p1, p2} ;

υ(p1,s1) = υ(p2,s2) = υ(p2,s3) = true;

R = {(s1,s2)(s1,s3)(s2,s2)}

Then the graph for M is in the Figure 3.1. As shown in the graph, an agent knows p1 is true at

s1 and p2 is true at both of s2 and s3. However, the agent knows that �p2 is valid at s2 because

of the self-loop link. That is all nodes connected to s2 make true p2.

There is correspondence between the relations of the Kripke worlds and the modal axioms.

The behaviour of the modal systems can be characterised either by a set of modal axioms or

by the attributes of the relations between the Kripke worlds. The correspondence is shown in

Table 3.2. In the Table, x, y, and z represent worlds in a Kripke structure, whilst R is the set of

relations between worlds.

By introducing concepts of possible worlds and defining the nature of relations between

those worlds, Kripke structures provide a simple but efficient tool for the representation seman-

tics of modal logics.
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FIGURE 3.1: A simple Kripke structure

TABLE 3.2: Typical axioms with condition and type of relations

Name Axiom Condition Relation attribute

T �p→ p ∀x xRx Reflexive

4 �p→��p ∀x,y,z xRy & yRz⇒ xRz Transitive

D �p→ ♦p ∀x∃y xRy Serial

B p→�♦p ∀x,y xRy Symmetric

5 ♦p→�♦p ∀x,y,z xRy & xRz⇒ yRz Euclidean

3.1.2 Dynamic epistemic logic

Dynamic epistemic logic (van Ditmarsch et al., 2007) is an extension of epistemic logic, rooted

in the work of Hintikka (1962), with dynamic operators that deal with the change of informa-

tion. Dynamic epistemic logic is built upon the dynamic modal logic in the sense that the logic

describes the change of information and provides epistemic operators to reason about informa-

tion and its change. The concerns of dynamic epistemic logic are not only the truth condition

of a formula, but also the changes of the knowledge states of those agents involved in the oc-

currence of that particular formula.

Communication among the agents is one of the most typical actions causing changes in

the information states of the individual agents. Through communication, an agent does not

simply verify the status of the content of a message, but also constructs a knowledge state

about the other agents. The work of van Ditmarsch et al. (2007) investigates dynamic operators
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for modelling epistemic actions. Public announcement is the simplest epistemic action, which

allows establishing an information state being common to all involved agents (van Ditmarsch

et al., 2007, Chapter 4). The language of public announcement logic is defined for a finite set

of agents N and a finite set of atoms P as:

ϕ ::= p|¬ϕ|(ϕ ∧ψ)|Knϕ|CBϕ|[ϕ]ψ

where:

• p ∈ P, n ∈ N, and B⊂ N are arbitrary.

• Knϕ indicates that agent n knows about ϕ .

• CBϕ denotes that a group of B agents commonly know about ϕ .

• [ϕ]ψ means that after announcement of ϕ formula ψ is true. It is noticed that, in formula

[ϕ]ψ , operator [ϕ] is � modal. Owing to the partiality of the announcements, the inter-

pretation of [ϕ]ψ is identical to ‘after every announcement of ϕ , ψ is hold’. The dual of

[ϕ] is 〈ϕ〉.

An epistemic model is a Kripke model where all accessibility relations are equivalence

ones. Formally, an epistemic model M = (S,∼,V ) contains a domain S of states (or worlds),

accessibility ∼: N → P(S× S), where each ∼n is an equivalence relation, and a valuation V :

P→ P(S). For s ∈ S, (M,s) is an epistemic state. Given two states s,s
′ ∈ S, s∼n s

′
denotes that

agent n cannot distinguish between s and s
′

based on its information. The group accessibility

relation ∼B≡
⋃

n∈B ∼n is defined by the union of these of individuals in the group. ∼B is used

to represent the common knowledge within a group.

The semantics for public announcement logic is defined as:

Iff s ∈V (p) then (M,s) |= p

Iff s 6|= ϕ then (M,s) |= ¬ϕ

Iff M,s |= ϕ and M,s |= ψ then (M,s) |= ϕ ∧ψ

Iff ∀t ∈ S : s∼n t implies M, t |= ϕ then (M,s) |= Knϕ

Iff ∀t ∈ S : s∼B t implies M, t |= ϕ then (M,s) |=CBϕ

Iff M,s |= ϕ implies M|ϕ,s |= ψ then (M,s) |= [ϕ]ψ
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The model M|ϕ is determined as an epistemic model (S
′
,∼′,V ′) where

S
′
= JϕKM = {s ∈ D(M)|M,s |= ϕ}

∼′n=∼n ∩(JϕKM× JϕKM)

V
′
(p) =V (p)∩ JϕKM

The dynamic modal operator [ϕ] acts as an epistemic state transformer. Trustful and public

announcement within a group of agents eliminates uncertainty states of information conveyed

in the announcement. Hence, individual agents can establish their knowledge as epistemic states

that are indistinguishable the individuals. After the announcement, the common knowledge is

not directly obtained as a consequence of an announcement but by a derivation rule, such as:

If χ → [ϕ]ψ and (χ ∧ϕ)→ EBχ are valid, then χ → [ϕ]CBψ is valid.

The dynamic modal operator [ϕ] can be extended as an action or event to capture more com-

plex epistemic actions rather than the public announcement. Individual agents obtain different

information from the complex actions. That refines the accessibility relations while the model

of the domain remains intact. Moreover, these complex actions can extend the domain of the

model. An elaboration of extending [ϕ] as epistemic actions and action model can be seen at

(van Ditmarsch et al., 2007, Chapter 5 and Chapter 6).

In recent developments, dynamic epistemic logic incorporates the factual change (change of

agents’ knowledge) (van Benthem et al., 2006) and preference-based modelling of belief revi-

sion with dynamic modal operators (Aucher, 2004; van Benthem and Liu, 2005; van Ditmarsch,

2005).

3.1.3 Deontic logics

Deontic logic found by von Wright (1951) is a useful tool for modelling normative concepts

such as permission and obligation in multi-agent systems (Hilpinen, 1971; Meyer and Wieringa,

1994). The intuition of normative concepts is to develop the ideal behaviour of agents. That is,

to specify what an agent should be obliged to do in ideal situations. However, the actual actions

of the agents can deviate from their ideal behaviour, possibly because of the actual situation.
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Normative behaviour, its violations and possible sanctions, can be explicitly captured in deontic

logic (Dignum, 1999).

Standard Deontic Logic (SDL) can be viewed as a branch of the modal logics, where the

operators of obligation O and permission P are introduced. These two are modal operators

whose characteristics are identified by the following axioms:

1. Op→ Pp

2. Pp→∼O∼p and Op→∼O∼p

3. If → p then → Op

The first axiom ensures the consistence of the system and shows what is obliged is then permit-

ted. The second means what is permitted or obliged, then it is not possible to do the opposite.

The first two axioms present the principle that if an agent is given an obligation to do a thing

then this agent either has the permission to perform it or does not have to do the opposite. The

last axiom can be interpreted as, if anything can be proved, agents cannot disregard this thing.

That essentially means an agent should be realistic.

SDL has three properties as shown in Table 3.3. The first two properties are about the

derivability of the logic regards to the conjunction whilst the last property represents possible

violations in inference. SDL has been attributed several paradoxes in capturing normative con-

TABLE 3.3: Properties of Standard Deontic Logic

Weakening O(p∧q)→ Op

And (Op∧Oq)→ O(p∧q)

Violation p∧O¬p

cepts (see Hansen et al. (2007)). These limitations are due to the pragmatic nature of the norms.

That is, normative statements are not simply true or false. Among those paradoxes, the contrary-

to-duty (Chisholm, 1963) is very important in multi-agent systems, because it instructs an agent

on the new obligation when the ideal behaviour is no longer reachable. There are several ap-

proaches to restoring the consistency of the normative statements in the case of violations, such

as preference-based deontic logic Hansson (1990) or defeasible reasoning (McCarty, 1994; Ryu

and Lee, 1993, 1997).
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Deontic logic is a useful tool for knowledge representation when modelling violations and

contrary-to-duty obligations. Deontic notions have been the basis for agent framework BOID

(Broersen et al., 2001) and BIO (Governatori and Rotolo, 2008). The argument is that agents

often work in a group, therefore, they have to consider the norms and obligations shared by the

group (Dignum, 1999) and, thus, must reason about these constraints.

3.1.4 Non-monotonic logics

In multi-agent systems, an agent often perceives a partial picture of its working environment.

In addition, an agent can receive new information from other agents. Therefore, what an agent

believes can have some levels of uncertainty. Basically, the closure property of the reasoning

process of an agent is not adequate to represent the incomplete and conflicting information with

which an agent deals. An agent should alter its conclusion to match the new information. For

example, a bird can generally fly, but a broken-wing bird cannot. The new information about

the wing situation prevents an agent from concluding that the bird can fly.

Non-monotonic logics are symbolic approaches to confront the problem of uncertainty with-

out any quantitative representation. These approaches formalise the plausible and common-

sense reasoning (Morgenstern, 1999). The classical approach to non-monotonic logics is to

extend classical logic by adding meta-information about the dynamic knowledge.

Default logic by Reiter (1980) contains two knowledge components, predicate logic formu-

las as in classical logic and default rules. The logic formulas represent what is always true,

while default rules represent what is usually true, given some known conditions.

Definition 1. A default rule δ is represented as

δ :
ϕ : ψ1, . . . ,ψn

χ

where ϕ,ψ1, . . . ,ψn,χ are predicate logic formulas, and n > 0. ϕ is called the prequisite;

psi1, . . . ,ψn the justifications; and χ the consequent of δ

The default rule about ‘a bird generally flies’ is denoted as bird(X):flies(X)
flies(X) . The semantics of

default logics is obtained by computing the extension of the knowledge base of an agent with

default rules, provided that inconsistency does not occur. Because a default theory is constructed



3.2 LOGIC PROGRAMMING LANGUAGES 39

from a set of predicate logic formulas, the expressive capability and computability are inherited

from those of the predicate logic. From computational complexity, satisfiability problems in

default logic are harder than those of the predicate logic (Antoniou, 1997, p 87).

Auto-epistemic logic firstly developed by Moore (1985) uses a single modal operator L to

represent knowledge states of an ideal agent with perfect introspection. An agent can examine

its own beliefs and knows about what it knows and it does not know. Given a total belief set

E, Lφ means an agent knows φ and φ ∈ E. In contrast, if φ 6∈ E, ¬Lφ holds, this means the

agent does not know about φ . The knowledge operator has the property Lφ ↔¬L¬φ and can

be nested.

The logic of circumscription by McCarthy (1980) formalises non-monotonicity by adding

second-order axioms that limit the extension of certain ‘abnormal’ predicates. The predicate

representing flying birds can be rewritten as: ∀X(bird(X)∧¬abnormal(X)→ f lies(X))

The above expression shows that if the bird is normal, then the bird can fly. If there is any

evidence showing an abnormal bird then the predicate abnormal(X) is added into the system to

prevent the conclusion of flies(X).

All three approaches to non-monotonicity extend the predicate logic in different ways. De-

fault logic augments predicate logic by adding default rules, while the auto-epistemic logic

exploits the concept of possible worlds constructed from a predicate knowledge base of an

agent and the knowledge modal operators. Circumscription uses second-order axioms and the

minimal model to retrieve the semantics of formulas. In all of these approaches, the logic theory

representing the knowledge of an agent essentially does not remove redundant information that

is no longer valid. Consequently, agents have to recompute their theories when new information

occurs.

3.2 Logic programming languages

Logic programming plays an important role in building up multi-agent systems, because it

provides a declarative method and formal semantics. In this section, we introduce programming

languages that are explicitly designed to incorporate the notions of rational agents. Essentially,

these languages convey the idea of an intention-based agency. Answer-set programming is
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not specialised for multi-agent systems. However, the language provides useful features for

implementing agents, such as negation as failure, handling multiple views.

3.2.1 Agent-0

Shoham (1993) proposes a programming framework, AGENT-0, for agents where an agent can

be described by its mental attitudes such as belief, desire, and intention. That is the behaviour

of an agent can be explained by human-like properties and can be captured by a logic program.

(Thomas, 1995) develops an interpreted language for programming those agents.

AGENT-0 models an agent by a tuple CAN,B,COMM where CAN: a set of capacities; B: a

set of initial beliefs; COMM: a set of commitment rules. The notions of capability, belief, and

commitment are captured by a quantified multi-modal logic. Time reference is associated with

every element in a logical formula.

Example 1.

CAN j
Asubmit(paper) j+4⇒ B j

BCAN j+5
B review(paper) j+6

The above expression is interpreted as if agent A at time j can submit paper at time j+4 then

at time j agent B believes that B at time j+5 can review paper at j+6.

A commitment rule determines an agent’s action depends on the condition of the incoming

message and its mental situation. In AGENT-0, agents can perform communicative actions

including ‘inform’, ‘request’, and ‘unrequest’. Inform messages convey information among

agents and consequently update their belief base whilst request and unrequest messages change

the commitments of the agents. The update operator is rather primitive and limited by restricting

the representation of logical sentences (no logical connectives other than negation and no nested

modalities) so that the operator can be tractable. Although the link between the logic and

programming language is not formally defined (Wooldridge and Jennings, 1995b), the idea of

AGENT-0 has been adapted by the research community and inspired many other languages for

programming rational agents.
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3.2.2 AgentSpeak

AgentSpeak(L) by Rao (1996) provides a high-level programming language that systematically

adopts the BDI principles. The language of AgentSpeak(L) extends that of the first-order logic

with events and actions by integrating the notions of beliefs, goals and intentions. These notions

are not captured as modal formulas, but as a program written in AgentSpeak(L). An agent

program consists of:

• B: set of grounded logical predicates known as the belief base. This set reflects the

knowledge of an agent about itself, its environment and other agents.

• I: set of goals that determines what an agent wants to achieve depending on the external

and internal inputs. An intention can be considered as an adoption of the program to meet

the specification of these inputs.

• E: set of events that respond to changes of the working environment. Each event typically

leads to a modification in the sets of beliefs and goals.

• A: set of actions that represents a change in the state of the working environment when

taken by an agent.

• P: set of plans that aims to hierarchically decompose goals and to execute actions so that

an agent can attain its desires. A plan has a rule-like format where the body contains goals

or actions while the head has event and belief literals known as a context. Informally, a

plan specifies what an agent should meet to fulfil its desires in the case of an event.

The behaviour of an agent is dictated by an AgentSpeak(L) program. Whenever there is

a change in the working environment, an external event is generated. Also, an internal event

can be produced by an agent from its own mental states. Both internal and external events are

put into E. The agent can select an event from E and determines plans in P relevant to this

event. The applicable plans are determined among the relevant plans if the contexts of these

plans are logical consequences of the belief base B. For each event, there may be more than

one applicable plan or option. The agent selects an option in response to that event. Therefore,

the applicable plan becomes the intended mean. The agent pushes this plan on the top of the
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existing intentions (for internal events) or creates a new intention (for external events). Finally,

the agent selects an intended plan (a ‘true’ intention) for the execution. The selection functions

for events, plans, and intentions are abstract and not specified by the language. The designer of

the system has to write the code for these functions.

AgentSpeak(L) is provided with an interpreter and multi-agent platform known as Jason

(Bordini and Hübner, 2006). The operational semantics for the interpreter has been extended

by Bordini et al. (2005). The existence of AgentSpeak(L) facilitates the practical use of the

abstract BDI architecture.

3.2.3 3APL

3APL (An Abstract Agent Programming Language) language is a hybrid approach of impera-

tive and logic programming for constructing cognitive agents by combining Prolog and Java.

Therefore, the 3APL platform exploits regular programming constructs and logical proof for

querying states of agents. To some extents, the 3APL can balance the practical view of the

software engineers and the formal view of the computer scientists in building multi-agent pro-

grams. The authors of the 3APL also investigate the features of Dribble (van Riemsdijk et al.,

2003) and GOAL (Hindriks et al., 2001).

Initially, the 3APL by (Hindriks et al., 1998, 1999) includes programming constructs for im-

plementing the notions of beliefs, plans and rules for plan revision. The language has then been

extended with declarative goals, which can be updated via the set of reasoning rules (Dastani

et al., 2003a, 2005c), and with communication (Dastani et al., 2003b). An agent can perform

different types of actions including mental actions that modify the mental states, communication

actions for exchanging information, external actions which change the working environment,

test actions that verify the validity of an atomic formula against the belief base.

An agent in the 3APL consists of beliefs, plans, goals and reasoning rules. The reasoning

process of the 3APL agents is captured by an interpreter, which determines deliberation op-

erations to modify the programming constructs, such as applying a rule or adopting a goal or

revising a plan. Typically, the deliberation cycle starts with finding an applicable planning rule

to construct a plan. A plan is subject to apply plan-revision rules if the plan is not executable (it
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does not contain any action). The first executable plan found is run by the interpreter.

3.2.4 Answer set programming

Answer-set programming (ASP), a logic programming language with answer-set semantics for-

malised as AnsProlog (Baral, 2003), intends to facilitate the knowledge representation and

declarative problem-solving. There are several efficient implementations for the ASP, (Eiter

et al., 1998; Niemelä and Simons, 1997). The ASP provides powerful and useful features for

modelling multi-agent systems, such as the ability to cope with incomplete information, and

handling multiple world views. Non-monotonic reasoning is stimulated by using the notion of

Negation As Failure during reasoning. The statement of ‘a bird normally can fly’ can be ex-

pressed as f ly(X)← bird(X), not ab(X). The not operator ‘tells’ the program to check the

validity of the literal in the current answer set. In the example, if there is no evidence against

ab(X), f ly(X) is added into the answer set.

Since an ASP program can have more than one stable model, epistemic operators (belief and

knowledge) can be captured (Gelfond, 1994). The meaning of these operators can be interpreted

as in possible worlds. An agent knows a piece of information if and only if this information is

hold in every model of its program.

The ASP also supports reasoning about actions (Gelfond and Lifschitz, 1992) and recently

intended actions (Baral and Gelfond, 2005). Depending on the situations, intended or planned

actions are not actually performed by an agent. However, these actions are still persistent in

the agent’s mind, and can happen at an opportune moment in future time. These properties

represent the notion of intention (Wooldridge, 2002, pp 65–70). Regarding this development,

the ASP provides an alternative for capturing the operational semantics of the BDI agents.

3.3 Discussions

Modal logic has been heavily used as a conceptual tool for establishing the foundations of the

analysis of epistemic and doxastic (that is, knowledge and belief) notions in terms of modal op-

erators, thus paving the way to the field of agents and multi-agent systems. In this field, modal
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operators proved to be very powerful conceptual tools for describing the internal (mental) states

of the agents as well as the interactions among the agents. Also, modal logic is appropriate for

providing a conceptual model for describing normative notions, such as obligations, permis-

sions, rights, which influence the internal states of an agent in reasoning about an action. A

more detail review on the different combinations of modal logics for building a theory for an

agent can be found in van der Hoek and Wooldridge (2003).

In addition to modelling knowledge states of an agent, modal logics provide a tool for in-

vestigating the dynamic aspect of the agents’ knowledge states on new events, such as a coming

message. This new information reduces the ignorance of an agent about its working environ-

ment, including other agents. Eventually, that modifies the knowledge structures of an agent

as well as its perception of the other agents. Non-monotonic logics cope with new information

by adding meta-information on top of traditional propositional logic. Therefore, the original

theory of an agent does not change over time.

ASP is a logic programming language that uses negation as failure to cope with incomplete

information. Intentional notions can be simulated by special predicates in the language. This

approach is not uncommon in the logic programming. However, the usage of these predicates

limits the expression of the modal operators and may confuse the designers in specifying the

behaviour of the agents.

An important requirement of logics for multi-agent systems is the computational tractability.

Those modal logics that satisfy the equivalence (reflexive, symmetric and transitive) relation can

be computationally-grounded. Hence, there are some compromises in the expressive capability

of the programming languages to meet the tractability of the agents’ program. More compre-

hensive lists of programming languages and platforms for multi-agent systems are presented in

Bordini et al. (2006); Fisher et al. (2007).

A meaningful logic with a practical inferential engine should feature expressive and com-

putational tractable in the modelling states of the agents. Furthermore, the designer of the logic

should consider that an agent operating in a dynamic environment (an agent may be influenced

by actions of other agents) and has a partial image of the environment.



4
Defeasible Logic

Defeasible logic is a logical formalism designed to cope with the problem of incomplete and

conflicting information. Among the approaches to non-monotonic reasoning without nega-

tion as failure, such as courteous logic programs (Grosof, 1997) and LPwNF (Dimopoulos and

Kakas, 1995), defeasible logic provides a simple but often more efficient and expressive, espe-

cially with regard to sceptical reasoning as shown by (Antoniou et al., 2000b).

