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Efficient representation of quantum many-body
states with deep neural networks
Xun Gao1 & Lu-Ming Duan1,2

Part of the challenge for quantum many-body problems comes from the difficulty of

representing large-scale quantum states, which in general requires an exponentially

large number of parameters. Neural networks provide a powerful tool to represent quantum

many-body states. An important open question is what characterizes the representational

power of deep and shallow neural networks, which is of fundamental interest due to the

popularity of deep learning methods. Here, we give a proof that, assuming a widely believed

computational complexity conjecture, a deep neural network can efficiently represent most

physical states, including the ground states of many-body Hamiltonians and states generated

by quantum dynamics, while a shallow network representation with a restricted Boltzmann

machine cannot efficiently represent some of those states.
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The Hilbert space dimension associated with quantum
many-body problems is exponentially large, which poses a
big challenge for solving those problems even with the

most powerful computers. The variational approach is usually the
tool of choice for tackling such difficult problems, which include
many successful examples from simple mean-field approximation
to more complicated methods such as those based on matrix
product states1, tensor network states2, string bond states3, 4, and,
more recently, neural network states5, 6. The first important step
of the variational approach is to find an efficient representation of
the relevant quantum many-body states. Here, by efficient we
mean the number of parameters used to characterize those
quantum states increases at most by a polynomial function with
the number of particles (or degrees of freedom) in the system.
With an efficient representation, one can combine it with pow-
erful learning methods to optimize those variational parameters
by optimization techniques, such as the gradient descent method.

Neural networks are a powerful tool to represent complex
correlations in multiple-variable functions or probability
distributions and recently find wide applications in artificial
intelligence through the popularity of deep learning methods7.
An interesting connection has been made recently between the
variational approach in quantum many-body problems and
learning methods based on neural network representations5.
Numerical evidence suggests that the restricted Boltzmann
machine (RBM), a shallow generative neural network, optimized
by the reinforcement learning method, provides a good solution
to several many-body models5. Given this success, an important
open question is what characterizes the representational power
and limitations of the RBM for quantum many-body states.

In this paper, we characterize the representational power and
limitations of the RBM and its extension to deep neural networks,
the deep Boltzmann machine (DBM). We prove that DBMs can
efficiently represent most physical states, including the ground
states of many-body Hamiltonians and states generated by
quantum dynamics, while RBMs cannot efficiently represent
some of those states. The result shows there exists an exponential
separation in efficiency between using DBMs or RBMs to
represent quantum many-body states.

Results
Summary of major results. Our first major result concerns
RBMs. We prove that while RBMs can efficiently represent many
highly entangled states, there is a fundamental limit for them to
efficiently represent general quantum states. For the power of
RBMs, we show through explicit construction that RBMs can
efficiently and exactly represent arbitrary graph states8, certain
states obeying entanglement volume law or describing the critical
system9, and topological toric code states10. For the limitation of
RBMs, we introduce an explicit class of states which can be
generated either by a polynomial-size quantum circuit or as
ground states of gapped Hamiltonians, and prove for those states
there is no efficient RBM representation unless the polynomial
hierarchy, a generalization of the famous P versus NP problem in
computer science, collapses, which is widely believed to be unli-
kely. Note that our result well complements the known theory
about the representational power of RBMs11, 12. It has been
proven in ref. 12 that an RBM can approximate any probability
distribution with arbitrary accuracy if one does not limit the
representation efficiency (the number of parameters in the
representation). Here, we strengthen this result by showing that
with consideration of efficiency, there are quantum probability
distributions that cannot be efficiently represented by RBMs.

Our second major result concerns about the power of DBMs.
We prove through explicit construction that DBMs can efficiently

represent any states generated by polynomial-size quantum
circuits or any ground states of physical Hamiltonians with
polynomial-size gaps. Here, polynomial-size gap means that
the energy gap of the Hamiltonian approaches to zero at most by
1/poly(n), where poly(n) denotes a polynomial function of the
particle number n. Most physical quantum states are generated
either by many-body dynamics, which can be efficiently
simulated through a polynomial-size quantum circuit13–15, or
as ground states of some physical Hamiltonians, so they can all be
efficiently represented by DBMs. This result, combined with the
reinforcement learning method (see discussion in Supplementary
Note 6), indicates the potential power of the DBM representation
as a tool for solving quantum many-body problems.

