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Abstract A binary nonlinear code can be represented as a union of cosets of a bi-

nary linear subcode. In this paper, the complexity of some algorithms to obtain this

representation is analyzed. Moreover, some properties and constructions of new codes

from given ones in terms of this representation are described. Algorithms to compute

the minimum distance of binary nonlinear codes, based on known algorithms for linear

codes, are also established, along with an algorithm to decode such codes. All results

are written in such a way that they can be easily transformed into algorithms, and the

performance of these algorithms is evaluated.
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1 Introduction

Let Z2 be the ring of integers modulo 2 and let Zn
2 be the set of all binary vectors

of length n. The (Hamming) distance d(u, v) between two vectors u, v ∈ Zn
2 is the

number of coordinates in which u and v differ. The (Hamming) weight wt(u) of u ∈ Zn
2

is wt(u) = d(u,0), where 0 is the all-zero vector of length n. An (n,M, d) binary code C

is a subset of Zn
2 with M vectors and minimum Hamming distance d. The vectors of a

code are called codewords and theminimum (Hamming) distance of C, denoted by d(C),

is the minimum value of d(u, v) for all u, v ∈ C and u 6= v. The minimum (Hamming)

weight of C, denoted by wt(C), is the smallest weight of all nonzero codewords in C.

The distance of a vector x ∈ Zn
2 from C is the number d(x,C) = min{d(x, c) : c ∈ C},
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and the covering radius of C, denoted by ρ(C), is ρ(C) = max{d(x,C) : x ∈ Zn
2 }. We

say that a code C is maximal if ρ(C) ≤ d(C)− 1.

Two binary codes C1 and C2 of length n are said to be permutation equivalent if

there exists a coordinate permutation π such that C2 = {π(c) : c ∈ C1}. They are said

to be equivalent if there exists a vector a ∈ Zn
2 and a coordinate permutation π such

that C2 = {a+π(c) : c ∈ C1}. Note that two equivalent codes have the same minimum

distance. If C is linear, 0 ∈ C; but if C is nonlinear, 0 does not need to belong to C. In

this case, we can always consider a new binary code C′ = C + c for any c ∈ C, which

is equivalent to C, such that 0 ∈ C′. Therefore, from now on, we assume that 0 ∈ C.

Given a binary code C, the problem of storing C in memory is a well known

problem. If C is linear, that is, it is a subgroup of Zn
2 , then it can be compactly

represented using a binary generator matrix. On the other hand, if C is nonlinear,

then a solution would be to know whether it has another structure or not. For example,

there are binary codes which have a Z4-linear or Z2Z4-linear structure and, therefore,

they can also be compactly represented using a quaternary generator matrix [4,12]. In

general, binary codes without considering any such structure can be seen as a union

of cosets of a binary linear subcode of C [1]. For example, the original Preparata and

Kerdock codes are defined like this [16], and new binary nonlinear codes have also been

constructed as an union of cosets of a linear code [9,18]. This allows us to represent a

binary code as a set of representative codewords instead of as a set with all codewords.

These representative codewords can be organized as a matrix, called parity-check system

[13], which is a generalization of the parity-check matrix for linear codes [16].

The problem of computing the minimum distance of a binary code C is computa-

tionally difficult, and has been proven to be NP-hard for binary linear codes [23]. Note

that in order to establish the error-correcting capability of a code, it is necessary to

compute its minimum distance. If C is linear, the minimum distance coincides with the

minimum weight, and the Brouwer-Zimmermann minimum weight algorithm for linear

codes over finite fields [26,2] can be used. This algorithm can be found implemented in

the computational algebra system Magma [8,10,24]. Other algorithms related to this

problem for linear codes can be found in [3,6,17]. On the other hand, if C is nonlinear,

the minimum weight and distance does not always coincide, and as far as we know

there is no algorithm to compute them comparable to Brouwer-Zimmermann algo-

rithm for linear codes. An algorithm based on Gröbner bases to compute the distance

distribution for systematic nonlinear codes can be found in [11].

The hardest problem in the process of transmitting information is decoding. For

linear codes, a general decoding algorithm is the syndrome decoding, which is only

suitable for linear codes with a small codimension. Other general decoding methods are

based on finding a vector of minimum weight in a linear code or a coset of a linear code.

They have better performance than the syndrome decoding for codes with a moderate

large codimension, and have been used to attack the McEliece public-key cryptosystem

[7,24]. For specific families of linear codes used in applications, other more efficient

decoding algorithms can be applied. On the other hand, there is no general decoding

algorithm for nonlinear codes other than brute force. Using the representation as a

union of cosets of a linear subcode and the minimum weight computation, we propose

a nontrivial general method to decode nonlinear codes.

In this paper, we focus on binary nonlinear codes represented as a union of cosets of

a binary linear subcode called kernel. In Section 2, we describe this coset representation,

show that it can allow to store nonlinear codes in a more efficient way, and analyze the

complexity of some algorithms to compute the kernel and coset representatives from a
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given nonlinear code. In Section 3, we give some properties and constructions of new

codes from given ones in terms of the kernel and coset representatives. In Section 4,

we propose and analyze algorithms to compute the minimum weight and minimum

distance of binary nonlinear codes, based on the coset structure and the known algo-

rithms for linear codes. The performance of the different algorithms presented in the

paper strongly relies on the nonlinear code to have a large kernel. In Section 5, we

generalize previous general decoding methods for linear codes to nonlinear codes using

the coset structure. All the new features are evaluated on theoretical level and partly

using experimental data. Finally, in Section 6, we give some conclusions.

2 Representation of Binary Nonlinear Codes

Two structural properties of binary codes are the rank and dimension of the kernel.

The rank of a binary code C, denoted by ̺, is simply the dimension of the linear span,

〈C〉, of C. The kernel of a binary code C is defined as KC = {x ∈ C : x + C = C}.

Since 0 ∈ C, KC is a binary linear subcode of C. We denote by κ the dimension of

KC . In general, C can be written as a union of cosets of KC , and KC is the largest

such linear code for which this is true [1]. Therefore,

C =

t⋃

i=0

(
KC + vi

)
, (1)

where v0 = 0, t+1 = M/2κ, M = |C| and v1, . . . , vt are representatives of the cosets of

KC , called coset representatives. Note that t 6= 1, because if t = 1, C = KC∪(KC+v1),

but then C would be linear, so C = KC . It is important to emphasize that the coset

representatives are not necessarily the ones having minimum weight in each coset. The

parameters ̺ and κ can be used to distinguish between nonequivalent binary codes,

since equivalent ones must have the same ̺ and κ. Therefore, they provide a sufficient

condition which is not necessary, since two nonequivalent binary codes could have the

same parameters ̺ and κ.