In this chapter, we introduce defeasible logic following the formalisation of Billington

(1993) owing to its simplicity and efficiency and the extension of the logic with ambiguity

propagation. Next, we present different implementations of defeasible logic reasoning engines.

Finally, we conclude the chapter by discussing the relationship between defeasible logic and

logic programming when dealing with incomplete information.

45
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4.1 Introduction

As an approach to non-monotonic reasoning (Antoniou, 1997; Marek and Truszczynski, 1993),

defeasible logic is a very promising tool, able to efficiently cope with the issue of partial and

conflicting knowledge. The origin of defeasible logic goes back to Nute (1987, 1994), when

the logic had been designed with a particular concern about computational efficiency (Maher,

2001; Maher et al., 2001) and has been very well developed over the years (Antoniou et al.,

2000a, 2001; Billington, 1993). The main idea of defeasible logic is to produce a plausible

conclusion given a reasonable amount of information. The conclusion is considered to hold if

and only if there is no counter-evidence or the counter-evidence is not strong enough to defeat

the conclusion. Potential conflicts between pieces of information are handled by a superiority

relation. This provides a compact representation and an effective way to accommodate new

information.

In addition to the ease of deployment, defeasible logic has been used in various application

domains, including the modelling of regulations and business rules (Antoniou et al., 1999a;

Grosof et al., 1999), modelling of contracts (Governatori, 2005; Governatori and Pham, 2005a;

Reeves et al., 1999), the integration of information from various sources (Antoniou et al., 1999b;

Lee et al., 2006), and semantic web (Antoniou and Bikakis, 2007; Bassiliades et al., 2006; Gov-

ernatori and Pham, 2005b; Kontopoulos et al., 2008). In the agent research domain, there is a

line of works which proposes to use defeasible logic to model rational agents on: the delibera-

tion process (Dastani et al., 2007; Falappa et al., 2004; Governatori et al., 2006b; Rotstein et al.,

2007); normative and social aspects (Governatori and Rotolo, 2004; Governatori et al., 2006b);

actions and planning (Dastani et al., 2005a,b; Ferretti et al., 2007; Garcı́a et al., 2007; Simari

et al., 2004); and communication (Boella et al., 2007a).

4.2 Defeasible logic

In the section, we present the essential concepts of defeasible logic, including the language,

proof conditions and the principle of strong negation. The logical formalism is based on Billing-

ton (1993), which provides a simple and effective representation for dealing with conflicting and
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incomplete information.

4.2.1 Basic concepts

The basic components of defeasible logic are: facts, strict rules, defeasible rules, defeaters, and

a superiority relation.

Facts are undeniable statements, which are always true.

Strict rules, are similar to rules in classical logics. Given enough evidence, the conclusions

produced by strict rules are unquestionable. In other words, the conclusions are considered as

new facts.

Defeasible rules are different from strict rules in the way that their conclusions can be over-

ridden by contrary evidences. Defeasible rules capture those statements that are usually true.

Defeaters are rules that cannot be used to draw any conclusion but to prevent some conclu-

sions from some defeasible rules by producing evidence to the contrary.

The superiority relation defines priorities among the defeasible rules. That is, one defeasible

rule may override the conclusion of another rule when we have to solve a conflict between rules

with opposite conclusions. Strict rules always have priority over defeasible ones. However, the

priority is not defined among the strict rules.

4.2.2 Formal definitions

A defeasible theory D is a triple (F,R,>) where F is a finite set of facts, R a finite set of rules,

and > a superiority relation on R.

The language of defeasible logic consists of a finite set of literals. Given a literal l, we use

∼l to denote the propositional literal complementary to l, that is if l = p then ∼l = ¬p, and if

l = ¬p then ∼l = p.

A rule r in R is composed of an antecedent or body A(r) and a consequent or head C(r).

A(r) consists of a finite set of literals while C(r) contains a single literal. A(r) can be omitted

from the rule r if it is empty. The connective between two parts of a rule represents the type

of the rule, in particular, A(r)→C(r) for a strict rule; A(r)⇒C(r) for a defeasible rule; while

A(r) C(r) is for a defeater rule.
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The set of rules R can include all three types of rules, namely Rs (strict rules), Rd (defeasible

rules), and Rd f t (defeaters). We will use Rsd for the set of strict and defeasible rules, and R[q]

for the set of rules whose head is q.

A conclusion derived from the theory D is a tagged literal and is categorised according to

how the conclusion can be proved:

• +∆q: q is definitely provable in D

• −∆q: q is definitely unprovable in D

• +∂q: q is defeasibly provable in D

• −∂q: q is defeasibly unprovable in D.

Example 2. In considering the following statements, ‘Penguin is certainly a type of bird; nor-

mally a bird can fly; actually, penguin cannot fly’. These statements can be formulated using

defeasible logic.

Because we are certain about the biological classification of the penguin, we have a strict

rule r1 : penguin→ bird. For the last two statements we can have r2 : bird ⇒ f ly and r3 :

penguin⇒∼ f ly. Rule r2 denotes that typically a bird can fly if there is no evidence against

this conclusion. Rule r3 gives a conclusion that a penguin does not have flying capability.

The set R = {r1,r2,r3} works well if we only have the fact of bird. From R, we can derive

the conclusion of f ly. Now, the fact of penguin is introduced to R, it causes a conflict between

f ly and ∼ f ly since both r2 and r3 are triggered. This conflict can be solved by the superiority

>= {r3 > r2}. That is r3 overrides the conclusion from that of r2.

4.2.3 Proof conditions

Provability is based on the concept of a derivation (or proof) in a defeasible theory D=(F,R,>).

Informally, definite conclusions can derive from strict rules by forward chaining, while defeasi-

ble conclusions can obtain from defeasible rules if and only if all possible ‘attacks’ are rebutted

because of the superiority relation or defeater rules. The set of conclusions of a defeasible the-

ory is finite. This set is the Herbrand base that can be built from the literals occurring in the

rules and the facts of the theory.
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A derivation is a finite sequence P = (P(1), . . . ,P(n)) of tagged literals satisfying proof

conditions (which correspond to inference rules for each of the four kinds of conclusions).

P[1..i] denotes the initial part of the sequence P of length i. In the follow, we present the proof

for definitely and defeasibly provable conclusions by Antoniou et al. (2001).

The definition of ∆ describes just forward chaining of strict rules. For a literal q to be

definitely provable there is a strict rule with head q, of which all antecedents have been definitely

proved previously.

Definition 2. The condition for a conclusion with tag +∆ is defined as:

+∆: If P(i+1) = +∆q then

(1) q ∈ F or

(2) ∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P[1..i]

To show that q cannot be proven definitely, q must not be a fact. In addition, we need to

establish that every strict rule with head q is known to be inapplicable. Thus, for every such rule

r there must be at least one antecedent a for which we have established that a is not definitely

provable −∆q.

Definition 3. The proof for −∆ conclusion is defined as:

−∆: If P(i+1) =−∆q then

(1) q 6∈ F and

(2) ∀r ∈ Rs[q] ∃a ∈ A(r) :−∆a ∈ P[1..i]

To show that q is provable defeasibly is more complicated, because the opposing chains of

reasoning against q must be considered, (1) q is already definitely provable or, (2) the defeasible

part of D is investigated. In particular, it is required that a strict or defeasible rule with head

q that can be applied is in the theory (2.1). In addition, the possible ‘attacks’ must be taken

into account. To be more specific: q is defeasibly provable providing that ∼q is not definitely

provable (2.2). Also (2.3), the set of all rules supporting ∼q are considered. Essentially, each

such a rule s attacks the conclusion q. The conclusion q is provable if each such rule s is not

applicable or s must be counter-attacked by a rule t with head q and t must be stronger than s.
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Definition 4. The proof for a +∂ conclusion is as follows:

+∂ :If P(i+1) = +∂q then either

(1) +∆q ∈ P[1..i] or

(2.1) ∃r ∈ R[q] ∀a ∈ A(r) : +∂a ∈ P[1..i] and

(2.2) −∆∼q ∈ P[1..i] and

(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P[1..i] or

(2.3.2) ∃t ∈ R[q] such that t > s and

∀a ∈ A(t) : +∂a ∈ P[1..i]

The similar explanation is applied for proving −∂q. In short, the theory D does not have

any strict rule supporting q and one of following conditions: all defeasible rules for q are not

applicable; there is a strict support for ∼q; at least one defeasible rule for ∼q is applicable and

successfully overrides the ‘attack’ from those rules for q.

Definition 5. The condition for a −∂ conclusion is constructed as:

−∂ :If P(i+1) =−∂q then either

(1)−∆q ∈ P[1..i] and

(2.1) ∀r ∈ R[q] ∃a ∈ A(r) :−∂a ∈ P[1..i] or

(2.2) +∆∼q ∈ P[1..i] or

(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P[1..i] and

(2.3.2) ∀t ∈ R[q] either t 6> s or

∃a ∈ A(t) :−∂a ∈ P[1..i]

Example 3. This example illustrates the reasoning process for a defeasible theory. Considering
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the defeasible theory D in Example 2. We have a defeasible theory as follows.

D ={F,{Rs,Rd},>}

where

F = {penguin}

Rs = {r1 : penguin→ bird}

Rd = { r2 : bird⇒ f ly;

r3 : pengin⇒∼ f ly}

>= {r3 > r2}

Theory D derives sequence P of tagged conclusions as

P =+∆penguin,+∆bird,+∂ penguin,+∂bird,+∂∼ f ly

The conclusion of +∆penguin is derived, because penguin is in the set of facts F . Also, this

conclusion results in rule r1 being triggered. Therefore, +∆bird is added into the derivation se-

quence P. Owing to the definition of ∂ , we have +∂ penguin and +∂bird from +∆penguin,+∆bird.

The occurrence of two defeasible conclusions turns r2 and r3 to be applicable. Because of

the superiority relationship the conclusion of f ly is withdrawn. Finally, +∂∼ f ly is included in

P.

4.2.4 Strong negation principle

The principle of strong negation defines the relationship between positive and negative con-

clusions. Hence, enforcing the principle preserves the coherence and consistency of the con-

clusions. The meaning of tags −∆ and −∂ is that it is not possible to obtain a proof for the

corresponding literals. As shown in the proof conditions of these tags, a negative conclusion is

made if and only if all possible proofs for the positive conclusion are investigated. Therefore,

conclusions with tags−∆ and−∂ are the outcome of a constructive proof that the corresponding

positive conclusion is not provable.

The structure of the proof conditions for a pair of conflict tags +∂ ,−∂ or +∆ (−∆) is the

same, but the conditions are negated in some sense. We claim that the proof condition for a tag

is the strong negation of the proof condition for its complement.
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To show the principle, we first present the strong negation of a formula. Essentially, the

strong negation can be simulated by a function that simplifies a formula by moving all negations

to an innermost position in the resulting formula. This function behaves as follows:

sneg(+∂ p ∈ X) =−∂ p ∈ X

sneg(−∂ p ∈ X) =+∂ p ∈ X

sneg(A∧B) =sneg(A)∨ sneg(B)

sneg(A∨B) =sneg(A)∧ sneg(B)

sneg(∃xA) =∀xsneg(A)

sneg(∀xA) =∃xsneg(A)

sneg(A) =¬sneg(A)

sneg(A) =¬A if A is a pure formula

Definition 6. The principle of the strong negation is that for each pair of tags such as +∂ , −∂ ,

the inference rule for +∂ should be the strong negation of the rule of −∂ and vice versa.

4.3 Ambiguity propagation extension

Defeasible logic can be extended by an ambiguity propagating variant (see (Antoniou et al.,

2000a; Governatori et al., 2004)). The superiority relation is not considered in the inference

process of this variant. The extension introduces a new tag Σ, which shows a support for a

literal in a defeasible theory. The tag +Σp means that there is a monotonic chain of reasoning

that would lead to conclude p in the absence of conflicts. Thus, a defeasibly provable literal

tagged with +∂ is also supported. In contrast, a literal may be supported even though it is

not defeasibly provable. Therefore, support is a weaker notion than defeasible provability.

In the following, we present the extension conditions for ±Σ conclusions with respect to the

superiority relationship among defeasible rules.

There is a positive support for a literal if a strict or defeasible rule supports this literal and

all rules against this literal are either weaker or inapplicable.

Definition 7. The positive support for a literal is defined as:
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+Σ: If P(i+1) = +Σq then

∆q ∈ P[1..i] or

∃r ∈ Rsd[q]:∀a ∈ A(r) : +Σa ∈ P[1..i] either

∀s ∈ Rsd[∼q]:∃a ∈ A(s) :−∂a ∈ P[1..i] or

∃t ∈ Rsd[q] and t > s and ∀a ∈ A(t) : +Σa ∈ P[1..i]

There is a negative support for a literal if all strict and defeasible rules for this literal are not

supported or defeated by an applicable rule.

Definition 8. The negative support for a literal is constructed as:

−Σ :If P(i+1) =−Σq then

−∆q ∈ P[1..i] and

∀r ∈ Rsd[q]:∃a ∈ A(r) :−Σa ∈ P[1..i] either

∃s ∈ Rsd[∼q]: ∀a ∈ A(s) : +∂a ∈ P[1..i] or

∀t ∈ Rsd[q] and t 6> s or ∃a ∈ A(t) :−Σa ∈ P[1..i]

We can achieve ambiguity propagation behaviour by making a minor change to the inference

conditions for +∂AP and −∂AP. That is attacks from other rules are not considered in the proof.

Definition 9. The condition for a positive defeasible conclusion with respect to ambiguity is

defined as:

+∂AP:If P(i+1) = +∂APq then either

(1) +∆q ∈ P[1..i] or

(2.1) ∃r ∈ Rsd[q] ∀a ∈ A(r) : +∂APa ∈ P[1..i] and

(2.2) −∆∼q ∈ P[1..i] and

(2.3) ∀s ∈ Rsd[∼q] ∃a ∈ A(s) :−Σa ∈ P[1..i]

By considering the principle of the strong negation, we derive the condition for −∂AP.

Definition 10. The condition for an unprovable defeasible conclusion with respect to ambiguity

is constructed as:
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−∂AP:If P(i+1) =−∂q then

(1) −∆q ∈ P[1..i] either

(2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) :−∂APa ∈ P[1..i] or

(2.2) +∆∼q ∈ P[1..i] or

(2.3) ∃s ∈ Rsd[∼q] such that ∀a ∈ A(s) : +Σa ∈ P[1..i]

In the following example, we illustrate the use of support notion and the inference with

ambiguity.

Example 4. Considering a defeasible theory D as follows:

Rd = {r1 :⇒ a;r2 :⇒∼a;r3 :⇒ b;r4 : a⇒∼b}

Without the superiority relationship, there is no means of deciding between a and ∼a and both

r1 and r2 are applicable. In a setting where the ambiguity is blocked, b is not ambiguous,

because r3 for b is applicable. The rule r4 is not, because its antecedent is not provable. If

the ambiguity is propagated, we have evidence supporting all of four literals, because all of the

rules is applicable. The tags +Σa,+Σ∼a,+Σb and +Σ∼b are included in the conclusion set.

Moreover, we can derive−∂a,−∂∼a,−∂b and−∂∼b showing that the resulting logic exhibits

an ambiguity propagating behaviour. In the second setting b is ambiguous, and its ambiguity

depends on that of a.

4.4 Inferential engines

Among the non-monotonic logics, defeasible logic provides a method to deal with the problem

of incomplete and conflicting information. The syntax of the logic is very simple and intuitive.

However, there is a challenge in building an inferential mechanism for the logic so that this

mechanism can be computationally efficient and flexible for dealing with practical problems. In

this section, we present several implementations of the defeasible reasoning including d-Prolog,

Deimos, Delores, and the DR-Family. Only Delores can compute all answers, while the other

implementations are built as answering query systems. Furthermore, the design of Delores

focuses mainly on tackling the computational cost.
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4.4.1 d-Prolog

d-Prolog by (Covington et al., 1987) is a query-answering interpreter for defeasible logic con-

stituting about 300 lines of Prolog. Originally, the system was designed for mostly small, non-

recursive inheritance problems. The strict rules are represented directly as Prolog rules while

defeasible rules are a new component in Prolog. The d-Prolog implementation differs from the

formal description of the logic:

• d-Prolog does not implement loop-checking

• d-Prolog is not closed under strict rules. Also, defeasible logic is not closed. In addition

to a literal and its complement, the conflicts between the literals can also defined by the

special predicate incompatible. Therefore, the inference for strict rules has to be modified

to keep the original semantics. In the case of two competing strict rules that are defeasibly

satisfied, both of their heads are not added to the sequence of conclusions. The literals

supported by these rules are not derivable.

• The superiority relation can be defined implicitly by specificity.

However, the d-Prolog implementation of defeasible logic has an issue (Maher et al., 2001)

that is inherited from Prolog. Specially, the computation of conclusions depends on the order

in which the rules are given. This effect becomes more obvious when experiencing theories

containing cyclic dependencies among literals.

4.4.2 Deimos – A query answering defeasible logic system

Deimos (Maher et al., 2001) implements defeasible reasoning as a query-answering system by

using the Haskell programming language. The design of Deimos meets logical and computa-

tional requirements, including correctness, traceability, efficiency, flexibility and maintainabil-

ity. Therefore, this tool provides a promising environment for both of the ongoing research and

solving practical problems in defeasible logic.

The central part of the system is the prover using a backward-chaining strategy to derive a lit-

eral, tagged with different proof strengths including definite, defeasible and support. The proof
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of a conclusion is accomplished with a depth-first search with the memorisation of already-

proved conclusions and the detection of duplicated conclusions. To improve the efficiency, the

system deploys balanced binary trees and indexed structures, which represent literals and rules

in a defeasible theory, in deploying memorisation and loop-checking.

Because of the functional programming of Haskell, expressions of inference conditions in

Deimos precisely and directly correspond to what is specified by the logical formalism. That

facilitates the implementations of different extension of defeasible logic in addition to the veri-

fication of these implementations. In addition, Deimos can provide the proof history that traces

all the sub-goals in the evaluation for a query. That is helpful for examining the traces of rea-

soning process of the logic.

The user can interact with Deimos via a command line or web pages and investigate sev-

eral pre-prepared defeasible theories. The present system now consists of about 4000 lines of

Haskell code.

4.4.3 DELORES – DEfeasible LOgic REasoning System

Delores (Maher et al., 2001), implemented in about 4000 lines of C, is based on forward chain-

ing, but this is only for the positive conclusions. The negative conclusions are derived by a dual

process. The system relies on the transformation of a general defeasible theory to a basic theory,

which only contains defeasible rules. The details of transformation are presented in (Antoniou

et al., 2001).

Given a basic defeasible theory, the system constructs data structures based on indexed

lists to facilitate the access from literals to rules and vice versa. A literal has indexed lists

indicating its positive/negative occurrences in the head or body of a rule. The algorithm for

proof conditions works as follows.

• Assert each fact (a literal) as a conclusion and removes this literal from the rules, where

the literal positively occurs in the body, and ‘deactivate’ the rules where either its com-

plements or its conflicting literals occur in the body.

• Scan the list of active rules for rules with the empty body. Take the literal from the head,

remove the rule, and put the literal into the pending facts. The literal is removed from the
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pending facts and added to the list of facts, if there is no such rule whose head contains

the complements of the literal or it is impossible to prove these literals.

• It repeats the first step.

• The algorithm terminates when there is no more fact or rule with an empty body.

This algorithm outputs +∂ ; −∂ can be computed by an algorithm similar to this with the

‘dual actions’. For +∆ we have just to consider similar constructions where we examine only the

first parts of step 1 and 2. −∆ follows from +∆ by taking the dual actions. The computational

complexity of the algorithm is O(N), where N is the multiplication of the number of literals and

rules in D (Maher et al., 2001).

Considering the transformations of the defeaters and superiority relation (see Antoniou et al.

(2001) for details), the number of literals can be increased, at the most, 12 times. Furthermore,

the time taken to produce the transformed theory is linear in the size of the input theory. Con-

sequently, the implementation of full defeasible logic is still linear. A complete analysis of

correctness and complexity is presented in (Maher, 2001).

4.4.4 DR-Family: defeasible reasoning for the web

Antoniou and Bikakis initiate a line of works that provides a defeasible reasoning mechanism

for Semantic Web applications. The representation of defeasible theory is compliant with the

RuleML (Rule Mark-up Language) format so that it facilitates the exchange of defeasible theo-

ries over the Web. A major effort of these systems puts the transformation of knowledge bases

in Web formats, such as RDF/S (Resource Description Format/Schema), into defeasible knowl-

edge. The reasoning core relies on the existing rule-programming systems, such as C Language

Integrated Production System (CLIPS, 1992). DR-families can be extended to capture modal

deontic defeasible logic (Governatori and Rotolo, 2004). In this section, we present the DR-

Prolog (Antoniou and Bikakis, 2007) and the DR-Device (Bassiliades et al., 2004).