Let C be a binary code of length n with kernel KC of dimension κ and t coset

representatives given by the set L = {v1, . . . , vt}. Note that we can represent C as the

kernel KC plus the coset representatives L. Since KC is linear, it can be compactly

represented by its binary generator matrix G of size κ×n. Therefore, considering L as

the matrix where in the t rows there are the coset representatives, the binary code C

can be also represented by the matrix
(
G
L

)
. Since the kernel takes up a memory space

of order O(nκ), the kernel plus the t coset representatives take up a memory space of

order O(n(κ + t)). For the case t = 0, that is, when the binary code C is linear, we

have that C = KC and the code can be represented by its binary generator matrix, so

the memory space is of order O(nκ). On the other hand, for the case t+ 1 = M , this

solution is as bad as representing the code as a set of all its codewords, so it takes up

a memory space of order O(nM).

For example, applying this representation to the set of all completely classified

binary perfect codes of length 15 and extended perfect codes of length 16, we obtain

a very significant storage memory reduction. It is known that there are exactly 5983

binary perfect codes of length 15 and 2165 binary extended perfect codes of length 16,

each one having 2048 codewords [19]. The binary perfect codes of length 15 have kernels

of different dimensions, distributed as it is shown in Table 1 [20]. Therefore, instead of
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taking up 5983 · 2048 · 4 = 49012736 hexadecimal numbers by encoding each codeword

in hexadecimal notation, it only takes 3677928 by storing the codewords of a generator

matrix of the kernel and the set of coset representatives for each binary code. This

represents only 7.5% of the original stored codewords. Similarly, the extended perfect

codes of length 16 can be compressed from 2165 · 2048 · 4 = 17735680 hexadecimal

numbers to 1439336, which represents only 8.1% of the original stored codewords.

Note that although most of these codes have kernels with small dimension, that is,

they are far from being linear, we obtain a high storage memory reduction.

Dimension of the kernel 1 2 3 4 5 6 7 8 9 11
Number of codes 19 177 1295 2896 1222 305 48 17 3 1

Table 1 Dimension of the kernels for the binary perfect codes of length 15.

As we have seen, the above matrix
(
G
L

)
gives us a compact representation for binary

codes. Equivalently, a binary code C can also be represented in a compact way using

an (n − κ) × (n + t) binary matrix (H S), where H is a generator matrix of the dual

code K⊥
C and S = (HvT1 HvT2 . . . HvTt ). This matrix is called parity-check system of

C, and the binary linear code generated by (H S) is called the super dual of C [13].

Unlike the matrix
(
G
L

)
, any generator matrix (H ′ S′) of the super dual or (H ′ π(S′)),

where π is a column permutation, can be used to represent the binary code C. Note

that if C is a linear code, the super dual is the dual code C⊥ and a parity-check system

is a parity-check matrix of C [13].

By using just the definition of the kernel, we can define a straightforward algorithm

to compute the kernel and coset representatives of a binary code C. This algorithm

requires the classification of the M codewords of C. Moreover, if we assume that the

codewords are sorted, then M2 logM operations (additions and searches) would need

to be executed. Since M = 2κ(t+1), this algorithm is exponential in κ, the dimension

of KC . Despite of the exponential behaviour, using some well known properties of the

kernel, in most cases, it is possible to improve it in order to compute the kernel in a

more efficient way. This improved algorithm is described in Algorithm 1.

Algorithm 1 uses the following three properties of the kernel. Let K′ be a subset of

the kernel of a binary code C, K′ ⊆ KC , (i) if k ∈ KC , then K′+k ⊆ KC ; (ii) if c ∈ C

and (C\K′) + c ⊆ C, then c ∈ KC ; (iii) if c /∈ KC , then (K′ + c)∩KC = ∅. Therefore,

depending on κ, the complexity can be reduced. To analyze Algorithm 1 we study the

worst and best case. In the worst case, κ = 0 and we still need M2 logM operations as

the previous algorithm. The best case is when C is linear, that is, C = KC . Then, in

each iteration the cardinality of the kernel is duplicated. Thus, we need 2κ−2i additions

and searches in each step i, i ∈ {0, . . . , κ−1}, so
∑κ−1

i=0 (2
κ−2i) = 2κ(κ−1)+1 additions

and searches. Hence, the number of operations is (M(κ−1)+1) logM , where M = 2κ.

A partial kernel of C is a linear subcode of KC . Note that in Algorithm 1 a partial

kernel is built in each step. Therefore, in the general case, the number of operations

depends strongly on how the partial kernel is growing. If the kernel is small or the

partial kernel grows slowly up to the kernel, the number of operations is close to the

worst case. Otherwise, the number of operations can be reduced significantly using also

the following property.

Proposition 1 Let K′ be a partial kernel of a binary code C and L′ = {v′1, . . . , v
′
t′}

be the corresponding coset representatives, that is, C =
⋃t′

i=0(K
′ + v′i), where v′0 = 0.

Then, for each v′j ∈ L′, K′ + v′j ⊆ KC if and only if v′j + v′i ∈ C for all i ∈ {1, . . . , t′}.
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Proof If K′ + v′j ⊆ KC , then v′j ∈ KC and, by the kernel definition, v′j + v′i ∈ C

for all i ∈ {1, . . . , t′}. Suppose that v′j + v′i ∈ C for all i ∈ {1, . . . , t′}. To prove that

K′ + v′j ⊆ KC , it is enough to show that v′j ∈ KC . For any c ∈ C, there exist k′ ∈ K′

and v′i ∈ L′ such that c = k′+ v′i. Then, v
′
j + c = v′j + k′+ v′i ∈ K′+ v′j + v′i ⊆ C, since

K′ ⊆ KC and v′j + v′i ∈ C. ⊓⊔

Note that if C is binary nonlinear and M = 2r (r ≥ 2), then |KC | ≤ 2r−2; and if

M = 2r · s (r ≥ 0, s ≥ 3 odd), then |KC | ≤ 2r. Hence, in Algorithm 1, when M = 2r

and the dimension of the partial kernel K′ is r − 1, the code C is linear, so KC = C;

and when M = 2r · s and the dimension of the partial kernel K′ is r, KC = K′.