DR-Prolog

The design of DR-Prolog by Antoniou and Bikakis (2007) focuses on the following:
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• the compliance with RuleML so that the defeasible theory can be easily portable between

Web systems

• the basis of the translation of defeasible logic into the meta-program from (Antoniou

et al., 2000a; Maher and Governatori, 1999)

• the flexibility of the reasoning mechanism that can perform either ambiguity blocking or

ambiguity propagating

• integration with Semantic Web technologies. The system can work with rules and knowl-

edge base in RDF/S (Resource Description Format/Schema) and OWL (Web Ontology

Language) constructs.

DR-Prolog is a system for answering queries whose answers can have a level of strength,

definite/defeasible provability. The user gives a query as a defeasible theory in RuleML format.

The query is evaluated by a knowledge base in RDF/S & OWL typically built from the Internet.

The system relies on the translation of different knowledge formats into logic programs. The

core of the reasoning engine is built on XSB-Prolog due to the use of tabled predicates and

the sk not operator. The usage of XSB-Prolog provides the well-founded version of the meta-

program; however, the complexity of the reasoning mechanism is quadratic (Witteveen, 1996).

Furthermore, XSB-Prolog facilitates the integration with other systems such as RDF/S & OWL.

DR-Device

The DR-DEVICE system by Bassiliades et al. (2004) has the ability to reason about RDF data

over multiple Web sources using defeasible logic rules. The main features of the DR-Device

are,

• compliance with the representation of defeasible logic by allowing three types of rules,

strict, defeasible, and defeaters

• support for both classical (strong) negation and negation-as-failure. Also, the system

allows conflicting literals that are derived objects that exclude each other.

• accept multiple formats of knowledge representation such as RDF, RuleML.
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The core of the system is implemented by the CLIPS production rule system and the R-

DEVICE deductive rule system (Bassiliades and Vlahavas, 2004). In addition, the core accepts

knowledge in different formats by converting the knowledge to a set of CLIPS-like or object-

oriented ‘ deductive rules. The defeasible reasoning is deployed by the compilation into the

generic rule language of R-DEVICE. This approach is extended to capture modal defeasible

deontic logic (Governatori and Rotolo, 2004).

4.5 Discussions

Defeasible logic is a simple but efficient approach to cope with the problem of incomplete and

conflicting information. The logic and its extensions attract the interest of research communi-

ties, especially in knowledge representation and reasoning, and multi-agent systems.

Defeasible Logic Programming DeLP, by Garcı́a and Simari (2004), captures the concept

of defeasible logic using logic programming as a declarative language and a defeasible argu-

mentation (Simari and Loui, 1992) as the proof mechanism. The DeLP treats sets of strict and

defeasible rules as two separated logic programs, but does not support defeater rules. Instead of

using the explicit superiority relationship to solve conflicts, DeLP deploys dialectical analysis

over proof trees of conflicting conclusions. The complexity of DeLP is attributed to the retrieval

of a proof for a conclusion and the assessment of the acceptability of that proof, especially in

the presence of contradictory conclusions. Cecchi et al. (2006) show that given a logic program

composed of finite ground facts, strict and defeasible rules the complexity of the former task is

P−complete whilst that of the latter is NP−complete. This proof procedure is very expensive

in comparison with that of Antoniou et al. (2001).

In this chapter, we follow (Billington, 1993) for the representation of defeasible logic, where

the superiority relation among the rules is described by its strength (strict or defeasible) as well

as its ability to override the attack from other rules. It is noted that the second condition only

applies for the defeasible rule.

Compared to the approaches to non-monotonic reasoning by a logic program without nega-

tion as failure (Dimopoulos and Kakas, 1995), defeasible logic is more powerful (Antoniou

et al., 2000b). A defeasible theory derives more desirable conclusions than a program without
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negation as failure.

Antoniou et al. (2006) have shown a close relationship between the semantics of defeasible

logic and those of extended logic programs. Given a translation into a program P(D), a defeasi-

ble theory D exactly expresses the sceptical behaviour of P(D) under the answer-set semantics

with respect to the decisiveness condition. Without this condition, the intersection of all answer

sets of program P(D) is equal to the defeasible conclusions of theory D. However, under Kunen

semantics (Kunen, 1987), the translation shows an equivalence between the defeasible theory

D and program P(D).

Governatori et al. (2004) show that the grounded semantics of argumentation systems in

(Dung, 1993) can be characterised by defeasible logic with ambiguity propagation. Vreeswijk

(1997) adapts Dung’s argumentation systems and their semantics can be characterised by defea-

sible logic with ambiguity blocking. The grounded semantics and the notion of the acceptability

of arguments (Dung, 1995) are characterised by the defeasible logic with ambiguity propagating

and ambiguity blocking, respectively. Informally, an argument is accepted if it is not possible to

provide counter-evidence to deny this argument. In the case of grounded (skeptical) semantics,

it is not conclusive if the system contains arguments providing evidence against each other.

There are common concerns on the defeasible reasoning within approaches to non-monotonic

reasoning such as floating conclusions (Horty, 2002; Makinson and Schlechta, 1991), argument

reinstatement (Horty, 2001). Also, Brewka (2001) claims the superiority of the well-founded

semantics of the extended logic program against defeasible logic. These issues are discussed in

(Antoniou, 2006).

Justifying floating conclusions, which are conclusions supported by conflicting informa-

tion, is an open debate. Horty (2002) claims that floating conclusions can be reasonable but

non-monotonic reasoning pattern fails to justify those conclusions. However, Prakken (2002)

shows that floating conclusions are often desirable and these conclusions can be controlled by

the default rules of the reasoning system. The variants of defeasible logic in Antoniou et al.

(2000a) do not support these conclusions. In fact, these conclusions can be controlled if there

is explicit preference over conflicting information. The opinion of Horty (2001) on argument

reinstatement requires further discussion. Defeasible logic can tackle the reinstatement easily

because to trigger a rule r, every attack from other rules must be directly refuted by the stronger
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rule s that supports the same conclusion as r.

In response to Brewka (2001), Antoniou (2006) admits that a meta-program, used to trans-

late a defeasible theory into a logic program, does not fully handle the cyclic theory as well-

founded semantics for extended logic programs, but it is not the case with the defeasible logic

framework. Moreover, the direct use of well-founded semantics to translate strict rules can

provide a counter-intuitive result. This translation can result in the implicit reference of the

conclusions supported by the strict rules over those of defeasible rules. A strict rule when ap-

plying for defeasible facts should be treated as a defeasible one. Also, the representation of

defeasible logic (Antoniou et al., 2000a) only defines a superiority relation over the rules that

individually support a conclusion and its complements.

Within non-monotonic logics, defeasible logic is an interesting approach to the problem of

incomplete and conflicting information because of its simple but effective representation. The

logic is also equipped with efficient implementations containing flexible models of ambiguity.

The complexity class of the reasoning mechanism is linear to the size of the defeasible theory

(number of rules and literals), which allows having an executable and portable logic mechanism

in many research problems, such as agent modelling (Governatori and Rotolo, 2008), web on-

tology reasoning (Antoniou and Bikakis, 2007) or process compliance modelling (Governatori

and Milosevic, 2006; Governatori et al., 2006a).
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5
Multi-agent framework based on defeasible

logic

Agents within a group can have different perceptions of their working environment and au-

tonomously fulfil their goals. However, they can be aware of beliefs and goals of the group

as well as other members and they can adjust their behaviours accordingly. To model these

agents, we propose a framework based on defeasible logic, DL-MAS, where we explicitly in-

clude knowledge commonly shared by the group and knowledge obtained from other agents.

Agents demonstrate their social commitment to the group by avoiding actions that violate the

‘mental attitudes’ shared by the majority of the group.

Defeasible logic is chosen as our representation formalism for its computational efficiency,

and for its ability to handle incomplete and conflicting information. In addition, it provides

specifications for an agent that is both conceptual and executable. Hence, our agents can enjoy

63
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the low computational cost while performing ‘reasoning about others’. Finally, we present

our DL-MAS framework and its extension with modal notions including Belief, Intention, and

Obligation.

5.1 Introduction

In multi-agent systems, interactions between agents are often related to cooperation or com-

petition in such a fashion that they can fulfil their tasks. Successful interactions often require

agents to share common and unified knowledge about their working environment. However,

autonomous agents observe and judge their surroundings according to their own view. Conse-

quently, agents possibly have partial and sometimes conflicting descriptions of the world. In

scenarios where they have to coordinate, they are required to identify the shared knowledge in

the group and to be able to reason with the available information. Modelling those agents re-

quires representing and reasoning with incomplete and conflicting information, which is beyond

the classical logics and monotonic reasoning.

Recently, defeasible logic (Nute, 1987, 1994) has attracted considerable interest from the

research community (Antoniou et al., 2000a, 2001; Billington, 1993; Chesñevar et al., 2003; Dix

et al., 1999; Garcı́a and Simari, 2004). In the agent research domain, there is a line of works

that proposes to use defeasible logic to model the deliberation process of the rational agents

(Dastani et al., 2007; Falappa et al., 2004; Governatori et al., 2006b; Rotstein et al., 2007); to

capture normative and social aspects (Governatori and Rotolo, 2004; Governatori et al., 2006b);

to reason about actions and planning (Dastani et al., 2005a,b; Ferretti et al., 2007; Garcı́a et al.,

2007; Simari et al., 2004); and to model communication (Boella et al., 2007a).

Defeasible logic is an elegant and computationally efficient tool (Maher, 2001; Maher et al.,

2001) to deal with partial and conflicting knowledge. The key advantage of defeasible logic is

being able to draw a plausible conclusion from a reasonable amount of information. In addition,

defeasible logic provides a compact representation and an effective way to accommodate new

information.

In this chapter, we propose a formal framework, DL-MAS, based on defeasible logic to

describe the knowledge commonly shared by agents, and that obtained from other agents. The
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new model enables an agent to reason about the environment and intentions of other agents in

the group. Actions of an individual agent are constrained to a general expectation of the group

of agents by balancing between the desires of an individual and the beliefs of the majority. To

achieve that, we extend the reasoning mechanism of defeasible logic with the notion of superior

knowledge. The extended mechanism allows an agent to integrate its mental attitude with a more

trustworthy source of information such as the knowledge shared by the majority of other agents.

In the extension of the DL-MAS, we add modal notions including Belief, Intention and

Obligation to have a fine-grained model of ‘mental attitudes’ and social actions. In this model,

our agents have the ability to discover the ‘conventions’ of the group by exploring the majority

of the mental attitudes of the group.

In the rest of this chapter, we introduce our modelling technique and discuss how to repre-

sent the knowledge base of the agents including the meta-knowledge about the agents’ impor-

tance in Section 5.2. In addition, we outline the strategies to allow the agents to discover the

approximate ‘common attitudes’ among the group. Next, Section 5.3 describes details of the

DL-MAS mechanism for reasoning with a priority source of knowledge. Section 5.4 presents

the defeasible rule markup, which originates from the Rule Markup Language as a knowledge

representation tool and the algorithm of the reasoning engine. In Section 5.5, we show the in-

tegration of modal notions into our DL-MAS framework. We provide an overview of research

works related to our system in Section 5.6. Finally, Section 5.7 concludes the chapter.

5.2 DL-MAS multi-agent framework

In this section, we introduce DL-MAS, a framework for multi-agent systems, where we use the

defeasible logic to represent the knowledge structure of an agent. We motivate the role of the

knowledge shared by the agents’ group in placing constraints and expectations on the behaviour

of an individual agent. In addition, we present the concept of majority knowledge and the

strategies of an agent in using this special knowledge in the presence of conflicts. Finally, we

define the method enabling an agent to ponder the ‘prevalent opinion’ of the majority of agents

with its internal attitude.
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5.2.1 Knowledge representation

In general, each individual agent can take any action by balancing its desires, its knowledge

about the environment and the perception of other agents’ behaviours. As a member of a group,

each agent is aware of the mental attitudes commonly held among the group and should avoid

actions that can violate the general expectation of the group. The reputation of an agent can

be decreased owing to its violation. On the other hand, the behaviour of an individual can

be significantly influenced by either members with a high reputation or the majority of the

group. That means an agent’s perception of others either strengthens its current knowledge or

introduces new information. An agent can adjust its behaviours accordingly by considering its

knowledge and the ‘conventional wisdom’ of the group. To capture this concept, we propose a

knowledge structure for an agent that which consists of three components of background, other

members, and internal knowledge, that is, the agent’s own knowledge.

Definition 11. Given a group of agents, A = {A1, . . . ,An+1} , and a weight function wA, which

maps an agent Ai in A to a real value representing importance of the agent to the group:

wA : {A1, . . . ,An+1} 7→ R+

An individual agent in the group, considering itself as Ame, has the knowledge structure T ,

represented by a set of defeasible theories.

T = {Tbg,Tme,Tother}

In detail, the elements of the knowledge structure are described as follows:

• Tbg is the background theory representing the background knowledge. This knowledge

represents information commonly shared by all agents, which motivates general (social)

behaviours. In addition, this knowledge can represent desires or restrictions popularly

recognised among agents 1.

• Tme is the internal theory representing the own knowledge of Ame, which describes its

own view about the working environment. This knowledge enables Ame to achieve its

goals autonomously and distinctively.
1The terms of ‘knowledge’ and ‘theory’ are interchangeable in our framework, because a knowledge source is

modelled by a defeasible theory.
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• Tother = {Ti : 1 ≤ i ≤ n+ 1 & i 6= me} where Ti is a defeasible theory that Ame obtains

from Ai in A . A weight function wT determines the importance of a theory in Tother

wT (Ti) = wA(Ai)| Ai ∈A

That is the importance of a theory is derived from that of the corresponding agent. The

knowledge of other agents provides a rough understanding of possible behaviours of in-

dividuals. This information could be learnt from experience or via information exchange.

For example, Boella et al. (2007a) introduce a method for agents to construct rule-based

knowledge about others via the communication activities.

Our approach deals with how an agent ‘computes’ collective wisdom based on the individual

opinions of single agents. In particular, the agent Ame replicates the reasoning of the other

agents individually and combines the results. This process is based on Ame’s perception of the

other agents, where the perceived knowledge of the others is considered private.

Measuring the trustfulness of an agent during interaction is a major challenge in the multi-

agent research. Within our framework, information from any agent is validated against the

background knowledge. In effect, any information that violates the commonly known informa-

tion is dropped. Moreover, it would be acceptable for an agent if new information is validated

by a large number of agents and complies with the commonly-shared knowledge.

Our approach favours the internal view approach (Kinny et al., 1996) to the agents’ be-

haviours in the sense that an individual agent can adopt or react to events depending on what

the agent knows about the environment and the other agents. We believe that our proposed

framework can be used as a tool for the external modelling. Interactions between agents in

the group can be fully investigated and verified when every individual agent is equipped with

complete knowledge of the other agents.

Example 5. In this example, we sketch out a basic scenario where the agents in a group make

use of different types of knowledge. Suppose we have a group of animal rescue agents including
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A1, A2, and A3. These agents share background knowledge:

Tbg = {Rd ={ r1 :⇒ catInDanger;

r2 : catInDanger⇒ rescue;

r3 : risk⇒∼rescue};

>={r3 > r2};

Essentially, if the background knowledge is the only source available the expected conclu-

sions for the agents are +∂catInDanger and +∂ rescue.

Assume that A3 identifies a risk as {Rd = {r1 :⇒ risk}} and perceives some knowledge

from A2 but nothing from A1. A3’s knowledge structure includes A3’s private knowledge and

Tother = {T1,T2} where T1 = /0; T2 = {Rd = {r1 :⇒ risk}}. The combination between A3’s

knowledge and the background knowledge can result in +∂ risk and +∂∼rescue.

By replicating the reasoning of A1 and A2 (based on A3’s perception of these agents), A3

presumes A1 supports +∂ rescue while A2 holds +∂∼rescue. Now, A3 can either pursue its

conclusions regardless of the knowledge from other agents or alter its conclusions by pondering

the opinions perceived from the others. The next section presents our approach to this issue.

5.2.2 Majority knowledge

The majority rule from Lin (1996) retrieves a maximal amount of consistent knowledge from a

set of agents’ knowledge. Conflicts between agents can be approached by considering not only

the number of agents supporting that information but also the importance 2 of the individual

agents. This approach provides a useful method to discover information largely held by the

agents. The majority knowledge can be used either to reinforce the current knowledge of an

agent or to introduce new information into the agent’s knowledge.

Owing to possible conflicting information within a source, the merging operator, by major-

ity, cannot directly be applied to our framework. Instead, the majority rule pools potential joint

conclusions derived by the defeasible reasoning, which resolves possible conflicts.

Considering the knowledge structure of an agent, Ame, Ci denotes the set of tagged conclu-

sions that can be derived by the reasoning mechanism from the corresponding theory Ti ∈Tother,
2The importance can be interpreted as the reputation or the reliability of an agent.
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obtained from the agent Ai. The level that the theory Ti supports a literal l is derived from the

weight of the corresponding theory as follows:

support(l,Ti) =

wT (Ti) l ∈Ci

0 otherwise

The support function shows that a literal has a support value only if this literal is provable by a

theory. The strength of the literal, which enables the literal to override other conflicts within the

theory, is not considered by the function. That is the reputation of the source is more important

than the proof within the source.

The majority knowledge from the others, Tma j, whose elements are inferred from {C1, . . . ,Cn}

by the majority rule, is determined by the formula:

Tma j =

{
c : ∑

Ti∈Tother

support(c,Ti)>
W −wT (Tme)

2

}

where W , the total weight of the group, is defined as

W = ∑
Ai∈A

wA(Ai)

Each conclusion in Tma j can have different support levels accumulated from individual theories.

Hence, the weight of the majority conclusions is a set, {wma j}, whose members have values

ranging from W −wT (Tme) to W−wT (Tme)
2 . Example 6 illustrates the selection by the majority

over sets of tagged conclusions.

Example 6. Suppose that three agents namely A1, A2, and A3 are tackling the ‘cat in danger’

situation, which is presented in Example 5. The importance levels of these agents are identified

as wA({A1,A2,A3}) 7→ {4,3,1}, therefore, the total weight is W = 8. Assume that A3 has

obtained sets of tagged conclusions C1 and C2 from theories T1 and T2 respectively. It is noticed

that the importance levels of these sets are inherited from those of corresponding agents A1 and
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A2. Details are as follows:

C1 ={ +∆catOnTree,+∂catInDanger,

+∂climbTree,+∂ risk,+∂∼rescue}

wT (T1) =wA(A1) = 4

C2 ={ +∆catOnTree,+∂catInDanger,

+∆climbLadder,+∆∼risk,+∂ rescue}

wT (T2) =wA(A2) = 3

To retrieve majority conclusions from the others, A3 combines C1 and C2 with respect to the

importance of these sets. The superscript presents the weight of a conclusion accumulated from

sources support that conclusion.

C1 +C2 = {+∆catOnTree7,+∂catInDanger7,

+∂climbTree4,+∂ risk4,+∂∼rescue4

+∆climbLadder3,+∆∼risk3,+∂ rescue3}

A3 now obtains the prevalent opinion Tma j and its weight {wma j} from A1 and A2 by applying

the threshold 3.5 (owing to wA(A1)+wA(A2)
2 ) over the combination as:

Tma j = {+∆catOnTree7,+∂catInDanger7,

+∂climbTree4,+∂ risk4,+∂∼rescue4

{wma j}= {7,4}

Proposition 1. For any literal q, it is impossible to have both +∂q and +∆∼q in Tma j

Proof. We can assume without any loss of generality that every defeasible theory has the same

weight. Suppose that there is a pair +∂q and +∆∼q in Tma j. According to the proof condition

of +∂ , +∂q is due to +∆q or −∆∼q. That means the number of theories, which definitely

support +∆q or do not have any strict proof for (that is, −∆∼q), must be more than one-half

of the theories. From this we infer that the number of theories, where +∆∼q holds, is less

than one-half of the group. Consequently, +∆∼q is not in Tma j. Clearly, this contradicts the

assumption.

A similar argument holds for the case of +∂∼q and +∆q in Tma j.
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Owing to the nature of defeasible logic proofs and the conflicts between knowledge sources,

there can be strict and defeasible conclusions of a literal and its complement in the inference

from individual sources. However, the outcome of the majority rule is still coherent.

Because Tma j is derived from what the agent Ame knows about the other agents, Tma j can

conflict with Tme (the internal knowledge of Ame). In the case that Ame joins the majority pool,

the greater importance (weight) Ame acquires, the greater influence it has on the joint knowledge.

If the weight of Ame is greater than W/3, Ame’s support for any conclusion c is tantamount to

half of the others’ support for c. Hence, Ame has an opportunity to significantly influence the

joint knowledge.