Algorithm 1: Kernel and coset representatives computation.

Data: A sorted binary code C.
Result: The kernel KC and coset representatives L = {v1, . . . , vt}.
begin

KC ← {0}
C∗ ← C\{0}
L← ∅
R← ∅
while |C∗| > 0 do

c← First(C∗)
if C∗ + c ⊆ C then

C∗ ← C∗\(KC + c)
KC ← KC ∪ (KC + c)

else

R← R ∪ (KC + c)
C∗ ← C∗\(KC + c)

while R 6= ∅ do
v ← First(R)
L← L ∪ {v}
R← R\(KC + v)

return KC , L

For large M , the computation of the kernel and coset representatives using Algo-

rithm 1 can still be inefficient. However, some well known code constructions allow to

compute the kernel and coset representatives of new codes in a very efficient way, as

we can see in Section 3.

3 Properties and Constructions

Using the representation given in Section 2, rather than using the list of all codewords,

we can manipulate and construct new binary nonlinear codes from old ones in a more

efficient way. Specifically, in this section, we show how to check equality and inclusion

of two given nonlinear codes from their kernels and coset representatives, and how

to compute the kernel and coset representatives of new codes (union, intersection,

extended code, punctured code, shortened code, direct sum, Plotkin sum) from given

ones, which are already represented in this way. Note that all these results are written

to be implemented easily as algorithms.

Let col(S) denote the set of columns of the matrix S.
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Proposition 2 [13] Let C be a binary code of length n with parity-check system (H S).

Then, c ∈ C if and only if HcT ∈ {0} ∪ col(S).

Proposition 3 [13] Let C be a binary code of length n with rank ̺, dimension of

the kernel κ and parity-check system (H S). Then, ̺ = n − rank(H) + rank(S) and

κ = n− rank(H).

Let C1 and C2 be two binary codes of length n1 and n2, respectively. Let (H1 S1)

and (H2 S2) be the parity-check systems of C1 and C2, respectively. The matrices H1

and H2 are the generator matrices of the dual codes K⊥
C1

and K⊥
C2

, and κ1 and κ2
the dimension of the kernel of C1 and C2, respectively. The coset representatives for

C1 and C2 are the sets {v1, . . . , vt1} and {w1, . . . , wt2}, which give us the matrices

S1 = (H1v
T
1 H1v

T
2 . . . H1v

T
t1) and S2 = (H2w

T
1 H2w

T
2 . . . H2w

T
t2), respectively.

Proposition 4 (Equality) Let C1 and C2 be two binary codes of length n. Then,

C1 = C2 if and only if KC1
= KC2

, t1 = t2, and H2v
T
i ∈ col(S2) for all i ∈ {1, . . . , t1}.

Proof It is clear that if C1 = C2, then KC1
= KC2

, t1 = t2 and vi ∈ C2\KC2
for all

i ∈ {1, . . . , t1}. By Proposition 2, vi ∈ C2\KC2
if and only if H2v

T
i ∈ col(S2).

On the other hand, if KC1
= KC2

and t1 = t2, then |C1| = |C2|. Moreover, given

a codeword c ∈ C1, c = k + vi for some i ∈ {0, 1, . . . , t1} and k ∈ KC1
, where v0 = 0.

If i = 0, then c ∈ KC1
= KC2

⊆ C2. If i ∈ {1, . . . , t1}, then H2c
T = H2(k + vi)

T =

H2k
T +H2v

T
i = H2v

T
i ∈ col(S2), since k ∈ KC1

= KC2
. Therefore, by Proposition 2,

we have that c ∈ C2. Since C1 ⊆ C2 and |C1| = |C2|, we obtain that C1 = C2. ⊓⊔

Proposition 5 (Inclusion) Let C1 and C2 be two binary codes of length n. Let K =

KC1
∩KC2

of dimension κ and KC1
=
⋃h1

j=0(K + xj), where h1 = 2κ1−κ − 1. Then,

C1 ⊆ C2 if and only if H2(xj + vi)
T ∈ {0} ∪ col(S2), for all i ∈ {0, 1, . . . , t1} and

j ∈ {0, 1, . . . , h1}, where v0 = x0 = 0.

Proof Note that C1 =
⋃t1

i=0

⋃h1

j=0(K + xj + vi). It is clear that if C1 ⊆ C2, then

xj + vi ∈ C2, which is equivalent to H2(xj + vi)
T ∈ {0} ∪ col(S2), by Proposition 2.

On the other hand, given c ∈ C1, c = k + xj + vi for some i ∈ {0, 1, . . . , t1},

j ∈ {0, 1, . . . , h1} and k ∈ K. Thus, H2c
T = H2(k + xj + vi)

T = H2(xj + vi)
T ∈

{0} ∪ col(S2), since k ∈ K ⊆ KC2
. By Proposition 2, c ∈ C2, so C1 ⊆ C2. ⊓⊔

Proposition 6 (Intersection) Let C1 and C2 be two binary codes of length n. Let

K = KC1
∩KC2

of dimension κ and KC1
=
⋃h1

j=0(K+xj) and KC2
=
⋃h2

j=0(K+yj),

where h1 = 2κ1−κ − 1, h2 = 2κ2−κ − 1 and x0 = y0 = 0. Let C = C1 ∩ C2. Then,

K ⊆ KC is a partial kernel of C and C =
⋃

v∈LI
(K + v), where LI = {xj + vi : j ∈

{0, 1, . . . , h1}, i ∈ {0, 1, . . . , t1} and H2(xj + vi)
T ∈ {0} ∪ col(S2)}.

Proof First, we show that K ⊆ KC . Given k ∈ K, for any v ∈ C, k + v ∈ Cl since

v ∈ Cl and k ∈ KCl
, l ∈ {1, 2}. Therefore, k + v ∈ C, and we have that k ∈ KC . Note

that C1 =
⋃t1

i=0

⋃h1

j=0(K + xj + vi). Since K ⊆ KC2
, K + xj + vi ⊆ C2 if and only if

xj +vi ∈ C2, which is equivalent to H2(xj +vi)
T ∈ {0}∪ col(S2) by Proposition 2. ⊓⊔

Proposition 7 (Union) Let C1 and C2 be two binary codes of length n. Let K =

KC1
∩ KC2

of dimension κ and KC1
=
⋃h1

j=0(K + xj) and KC2
=
⋃h2

j=0(K + yj),

where h1 = 2κ1−κ − 1, h2 = 2κ2−κ − 1 and x0 = y0 = 0. Let C = C1 ∪ C2. Then,

K ⊆ KC is a partial kernel of C and C =
⋃

v∈LU
(K + v), where LU = {xj + vi : j ∈

{0, 1, . . . , h1}, i ∈ {0, 1, . . . , t1}}\LI ∪{yj +wi : j ∈ {0, 1, . . . , h2}, i ∈ {0, 1, . . . , t2}}.
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Proof Straightforward using the same arguments as in the proof of Proposition 6. ⊓⊔

Let C be a binary code of length n. The extended binary code of C, denoted by Ĉ, is

defined as the set of codewords constructed by adding a parity coordinate, that is, a 0

at the end of every codeword of C of even weight, and a 1 at the end of every codeword

with odd weight. The punctured binary code of C in the jth coordinate, denoted by

Cj , is the code consisting of the codewords of C after deleting the jth coordinate. The

shortened binary code of C in the jth coordinate, denoted by Cj
0 , is the code consisting

of the codewords of C having 0 in the jth coordinate and deleting this coordinate.

Proposition 8 (Extended Code) Let C be a binary code of length n with kernel

KC and t coset representatives given by the set L = {v1, . . . , vt}. Then, the extended

binary code Ĉ has kernel K̂C and t coset representatives given by the set {v̂1, . . . , v̂t},

where v̂i is vi after adding a parity coordinate for i ∈ {1, . . . , t}.

Proof Obviously, the extended code Ĉ can be written as Ĉ =
⋃t

i=0(K̂C + v̂i), where

v̂0 = 0. Therefore, K̂C ⊆ K(Ĉ), and we only need to prove that K(Ĉ) ⊆ K̂C . Let

k̂ ∈ K(Ĉ) ⊆ Ĉ. For any ĉ ∈ Ĉ, we have that k̂+ ĉ ∈ Ĉ. Therefore, k ∈ C, and k+c ∈ C

for any c ∈ C, so k ∈ KC , which means that k̂ ∈ K̂C and K(Ĉ) ⊆ K̂C . ⊓⊔

If C is an (n, |C|, d) binary code, then the extended code Ĉ contains only even

weight codewords and is an (n + 1, |C|, d̂) binary code, where d̂ equals d if d is even

and equals d+ 1 if d is odd. It is known that this is true if C is linear [14], and it can

be easily generalized to binary nonlinear codes. Note that if the distance between two

codewords in C is even, after adding a parity coordinate, both codewords are at the

same distance, and if the distance between them is odd, the distance increases by 1,

after adding a parity coordinate.

Proposition 9 (Punctured Code) Let C be an (n, |C|, d) binary code with kernel

KC and t coset representatives given by the set L = {v1, . . . , vt}. Let K
j be the punc-

tured binary code of KC in the jth coordinate. Then, the punctured binary code Cj in

the jth coordinate is Cj =
⋃

v∈Lj (K
j + v), where Lj ⊆ {0, vj1, . . . , v

j
t } and vji is vi

after deleting the jth coordinate for i = 1, . . . , t.

(i) If d > 1, Cj is an (n − 1, |C|, d′) binary code, where d′ = d − 1 if C has two

codewords at distance d which differ at the jth coordinate and d′ = d otherwise.

(ii) If d = 1, Cj is an (n − 1, |C|, 1) binary code if the codewords in C at distance

1 do not differ at the jth coordinate; otherwise, Cj is an (n − 1, |Cj |, d′) binary

code with d′ ≥ 1 and |Cj | < |C|.

Proof Let vj be the vector v after deleting the jth coordinate. Given any codeword

c ∈ C, c = k + vi for some k ∈ KC and i ∈ {0, 1, . . . , t}. Since cj = kj + vji , C
j ⊆⋃

v∈Lj (K
j + v), where Lj = {0, vj1, . . . , v

j
t }.

If d > 1, or d = 1 but the codewords at distance 1 do not differ at the jth coordinate,

then |Cj | = |C|. Since Cj ⊆
⋃

v∈Lj (K
j + v) and |Cj | = |C|, Cj =

⋃
v∈Lj (K

j + v).

Moreover, if d > 1, Cj is an (n− 1, |C|, d′) binary code, where d′ = d− 1 if C has two

codewords at distance d which differ at the jth coordinate and d′ = d otherwise.

Finally, if there exist c, u ∈ C such that they only differ at the jth coordinate, then

c−u = ej , where ej is the vector with 1 in the jth coordinate and zero elsewhere. First,

if ej ∈ KC , then c and u are in the same coset, and the same happens with any such

pair c, u, since KC is linear. In this case, Kj has dimension κ−1, and the result follows
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with Lj = {0, vj1, . . . , v
j
t }. Second, if ej /∈ KC , then c and u are in different cosets,

that is, c 6∈ KC + u. However, after deleting the jth coordinate, Kj + cj = Kj + uj

(or equivalently, cj ∈ Kj + uj) and the result follows with Lj ( {0, vj1, . . . , v
j
t }. Note

that in both cases we have that d′ ≥ 1 and |Cj | < |C|. ⊓⊔

Proposition 10 (Shortened Code) Let C be a binary code of length n with ker-

nel KC and t coset representatives given by the set L = {v1, . . . , vt}. Let Kj
0 be the

shortened binary code of KC in the jth coordinate. Then, the shortened binary code

Cj
0 in the jth coordinate is Cj

0 =
⋃

v∈Lj (K
j
0 + v), where Lj = {0} ∪ {vji : i ∈ I},

I = {i ∈ {1, . . . , t} : there exists v′i ∈ KC + vi such that has 0 in the jth coordinate}

and vji is v′i after deleting the jth coordinate for i ∈ I. Moreover, Cj
0 is an (n−1, |Cj

0 |, d
′)

binary code with d′ ≥ d(C) and |Cj
0 | ≤ |C|.

Proof Let C0 ⊆ C and K0 ⊆ KC be the subsets of C and KC , respectively, containing

the codewords having 0 in the jth coordinate.