Two possible strategies can be applied by Ame to handle conflicts with the joint knowledge

of the other agents:

1. Adaptive strategy if wme 6> max({wma j}). In this situation Ame should take into account

the conclusions from the others, because it is unlikely that Ame can successfully override

the conflicts from the joint knowledge. That also means Tma j can introduce new informa-

tion to Ame.

2. Collective strategy if otherwise. Ame can defeat the conflicts from the other agents if

Ame joins the pool. Hence the joint knowledge from the others reinforces the current

knowledge of Ame. To obtain more knowledge, Ame should collect all possible consistent

knowledge from the others, which is consistent with respect to the reliability of the owner.

In summary, the majority rule enables the individual agents to identify knowledge shared

by the group. Depending on the weight, the agent can pursue one of two strategies, adapting to

the majority or collecting all possible knowledge. In both strategies, the background knowledge

commonly shared by the group is respected; that is, in case of a conflict between a conclusion

from the background knowledge and either from the majority or the agent’s knowledge, the

conclusions, which are supported by the background part, prevail.

Example 7. Considering the knowledge structure of the agent A3 in the Example 5, A3’s percep-

tion of other agents reveals that A1 supports +∂ rescue whilst A2 holds +∂ rescue. The adaptive

strategy guides A3 to take +∂ rescue no matter what A3 thinks about the situation. In contrast,
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the collective strategy requires A3 to combine the knowledge from other into its reasoning pro-

cess.

5.2.3 Defeasible reasoning with superior knowledge

In this section, we propose a simple method to integrate two independent defeasible theories,

which have different levels of reliability. It is noticed that a defeasible theory has finite sets of

facts and rules, and a derivation from the theory can be computed in linear time (Maher, 2001).

Suppose that an agent considers two knowledge sources represented by defeasible theories la-

belled as Tsp – the superior theory, and Tme – the agent’s internal theory. The agent considers that

Tsp is more important than Tme. Thus, conclusions from the internal theory should be withdrawn

if they conflict with the superior theory; the agent prefers the superior theory’s conclusions to

its own. In the following, we present the proof conditions extended from the standard defeasible

reasoning (Billington, 1993) and the properties of the extended conditions.

Proof conditions

Owing to the transformations of the superiority relation and the defeater rules (Antoniou et al.,

2001), we can assume that the two theories contain only strict and defeasible rules represented.

To perform the defeasible reasoning, the agent generates a superiority relation over sets of rules

as in Rsp
s > Rme

s and Rsp
d > Rme

d . In this scheme, the subscript denotes the type of rules while the

superscript indicates the type of the theory, which contains the rules. Meanwhile, the subscript

represents the type of rules: s for the strict rules while d for the defeasible rules.

A derivation from the two theories is a finite sequence P= (P(1), . . . ,P(n)) of tagged literals

satisfying proof conditions (which correspond to inference rules for each of the four kinds of

conclusions). P[1..i] denotes the initial part of the sequence P of length i.

The definite conclusion, +∆q, will be derived by performing forward chaining with the

strict rules in the superior theory or in the internal theory if the complementary literals cannot

be positively proved by the superior theory.

+∆: If P(i+1) = +∆q then

(1) q ∈ F or
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(2) ∃r ∈ Rsp
s [q] ∀a ∈ A(r) : +∆a ∈ P[1..i] or

(3) ∃r′ ∈ Rme
s [q] ∀a ∈ A(r

′
) : +∆a ∈ P[1..i] and

∀r ∈ Rsp
s [∼q] ∃a ∈ A(r) :−∆a ∈ P[1..i]

The conclusions tagged with −∆ mean that the extended mechanism cannot retrieve a posi-

tive proof for the corresponding literals from the strict parts of both theories.

−∆: If P(i+1) =−∆q then

(1) q 6∈ F and

(2) ∀r ∈ Rsp
s [q] ∃a ∈ A(r) :−∆a ∈ P[1..i] and

(3) ∀r ∈ Rme
s [q] ∃a ∈ A(r) :−∆a ∈ P[1..i] or

∃t ∈ Rsp
s [∼q] ∀a ∈ A(t) : +∆a ∈ P[1..i]

The proof for −∆ satisfies the principle of strong negation (Antoniou et al., 2000a). Every

statement of the proof for −∆ is the exact complement of that for +∆.

A defeasible conclusion +∂q can either be drawn directly from definite conclusions, or

by investigating the defeasible part of the integrated theory. In particular, it is required that

a strict or defeasible rule with an ‘applicable’ head q is in the theory (2.1). In addition, the

possible ‘attacks’ must be either unprovable (2.2 and 2.3.1) or counter-attacked by ‘stronger’

rules (2.3.2).

+∂ : If P(i+1) = +∂q then either

(1) +∆q ∈ P[1..i] or

(2.1) ∃r ∈ Rsp
sd [q]∪Rme

sd [q] ∀a ∈ A(r) : +∂a ∈ P[1..i] and

(2.2) −∆∼q ∈ P[1..i] and

(2.3) ∀s ∈ Rsp
sd [∼q]∪Rme

sd [∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P[1..i] or

(2.3.2) ∃t ∈ Rsp
sd [q]∪Rme

sd [q] such that t > s and

∀a ∈ A(t) : +∂a ∈ P[1..i]

The conclusions tagged with −∂ mean that the extended mechanism cannot retrieve a pos-

itive proof for the corresponding literals from the strict and defeasible rules of both theories
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or these conclusions are rebutted because of ‘stronger’ conclusions. The proof for −∂ derives

from that of +∂ by using the strong negation principle.

−∂ : If P(i+1) =−∂q then

(1) −∆q ∈ P[1..i] and

(2.1) ∀r ∈ Rsp
sd [q]∪Rme

sd [q] ∃a ∈ A(r) :−∂a ∈ P[1..i] or

(2.2) +∆∼q ∈ P[1..i] or

(2.3) ∃s ∈ Rsp
sd [∼q]∪Rme

sd [∼q] such (2.3.1) ∀a ∈ A(s) : +∂a ∈ P[1..i] and

(2.3.2) ∀t ∈ Rsp
sd [q]∪Rme

sd [q] either ∃a ∈ A(t) :−∂a ∈ P[1..i]

Example 8. In this example, we illustrate the use of the extended conditions in the context of

our rescue agents. Suppose that the agent Ame has two knowledge sources Tsp and Tme as:

Tsp = {Rd ={ r1 :⇒ catInDanger;

r2 : catInDanger⇒ rescue;

r3 : risk⇒∼rescue};

>={r3 > r2};

Tme ={Rd = {r4 :⇒ risk}}

At first, the integration process derives +∂ risk because of the empty body rules r4 and

no ‘attack’ against the conclusion of risk from Tsp and Tme. The conflict between rescue and

∼rescue is solved by the superiority of r3 over r2. That is Ame infers +∂∼rescue.

The conclusion of catInDanger will be changed by the extended reasoning if Ame holds a

strong evidence against catInDanger from Tsp. This evidence can be represented as a definite

conclusion +∆∼catInDanger derived from Tme. Now the conclusion +∂catInDanger is over-

ridden by the stronger evidence +∆∼catInDanger from a ‘weaker’ theory Tme. The intuition is

that conclusions supported by Tsp generally override those from Tme but a definite conclusion

from Tme is only rejected by definite ones from Tsp.

Given two defeasible theories T and S and a proof tag #, we use T ` #q to mean that #q can

be proved from theory T using the basic proof conditions of the defeasible logic (see Section 4.2

on Chapter 4), while T B S ` #q means that there is a derivation of #q from the theory integrating
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T and S using the proof conditions given in this section and where T plays the role of Tsp and S

the role of Tme.

Properties of extended reasoning

A defeasible theory has two essential properties: coherent and consistent, which are defined as

follows.

Definition 12. A defeasible theory is coherent if it is impossible to derive from it a pair −∆q

and +∆q, or −∂q and +∂q.

Definition 13. A defeasible theory is consistent if it is possible to derive +∂q and +∂∼q if and

only if the theory derives both +∆q and +∆∼q.

The extended defeasible reasoning with the superior knowledge has the properties:

1. The extended mechanism does not provide any proof against a strict conclusion derived

from the superior theory (see Proposition 2).

2. The conclusions from the extended mechanism overrides defeasible conclusions obtained

from the superior theory by a strict counter-evidence from its internal knowledge (see

Proposition 3).

3. The extended reasoning mechanism is coherent and consistent (see Proposition 4).

Proposition 2. If Tsp `+∆q then Tsp B Tme 6`+∆∼q and Tsp B Tme 6`+∂∼q

Proof. This result directly draws from the proof conditions of our reasoning mechanism. As-

sume that q is held by the strict rules of the superior theory, Tsp `+∆q, while +∆∼q is computed

by the integrated theory, Tsp B Tme ` +∆∼q. With regard to the proof for +∆, +∆∼q can be

derived either from (1) or (2) that is Tsp `+∆∼q. Nevertheless, this violates the assumption. If

+∆∼q is proved by (3), this proof condition requires the strict rules from the superior theory

does not have any support q, Tsp 6`+∆q. Again, this contradicts the assumption. Thus, the first

part of the proposition is proved.

Tsp `+∆q blocks the derivation of +∆∼q and−∆∼q from the integrated theory. Therefore,

(1) and (2.2) are not satisfied in the proof of +∂ . Consequently, +∂∼q is blocked.
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This proposition states if a strict conclusion is derived from the superior theory, the extended

mechanism does not provide any proof for its negation.

Proposition 3. If Tsp ` ∼∆∼q and Tme `+∆q then Tsp B Tme `+∂q

Proof. Assume that the integrated theory derives the contradiction, Tsp B Tme ` +∂∼q, given

the conditions of the proposition. According to the proof of +∂ , +∂∼q requires Tsp B Tme to

hold either +∆∼q or −∆q, because the conditions of (2.1) and (2.3) can be met owing to the

superiority of Tsp over Tme. As shown in the proof of ∆, the derivation of +∆∼q and −∆q from

Tsp B Tme respectively requires Tsp `+∆∼q or Tme `+∆∼q, Tsp 6`+∆q and Tme 6`+∆q. Clearly,

these requirements violate the assumptions of Tsp ` ∼∆∼q and Tme `+∆q.

This proposition claims the conclusions from the extended mechanism can violate defea-

sible conclusions obtained from the superior theory if the agent has a strong evidence of the

contradiction in its internal knowledge.

Proposition 4. The defeasible reasoning with the superior knowledge is coherent and consis-

tent.

Proof. First, we investigate the derivation of strict conclusions. By the definition of the standard

defeasible logic, the strict rules and facts of individual theories do not concurrently hold −∆q

and +∆q. The only case leading to conflicting conclusions is where the superior theory supports

q, Tsp `+∆q, while the internal theory holds the contradiction, Tme `+∆∼q. According to the

proof condition for +∆, the contradiction is always rejected. Therefore, the derivation of strict

conclusions is coherent.

The coherence of the defeasible part of the reasoning with the superior theory directly in-

herits from that of the standard defeasible reasoning in the case that both theories have empty

sets of facts and strict rules. The only case that can lead to the incoherence is Tsp ` +∂q and

Tme `+∆∼q. That means the defeasible rules of the superior theory prove a conclusion violat-

ing that supported by the strict rules of the internal theory. However, as mentioned above, the

defeasible part of the superior theory is defeated by the strict part of the internal theory. That is,

the derivation of defeasible conclusions is also coherent.
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The consistency property follows from the coherence property. It is impossible to have

conflicting conclusions from the proof conditions for defeasible conclusions. The only source

of inconsistency comes from the proof for strict conclusions.

The extended mechanism goes beyond the standard defeasible reasoning, because it extends

the superiority relation of rules to that of theories. This only increases the size of the the-

ory to be investigated but not the complexity of the reasoning process. Hence the complexity

class of the reasoning algorithm (Maher, 2001) remains unchanged. Remarkably, the extended

mechanism keeps the two theories intact. This feature facilitates the further manipulation of

knowledge about others, because the agents’ knowledge is likely to evolve from interactions

such as communication. Moreover, this provides the agents with flexibility to select different

inference mechanisms to handle conflicting information.

5.3 DL-MAS reasoning mechanism

In Section 5.2, we present different types of knowledge, which can be modelled by an agent,

and a method to combine two knowledge sources. Based on these notions, we are now able to

describe how to incorporate the majority rule into a reasoning mechanism.

The reasoning mechanism operates in two steps as:

1. In the first step, an agent identifies the majority knowledge from the other agents.

2. In the second step, the agent performs either adaptive or collective reasoning depending

on its weight to obtain the final conclusions.

We show that the complexity of DL-MAS reasoning mechanism is still linear as in Proposi-

tion 5.

5.3.1 Identify the majority knowledge

This step is completed by applying the standard defeasible reasoning over the individual knowl-

edge sources and by following the majority rule over the set of tagged conclusions.
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1. Draw defeasible conclusions from the others.

We run the extended defeasible reasoning over theories obtained from the others. The

background theory Tbg is considered superior for every theory. Formally, this step is

described by:

Tbg B Ti `Ci : 1≤ i≤ n

2. Establish the majority knowledge Tma j.

The extended defeasible reasoning already guarantees that conflicts are removed from the

final set of conclusions. Hence, the majority knowledge can be determined by applying

the majority rule (Lin, 1996) over the sets of defeasible conclusions, {Ci : 1 ≤ i ≤ n},

from the previous step. The conclusions with support from the majority will be projected

to the joint knowledge.

5.3.2 Reasoning strategies

At this stage, the set of knowledge sources is reduced to the background, the majority, and the

agent’s own knowledge. Depending on the weight, an individual agent can either follow the

majority knowledge or collect all possible information. The two strategies are implemented by

the defeasible reasoning with the superior knowledge.

Adaptive reasoning

It takes two steps to derive the final conclusions as shown in Figure 5.1. First, the agent com-

bines the background and its own knowledge by considering these two as the superior knowl-

edge and the internal knowledge respectively. Next, the joint knowledge from the other agents

is used to adjust the derivation from the first step. That is, the agent withdraws conclusions,

which violate the joint knowledge.

Tma j B (Tbg B Tme) `C
′
me

Example 9 demonstrates how an agent applies the adaptive reasoning strategy. Technically,

this process requires transformations from defeasible conclusions to rules as in Antoniou et al.

(2001). A definitely provable conclusion can be converted to a strict rule whose head contains
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FIGURE 5.1: Adaptive reasoning

the corresponding literal, and whose body is empty. Similarly, a defeasibly provable conclusion

can be transformed into a defeasible rule.

Example 9. In this example, we show how an agent uses the majority knowledge by the adap-

tive reasoning. Consider a rescue team of three agents {A1,A2,A3} having weights of {4,3,1}

respectively. The following knowledge is shared by the group:

Tbg = {F = {catOnTree};

Rd = { r1 : catOnTree⇒ catInDanger;

r2 : catInDanger⇒ rescue;

r3 : risk⇒∼rescue};

>= {r3 > r2}}

This knowledge provides basic information that a cat is in danger and the team should do

the rescue provided that it is safe. Suppose that A3, considering itself as Ame, just arrives and

does not have any knowledge about the field, that is A3’s internal knowledge is empty Tme = /0.
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However A3 knows about A1 and A2 respectively:

T1 ={Rd = { r1 : ⇒ climbTree;

r2 : climbTree⇒ risk;

r3 : keenAtClimbing⇒∼risk};

>= {r3 > r2}}

T2 ={ F = {climbLadder};

Rs = {r1 : climbLadder→∼risk}}

By combining the background knowledge with those from A1 and A2 respectively, A3 can

derive following knowledge:

C1 = { +∆catOnTree4,+∂catInDanger4,

+∂climbTree4,+∂ risk4,+∂∼rescue4}

C2 = { +∆catOnTree3,+∂catInDanger3,

+∆climbLadder3,+∆∼risk3,+∂ rescue3}

The superscript of a literal presents the support level (weight) from the corresponding theory.

Based on the support, the majority rule projects the knowledge as

Tma j = { +∆catOnTree7,+∂catInDanger7,

+∂climbTree4,+∂∼rescue4}

{wma j}= {7,4}

The superscript of each majority conclusion represents the support level accumulated from

the weight of theories. Because A3 has Tme = /0, the combination with the background infers

Cme = {+∆catOnTree,+∂catInDanger,+∂ rescue}

By considering the majority knowledge as the superior knowledge, A3 adjusts its derivation

to:

C′me = {+∆catOnTree,+∂catInDanger,

+∂climbTree,+∂∼rescue}

Now A3 adapts its behaviour toward that of the majority by dropping its rescue conclusion.
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Collective reasoning

Owing to its importance, the agent considers itself as dominant over the other agents. Instead

of reinforcing its current knowledge, the agent derives new knowledge by accumulating all

possible consistent knowledge from the others. This is achieved by performing the sequence of

inference processes with the superior theory as shown in Figure 5.2.

The sequence starts with the theory having the minimum weight and takes the next theory in

the order of the weight as the superior theory. The sequence ends with the background theory,

which implicitly has the maximum weight. This reasoning strategy requires a total order over

the weights of agents in the group. This reasoning strategy is illustrated in Example 10.

FIGURE 5.2: Collective reasoning

Example 10. This example explains the idea of the collective reasoning strategy. Consider the

agent group in the Example 9 again, but with the importance level of A3 increased to 8 so that

the weights of {A1,A2,A3} are now {4,3,8}. The weight of the majority conclusions ranges

from 4 to 7 as found in {wma j}= {7,4}.

{+∆catOnTree7,+∂catInDanger7,

+∂climbTree4,+∂∼rescue4}.
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Directly, the importance of A3 is higher than max({wma j}). A3 employs collective reasoning

by generating the sequence of T2 +T1 +Tbg, because the internal theory of A3, Tme, is empty.

The integration of T2 +T1 derives the conclusions:

{+∆climbLadder,+∆∼risk,+∂climbTree}

The conclusion of +∂ risk from the superior T1 is overridden by the stronger +∆∼risk from the

inferior T2. In the next step, the combination with the background knowledge, A3 infers

{+∆climbLadder,+∆∼risk,+∂climbTree,

+∆catOnTree,+∂catInDanger,+∂ rescue}

A3 now accepts the conclusion of rescue from A2 even it conflicts with A1’s belief and A1 is

considered more reliability than A2. In this case, the proposition 3 holds. A1 does not have a

counter-evidence strong enough to defeat that from A2.

Proposition 5. The complexity of the proposed mechanism is in the O(n) class, where n is the

size of the theory.

Proof. The low computational cost of the proposed mechanism is due to the efficiency of the

majority rule and the defeasible reasoning. As in Lin (1996), the process to determine the

information set supported by the majority has linear complexity depending on the number of

conclusions derived from all of agents’ theories. This efficiency also owes it to the efficient

resolution of conflicts of the defeasible reasoning, which produces conflict-free conclusions.

Therefore, agents do not have to check the consistency of the conclusions from their knowledge

components.

Compared to the standard defeasible reasoning mechanism, reasoning under a superior the-

ory simply increases the size of the theory, which equals the number of rules in both the-

ories (the superior and the internal). In the case that an agent follows the adaptive strat-

egy, the total size of the theories, which are investigated by (n+ 1)×|Tbg|+ |Tme|+∑
n
i=1 |Ti|,

where n is the number of theories from the other agents. The size of the majority knowl-

edge is omitted, because this knowledge is derived from {T1, ...,Tn}. The upper bound is

2× (n+1)×max({|Tbg|, |Tme|, |T1|, ..., |Tn|}).
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If the collective strategy is selected, the size of the theories investigated by the agent equals

|Tbg|+ |Tme|+∑
n
i=1 |Ti|. Considering the cost of retrieving the majority knowledge, the upper

bound for the collective reasoning is double that of the adaptive strategy.

However, this cost can be reduced if the agent applies a fixed threshold (weight), instead of

the maximum weight of majority conclusions, to select the reasoning strategy.

Therefore, the computational cost of the mechanism is linearly proportional to the total

number of literals and rules, which are presented in the knowledge base of the agent.

The defeasible reasoning with the superior knowledge offers a method to accumulate knowl-

edge from multiple sources. It relies on the weight of the sources and the ambiguous blocking

(Antoniou et al., 2001) to deal with the potential conflict within/among the sources. Intuitively,

the collective reasoning should allow the ambiguities to be propagated along the sequence of

reasoning with the superior knowledge. Conflicts between the sources of knowledge can be ap-

proached by pondering the strength of the proof. This approach can increase the quality of the

integration but boosts the computational cost. At the end, this possibility is well worth further

investigation.

5.4 DL-MAS Implementation

In this section, we present our modification of RuleML to capture defeasible theories and our

extension of DELORES for the defeasible reasoning with the superiority knowledge. We chose

DELORES because of its ability to compute all conclusions from a defeasible theory.