If K0 ( KC , then I = {1, . . . , t}. Therefore,
⋃

v∈Lj (K
j
0 + v) ⊆ Cj

0 , where Lj =

{0, vj1, . . . , v
j
t }. Moreover, for any c0 ∈ C0 ⊆ C, since c0 ∈ C, there exist k ∈ KC and

i ∈ {1, . . . , t} such that c0 = k + v′i. Since c0 and v′i have 0 in the jth coordinate,

k ∈ K0. Therefore, after deleting the jth coordinate, Cj
0 =

⋃
v∈Lj (K

j
0 + v).

If K0 = KC , then if vi has 1 in the jth coordinate, does not exist any v′i ∈ KC +vi
such that has 0 in the jth coordinate. Therefore, Cj

0 =
⋃

v∈Lj (K
j
0 + v), where Lj is

the set defined in the statement. Note that, in this case, the number of cosets in Cj
0

may be smaller than the number of cosets t in C.

Finally, it is straightforward to see that d′ ≥ d(C) and |Cj
0 | ≤ |C|. ⊓⊔

Another way to construct new codes is to combine two codes together in a proper

way. The most known such constructions are called direct sum and Plotkin sum. For

i ∈ {1, 2}, let Ci be a binary code of length ni. The direct sum of C1 and C2 is the

binary code C1 ⊕ C2 = {(c1|c2) : c1 ∈ C1, c2 ∈ C2} [14]. The Plotkin sum of C1 and

C2 with n1 = n2 is the binary code C1|C2 = {(c1|c1 + c2) : c1 ∈ C1, c2 ∈ C2} [2].

Proposition 11 (Plotkin Sum) [5] Let C1 and C2 be two (n, |C1|, d1) and (n, |C2|, d2)

binary codes with kernels KC1
and KC2

, and coset representatives L1 = {v1, . . . , vt1}

and L2 = {w1, . . . , wt2}, respectively. The Plotkin sum C1|C2 is the (2n, |C1| · |C2|,

min{2d1, d2}) code with kernel KC1
|KC2

, and (t1+1)(t2+1)− 1 coset representatives

given by the set {(v|v + w) : v ∈ L1 ∪ {0}, w ∈ L2 ∪ {0}}\{(0,0)}.

Proposition 12 (Direct Sum) Let C1 and C2 be two (n1, |C1|, d1) and (n2, |C2|, d2)

binary codes with kernels KC1
and KC2

, and coset representatives L1 = {v1, . . . , vt1}

and L2 = {w1, . . . , wt2}, respectively. The direct sum C1 ⊕ C2 is the (n1 + n2, |C1| ·

|C2|,min{d1, d2}) binary code with kernel KC1
⊕ KC1

, and (t1 + 1)(t2 + 1) − 1 coset

representatives given by the set {(v|w) : v ∈ L1 ∪ {0}, w ∈ L2 ∪ {0}}\{(0,0)}.

Proof Straightforward using the same arguments as in Proposition 11 [5]. ⊓⊔

Note that we can obtain the kernel and coset representatives of an extended binary

code directly from the kernel and coset representatives of the code. The same happens

for the direct sum and Plotkin sum constructions. For all other constructions, we obtain

a partial kernel and the corresponding coset representatives. Although we cannot assure

which are the final kernel and coset representatives in these cases, we can speed up the

kernel computation by starting from a partial kernel and using the algorithms shown

in Section 2.
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4 Minimum Distance Computation

Using the representation given in Section 2, we can describe new algorithms to compute

the minimum weight and minimum distance of a binary nonlinear code. Specifically,

in this section, we present new algorithms based on computing the minimum weight

of linear subcodes, using the known Brouwer-Zimmermann algorithm. Moreover, we

study the performance of these algorithms, by giving an estimation of the number of

enumerated codewords needed in the computations.

For linear codes, the best enumerative algorithm is the Brouwer-Zimmermann al-

gorithm, which was first brought up by A. Brouwer in the 1980s and due to K.-H.

Zimmermann [2,24,26]. This algorithm is based on the result given by Proposition 13.

Let G be a generator matrix of a linear code K of dimension κ. Any set of κ coordinate

positions such that the corresponding columns of G are linear independent is called an

information set for K. A generator matrix G is said to be systematic on the information

set I if the corresponding columns of I form a κ× κ identity matrix.

Proposition 13 [24,25] Let G1, . . . , Gh be h systematic generator matrices of a linear

code K of dimension κ over a finite field Fq such that they have pairwise disjoint

information sets. For any r < κ, if Si = {mGi : m ∈ Fk
q , wt(m) ≤ r} for each matrix

Gi, then all c ∈ C\
⋃h

i=1 Si satisfy wt(c) ≥ h(r + 1).

The systematic matrices G1, . . . , Gh can be obtained, for example, by applying

Gaussian elimination to the column positions which are not contained in the informa-

tion sets of the previous computed matrices. Moreover, note that in every step of the

enumeration process, r rows of the h generator matrices are used. After each step, a

lower bound h(r + 1) and an upper bound of the minimum weight, which is the min-

imum weight of the enumerated codewords, are obtained. When the upper bound is

equal or smaller than the lower bound, the minimum weight of the linear code is ob-

tained, without enumerating necessarily all codewords. This algorithm can be adapted

in order to use systematic generator matrices with overlapping information sets. In this

case, every column position can be included in a generator matrix. Moreover, since it

uses more generator matrices, the lower bound can grow faster during the enumeration

process. Recently, a new approach to efficiently find a sequence of systematic generator

matrices having the maximum number of pairwise disjoint information sets has been

presented [15].

Given a binary linear code K of length n and dimension κ, and a vector v ∈ Zn
2 \K,

the linear span Kv = 〈K, v〉 = K ∪ (K + v) of dimension κ+1 is called extended coset.

Proposition 14 Let C =
⋃t

i=0

(
KC + vi

)
with t ≥ 2, where v0 = 0. The minimum

weight of C can be computed as min{wt(Kvi) : i ∈ {1, . . . , t}}, and the minimum

distance of C as min{wt(Kvi+vj ) : i ∈ {0, . . . , t− 1}, j ∈ {i+ 1, . . . , t}}.

Proof For wt(C), note that the linear codes Kvi include exactly all codewords of C.