5.4.1 DRM - Defeasible rule markup

The Rule Markup Language (RuleML) is an eXtended Markup Language (XML) dialect for

representing rules. It offers facilities for specifying different types of rules from derivation

rules to transformation rules to reaction rules. RuleML already supports derivation rules via

the Imp element. However, we need to define a new syntax to represent the strength of the

rules and superiority relations. In this section, we present our defeasible rule markup language.

The syntax of the language is shown in Figure 5.3. Following the proposal of DR-DEVICE
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(Bassiliades et al., 2004), every rule in the knowledge structure now has a @ruletype attribute

taking one of three values: strictrule, defeasiblerule or defeater.

Example 11. The defeasible rule r2 : catInDanger⇒ rescue is represented in RuleML format

as:

<Imp label = "r2" ="defeasiblerule">

<head>

<Atom><Rel>rescue</Rel></Atom>

</head>

<body>

<Atom><Rel>catInDanger</Rel></Atom>

</body>

</Imp>

The conclusions from the corresponding theories, represented by the Conclusion element,

are also stored for exchanging knowledge or explaining the agents’ behaviour. Each conclusion

includes the literal and the strength of the proof.

Example 12. The conclusion +∂ rescueof r2 : catInDanger⇒ rescue is represented as:

<Conclusion ruletype="defeasiblerule">

<Tag>defeasible</Tag>

<Atom><Rel>rescue</Rel></Atom>

</Conclusion>

The DR-DEVICE expresses the superiority relation by using the @superior attribute on

the superior rule as a link to the @ruleID label of the inferior rule. We found this unsuitable,

because we may need to mark a rule as superior to more than one other rule and an XML

element can only bear a single @superior attribute. Using the scheme from (Governatori,

2005) instead, we explicitly represent the superiority relation using the distinguished predicate

Sup.
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Example 13. For example, r1 � r2 is represented as

<Imp label = "r1" ruletype="defeasiblerule" > .... </Imp>

<Imp label = "r2" ruletype="defeasiblerule" > .... </Imp>

<Sup superior="r1" inferior="r2">

</Sup>

Finally, every defeasible theory in the knowledge structure, containing a collection of rules,

facts, and superiority, is represented by the SDLTheory element having two attributes, namely

source, and weight, corresponding to the source name and the weight of the theory.

Example 14. For example, r1 � r2 is represented as

<SDLTheory source = "A1" weight = "7">

<Imp label = "r1" ruletype="defeasiblerule" > .... </Imp>

<Imp label = "r2" ruletype="defeasiblerule" > .... </Imp>

<Sup superior="r1" inferior="r2">

</Sup>

</SDLTheory>

The complete definitions of elements of defeasible theory are presented in Figure 5.3 using

Document-Type-Declaration syntax.

5.4.2 Algorithm for the extended mechanism

The process of the extended defeasible reasoning with superiority theory operates with a pair of

theories in three phases:

1. In the pre-processing phase, the theory in the RuleML format is loaded into the mech-

anism and is transformed into an equivalent theory without superiority relation and de-

featers. Also, this phase combines a pair of theories by using the same technique for the

priority between them.
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<!ELEMENT SDLTheory ((Rule|Fact|Sup|Conclusion)*)>

<!ATTLIST SDLTheory source CDATA #REQUIRED>

<!ATTLIST SDLTheory weight CDATA #IMPLIED>

<!ELEMENT Atom (Not?,Rel,(Ind|Var)*)>

<!ELEMENT Not EMPTY>

<!ELEMENT Rel (#PCDATA)>

<!ELEMENT Var (#PCDATA)>

<!ELEMENT Ind (#PCDATA)>

<!ATTLIST Ind href CDATA #IMPLIED>

<!ELEMENT Conclusion (Tag,Atom)>

<!ELEMENT Tag (#PCDATA)>

<!ELEMENT And (Atom)*>

<!ELEMENT body (And)>

<!ELEMENT head (Atom)>

<!ELEMENT Rule (head?,body?)>

<!ATTLIST Rule strength CDATA #REQUIRED>

<!ATTLIST Rule href CDATA #IMPLIED>

<!ATTLIST Rule label ID #REQUIRED>

<!ATTLIST Rule time CDATA #IMPLIED>

<!ELEMENT Sup EMPTY>

<!ATTLIST Sup superior IDREF #REQUIRED

inferior IDREF #REQUIRED>

<!ELEMENT Fact (Atom)>

<!ATTLIST Fact href CDATA #IMPLIED>

<!ATTLIST Fact label ID #IMPLIED>

FIGURE 5.3: Data Type Definition of Defeasible Rule Markup
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2. In the next phase, the rule loader, which parses the theory obtained in the first phase,

generates the data structure for the inferential phase.

3. In the final phase, the inference engine applies modifications to the data structure, where,

at every step, it reduces the size of the data structure.

Theory transformation. The transformation flattens the superiority structure of an individual

theory by removing the defeaters rules and the superiority relation among the rules by applying

the transformation rules in Antoniou et al. (2001).

Because the mechanism works with multiple defeasible theories, the transformation is re-

called to remove the superiority relation between the theories. For every conflict between the

internal theory Tin and its superior one Tsp, the transformation function assumes rules from Tsp

have the priority over those from Tin. It is noticed that the process of conflict detecting excludes

the temporary literals generated by the transformation rules.

Rule loader. The rule loader creates a data structure as shown in Figure 5.4. For every literal

in the theory, the loader creates an entry whose structure includes:

• a list of (pointers to) rules having the literal in the head. To simplify the data structure, a

literal from the head of a rule is built from the head atom of the corresponding rule.

• a list of (pointers to) rules having the literal in the body

• a list of (pointers to) entries of complements of the literal (incompatible ones).

To improve the computational performance, every list in the data structure is implemented as

a hash table. The list of complements of a literal provides the flexibility for further development.

That is, the negation of a literal can be flexibly defined outside of the reasoning mechanism.

Inferential engine. The engine is based on an extension of the Delores algorithm proposed in

Maher et al. (2001) as a computational model of Basic Defeasible Logic. In turn, the engine:

• asserts each fact (as a literal) as a conclusion and removes the literal from the rules,

where the literal positively occurs in the body, and ‘deactivates’ the rules where either of

its complements occurs in the body.
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FIGURE 5.4: Data structure for a literal

• scans the list of active rules for the rules with the empty body. Take the literal from the

head, remove the rule, and put the literal into the pending facts. The literal is removed

from the pending facts and added to the list of facts if either there is no such rule whose

head contains the complements of the literal or it is impossible to prove these literals.

• repeats the first step

• terminates when one of the two steps fails.

For +∆, we have merely to consider similar constructions where we examine only the first

parts of steps 1 and 2. It is noticed that this algorithm outputs positive conclusions; negation

conclusions can be computed by an algorithm similar to that of the positive with the ‘dual

actions’. Essentially, for negative conclusions the engine:

1. asserts a literal as a negative conclusion if there is no rule for the literal,

2. scans the list of active rules for the rules have the negative conclusion in the body. These

rules are deactivated.

3. Repeats the first step,

4. terminates when one of the two steps fails.
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On termination, the algorithm outputs the set of conclusions from the list of facts in the

RuleML format.

The extended inference process flattens the superiority relation between the theories to apply

Basic Defeasible Logic. Differing from Maher et al. (2001), literals proved in the strict rules can

be defeated by definite conclusions derived from the superior theory. Hence, the inference can

be used for both strict and defeasible rules by separately investigating those rules. The outcome

from processing the strict rules is considered as facts when examining the defeasible rules.

5.5 MDL-MAS: DL-MAS extension with modal notions

As can be observed from a society, individual members can take any action driven by their

desires. However, the individuals are often required to comply with the society ‘conventions’.

Essentially ‘conventions’ could be norms, constraints or desires that are popularly recognised

by the society. Being aware of those conventions, individual members can strengthen their

social relationships and coordinate well with other members. Within a group of agents, an

agent maintains its social commitments by discovering the ‘common attitudes’ and fulfils its

own demands whilst obligating to these attitudes.

In MDL-MAS, we extend the DL-MAS framework by introducing the modal notions for a

finer model of interacting agents. We favour the argument in Governatori and Rotolo (2008),

therefore, we create three layers including Belief, Intention and Obligation for every theory in

the knowledge structure of an individual agent. The DL-MAS framework enables an agent to

discover and approximate the attitudes shared by the majority of the group.

5.5.1 MDL-MAS architecture

Our MDL-MAS has two major components, as shown in Figure 5.5. The first component

is the repository of the agents’ knowledge, which is built by the designers. To facilitate the

interactions between the designers and the agents, the RuleEditor module provides a Java user

interface to create defeasible theories representing the knowledge of the individual agents. Once

the designers finish composing the sets of knowledge, including the individual’s knowledge
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and the meta-knowledge of the agents’ weights, this knowledge is stored in the RuleML-like

repository (see Section 5.5.2). Only the background knowledge and the meta-knowledge are

accessible to all agents.

The second component in the dashed-line box in Figure 5.5 presents the essential modules

of an individual agent. RuleLoader parses the defeasible theories into Java objects that are

suitable for the ReasoningEngine. KnowledgeExchange performs the communication with the

other agents in the group. Incoming information is stored in the internal repository as Java

objects.

The ReasoningEngine performs the decision-making process by using the extended defeasi-

ble reasoning (see Section 5.2.3). Decisions are stored in the internal repository for knowledge

exchange or for further investigation. The action module, essentially, provides the connections

between an agent and its working environment.

FIGURE 5.5: MDL-MAS architecture
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5.5.2 Knowledge representation

As presented in Section 5.2.1, an individual agent has a knowledge structure as a tuple T =

{Tbg,Tme,Tother}, whose elements are defeasible theories. To better capture the social actions,

we introduce modal notions including Belief, Intention and Obligation. These notions allow

the agents to explicitly reason not only about the beliefs of the other agents, but also about

their goals, resulting in a stronger social behaviour (Castelfranchi, 1998). Now every Ti ∈ T

(Ti 6= Tbg) has two independent sets of defeasible theories T B
i and T I

i that represent the set of

beliefs and the set of intentions correspondingly. Meanwhile, Tbg has all three modal notions

Tbg = {T B
bg,T

I
bg,T

O
bg}. Essentially, the beliefs represent what the agents believe to be true; the

intentions represent what the agents want to achieve; and the obligations represent what the

agents should commit to the group.

With regard to the implementation, every defeasible theory in the knowledge structure is

represented by using a defeasible rule markup with the modal label on top of the theory.

Example 15. There is a man in a sinking boat and three agents, A1,A2,A3, observe the situation,

having the weights of {6,3,1} respectively. Knowledge commonly shared among the agents is:

T B
bg = {Rs = {r1 :→ manOnSinkingBoat}}

T I
bg = {Rd = { r1 : manOnSinkingBoat⇒ manInDanger

r2 : manInDanger⇒ rescue}

T O
bg = {Rd = {r1 : risk⇒∼rescue}}

The background knowledge states that the man is in danger, the rescue should be performed if

it is safe to do so. In addition, A3 knows about the intentions of A1,A2 and its own:

T I
1 = {Rd = {r1 :⇒ swim,r2 : swim⇒ risk}}

T I
2 = {Rs = {r1 :→ throwRope,r2 : throwRope→∼risk}}

T I
me = T I

3 = {Rd = {r1 :⇒ sur f ,r2 : sur f ⇒∼risk}}

Essentially, the knowledge structure is interpreted as, A1 wants to swim directly to the sinking

boat, while A2 intends to throw a rope to the boat, and A3 plans to approach the boat on a

surfboard.
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5.5.3 Reasoning engine

Social categories

As in Section 5.2.2, an individual agent can adapt to the majority by dropping its own beliefs

and intentions in favour of those popularly recognised by the group. However, the agent can

dominate the group by promoting its own intentions and rejecting contradictory beliefs and in-

tentions from the majority of the group. In both situations, the obligations from the background

knowledge play as ‘filter’ so that any behaviour violating these obligations is cancelled by the

individual agent.

We categorise our agents into two types of social behaviours, entitled ‘majority’ and ‘obe-

dience’. Agents in the first category totally commit to the group, avoiding conflicts with the

majority and the group’s ‘common conventions’, represented by T O
bg. These agents collect the

majority beliefs and intentions from others by running the reasoning mechanism in Section 5.3

over the belief and intention elements of the knowledge structure, respectively:

1. T B
ma j B (T B

bg B T B
me) `C

′B
me

2. T I
ma j B (T I

bg B T I
me) `C

′I
me

3. {T O
bg;C

′B
me}>C

′I
me

In contrast, obedient agents only commit to ‘common conventions’ and perform the reason-

ing process:

1. (T B
bg B T B

me) B T B
ma j `C

′B
me

2. (T I
bg B T I

me) B T I
ma j `C

′I
me

3. {T O
bg;C

′B
me}>C

′I
me

Example 16. Reconsidering Example 15, because A3 does not know about the beliefs of the

other agents, the majority belief equals the derivation of the background belief T B
bg. That is

T B
ma j = {+∆manOnSinkingBoat}.



5.5 MDL-MAS: DL-MAS EXTENSION WITH MODAL NOTIONS 93

A3 identifies intentions of A1 and A2 by integrating what A3 knows with T I
bg, T I

bg B T I
i `CI

i :

i = 1,2:

CI
1 ={+∂manInDanger6,+∂ swim6,+∂ risk6,+∂ rescue6}

CI
2 ={+∂manInDanger3,+∆throwRope3,+∆∼risk3,

+∂ rescue3}

The superscript of defeasible conclusions represents the weight inherited from the corre-

sponding knowledge source. The majority intentions from others are:

T I
ma j = {+∂manInDanger9,+∂ swim6,+∂ risk6,+∂ rescue9}

wma j = {9,6}

The superscript of a majority conclusion shows the weight accumulated from that of the

sources supporting the conclusion. Because A3’s weight is the smallest, A3 adapts its intentions

to the majority IA3 = T I
ma j. In the final step, A3 drops the intention of doing the rescue because

of r1 in T O
bg.

Suppose the weight of the group changes from {6,3,1} to {6,3,5}. By integrating A3’s

intentions with that of the background, T I
bg B T I

me, A3 derives:

CI
me = {+∂manInDanger5,+∂ sur f 5,+∂∼risk5,+∂ rescue5}

Clearly, if A3 joined the majority pool, the majority conclusions would favour those from A3.

A3 now rejects conflicts from the majority intentions, T I
ma j, and persists with its own intentions

with respect to group obligations. That is, obedient agents only maintain their commitments

to the group by eliminating the intentions against the obligations specified in the background

knowledge.

We believe that the ‘majority agents’ can express a strong social commitment to the group.

Being aware of the others’ knowledge, these agents dynamically learn new ‘conventions’ recog-

nised by the majority and change their intentions toward this knowledge. On the other hand,

‘obedient agents’ can introduce ‘new values’ into the group. Thanks to their high weight, these

agents could take leading actions so that other agents could follow.



94 MULTI-AGENT FRAMEWORK BASED ON DEFEASIBLE LOGIC

Algorithm

As in the previous section, every agent in the MAS-LM has three knowledge layers correspond-

ing to the Belief, Intention and Obligation notions. Eliminating conflicts with the Obligation

layer from the agents’ intentions is achieved by the standard defeasible reasoning.

The key component for the MDL-MAS engine is the mechanism for integrating with a

superior knowledge source (Section 5.3), which operates on the Belief and Intention layers to

determine the beliefs and intentions of the majority. The engine allows an agent either to adapt

to or to override the mental attitudes of the majority by implementing adaptive or dominant

strategies.

Because of the conflict resolution of the reasoning mechanism, the implementation of the

majority rule is straightforward. Therefore, this part focuses on the implementation of the rea-

soning with the superior knowledge. The algorithm for the reasoning mechanism extended from

Maher et al. (2001) takes the theories in the RuleML format as input to create the data structure

for the inference process. The inference process flattens the superiority relation between the

theories to apply Basic Defeasible Logic. Differing from Maher et al. (2001), literals proved in

the strict rules can be defeated by definite conclusions derived from the superior theory. Hence,

the inference can be used for both strict and defeasible rules by separately investigating those

rules. The outcome from processing the strict rules is considered as facts when examining the

defeasible rules.

5.6 Related work

In this section, we relate our work in following perspectives: knowledge representation and rea-

soning. We show that our approach can maintain the expressiveness and efficiency of defeasible

logic in dealing with incomplete situation and conflicting information from different sources.

Our reasoning mechanism can work as an information fusion tool and support coordination

between agents in the group.
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5.6.1 Knowledge representation

In the framework, we favour the logic-based approach to modelling the knowledge of the agents.

However, our framework differs from BDI-like agents (Kinny et al., 1996; Rao and Georgeff,

1991) in the consideration of incomplete and conflicting information. Despite the knowledge

structure of the framework, which explicitly captures the shared knowledge and the knowledge

about the other agents, our agents can only provide an approximate representation of the com-

mon knowledge and the ‘knowing about what others know’. The formal definitions can be

found in Fagin et al. (2003).

Interpreted systems (Fagin et al., 2003) consider multi-agent systems as systems containing

n different agents. A global state of the system consists of the agents’ states, representing the

information accessible by the agents, and an environment state. Knowledge is established if

the agents cannot distinguish a given state over all of their runs. Essentially, the knowledge of

an agent is captured by modal logics and interpreted as a sequence of snapshots of the world.

However, the reasoning mechanism is not designed to cope with incomplete and conflicting

information.

With regard to incomplete and conflicting information, Sakama et al. (2000) design multi-

agent systems, whose individual agent contains three knowledge components, knowledge base,

default information (assumptions) about others and responses from others. The knowledge

base is a logic program, whose predicates can be commonly shared by the agents. The default

information is consistent with the logic program, but possibly conflicts with the responses.

The belief of an agent corresponds to the maximum answer-set computed from an extended

logic program, whose predicates are transformed from the knowledge components by using

situation calculus. Defeasible reasoning is captured by the rule: counter-evidence obtained

from the responses rebuts the previous assumptions. The computational cost of the mechanism

is dominated by the computing answer-sets from the extended logic program.

Rotstein et al. (2007) propose to use defeasible logic programs (Garcı́a and Simari, 2004)

to represent the BDI agents. The knowledge portion of an agent is represented as normal logic

programs provided this portion does not contain conflicting information. Meanwhile, the knowl-

edge portion with the possible conflicts is represented by the defeasible logic programs. These
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conflicts can be solved by dialectical analysis over arguments for and against a piece of infor-

mation. A set of filters, expressed as logic programs, is used to eliminate the impractical desires

and intentions. During the reasoning process, these filter programs are merged with the belief

programs using the operator of Fuhrmann (1997). Hence, the approach defines the different

types of agents according to the logic programs filtering desires and intentions.

One major stream in the multi-agent systems to capture social commitments is to modify

the BDI architecture (Rao and Georgeff, 1991) by introducing deontological properties such as,

laws, norms and obligations to place constraints on the agents’ behaviours. The deontological

properties are considered as external influences on an individual’s decision-making and the

commitment to other members. This idea is supported by several authors in (Broersen et al.,

2001; Castelfranchi et al., 2000; Dignum et al., 2002).

Clearly modal logics are very powerful in representing these concepts. Our approach differs

from the BDI-like agents in the consideration of the incomplete and conflicting information.

The social commitment is implemented by pondering the conflicts with the ‘desires’ commonly

shared by the group and the ‘desires’ shared by the majority. That is, our agents demonstrate a

social ability via their commitments to the beliefs and goals of the group (Castelfranchi, 1998).

In our approach, the agents generally adjust their behaviour to the majority attitudes, which

are dynamically discovered during the interactions with other agents. However, if an agent has a

strong belief contrary to the common (shared) desires, the agent can break its commitment. This

exception can be against the goals of the group, but offers the agent some levels of autonomy

and flexibility in making a decision.

5.6.2 Reasoning mechanism

From the perspective of the information fusion based on logic programs, our mechanism sig-

nificantly differs from the simple union of logic programs (surveyed in Brogi (2004)) and the

semantic-based approaches (reviewed in Grégoire and Konieczny (2006)) owing to the non-

monotonic nature of defeasible logic. The reasoning mechanism with the superior theory of-

fers the main method for combining the knowledge sources (represented as logic programs).

The majority is considered as a special source of knowledge that is superior to the internal
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knowledge of the individual agent. The extended mechanism guarantees the consistency of the

computed conclusions, but does not limit those conclusions to the knowledge of the majority.

Notably, the sources of the knowledge are still intact after integration. Furthermore, the com-

putational cost of our mechanism is in the O(n) class, linearly proportional to the size of the

knowledge base of the individual agents.

Our framework uses the majority rule to combine the conclusions from different sources

representing the belief of corresponding agents. The well-known problem for the majority

rule is doctrinal paradox or discursive dilemma (Kornhauser and Sager, 1986). Two proce-

dures have been proposed to solve the paradox: premises-based and conclusions-based voting

(Bovens and Rabinowicz, 2006; Chapman, 2002; Pettit, 2001). Pigozzi (2006) criticises these

methods, because they do not consider the logical connections between premises. Therefore,

Pigozzi introduces the argument-based procedure to tackle the problem. This procedure applies

a model-based aggregation (Grégoire and Konieczny, 2006) to merge belief sets and includes

a set of logical relations between premises and conclusions (can be seen as rules) to remove

models leading to the paradox.

Our framework does not suffer the paradox if all agents are aware of the logical relations.

That is the logical relations are commonly shared among these agents (background knowledge).

Suppose that three agents with equal weight largely support p, q, and ∼r (∼r derived by a rule

in the individual beliefs of agents) and these agents commonly share the rule r1 : p∧ q→ r.

Once an agent obtains the majority knowledge, the agent continues the reasoning process by

applying the extended defeasible reasoning. This reasoning process rejects the majority support

for ¬r and retains r due to r1 and the superiority of the background knowledge over the majority

knowledge. The background knowledge in our framework plays the role of integrity constraints

as in (Pigozzi, 2006). However, the main differences are:

• Our agents have belief bases that can contain incomplete and conflicting information,

• Our agents do not know exactly how other agents tackle with the conflicting information.

Retrieving a consistent belief base by the majority procedure is not a trivial task. The perfor-

mance of the majority rule can depend on the type of the belief bases. It can work well with

perceptual beliefs but cannot for those beliefs are strongly judged by other information in the
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base (Pettit, 2006). In our framework, the outcome of the reasoning process is always consistent

with the background knowledge. It is noted that the outcome of individual agents cannot always

unify because of the non-monotonicity of the logic and the partial view of agents. If an agent

believes that it can dominate the group, the agent does not use the majority rule but merges

the belief bases by the order of weight. This strategy allows the agent to enrich its beliefs by

information from the other agents.

Our work shares several similarities with the modal logic framework (Liau, 2005), in partic-

ular the meta-structure of the agents’ knowledge and the reasoning strategies. This framework

relies on combining the multi-agent epistemic logic and the multi-source reasoning systems

(Cholvy, 1994) to reason about the multi-agent knowledge with the levels of reliability and its

fusion. Two cautious strategies are devised, namely, level cutting fusion – the agent rejects all

the conflicting beliefs of those having a lower level of reliability; and level skipping fusion –

only the level having a conflicting belief is discarded to obtain the maximal consistent subset

combination.

The framework in Liau (2005) does not differ from ours in the fusion techniques, but in the

conflict handling. Because of the use of the defeasible logic, our agents’ knowledge can contain

conflicting information in a single source, but the information is consistent at the end of the

reasoning process. Also, the conflicts between the sources can be resolved by further exploiting

the superiority relation.

Another work related to our mechanism in the context of defeasible reasoning from multi-

ple sources is the framework for the defeasible policy composition by Lee et al. (2006). In the

framework, each security policy associates with a meta-policy, which describes the enforced

requirements and composition preferences in the language of defeasible logic. The results of

the reasoning process, to some extent, are similar to our framework when our agents have to run

the sequence of reasoning with superiority theory to handle the lack of the majority knowledge.

Essentially, this work can be classified as a new approach to the problem of merging knowl-

edge bases. From defeasible reasoning, the framework performs the reasoning process over

one single set of defeasible theory, whereas our agents have to cope with multiple defeasible

theories. The distinctive result of the framework is the function, which automatically creates

the superiority relation between the meta-policies from the hierarchy of policies reflecting the
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structure.

The intuition of solving the conflicts among the knowledge sources by examining the sup-

port level for each conflicting information is also found in argumentation systems (Amgoud and

Kaci, 2007). Our mechanism relies on the weight of the sources and the ambiguity blocking

feature of defeasible logic (Governatori et al., 2004) to cope with the conflicts within/among the

sources. That is, instead of generating all possible arguments as in Amgoud and Kaci (2007),

arguments are aggregated incrementally by using the weight of the sources. After each step,

only the ‘stronger arguments’ are forwarded to the next step. Blocking ambiguities enables our

mechanism to obtain the low computation cost.

With regard to the reasoning process, our framework supports the discovery of the informa-

tion consistently and is widely supported by many members in the group. Also, the approximate

distributed knowledge can be explored by the sequence of reasoning with the superiority theory

when it is impossible to retrieve the majority knowledge. It is noticed that both the common and

distributed knowledge mentioned in both frameworks have differences from those presented in

Fagin et al. (2003), because that knowledge are only approximate. Both reasoning processes do

not handle the conflicts and possible inconsistence in the logic theories.

The reasoning mechanism of our framework is coordination-oriented. The behaviour of an

individual agent can be motivated by the joint knowledge from other agents or by the integration

of all the possible consistent knowledge from the others. This result can be interpreted as

rigorous and generous coordination (Sakama and Inoue, 2005) in the case where our agents

can obtain complete knowledge of the others. For general cases, the background knowledge

can contribute to the success of coordination, because this knowledge is commonly known and

enforced by the individual agents. In exceptional cases, an individual agent can refuse to defer

to the superior knowledge, such as the majority knowledge, if the agent has a strong belief to

the contrary (definitely provable information). This exception can break the coordination, but

offers the agent some levels of autonomy and flexibility in making a decision.
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5.7 Summary

This chapter has presented a defeasible logic framework DL-MAS for multi-agent systems

that explicitly captures the background knowledge of the group and the knowledge about other

agents. The joint knowledge from the other agents is a special source, because this knowledge

is largely shared by the group. Considering the conflicts between the internal knowledge and

this special knowledge, an individual agent can balance its mental attitudes with the ‘desires’

shared among the group.

We extended the reasoning mechanism by incorporating two reasoning strategies, that is,

the adaptive and collective strategies. An agent can either adapt to the behaviour of the majority

or collect consistent information as much as possible from other agents. The agent can have

a distinct behaviour from the group in the case that it holds strong evidence contrary to the

knowledge of the other agents. One important feature of the framework is maintaining the com-

putational efficiency from both the defeasible reasoning and the majority rule. The complexity

of the framework is linearly proportional to the size of the knowledge base of an individual

agent.

We propose a layer approach in the MDL-MAS framework. By introducing modal notions

into the knowledge structure of an agent, the layer approach is a trade-off between the ‘express-

ibility’ and the tractability. An agent can represent what it knows about the modal notions of the

other agents, but not what it knows about what others know. The complexity of the extended

mechanism is a linear proportion to the number of the modal notions. Being aware of the be-

liefs and goals of the other agents, an individual agent can discover mental attitudes, which

are largely shared by the group, and balance those attitudes with its own. In our MDL-MAS,

the agents are categorised into two types, majority and obedience depending, on the reasoning

strategies they use. An agent can either adapt to the majority behaviours or dominate the group.

In the second strategy, the agent can introduce a distinct behaviour that would lead other agents,

while committing to obligations commonly recognised by the group.



6
n-Person Argumentation Game: an

application

Argumentation games have proved to be a robust and flexible tool to resolve the conflicts among

the agents. An agent can propose its explanation and its goal, known as a claim, which can be

refuted by other agents. The situation is more complicated when there are more than two agents

playing the game.

In this chapter, we propose a weighting mechanism for competing premises to cope with the

conflicts from multiple agents in an n-person game. An agent can defend its proposal by giving

a counter-argument to change the ‘opinion’ of the majority of opposing agents. In addition,

an agent, whose claim is accepted by the group, can take a ‘preventive’ action by attacking

other accepted arguments whose combination can result in damaging its main claim. During

the game, our agent can exploit the knowledge that the other agents expose to promote and

101
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defend its main claim.

6.1 Introduction

In a group of agents, there are several situations requiring the agents to settle on a common

goal, despite that, each agent can pursue its goals, which may conflict with other agents’ goals.

A simple but efficient method to solve the problem is to give weights to the goals. However,

this method is not robust and limits the autonomy of an individual agent. Also, conflicts among

the agents are likely to arise from a partial view and incomplete information on the working

environment of the individual agents. To settle conflicts among the agents, an agent can argue

to convince others about its pursued goal and provide evidence to defend its claim.

This interaction between the agents can be modelled as an argumentation game (Amgoud

et al., 2007; Jennings et al., 1998; Parsons and McBurney, 2003; Prakken and Sartor, 1996). In

general, an agent can propose an explanation for its pursued goal (an argument), which can be

rejected if other agents provide counter-evidence. This interaction can be iterated until an agent

(the winner) successfully argues its proposal against the other agents. The argumentation game

approach offers a robust and flexible tool for the agents to resolve conflicts by evaluating the

status of the arguments. The argumentation semantics by Dung (1995) is widely recognised for

establishing relationships among arguments. The key notion for a set of arguments is whether

or not a set of arguments is self-consistent and provides the base for deriving a conclusion. A

conclusion is justified, and thus provable, if there is a set of supporting arguments and all the

counter-arguments are deficient when we consider the arguments in the set of the supporting

arguments.

An argumentation game is more complicated when the number of participants is greater than

two. It is not clear how to extend the existing approaches to cover the argumentation in groups

of more than two agents, especially when the agents are equally trustful. That is, the arguments

from the individual agents have the same weight. In this case, the problem amounts to how

to decide which argument has precedence over the competitive arguments. In other words, the

problem is to determine the global collective preference of a group of agents.

The main idea behind our approach concerns where the individual preferences of the agents
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are not sufficient to solve a conflict (for example, we have several arguments without any relative

preference over them). The group of agents uses the majority rule (Lin, 1996) over the initial

proposals to determine the ‘most common’ claim known as the ‘topic’ of the dialogue, that

is, the topic preferred by the majority of the group. An agent either supports the topic or

defends its own claim against the topic. Our majority mechanism simplifies the complexity

of the n-persons argumentation and provides a strategy for an agent to select an argument for

defending its proposal. An argument causing more ‘supporters’ to reconsider ‘their attitude’

will be preferred by the defending agents.

Also, each of our agents is equipped with its private knowledge, the background knowledge

and the knowledge obtained from the other agents. The background knowledge represents

the expected behaviour of a member of the group, which is commonly shared by the group.

The knowledge about the other agents increases during the interactions and enables an agent

to efficiently convince others about its own goal. Essentially, the background knowledge is

preferred over other sources, because it represents the common expectations and constraints of

the group. Any argument violating the background knowledge is not supported by the group.

Defeasible logic is chosen as our underlying logic for the argumentation game owing to its

efficiency and simplicity in representing incomplete and conflicting information. Furthermore,

the logic has a powerful and flexible reasoning mechanism (Antoniou et al., 2000a; Maher et al.,

2001) that enables our agents to capture the argumentation semantics of Dung (1995) by using

two features of defeasible reasoning, namely, the ambiguity propagating (the preference over

conflicts is unknown) and the ambiguity blocking (the preference is given).

The rest of the chapter is structured as follows. In Section 6.2, we present the construction of

arguments using defeasible reasoning with respect to (w.r.t) ambiguous information. Section 6.3

presents the external model of n-person argumentation, which describes a basic procedure for

an interaction between the agents. The external model also defines the majority arguments

supporting the goal accepted the majority of the agents. Section 6.4 defines the internal model

of n-person argumentation. The internal model illustrates how an agent can integrate its private

knowledge with other sources either to defend or to convince other agents about its own goal.

Section 6.5 provides an overview of the research works related to our approach. Section 6.6

concludes the chapter.
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6.2 Argument construction w.r.t defeasible logic

In what follows, we briefly introduce the basic notions of an argumentation system using defea-

sible logic as underlying logical language. Moreover, we present the acceptance of an argument

w.r.t Dung’s semantics. A detailed exploration is found in Governatori et al. (2004).

6.2.1 Arguments and defeasible proofs

In general, arguments are defined to be proof trees (or monotonic derivations) from a logical

theory.

Definition 14. An argument A for a literal p based on a set of rules R is a (possibly infinite)

tree with nodes labelled by literals such that the root is labelled by p and for every node with

the label h:

1. If b1, . . . ,bn label the children of h then there is a rule in R with body b1, . . . ,bn and head

h.

2. If this rule is a defeater then h is the root of the argument.

3. The arcs in a proof tree are labelled by the rules used to obtain them.

The literal p is also known as the conclusion supported by A.

However, defeasible logic requires a more general notion of a proof tree that admits infinite

trees, so that the distinction is kept between an unrefuted, but infinite, chain of reasoning and a

refuted chain. Depending on the rules used, there are different types of arguments:

• A supportive argument is a finite argument in which no defeater is used.

• A strict argument is an argument in which only strict rules are used.

• An argument that is not strict is called defeasible.

Relationships between two arguments A and B are determined by those of the literals being

composed of these arguments. An argument A attacks a defeasible argument B if a conclusion
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of A is the complement of a conclusion of B, and that conclusion of B is not part of a strict sub-

argument of B. A set of arguments S attacks a defeasible argument B if there is an argument A

in S that attacks B.

A defeasible argument A is supported by a set of arguments S if every proper sub-argument

of A is in S . A defeasible argument A is undercut by a set of arguments S if S supports an

argument B attacking a proper non-strict sub-argument of A.

The notion of undercut by S means that some premises of A cannot be proved if we accept

the arguments in S .

It is noticed that the concepts of the attack and the undercut concern only defeasible argu-

ments and their sub-arguments; for strict arguments, we stipulate that they cannot be undercut

or attacked.

6.2.2 Argument status

It is critical for argumentation systems to determine if an argument is acceptable within a set

of arguments. Essentially, an argument is assessed as valid if we can show that the premises

of all arguments attacking it cannot be proved from the valid arguments in S . The concept of

provability depends on the methods used by the reasoning mechanism to cope with ambiguous

information. According to the features of the defeasible reasoning, we have the definition of

acceptable arguments (Definition 15).

Definition 15. An argument A for p is acceptable w.r.t. a set of arguments S if A is finite, and:

1. If reasoning with the ambiguity propagation is used, (a) A is strict, or (b) every argument

attacking A is attacked by S .

2. If reasoning with the ambiguity blocking is used: (a) A is strict, or (b) every argument

attacking A is undercut by S .

The status of an argument is determined by the concept of acceptance. If an argument can

resist a reasonable refutation, this argument is justified as in Definition 16. If an argument

cannot overcome attacks from other arguments, this argument is rejected as in Definition 17.

Definition 16. Let D be a defeasible theory. We define JD
i as follows:
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• JD
0 = /0

• JD
i+1 = {a ∈ ArgsD| a is acceptable w.r.t JD

i }

The set of justified arguments in a defeasible theory D is JArgsD =
⋃

∞
i=1 JD

i .

Definition 17. Let D be a defeasible theory and T be a set of arguments. We define RD
i (T ) as

follows.

• RD
0 (T ) = /0

• RD
i+1(T ) = {a ∈ ArgsD| a is rejected by RD

i (T ) and T }.

The set of rejected arguments in a defeasible theory D w.r.t. T is RArgsD(T ) =
⋃

∞
i=1 RD

i (T ).

6.2.3 Argumentation semantics and the extended reasoning

This section shows the properties of arguments built by the extended reasoning mechanism

(See Chapter 5, Section 5.2.3). First, we revise the proof for strict conclusions derived from

the combination of the theories, therefore, strict arguments. Regarding the standard defeasible

reasoning, we introduce the notion of defeasibility into the strict part of the combined theory.

Essentially, a strict argument can be rejected if and only if that argument is constructed from

a theory with a lower priority. Otherwise, the argument is not rejected by any argument. We

define the acceptance of a strict argument w.r.t. the extended reasoning in Definition 18.

Definition 18. In the extended reasoning, a strict argument A for p is strictly acceptable w.r.t.

a set of strict arguments S if A is finite, and every argument attacking A is undercut by S .

We now present the property of strict arguments constructed by the extended reasoning over

two defeasible theories Tsp and Tin, where Tsp has priority over Tin.

Proposition 6. Let Tsp and Tin be defeasible theories such that Tsp � Tin and p be a literal.

1. Tsp B Tin `+∆p iff there is a strictly acceptable argument for p from Tsp B Tin.

2. Tsp B Tin ` −∆p iff there is no strictly acceptable argument for p from Tsp B Tin.
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Proof. We prove the only if (⇒) direction of the proposition by induction on the length of

derivation P of the extended reasoning over Tsp and Tin.

At the first step of the derivation, P(1) =+∆p. That implies there is a strict rule, r, support-

ing p in Tsp B Tin (Note that a fact can be considered as a strict rule with an empty body). If r

is in Tsp, there is a strict argument for p constructed from Tsp. That argument is self acceptable

within Tsp, because of the priority of Tsp. If r is in Tin, there is a strict supportive argument A

for p constructed from Tin. Within Tin, there is no argument against A as the standard reasoning.

Corresponding to the extended condition for +∆, P(1) holds only if there is no strict rule in

Tsp supporting ∼p. In other words, there is no argument supporting ∼p constructed from Tsp.

Therefore, the argument A from Tin is acceptable w.r.t Tsp.

At the first step, if P(1) =−∆p then there is no strict rule r supporting p in both Tsp and Tin.

Therefore, it is not possible to have a strict argument for p in both theories.

At the inductive step, we assume that the proposition holds for the derivation with the length

up to n. P(n+1) =+∆p. That is there exists a supportive argument A for p, which is built from

a strict rule r ∈ Tsp∪Tin such that ∀ar ∈A(r),+∆ar ∈P(1..n). If r is in Tsp, A is a strict argument

in Tsp. According to the standard defeasible reasoning, the strict argument A is self acceptable

within Tsp. If r ∈ Tin, every ar must be justified by inductive hypothesis. In addition, every

literal in the bodies of the strict rules for ∼p in Tsp does not have a strictly positive proof:

∀r ∈ Rsp
s [∼p] ∃a ∈ A(r) :−∆a ∈ P(1..n). By the inductive hypothesis for the extended negative

proof, there is not any strict argument supporting these literals in Tsp. Therefore, the argument

A is acceptable.

Assume that P(n+ 1) = −∆p, there are two possibilities. First, each strict rule r for p in

Tsp and Tin has at least one literal ar in the body such that −∆ar ∈ P(1..n). By the inductive

hypothesis, there is no strict argument for ar; therefore, it is not possible to built a strict proof

for p from Tsp and Tin. Second, there is a rule in Tsp supporting the complement of p. By

the inductive hypothesis for the positive proof, there is a strictly acceptable argument for ∼p.

Hence, all of the arguments for p (from Tin)is not acceptable.

In what follows, we prove the if direction (⇐) of the proposition.

In the first part of the proposition, suppose that A is a strict argument for p having the height

of 1. If A is built from Tsp, there is a strict rule with an empty body for p in the combination
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Tsp ∪ Tin. If A is built from Tin and accepted by Tsp, there is a strict rule for p in Tin and no

rule for ∼p in Tsp. In both case, there is an applicable rule for p in the combination, therefore,

Tsp B Tin `+∆p.

At the inductive step, we assume that the first part holds for arguments with heights up to

n and A is an argument for p. From A, we construct a strict rule as A(r)→ p. For every literal

ar ∈ A(r), which is accepted by Tsp, we create sub-arguments of A having the height less than

n. By the inductive hypothesis we obtain +∆ar, hence, the condition for A(r)→ p is satisfied.

Therefore, Tsp B Tin `+∆p.

The second part of the proposition is proved by the contradiction. Assume that Tsp B Tin 6`

−∆p. That leads to:

1. r ∈ Rsp
s [p] ∀ar ∈ A(r) Tsp B Tin 6` −∆ar or

2. s ∈ Rin
s [p] ∀as ∈ A(s) Tsp B Tin 6` −∆ar and ∀t ∈ Rsp

s [∼p] ∃at ∈ A(t) Tsp B Tin 6`+∆at .

For a strict rule for p in Tsp, we construct a partial argument A for p by expanding r. The

expansion of the argument ends with three instances:

1. A rule with the empty body. That is there a strict argument for the literal from Tsp. That

contradicts the assumption.

2. No more rule to expand, therefore, we have −∆ar. That also contradicts the assumption.

3. A loop. None of the literals of the loop can prove the adjacent literal. Therefore, we have

−∆ar. That also contradicts the assumption.

For a strict rule for s in Tin, we construct a partial argument B for p by expanding s. Consid-

ering an argument C attacking B at q. If q is supported by Tsp, the attack is rejected because of

the priority of Tsp. Hence, q is supported by a rule Tin. If E for ∼q is constructed from Tsp, then

that violates the assumption ∀t ∈ Rsp
s [∼q] ∃at ∈ A(t) Tsp B Tin 6` +∆at . If E for ∼q is derived

from Tin, that violates the coherence and consistency of the strict part of Tin. Therefore, E is not

an acceptable argument. Also, B is not attacked by any argument.