For d(C), considering all different cases, the statement follows: If c1, c2 ∈ KC or c1,

c2 ∈ KC + vi, then d(c1, c2) = wt(c1 + c2) = wt(k), where k ∈ KC . If c1 ∈ KC and

c2 ∈ KC + vi, then d(c1, c2) = wt(k + vi). Finally, if c1 ∈ KC + vi and c2 ∈ KC + vj
with i 6= j, then d(c1, c2) = wt(k + vi + vj). ⊓⊔

Using the representation given in Section 2, Proposition 14, and the known Brouwer-

Zimmermann algorithm to compute the minimum weight of a linear code, we can design
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Algorithms 2 (MinW) and 3 (MinD) to compute the minimum weight and minimum

distance of a binary nonlinear code, respectively. Note that the complexity of these two

algorithms depends strongly on the number of coset representatives t and the complex-

ity of the Brouwer-Zimmermann algorithm. For the minimum weight, we compute t

times the minimum weight of a linear code Kv, and for the minimum distance,
(
t+1
2

)

times. In order to study the efficiency of these algorithms, we compare them with the

brute force method, which consists in enumerating all codewords.

Algorithm 2: Minimum weight computation (MinW)

Data: A binary code C given by the kernel KC and coset representatives
L = {v1, . . . , vt}.

Result: The minimum weight wt(C).
begin

wt(C)← Length(C)
for i ∈ [1, . . . , t] do

Kvi ← KC ∪ (KC + vi)
wt(C)← min{wt(Kvi ), wt(C)}

return wt(C)

Example 1 Let K be the (30, 212, 9) binary linear code, given in Magma as the best

known linear code of length 30 and dimension 12, that is, the linear code generated by



100000000100011011011000110011

010000000100010000100100001111

001000000100000010010010111100

000100000000000001111010011011

000010000100011101010100101000

000001000100010011110101111101

000000100000010101101100100010

000000010100001111101011110001

000000001100011100110010011101

000000000010010111011111000111

000000000001011111101000011000

000000000000100101110111101100




.

Let C =
⋃3

i=0

(
KC + vi

)
, where KC = K, v0 = 0, and the coset representatives are

v1 = (010101100011011000000000100100),

v2 = (010001000110111101001100011111),

v3 = (111101000011000111111000100001).

It is easy to check that wt(C) = 6 and d(C) = 5. The time of computing wt(C)

using brute force and Algorithm 2 (MinW) are 9.0 × 10−3 and 1.0 × 10−3 seconds,

respectively. Note that sometimes a brute force calculation can be a faster way to obtain

the minimum weight. On the other hand, the time of computing d(C) using brute force

and Algorithm 3 (MinD) are 123.4 and 2.0× 10−3 seconds, respectively, so it is much

faster to use Algorithm 3 (MinD) than brute force. All these tests have been performed

in Magma version V2.18-3, running on a server with an Intel Xeon processor (clock

speed 2.40GHz). For a better time comparison between both methods, the same internal

Magma functions have been used.
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Algorithm 3: Minimum distance computation (MinD)

Data: A binary code C given by the kernel KC and coset representatives
L = {v1, . . . , vt}.

Result: The minimum distance d(C).
begin

d(C)← Length(C)
for i ∈ [0, . . . , t− 1] do

for j ∈ [i+ 1, . . . , t] do
Kvi+vj ← KC ∪ (KC + vi + vj)

d(C)← min{wt(Kvi+vj ), d(C)}

return d(C)

All these algorithms are based on the enumeration of codewords, adding together

codewords and determining the minimum weight of these codewords. As it is defined

in [24], the nature of these computations gives rise to a natural performance measure,

which is referred to as work. One unit of work represents both an addition and the

weight computation of a single bit position. An estimate of the total work an algorithm

performs is referred to as work factor. Therefore, work factors provide us with a suitable

tool for comparing the performance of algorithms based on enumeration. Of course,

note that this measure does not take into account that, depending on the algorithm

used to speed up the computation of the number of 1-bits in a vector and the addition

of vectors, there can be jumps in the run time whenever the length of the code forces

the algorithm to use more computer words.

Recall that a binary nonlinear code of length n with a kernel of dimension κ and

t coset representatives has M = 2κ(t+ 1) codewords. Therefore, it is easy to see that

the work factor for computing wt(C) and d(C) using brute force is, respectively,

n2κ(t+ 1) and n

(
2κ(t+ 1)

2

)
. (2)

Lemma 1 [24] Let K be a binary linear code of dimension κ and length n. Then, the

work factor for computing wt(K) using Brouwer-Zimmermann algorithms is

(n− κ)⌈n/κ⌉

r̄∑

r=1

(
κ

r

)
, (3)

where r̄ is the smallest integer such that ⌊n/κ⌋(r̄+1)+max(0, r̄+1− (κ−n mod κ)) ≥

wt(K).

Let C be a binary nonlinear code of length n with kernel of dimension κ and

coset representatives L = {v1, . . . , vt}. By Proposition 14 and Lemma 1, it is easy to

establish the work factor for computing wt(C) and d(C). Specifically, the work factor

for computing wt(C) using Algorithm 2 (MinW) is

t∑

j=1

(
(n− κ− 1)⌈n/(κ+ 1)⌉

r̄0,j∑

r=1

(
κ+ 1

r

))
; (4)
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and for computing d(C) using Algorithm 3 (MinD) is

t−1∑

i=0

( t∑

j=i+1

(
(n− κ− 1)⌈n/(κ+ 1)⌉

r̄i,j∑

r=1

(
κ+ 1

r

)))
, (5)

where r̄i,j is the smallest integer such that ⌊n/(κ+ 1)⌋(r̄i,j + 1) + max(0, r̄i,j + 1 −

(κ+ 1− n mod (κ+ 1))) ≥ wt(Kvi+vj ).

Example 2 Let us consider random (100, 215 · 31) binary codes C with kernels of

dimension κ ∈ {8, . . . , 15}, and random (100, 27 · 31) binary codes C with kernels of

dimension κ ∈ {3, . . . , 7}. Figures 1 and 2 show the work factors given by (4) and (2),

and the real time cost, for computing wt(C) using Algorithm 2 (MinW) and brute force,

respectively. Equivalently, Figures 3 and 4 show the work factors given by (5) and (2),

and the real time cost, for computing d(C) using Algorithm 3 (MinD) and brute force,

respectively.

It can be seen from these figures that the work factors and real time cost follow the

same trend. Moreover, keeping the same length and number of codewords, the time cost

of using Algorithms 2 (MinW) and 3 (MinD) decreases sharply while the dimension of

the kernel increases (or equivalently, while the number of cosets decreases). Note that

when κ is large, Algorithms 2 and 3 save a lot of time. More specifically, Algorithm 2

when κ = 15 and Algorithm 3 when κ = 7 use only 1/31 and 1/21 time compared with

brute force, respectively.

From Algorithms 2 (MinW) and 3 (MinD), it is easy to see that the weight of

some codewords in the kernel KC is computed several times, specifically, once for each

Kvi+vj = KC ∪ (KC + vi + vj), where i, j ∈ {0, 1, . . . , t} and i < j. However, we will

show that we can make a little adjustment, in order to avoid this repetition.

In Brouwer-Zimmermann algorithm, the enumerating process is divided into several

steps. In the rth step, it enumerates all linear combinations of r rows of the generator

matrix ofKvi+vj of dimension κ+1, examines the minimum weight of each combination

and compares it with the lower bound. In order to avoid enumerate some codewords

several times, we can modify the previous algorithms and enumerate only the codewords
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in each coset KC +vi+vj . Then, in the rth step, we enumerate all linear combinations

of r rows of the generator matrix of KC of dimension κ and compute the weight of each

combination adding the vector vi + vj . The codewords in the kernel are considered by

adding the all-zero vector to the set of coset representatives. After this adjustment, the

work factor using the improved Algorithms 2 and 3, which are referred as Algorithms

IMinW and IMinD, respectively, is reduced as it is shown in the following proposition.

Proposition 15 Let C be a binary nonlinear code of length n with kernel of dimension

κ and coset representatives L = {v1, . . . , vt}. The work factor for computing wt(C)

using improved Algorithm 2 (IMinW) is

t∑

j=0

(
(n− κ)⌈n/κ⌉

r̄0,j∑

r=1

(
κ

r

))
; (6)

and for computing d(C) using improved Algorithm 3 (IMinD) is

t−1∑

i=0

( t∑

j=i+1

(
(n− κ)⌈n/κ⌉

r̄i,j∑

r=1

(
κ

r

)))
+ (n− κ)⌈n/κ⌉

r̄0,0∑

r=1

(
κ

r

)
, (7)

where r̄i,j is the smallest integer such that ⌊n/κ⌋(r̄i,j + 1) + max(0, r̄i,j + 1 − (κ −

n mod κ)) ≥ wt(Kvi+vj ). Note that r̄0,0 = r̄ given in Lemma 1.

The work factor for computing wt(C) and d(C) of a binary code C relies on the

parameters r̄i,j , which depend on wt(Kvi+vj ), and they may be different for any i, j.

Therefore, it is impossible to estimate the work factor if only the values n, κ and t of

the binary code C are given. However, we can consider an upper bound of the work

factor, and from that be able to estimate easily the work factor for computing wt(C)

and d(C). Since for any extended coset Kvi+vj we have that wt(Kvi+vj ) ≤ wt(KC), we

can obtain an upper bound for the previous given work factors by replacing wt(Kvi+vj )

with wt(KC).

Proposition 16 Let C be a binary nonlinear code of length n with kernel KC of

dimension κ and t coset representatives. An upper bound for the work factor for com-

puting wt(C) using improved Algorithm 2 (IMinW) is

(t+ 1)(n− κ)⌈n/κ⌉

r̄∑

r=1

(
κ

r

)
; (8)
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and for computing d(C) using improved Algorithm 3 (IMinD) is

((
t+ 1

2

)
+ 1
)
(n− κ)⌈n/κ⌉

r̄∑

r=1

(
κ

r

)
, (9)

where r̄ is the smallest integer such that ⌊n/κ⌋(r̄+1)+max(0, r̄+1− (κ−n mod κ)) ≥

wt(KC).

Proof Given n and κ, f(r) = ⌊n/κ⌋(r + 1) + max(0, r + 1 − (κ − n mod κ)) is an

increasing function. Let r̄i,j be the smallest integer r such that f(r) ≥ wt(Kvi+vj ),

that is, as in Proposition 15. Let r̄ be the smallest integer r such that f(r) ≥ wt(KC).

Since wt(Kvi+vj ) ≤ wt(KC), r̄i,j ≤ r̄ and the result follows by Proposition 4. ⊓⊔

Example 3 Considering the same binary codes as in Example 2, Figures 5 and 6

show the differences between the work factors and their upper bounds for computing the

minimum weight and distance using improved Algorithms 2 (IMinW) and 3 (IMinD).

Note that the upper bound of work factor is quite close to the work factor and is much

easier to estimate, since we just need wt(KC) along with the values of n, κ and t of C.

For the minimum distance and the considered codes, the difference between both work

factors is very small, so both lines coincide in Figure 6.

Example 4 Considering again the same binary codes as in Example 2, Figures 7 and

8 show the upper bounds for the work factors for both algorithms presented in the paper

and brute force. Through these examples, we can see the improvement on Algorithms 2

(IMinW) and 3 (IMinD).

Note that the results on these upper bounds for the work factors allow to estab-

lish from which parameters of the given code, it is better to use the new presented

algorithms instead of the brute force method.

5 Minimum Distance Decoding

For linear codes, any algorithm to compute the minimum weight can easily be applied to

the decoding problem. For example, the algorithms described to attack the McEliece
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public-key cryptosystem can be used to decode a general linear code [7,24]. In this

section, we generalize this idea presenting a nontrivial general decoding method for

nonlinear codes. This method uses the coset structure and any algorithm for finding a

vector of minimum weight in a linear code or a coset of a linear code.

Let K be a binary linear code of length n, dimension κ and minimum distance d.

The general decoding algorithm for linear codes is called syndrome decoding [16]. Before

the decoding process starts, it is necessary to compute a syndrome table pairing each

syndrome s ∈ Zn−κ
2 with an error vector e of minimum weight in the coset associated

to that syndrome. Although creating the syndrome table is a one-time task, which is

carried out before decoding the received vectors, sometimes it can be difficult to create

and store it. Moreover, if it contains many elements, it can also be difficult to find the

corresponding error vector from a given syndrome. In these cases, it is necessary to use

another method, which is summarized in the following proposition [7,16,24].