For both cases, the assumption is not valid; thus, the second part of the proposition is proved.
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Example 17. This example shows the result of extending the superiority relation between the-

ories to the strict parts of defeasible theories. Suppose that we two defeasible theories Tsp and

Tin such that Tsp � Tin:

Tsp ={Rs = {r1 :→ a; r2 : a→ b}}

Tin ={Rs = {r1 :→ c; r2 : c→∼b}}

The extended Tsp B Tin reasoning proves +∆a, +∆b, +∆c, and −∆∼b. Correspondingly, the

combined theory justifies the strict arguments JArgsTspBTin = {→ a→ b; → c}. Owing to the

priority of Tsp over Tin, the argument→ c→∼b is rejected and undercut by→ a→ b. Therefore,

there is no justified argument for ∼b.

The combination of Tsp B Tin extends the priority among the defeasible theories to that of

rules in the combination. Therefore, the set of arguments constructed from the combination

inherits the justification property from that of the standard defeasible logic (see Theorem 17 in

Governatori et al. (2004)). This is also owing to the coherent property of the extended conditions

for strictly provable conclusions.

Proposition 7. In the combination of two independent theories Tsp B Tin

1. Tsp B Tin ` +∂ p iff arguments for p are justified by Tsp B Tin. Must be considered the

strict part of Tin.

2. Tsp B Tin ` −∂ p iff arguments for p are rejected.

Owing to coherent and consistent properties of the extended defeasible reasoning, the set of

arguments constructed from the combination of two independent theories satisfies the proposi-

tion 8. The extended reasoning over the combination does not simultaneously provide proof for

±∂ p or ±∆p. As a result, it is not possible to construct the arguments both for and against a

literal and its complement.

Proposition 8. In the integration of two defeasible theories Tsp B Tin

1. No argument is both justified and rejected.

2. No literal is both justified and rejected.
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6.3 External model of n-person argumentation

In an argumentation game, a group of agents A shares a set of goals G and a set of external

constraints Tbg represented as a defeasible theory, known as a background knowledge. This

knowledge provides common expectations and restrictions in A . An agent has its own view of

the working environment, therefore, it can autonomously pursue its own goal.

In this section, we model the interactions between the agents to settle on the goals commonly

accepted by the group. Also, at each step of the game, we show how an agent can identify a

goal and the sub-goals for its counter arguments. This information is critical for those agents

whose main claims are refuted either directly by arguments from other agents or indirectly by

the combination of these arguments. The external model presents a simple mechanism for an

agent to select its argument, which relies on the majority rule.

6.3.1 Settling on common goals

An agent can pursue a goal in the set of common goals G by proposing an explanation for its

goal. The group justifies proposals from individual agents to identify commonly-accepted goals

using a dialogue as follows:

1. Each agent broadcasts an argument for its goal. The system can be viewed as an argu-

mentation game with n-players corresponding to the number of agents.

2. An agent checks the status of its argument against those from the other agents. There are

three possibilities:

(a) Directly refuted if its argument conflicts with those from others

(b) Collectively refuted if its argument does not conflict with individual arguments but

violates the combination of individual arguments (See Section 6.4.2)

(c) Collectively accepted if its argument is justified by the combination (see Section 6.4.3).

3. According to the status of its main claim, an agent can, (a) defend its claim, (b) attack a

claim from other agents, (c) rest. An agent repeats the previous step until the termination

conditions of the game are reached.



6.3 EXTERNAL MODEL OF N-PERSON ARGUMENTATION 111

4. The dialogue among agents is terminated if all agents can pass their claims. For a dispute,

agents stop arguing if they do not have any more argument to propose.

6.3.2 Weighting opposite premises

In a dialogue, at each iteration an agent is required to identify the goals and sub-goals that

are largely shared by other agents. This information is highly critical for those agents whose

main claims are refuted either directly by other agents or collectively by the combination of

arguments from others to effectively convince other agents. To achieve that, an agent, Ame,

identifies a sub-group of agents, namely an ‘opp-group’, which directly or collectively attacks

its main claim. Ame creates Argsopp as the set of opposing arguments from the opp-group and

Popp as the set of premises in Argsopp. Essentially, Argsopp contains arguments attacking Ame’s

claim. Each element of Popp is weighted by its frequency in Argsopp. We define the preference

over Popp as given p1, p2 ∈Popp, p2� p1 if the frequency of p2 in Argsopp is greater than that of

p1. Basically, the more frequent an element q ∈ Popp, is the more the agents use this premise in

their arguments. Therefore the refutation of q challenges other agents better than the premises

having lower frequency, because this refutation causes a larger number of agents to reconsider

their claims.

6.3.3 Defending the main claim

At iteration i, Argsopp
i represents the set of arguments played by the opp-group:

Argsopp
i =

|A |⋃
j=0

ArgsA j
i |ArgsA j

i directly attacks ArgsAme
i

where ArgsA j is the argument played by agent A j. If A j rests at iteration i, its last argument

(at iteration k) is used ArgsA j
i = ArgsA j

k . The set of opposite premises at iteration i is:

Popp
i = {p|p ∈ Argsopp

i and p 6∈ ArgsAme
i }

The preference over elements of Popp provides a mechanism for Ame to select arguments for

defending its main claim.
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Example 18. Suppose that agent A1 and A2 respectively propose ArgsA1 = {⇒ e⇒ b⇒ a} and

ArgsA2 = {⇒ e⇒ c⇒ a} whilst agent A3 claims ArgsA3 = {⇒ d⇒∼a}. From A3’s view, its

claim directly conflicts with those of A1 and A2. The arguments and premises of the opp-group

are:

Argsopp
i = {⇒ e⇒ b⇒ a; ⇒ e⇒ c⇒ a}

Popp
i = {a2,b1,c1,e2}

The superscript of elements in Popp
i represents the frequency of a premise in Argsopp

i . A3 can

defend its claim by providing a counter-argument that refute ∼a – the major claim of the opp-

group. Alternatively, A3 can attack either b or c or e in the next step. An argument against e is

the better selection compared with those against b or c since A3’s refutation of e causes both A1

and A2 to reconsider their claims.

6.3.4 Attacking an argument

In this situation, the individual arguments of the other agents do not conflict with that of Ame but

the integration of these arguments does. Agent Ame should argue against one of these arguments

to convince others about its claim.

At iteration i, let the integration of arguments be T i
INT = Tbg

⋃|A |
j=0 T i

j , where T i
j is the knowl-

edge from agent j supporting agent j’s claim, and JArgsT i
INT be the set of justified arguments

from integrated knowledge of other agents (see Section 6.4.3). The set of opposite arguments is

defined as:

Argsopp
i = {a|a ∈ JArgsT i

INT and a is attacked by ArgsAme
i }

and the set of opposite premises is:

Popp
i = {p|p ∈ Argsopp

i and (p 6∈ ArgsAme
i or p is not attacked by ArgsAme

i )}

The second condition is to guarantee that Ame is self-consistent and does not play any ar-

gument against itself. To convince the other agents about its claim, Ame is required to provide

arguments against any premise in Popp. In fact, the order of the elements in Popp offers a

guideline for Ame for selecting its attacking arguments.
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6.4 Internal model of n-person argumentation

This section presents the internal model of an individual agent participating in an n-person

argumentation. In particular, the internal model defines the knowledge structure of an agent

and uses the argumentation semantics in Section 6.2 to build up the set of arguments w.r.t the

knowledge from other agents being exposed after every step of the dialogue.

6.4.1 Knowledge representation

Agent Ame has three types of knowledge including the background knowledge Tbg, its own

knowledge about the working environment Tme, and the knowledge about others:

Tother = {Tj : 1≤ j ≤ |A | and j 6= me}

where Tj is obtained from agent A j during iterations and Tj is represented in DL. At iteration

i, the knowledge obtained from A j is accumulated from the previous steps:

T i
j =

i−1⋃
k=0

T k
j +ArgsA j

i

In our framework, an agent’s knowledge can be rebutted by other agents. It is reasonable

to assume that defeasible theories contain only defeasible rules and defeasible facts (defeasible

rules with an empty body).

6.4.2 Knowledge integration

To generate arguments, an agent integrates knowledge from different sources. Given ambiguous

information between two sources, there are two possible methods for combining them: ambigu-

ity blocking is selected if the preference between these sources is known; otherwise, ambiguity

propagation is applied.

Ambiguity blocking integration

This method extends the standard defeasible reasoning by creating a new superiority relation

from that of the knowledge sources, that is, given two sources as Tsp – the superior theory, and
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Tin – the inferior theory, we generate a new superiority relation Rsp
d >Rin

d based on the rules from

the two sources. The integration of the two sources is denoted as TINT = Tsp B Tin. Now, the

standard defeasible reasoning can be applied for TINT to produce a set of arguments ArgsTINT
AB .

Example 19. Given two defeasible theories

Tbg = {Rd = { r1 : e⇒ c;

r2 : g, f ⇒∼c;

r3 : ⇒ e};

>= {r2 > r1}}

Tme = {Rd = { r1 : ⇒ d;

r2 : d⇒∼a;

r3 : ⇒ g}}

The integration of Tbg B Tme produces:

TINT = {Rd ={ r
Tbg
1 : e⇒ c;

r
Tbg
2 : g, f ⇒∼c;

r
Tbg
3 : ⇒ e;

rTme
1 : ⇒ d;

rTme
2 : d⇒ a;

rTme
3 : ⇒ g};

>={rTbg
2 > r

Tbg
1 }}

The integrated theory inherits the superiority relation from Tbg. That means the new theory

reuses the blocking mechanism from Tbg.

Ambiguity propagation integration

Given two knowledge sources T1 and T2, the reasoning mechanism with ambiguity propagation

can directly apply to the combination of the theories denoted as T
′

INT = T1+T2. The preference

between the two sources is unknown; therefore, there is no method to solve conflicts between

them. The supportive and opposing arguments for any premise are removed from the final set

of arguments. The set of arguments obtained by this integration is denoted by ArgsT
′

INT
AP .
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6.4.3 Argument justification

The motivation of an agent to participate in the game is to promote its own goal. However,

its claim can be refuted by different agents. To gain the acceptance of the group, at the first

iteration, an agent should justify its arguments by the common constraints and expectations of

the group governed by the background knowledge Tbg. The set of arguments justified by Tbg

determines the arguments that an agent can play to defend its claim. In subsequent iterations and

even if the proposal does not conflict with other agents, an agent should consider the knowledge

from the others to determine the validity of its claim. That is, an agent is required a justification

by collecting the individual arguments from the others.

Justification by background knowledge.

Agent Ame generates the set of arguments for its goals by combining its private knowledge

Tme and the background knowledge Tbg. The combination is denoted as TINT = Tbg B Tme and

the set of arguments is ArgsTINT . Owing to the non-monotonic nature of DL, the combination

can produce arguments beyond individual knowledges. From Ame’s view, this can bring more

opportunities to fulfil its goals. However, Ame’s arguments must be justified by the background

knowledge Tbg, because Tbg governs the essential behaviours (expectations) of the group. Any

attack on Tbg is not supported by the members of A . Ame maintains the consistency with the

background knowledge Tbg by the following procedure:

1. Create TINT = Tbg B Tme. The new defeasible theory is obtained by replicating all the

rules from the common constraints Tbg into the internal knowledge Tme while maintaining

the superiority of the rules in Tbg over that in Tme.

2. Use the ambiguity blocking feature to construct the set of arguments ArgsTbg from Tbg and

the set of arguments ArgsTINT
AB from TINT .

3. Remove any argument in ArgsTINT
AB attacked by those in ArgsTbg , obtain the justified argu-

ments through the background knowledge JArgsTINT = {a ∈ ArgsTINT
AB and a is accepted

by ArgsTbg}.
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Example 20. Consider two defeasible theories:

Tbg = {Rd = { r1 : e⇒ c;

r2 : g, f ⇒∼c;

r3 : ⇒ e};

>= {r2 > r1}}

Tme = {Rd = { r1 : ⇒ d;

r2 : d⇒∼a;

r3 : ⇒ g}}

We have sets of arguments from the background theory and the integrated theory:

ArgsTbg ={⇒ e;⇒ e⇒ c}

ArgsTINT = ArgsTbgBTme ={⇒ e;

⇒ e⇒ c;

⇒ d;

⇒ g;

⇒ d⇒∼a}

In this example, there is no attack between the arguments in ArgsTbg and ArgsTINT
AB . In other

words, the arguments from ArgsTINT are acceptable by those from ArgsTbg . The set of justified

arguments w.r.t. ArgsTbg is JArgsTINT = ArgsTINT
AB .

Collective justification

During the game, Ame can exploit the knowledge exposed by other agents to defend its main

claims. Owing to possible conflicts in the individual proposals, an agent uses the sceptical

semantics of the ambiguity propagation reasoning to retrieve the consistent knowledge. Es-

sentially, given the competing arguments, an agent does not have any preference over them;

therefore, these arguments will be rejected. The consistent knowledge from the others allows

an agent to discover the ‘collective wisdom’ distributed among the agents to justify its claim.
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The justification for the collective arguments, which are generated by integrating all knowl-

edge sources, is achieved by the arguments from the background knowledge ArgsTbg . The pro-

cedure runs as follows:

1. Create a new defeasible theory T ′INT = Tbg B Tme +Tother

2. Generate the set of arguments ArgsT
′

INT
AP from T ′INT using the feature of ambiguity propa-

gation

3. Justify the new set of arguments JArgsT
′

INT = {a|a∈ArgsT
′

INT
AP and a is accepted by ArgsTbg}.

JArgsT
′

INT allows Ame to verify the status of its arguments for its claim JArgsTINT . If the

arguments in JArgsT
′

INT and JArgsTINT do not attack one another, Ame’s claims are accepted by

the other agents. Any conflict between two sets shows that accepting the arguments in JArgsT
′

INT

stops Ame from achieving its claims in the next steps. The set of arguments Argsopp against Ame

is identified as any argument in JArgsT
′

INT attacking Ame’s arguments. Ame also establishes Popp

to select its counter-argument. It is noticed that Ame is self-consistent.

Example 21. Suppose the background knowledge Tbg and the private knowledge Tme of Ame

are:

Tbg = {Rd ={ r1 : e⇒ c;

r2 : g, f ⇒∼c};

>= {r2 > r1}}

Tme = {Rd ={ r1 : ⇒ e;

r2 : c⇒ d;

r3 : ⇒ g}}

Agent Ame currently plays {⇒ e⇒ c⇒ d} and knows about other agents:

Tother = {T1,T2} where T1 = {⇒ h⇒ f ⇒ b⇒ a}

T2 = {⇒ e⇒ c⇒ a}

The claim of A3 is acceptable w.r.t. arguments played by the other agents. However, the

combination T
′

INT = Tbg B Tme +Tother shows the difference. This combination generates {⇒
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g; ⇒ e; ⇒ e⇒ f ⇒ b; ⇒ g, f ⇒∼c}. The term {⇒ g, f ⇒∼c} is due to the superiority

relation in Tbg which rebuts the claim of A3. Therefore, the set of opposing arguments Argsopp =

{⇒ g, f ⇒∼c} and Popp = { f 1}. Given this information, A3 should provide a counter-evidence

to f to pursue c. Moreover, A3 should not expose g to the other agents. Otherwise, A3 has to

drop its initial claim d.

6.5 Related Work

Substantial works have been carried out on the argumentation games in the artificial intelli-

gence and law fields. Prakken and Sartor (1996) introduce a dialectical model of the legal

argument, in the sense that the arguments can be attacked with appropriate counterarguments.

In the model, the factual premises are not arguable, they are treated as strict rules. Bench-Capon

(1998) presents an early specification and implementation of an argumentation game based on

the Toulmin argument-schema without a specified underlying logic. Lodder (2000) presented

The Pleadings Game as a normative formalisation and fully implemented computational model,

using conditional entailments. The goal of the model was to identify the issues in the argu-

mentation rather than, as in our case, elaborating the status of the main claim. Verheij (1996)

provides a formal study on the role of rules and reasoning in argumentation, and the status of

the arguments in the argumentation process.

Using the defeasible logic to capture the concepts of the argumentation game is supported

by Hamfelt et al. (2005); Letia and Vartic (2006) and recently, Lundström et al. (2008); Thakur

et al. (2007). Letia and Vartic (2006) focus on the persuasive dialogues for cooperative inter-

actions among the agents. In the process, it includes the cognitive states of the agents, such as

knowledge and beliefs, and presents some protocols for some types of dialogues (information

seeking, explanation persuasion). Hamfelt et al. (2005) provide an extension of the defeasible

logic to include the step of the adversarial dialogue by defining a meta-program for an alterna-

tive computational algorithm for ambiguity propagating defeasible logic. The logic presented

here is ambiguity blocking.

We deal with the problem of the evolving knowledge of an agent during the iterations, where

the argument construction is an extension of Lundström et al. (2008); Thakur et al. (2007). In
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our work, we define the notion of the majority acceptance and a method to weight arguments.

In (Thakur et al., 2007), the strength of the unchallenged rules is upgraded over the iterations.

That is, the conclusions supported by these rules are not rebutted by the current iteration; these

conclusions are unarguable in the following iterations. The upgrade is applied to all the partici-

pants during the iterations of the argumentation game. Lundström et al. (2008) distinguish the

participants of the argumentation game. That is, one participant must provide a strong argument

(a definite proof) to defeat the arguments from the other participants. Both the works do not

directly handle the challenges coming from multiple participants.

We extend the protocol of a argumentation game to settle on a common goal. The termi-

nation condition of our framework is either there is no more argument to rebut or an agent can

pass its proposal in one iteration.

Settling on a common goal among the agents can be seen as a negotiation process where

agents exchange information to resolve the conflicts or to obtain missing information. Am-

goud et al. (2007) provide a unified and general formal framework for the argumentation-based

negotiation dialogue between two agents for a set of offers. The work provides a formal con-

nection between the status of a argument including accepted, rejected and undecided with the

possible actions of an agent (accept, reject and negotiate respectively). One important feature

of the framework is that this representation is independent of the logical languages modelling

the knowledge of an agent. Moreover, an agent’s knowledge evolves by accumulating the argu-

ments during the interactions.

We have advantages in using the defeasible logic, because it provides us with an elegant tool

to capture the above statuses of the arguments naturally. Accepted, rejected, undecided condi-

tions can be simulated by the proof conditions of defeasible reasoning w.r.t the ambiguity of the

premises. If the preference of the knowledge sources is known, the accepted and rejected argu-

ments are corresponding to (+∂ ,−∂ ) using the feature of ambiguity blocking. Otherwise, the

three conditions of the arguments are derived from (+∂ ,−∂ and +Σ). These notions correspond

to the existence of a positive proof, a negative proof, and a positive support of a premise. In ad-

dition, defeasible logic provides a compact representation to accommodate the new information

from the other agents.

From the perspective of coordination among agents, Parsons and McBurney (2003) present
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an argumentation-based communication, where the agents can exchange arguments for their

goals and plans to achieve those goals. The acceptance of the argument of an agent depends on

the attitudes of this agent, namely credulous, cautious or sceptical. Also, Rueda et al. (2002)

propose a communication mechanism based on the argumentation for collaborative BDI agents,

in which the agents exchange their proposals and counter-proposals to reach a mutual agree-

ment. During the course of conversations, an agent can retrieve missing literals (regarded as

sub-goals) or fulfil its goals by requesting the collaboration of the other agents. However, these

works did not clearly show how an agent can deal with the conflicts from multiple agents,

especially when the preference over the exchanged arguments is unknown.

The main difference in our framework is the external model where more than two agents

can argue to settle on a common goal. Because there is no preference over the proposal of the

individual agents, the majority rule enables the group to identify the majority preference over the

individual claims. On the one hand, we present the notion of the acceptance by the majority of

the agents. On the other hand, this notion relaxes the complexity of the n-persons argumentation

game by partitioning the agents into two sub-groups, one supports the major claim and the other

opposes it. Moreover, the majority rule allows an agent to probe the attitudes of the group to

dynamically create a preference over its defensive arguments if its main claim is not accepted

by the majority of the agents. The strategy to defend against the topic of the dialogue is to attack

the most common premise among the arguments supporting the topic.

In our framework, an individual agent efficiently tackles the conflicts from multiple sources

of knowledge owing to the use of the defeasible logic as the underlying logic. The construction

of the arguments requires an individual agent to integrate the background knowledge commonly

shared among the agents, the knowledge from the other agents and its own private knowledge.

The background knowledge has the priority over the other sources; therefore, when integrating

any conflict, this knowledge is blocked. Because all agents are equally trustful, the knowledge

from the other agents has the same weight. To achieve a consensus from the knowledge of the

other agents and to discover the ‘collective wisdom’, the ambiguity propagation is applied over

all knowledge sources of an individual agent.
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6.6 Summary

This chapter has presented an n-person argumentation framework based on the defeasible logic.