Proposition 17 Let K be a binary linear code with minimum distance d. For a re-

ceived vector u = c+ e 6∈ K, where c ∈ K, let Ku = K ∪ (K + u). If wt(e) < d, then u

can be decoded as c′ = u− e′ ∈ K, where e′ is a vector of minimum weight in Ku, so

wt(e) = wt(e′). Note that if wt(e) ≤ ⌊d−1
2 ⌋, then e′ = e and c′ = c.

In this way, we can decode a received vector as long as less than d errors have

been added to the transmitted codeword. When d or more than d errors occurs during

the transmission, the vector of minimum weight in Ku could come from K, and then

an error vector e′ cannot be found by Proposition 17. Therefore, this method, called

coset decoding, provides a complete decoding but only up to d− 1 errors. Note that if

ρ(K) ≤ d− 1, that is when K is maximal, we actually obtain a complete decoding.

Example 5 Let K be the simplex code of length 31, dimension 5 and minimum dis-

tance 16 [16]. Figure 9 shows the time in seconds to decode random received vectors

by using the coset and syndrome decoding, both implemented in Magma through the

functions McEliecesAttack and Decode, respectively. Note that ρ(K) = 15 = d− 1, so

K is maximal and both decoding methods perform a complete decoding. According to

the implementation in Magma, the syndrome decoding uses 2836 MB of memory, and

the coset decoding method uses a negligible amount of memory.

Apparently, the coset decoding has a big advantage if the number of received vectors

to be decoded is small. Since the syndrome table needs to be computed at the first
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decode procedure, it costs the most the first time. However, the biggest advantage of the

coset decoding is on the memory usage. For the syndrome decoding, it is necessary to

store a syndrome table to be used in the decoding process. If this syndrome table is too

big to be stored, which will happen when the codimension of the code is moderately

large, it will be impossible to decode by syndrome decoding. By contrast, the coset

decoding based on computing the minimum weight of a linear code does not need to

store anything significant (just the very few data needed for the enumeration process),

which makes it especially useful for codes with a large codimension.

Example 6 Let K be the simplex code of length 63, dimension 6 and minimum dis-

tance 32 [16]. As the code in Example 5, ρ(K) = 31 = d − 1, so it is maximal and

both decoding methods allow to perform a complete decoding. By using the syndrome

decoding, Magma returns “Runtime error in ’Decode’: Code has too many cosets”.

However, in this case, we can still perform a complete decoding by using the coset de-

coding method, which takes 11.58 seconds to decode 500000 random received vectors and

uses a negligible amount of memory.

We can generalize the coset decoding seen for linear codes to decode nonlinear codes

using their coset representation. The following proposition summarizes this decoding

process for nonlinear codes.

Proposition 18 Let C be a binary nonlinear code with minimum distance d, kernel

KC and coset representatives {v1, . . . , vt}. For a received vector u = c+ e /∈ C, where

c ∈ C, let Cu =
⋃t

i=0(KC ∪ (KC + vi + u)). If wt(e) < d, then u can be decoded as

c′ = u − e′ ∈ C, where e′ is a vector of minimum weight in Cu, so wt(e) = wt(e′).

Note that if wt(e) ≤ ⌊d−1
2 ⌋, then e′ = e and c′ = c.

Proof For a received vector u ∈ Zn
2 , in order to decode it, we look for a vector e′ ∈ Zn

2

of minimum weight such that u − e′ ∈ C. This is equivalent to find a vector e′ of

minimum weight in C + u. We have that C + u =
⋃t

i=0(KC + vi + u). Let ei be a

vector of minimum weight in the linear code KC ∪(KC +vi+u) for all i ∈ {0, . . . , t}. If

wt(e) < d, then we can take e′ as the vector of minimum weight in {ei : i ∈ {0, . . . , t}},

since it is also a vector of minimum weight in C + u such that wt(e) = wt(e′). Then,

the received vector u can be decoded as c′ = u− e′ ∈ C. ⊓⊔
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Note that the performance of the coset decoding for nonlinear codes highly depends

on the number of coset representatives. Moreover, any algorithm to find a vector of

minimum weight in a linear code or a coset of a linear code can be applied.

Example 7 Let Cκ be a (31, 29 ·5, 5) binary nonlinear code with a kernel of dimension

κ, for κ ∈ {5, . . . , 9}. The following table shows the time in seconds to decode 5000

random received vectors using the coset decoding for each one of the codes Cκ, κ ∈

{5, . . . , 9}.

κ 5 6 7 8 9

Time: s 63.30 30.35 18.53 12.57 10.82

6 Conclusions

In this paper, we have presented some results to represent, manipulate, store and

construct binary nonlinear codes in an efficient way, mainly when the codes have a

large kernel. Based on these results, we have developed some algorithms to compute

the minimum weight and distance of these codes, along with algorithms to decode them.

All these results can be easily generalized to q-ary nonlinear codes, that is, to subsets of

Fn
q , where Fq is a finite field with q elements. Just note that a q-ary nonlinear code can

also be written as a union of cosets ofKC , whereKC = {x ∈ C : λx+C = C, ∀λ ∈ Fq}

[21]. Moreover, the minimum weight of Kv = 〈K, v〉 =
⋃

λ∈Fq
(K + λv) is equal to the

minimum weight of K ∪ (K + v), and a vector of minimum weight in K ∪ (K + v) can

be computed from one in Kv.

We established the relationship between the performance of these algorithms and

the parameters of the code: length n, dimension of the kernel κ, and number of coset

representatives t, in order to estimate and decide which algorithm to use depending on

these parameters. These new algorithms are especially suitable for codes with a large

kernel, while the brute force method works better for codes with a small kernel.

Most of the results and algorithms described in the paper have been implemented

by the authors as a new package in Magma, which is available on the web page

http://ccsg.uab.cat together with a manual describing all functions.
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18. P. R. J. Österg̊ard, “Two new four-error-correcting binary codes,” Designs, Codes and

Cryptography, vol. 36, no. 3, pp 327-329, 2005.
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20. P. R. J. Österg̊ard, O. Pottonen, and K. T. Phelps, “The perfect binary one-error-
correcting codes of length 15: Part IIproperties,” IEEE Trans. on Information Theory,
vol. 56, no. 6, pp. 2571-2582, 2010.
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