In the framework, we proposed an external model based on the argumentation/dialogue game

that enables the agents in a group to settle on a common goal. An agent proposes its goal,

including the explanation, and argues with the other agents about the goal. At the termination,

the group identifies a common goal accepted by the majority of the group and the supportive

argument for the goal.

We also propose an internal model of an agent where an individual agent can efficiently

construct arguments from multiple sources of knowledge, including the background knowledge

presenting the common constraints and expectations of the group, the knowledge from the oth-

ers that is evolved during the iterations, and its own private knowledge. The background knowl-

edge is preferred over the other sources of knowledge. Owing to the flexibility of defeasible

logic in tackling the ambiguous information, these types of knowledge can be efficiently inte-

grated with the private knowledge of an agent (with or without a preference over the knowledge

sources) to generate and justify its arguments.

The majority rule relaxes the complexity of the n-persons argumentation dialogue game.

This rule is used to identify the topic of the dialogue among the claims of agents. That is, the

majority acceptance of an argument. Also, we propose a simple weighting mechanism, based

on the frequency of the premises in the arguments attacking an agent’s claim, to cope with the

problem of the conflicts from multiple agents.

In future work, we will extend this mechanism to incorporate the notion of trustful argu-

ments from trusted agents to better select a rebuttal argument and resolve the conflicts among

agents.
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7
Conclusions

In this section we summarise our work and provide some thoughts for further research issues.

7.1 Summary

From the literature of the multi-agents systems, there are two main challenges that the agent

community is currently investigating. One is the development of formalisms for representing

the knowledge the agents have about their actions, goals, plans for achieving their goals and

other agents. The second challenge is the development of the reasoning mechanisms agents use

to achieve autonomy during the course of their interactions. In the thesis, we have succeeded

to construct a multi-agent framework with simple representation and efficient implementation

in tackling the incomplete and conflicting information in agents’ knowledge. The framework

123
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allows not only us to internally model agents but also the dialogue between n agents using exist-

ing techniques namely defeasible logic and the social choice with minimal cost. The complexity

of the reasoning mechanism equals to that of defeasible logic and the social choice.

The logical approach to multi-agent systems provides a declarative method for specifying

what an agent knows and does not know about its working environment and the other agents.

Furthermore, this approach can benefit from a ‘free semantics’ and a rich set of reasoning

methods, such as deductive or abductive. A well-known and successful approach to modelling

rational agents, the Beliefs, Desires and Intentions (BDI) architecture is inspired by human

attitudes towards actions. Beliefs, Desires and Intentions are then the mental components in

the architecture (Kinny et al., 1996; Rao and Georgeff, 1991). This architecture is strongly

founded in the philosophical investigation by Bratman on human practical reasoning. The BDI

model provides an insight on the decision-making process of an agent. Furthermore, the model

facilitates building the agent systems, because of its clear definition of agent functionality.

The complexity of the logical model, including the BDI model, depends on the types of

logics being used to model the agents’ actions and the states of the environment. To obtain

the tractability of the agents’ rationality, there are trade-offs between the expressive capability

and the computational complexity (Dantsin et al., 2001). Regarding this issue, the cost of the

computing equilibrium among the agents’ actions amounts to the space of the possible states.

Essentially, the problem can be seen as a search to find an optimal path through all the possible

combinations of the agents’ states. That is a NP-hard problem.

Our research goals aim for a declarative method of representing the knowledge of the agents

and the executable model for the agents’ reasoning. Furthermore, we consider that an agent

operates in a dynamic environment (an agent may be influenced by actions of other agents) and

has only a partial image of the environment.

We have proposed a defeasible logic framework (DL-MAS) for multi-agent systems that

explicitly captures the background knowledge of the group and the knowledge about the other

agents. The joint knowledge from the other agents is a special source, because this knowledge

is largely shared by the group. Considering the conflicts between the internal knowledge and

this special knowledge, an individual agent can balance its mental attitudes with the ‘desires’

shared among the group.
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To have a fine-grained model of the agent’s behaviour, in particular, its social behaviour, we

use the layer approach (MDL-MAS) to introduce modal notions into the knowledge structure of

an agent. An agent can represent what it knows about the modal notions of the other agents, but

not what it knows about what the others know. Being aware of the beliefs and goals of the other

agents, an individual agent can discover the prevalent attitudes of the group and can balance

those attitudes with its own. Therefore, agents are categorised into two types, majority and

obedience. That is, an agent can either adapt to the majority behaviours or dominate the group,

but is constrained to what are commonly recognised by the group. The agent in the second

category can introduce a distinct behaviour that would lead the other agents, while committing

to the obligations commonly recognised by the group.

We have investigated an n-person argumentation framework by using the technique from

the DL-MAS model. In the framework, we studied a protocol for a group of agents settling

on common goals. Also, we consider the efficiency of the underlying inference mechanism.

We proposed an external model based on the argumentation/dialogue game that enables agents

to communicate on a common goal. An agent proposes its goal including the explanation and

argues with the other agents about the goal. At termination, the group identifies the common

goals accepted by the majority of the group and the supportive argument for those goals.

We have investigated an n-person argumentation framework by using the technique from

the DL-MAS model. In the framework, we study a protocol for a group of agents to settle on

common goals. Also, we consider the efficiency of the underlying inference mechanism. We

propose an external model based on the argumentation/dialogue game which enables agents to

communicate on a common goal. An agent proposes its goal including the explanation and

argues with other agents about the goal. At the termination, the group identifies common goals

accepted by the majority of the group and the supportive argument for the goals.

We have also presented an internal model of an agent, where an individual agent can ef-

ficiently construct arguments from multiple sources of knowledge, including the background

knowledge presenting the common constraints and expectations of the group, the knowledge

from the others evolved during the iterations, and its own private knowledge. The background

knowledge is preferred over the other sources of knowledge. Owing to the flexibility of the
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defeasible logic in tackling the ambiguous information, these types of knowledge can be effi-

ciently integrated with the private knowledge of an agent (with or without a preference over the

knowledge sources) to generate and justify its arguments.

In addition to the efficiency of defeasible reasoning, the majority rule relaxes the complexity

of the n-persons argumentation dialogue game. This rule is used to identify the topic of the

dialogue among the claims of the agents. That is the majority acceptance of an argument. Also,

the majority rule plays a key role in the weighting mechanism. The weight of an argument is

based on the frequency of the premises in the arguments attacking an agent’s claim, to cope

with the problem of the conflicts from the multiple agents.

Another outcome of our research is the defeasible rule mark-up package. This package

defines a standard for exchanging knowledge represented by defeasible logic. In addition to

the standard defeasible reasoning, the package supports the modal notions as parameters of the

reasoning process. In the next development, we aim for sophisticated interactions between the

modal operators for capturing the more complex behaviour of the agents.

7.2 Discussion and Future work

Our multi-agent framework uses the majority rule to merge conclusions from individual knowl-

edge bases of agents in the group. Interestingly, our reasoning mechanism does not always

suffer the doctrinal paradox. The paradox is presented in the example below.

Example 22. Given a rule r1 : p∧q→ r, and three belief bases A1, A2 and A3 containing the

truth values of p, q and the derivation of r1 as follows:

p q r

A1 = {true, true, true}

A2 = {true, f alse, f alse}

A3 = { f alse, true, f alse}

If these bases have equal weight (importance), the majority rule produces {true,true,false} for

p, q and r respectively. The result contains a inconsistence with regards to r1. If the majority

supports p, q and knows r1, r should be supported. That is the paradox.
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The key to maintain the consistence of the merged belief is the rule r1 known as integrity

constraints or logical relations among premises (Pigozzi, 2006). With regards to our framework,

r1 is considered as background knowledge because all the agents recognise this rule in their be-

lief bases. Consequently, the agents adapting to majority produce {p= true,q= true,r = true}.

There is no paradox in the outcome. This surprising result is due to the extended defeasible rea-

soning where the majority knowledge is considered as inferior to the background knowledge.

When combining the majority knowledge and the background knowledge, the agent retrieves

the supports for ¬r from the majority and r from r1 in the background. The conclusion of r is re-

tained thanks to the superiority of the background knowledge. Again, the key is the background

knowledge that is largely shared among the agents. Clearly, without this information solving

the paradox is not a trivial task. Neither voting on premises nor on the conclusions can solve

the paradox (Pigozzi, 2006). In our framework, voting on the premises is worse and harder

to obtain the majority conclusions because of the non-monotonicity of the logic representing

the knowledge bases. Despite the high cost of computation, it is unlikely to reach the majority

choice by changing the conflict-solving mechanism of every agent joining the pool. Voting on

the conclusions and applying the extended defeasible reasoning produce an outcome consistent

with the knowledge base largely shared by the group of agents. That can make sense because all

the agents accept ‘the logical relations’ dictated by the background knowledge. In other words,

the social choice is acceptable by the group if and only if the choice successfully passes the

judgement of the commonly accepted ‘logical relations’ within the group. In fact, ’the logical

relations’ are not only the rules but also the conflict-solving mechanism of the knowledge base.

As can be seen from Example 22, if the agents in the group do not commonly accept r1,

they do not even know about the existence of the paradox. Therefore, in order to recognise and

escape from the paradox it is critical for the group to identify the commonly accepted ‘logi-

cal relations’. Chapter 6 presents a possible extension of the DL-MAS reasoning mechanism,

where n agents in the group can argue to largely accept a conclusion and its explanation. In

the extension, the majority rule is used to weight the popularity of premises constructing the

explanation. We believe that this extension can better tackle with the beliefs which are ‘deeply

embedded’ (Pettit, 2006) in agents’ knowledge bases. In other words, our extension provides a

method to construct the majority knowledge on the ‘logical relations’, which are embedded in
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the knowledge bases of individual agents of the group. We have sketched out the intuition on

tackling the doctrinal paradox. In the future work, we would investigate a formal representation

and solution to this problem.

Our DL-MAS framework favours the internal view approach to agents’ behaviour. However,

we believe that our framework can be used as a tool for external modelling in the case that all

agents expose their knowledge. This shows the flexibility of our framework and it is worth for

a further investigation.

In our DL-MAS framework, we have developed a light-weight reasoning package based on

defeasible logic. We plan to incorporate modal defeasible logic instead of the layer approach to

capture the notions of belief, intention, and obligation. The interaction among belief, intention,

and obligation is described as parameters of the reasoning process. In one hand, that improves

the flexibility in describing behaviour of an agent and the interaction among agents. On the

other hand, that increases the inter-operation among reasoning mechanisms. If a reasoning

mechanism does not support the transformations between modal notions, those operations can

be ignored. Consequently, the agents can illustrate the basic behaviour.

Our framework assumes an existing mechanism that allows an agent to obtain information

from other agents. Boella et al. (2007a) propose a mechanism for exchanging rule-based in-

formation using FIPA communicative acts. The semantics of the communicative acts depend

not depend only on the private knowledge of an agent, but also on the mental attitudes publicly

known by the agents. We intend to extend this mechanism in such a way that the agents can

recognise the mental attitudes largely shared by the agents. These attitudes should be considered

as an important source for the assertion of upcoming information.

In our model for multi-agent systems, the information about the weight (reputation) of an

agent is initiated by the designers. It is more useful to update this during the interactions among

the agents. The idea is that the behaviour of our agents are driven by three types of knowl-

edge, the internal knowledge, the knowledge shared by the group and the knowledge from other

agents. Knowledge commonly shared or largely recognised by individuals enables the agents

to ‘discover’ the common values in the group. Hence, the agents can justify the behaviour of

the others. Behaviour for/against the values of the group can increase/decrease the reputation of

the owners. Because of the knowledge from the others, an agent can reason about the intended
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actions of the other agents. The agent can balance between the actual and the intended actions

to update the reputation of the other agents. That is, by tracking the commitment of the indi-

viduals to the group, we can build up a social reputation model for our agents. The approach

provides more quantitative evidence than the interaction rating model proposed by Sabater and

Sierra (2001) or on-line auction systems such as eBay.

We are investigating a computer-based tool to simulate emergency situations where res-

cue teams are well equipped with comprehensive emergency procedures, but the information

is incomplete and conflicting. The simulation tool facilitates studying the behaviour of the

individual members and the whole team, and the effectiveness of the rescue procedures.
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László Pólos, editors, Knowledge Representation and Reasoning Under Uncertainty, volume

808 of Lecture Notes in Computer Science, pages 183–196. Springer, 1994. ISBN 3-540-

58095-6.

CLIPS. CLIPS Reference Manual. NASA, January 1992.



REFERENCES 137

Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artif. Intell.,

42(2-3):213–261, 1990. ISSN 0004-3702.

Rosaria Conte and Cristiano Castelfranchi. Cognitive and social action. UCL Press London,

1995.
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André Fuhrmann. An Essay on Contraction. CSLI Publications, Stanford University, 1997.

Alejandro Javier Garcı́a and Guillermo R. Simari. Defeasible logic programming: an argu-

mentative approach. Theory and Practice of Logic Programming, 4(2):95–138, 2004. ISSN

1471-0684.

Alejandro Javier Garcı́a, Nicolás D. Rotstein, Mariano Tucat, and Guillermo Ricardo Simari.

An argumentative reasoning service for deliberative agents. In Zili Zhang and Jörg H. Siek-

mann, editors, KSEM, volume 4798 of Lecture Notes in Computer Science, pages 128–139.

Springer, 2007. ISBN 978-3-540-76718-3.

Michael Gelfond. Logic programming and reasoning with incomplete information. Annals of

Mathematics and Artificial Intelligence, 12(1-2):89–116, 1994.

Michael Gelfond and Vladimir Lifschitz. Representing actions in extended logic program-

ming. In Proceedings of the Joint International Conference and Symposium on Logic Pro-

gramming, pages 559–573. MIT Press, 1992. ISBN 0-262-51064-2.



REFERENCES 141

Michael R. Genesereth, Matthew L. Ginsberg, and Jeffrey S. Rosenschein. Cooperation with-

out communication. In Proceedings of the 5th National Conference on Artificial Intelligence,

pages 51–57, Philadelphia, PA, 1986. Morgan Kaufmann.

Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and planning. In Proceedings

of the 6th National Conference on Artificial Intelligence (AAAI), pages 677–682, Menlo Park,

CA, USA, 1987.

Jelle Gerbrandy and Willem Groeneveld. Reasoning about information change. Journal of

Logic, Language and Information, 6(2):147–169, 1997. ISSN 0925-8531.

Guido Governatori. Representing business contracts in RuleML. International Journal of

Cooperative Information Systems, 14(2-3):181–216, 2005.

Guido Governatori and Zoran Milosevic. A formal analysis of a business contract lan-

guage. International Journal of Cooperative Information Systems, 15(4):659–685, 2006. doi:

10.1142/S0218843006001529.

Guido Governatori and Duy Hoang Pham. DR-CONTRACT: An architecture for e-contracts

in defeasible logic. In 2nd EDOC Workshop on Contract Architectures and Languages (CoALA

2005). IEEE Digital Library, 2005a. Published on CD.

Guido Governatori and Duy Hoang Pham. A semantic web based architecture for e-contracts

in defeasible logic. In Rules and Rule Markup Languages for the Semantic Web, First Inter-

national Conference, RuleML 2005, Galway, Ireland, November 10-12, 2005, Proceedings,

volume 3791 of Lecture Notes in Computer Science. Springer, 2005b. ISBN 3-540-29922-X.

Guido Governatori and Antonino Rotolo. Defeasible logic: Agency, intention and obligation.

In Alessio Lomuscio and Donald Nute, editors, Deontic Logic in Computer Science, volume

3065 of Lecture Notes in Computer Science, pages 114–128. Springer, 2004. ISBN 3-540-

22111-5.

Guido Governatori and Antonino Rotolo. BIO logical agents: Norms, beliefs, intentions in

defeasible logic. Autonomous Agents and Multi-Agent Systems, 17(1):36–69, 2008. ISSN

1387-2532.



142 REFERENCES

Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David Billington. Argumenta-

tion semantics for defeasible logic. Journal of Logic and Computation, 14(5):675–702, 2004.

ISSN 0955-792X.

Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance checking between

business processes and business contracts. In Patrick C. K. Hung, editor, 10th Inter-

national Enterprise Distributed Object Computing Conference (EDOC 2006), pages 221–

232. IEEE Computing Society, 16–20 October 2006a. ISBN 978-0-7695-2558-7. doi:

10.1109/EDOC.2006.22.

Guido Governatori, Antonino Rotolo, and Vineet Padmanabhan. The cost of social agents. In

Peter Stone and Gerhard Weiss, editors, 5th International Conference on Autonomous Agents

and Multi-Agent Systems, pages 513–520, New York, 2006b. ACM Press. ISBN 1-59593-303-

4.

Guido Governatori, Duy Hoang Pham, Simon Raboczi, Andrew Newman, and Subhasis

Thakur. On extending ruleml for modal defeasible logic. In Rule Representation, Interchange

and Reasoning on the Web, International Symposium, RuleML 2008, Orlando, FL, USA, Oc-

tober 30-31, 2008. Proceedings, volume 5321 of Lecture Notes in Computer Science, pages

89–103. Springer, 2008. ISBN 978-3-540-88807-9.
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Defeasible reasoning algorithm

In this appendix, we present the algorithms for computing the definite and defeasible conclu-

sions.

7.3 Basic defeasible theory

A basic defeasible theory does not have any defeater rule. Also, the superiority relation between

the defeasible rules is removed. Therefore, the basic defeasible theory has only a set of strict and

defeasible rules. A standard defeasible theory can be transformed to a basic theory according

to Antoniou et al. (2001). Assume that we have a basic defeasible theory D, which contains a

set of strict and defeasible rules Rs and Rd respectively, and a set of literals LD. Given a rule

r, A(r) represents the antecedence (or the body) whilst C(r) represents the consequent (or the

head). If a literal q is supported by the rule r, the we have the representation of r[q]. In what

follows, we present the algorithms for computing the extension of a defeasible theory.

7.4 Defeasible reasoning algorithm

The two algorithms for deriving two types of conclusions are illustrated in the next two sections.

7.4.1 Algorithm for definite conclusions

The algorithm consists of two cycles. The first cycle verifies whether every literal occurs in the

head of a rule in D. The second cycle performs the forward chaining on the set of strict rules
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Rs and modifies the structure of the rules in the case that a literal in the body of rules has been

proved. These cycle stops when all of the strict rules or all of the literals have been investigated.
Algorithm 1: Algorithm for definite conclusions

Input: a defeasile theory D

Output: sets of definite conclusions ∆+ and ∆−

while LD 6= /0 and Rs 6= /0 do1

foreach l ∈LD do2

if Rs[l] = /0 then3

∆− = ∆−+{l};4

Rs = Rs−{r|l ∈ A(r)}5

if Rs[l] = /0 and Rs[∼l] = /0 then LD = LD−{l,∼l}6

foreach r ∈ Rs do7

if l ∈ A(r) and l ∈ ∆+ then8

A(r) = A(r)−{l}9

if A(r) = /0 and C(r) = q then10

∆+ = ∆++{q};11

Rs = Rs−{r}12

7.4.2 Algorithm for defeasible conclusions

In this algorithm, Rsd is the set of strict and defeasible rules. This algorithm has two main

steps. The first step checks if each literal in D is supported by a rule in Rsd . The second step

investigates a rule in Rsd . If there is a rule with an empty body, the theory D should not provide

the complement of the literal in the head of that rule. Also, the literal in the head is in the positive

conclusions ∂+ provided that there is no support for the opposite in D (Rsd[q] = /0). These steps

are repeated until one of following conditions is met, (1) all of the literals are verified, (2) all of

the rules are investigated, (3) there is no new conclusion to be derived.
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Input: a defeasile theory D

Output: sets of defeasible conclusions ∂+ and ∂−

while LD 6= /0 or Rsd 6= /0 or (∂±)
′ 6= ∂± do1

foreach l ∈LD do2

if Rsd[l] = /0 then3

∂− = ∂−+{l};4

Rsd = Rsd−{r : a ∈ A(r)};5

if Rsd[l] = /0 and Rsd[∼l] = /0 then LD = LD−{l,∼l};6

foreach r ∈ Rsd do7

if l ∈ A(r) and l ∈ ∂+ then A(r) = A(r)−{l};8

if A(r) = /0 and C(r) = q then9

∂− = ∂−+{∼q};10

if Rsd[∼q] = /0 then11

∂+ = ∂++{q};12

foreach s ∈ Rsd do13

if q ∈ A(s) then A(s) = A(s)−{s};14

Rsd = Rsd−{r};15

Rsd = Rsd−{t|t ∈ Rsd and ∼q ∈ A(t)};16

Algorithm 2: Algorithm for definite conclusions