We note that existence of an efficient representation by a
DBM does not mean we can always use this representation for
efficient calculation of physical observables as the latter involves
further complicated index contraction. Efficient representation is
a necessary but not sufficient condition required to tackle
quantum many-body problems. One need to combine it with
efficient numerical training algorithm to extract physical
observables. Finding ground-state energies of general many-
body Hamiltonians is known to be computationally hard,
requiring in general exponential calculation time2. So even if an
efficient representation of ground states exists, we may not be able
to use it to find ground-state energy. On the other hand, although
we prove that the RBMs cannot represent the most general
quantum states, it does not restrict the use of RBMs for solving
many practical problems. Indeed, RBMs could be very useful to
represent and learn a wide class of ground states or physical states
arising from time evolution. Apart from numerical simulation of
quantum many-body problems, efficient representation by DBMs
or RBMs may also find applications for the classification of
topological quantum phases16, 17 or the quantum approach to
space–time with holographic properties18, 19, similar to applica-
tions of the tensor network representation in those scenarios.

Neural network quantum states. A many-body quantum state of
n qubits can be written as Ψj i ¼ P

v Ψ vð Þ vj i in the computa-
tional basis with v≡ (v1, …, vn), where the wave function Ψ(v) is
a general complex function of n binary variables vi∈ {0, 1}. In the
neural network representation by a Boltzmann machine, the wave
function Ψ(v) is expressed as ΨðvÞ ¼ P

h e
Wðv;hÞ, where the

weight W(v, h) is a complex quadratic function of binary
variables v and h≡ (h1, …, hm) called visible and hidden neurons,
respectively. The number of hidden neurons m is at most
poly(n) for an efficient representation. In the graphic repre-
sentation shown in Fig. 1, the neurons vi and hj connected by an
edge are correlated with a nonzero Wij in the weight
Wðv; hÞ ¼ P

i;j Wijvihj. For the RBM (Fig. 1a), the layer of visible
neurons is connected to one layer of hidden neurons (neurons in
the same layer are not mutually connected). The DBM is similar
to the RBM but with two or more layers of hidden neu-
rons (Fig. 1b). Two hidden layers are actually general enough as
one can see in Fig. 1b that odd and even layers can each be
combined into a single layer. A fully connected Boltzmann
machine is shown in Fig. 1c. In the methods section, we prove
that any fully connected Boltzmann machine can be efficiently
represented by a DBM as illustrated in Fig. 1d.

Power and limitations of restricted Boltzmann machines. First,
we show that RBMs can represent many highly entangled states,
including wave functions of any graph states8, topological toric
codes10, and states violating the entanglement area law or
describing the critical system9. As an example to illustrate the
method, we give a simple construction for RBM representation of

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00705-2

2 NATURE COMMUNICATIONS |8:  662 |DOI: 10.1038/s41467-017-00705-2 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


any graph state and leave the representation of other categories
of states to Supplementary Note 1. RBM representations for
one-dimensional cluster states (a special case of graph states)
and toric codes have been given recently in ref. 6. We give a
different construction method which is simpler and more
systematic. The wave function of a graph state takes the form
Ψðv1; � � � ; vnÞ ¼

Q
hi;ji ð�1Þvivj= ffiffiffi

2
p

, where 〈i, j〉 denotes an edge
linking the i-th and j-th qubits represented by visible neurons vi,
vj. As shown in Fig. 2, one hidden neuron h and two edges
with weight WH realize the correlation function ð�1Þvivj= ffiffiffi

2
p

between vi and vj. This requires solving the equationP
h e

WHðvi;hÞþWHðvj;hÞ ¼ ð�1Þvivj= ffiffiffi
2

p
, which has a simple solution

WHðx; hÞ ¼ π

8
i� ln 2

2
� π

2
ix � π

4
ihþ iπxh ð1Þ

with x= vi or vj.
The RBM state has an important property that its wave

function Ψ(v) can be calculated efficiently under given input
values to the variables vi. Here we prove that this property leads
to limitations of the RBM in representing more general quantum
states. With a given input value of v, Ψ(v) can be factorized as

Y
j

Y
i: i;jh i

eWij vi;0ð Þ þ
Y
i: i;jh i

eWij vi;1ð Þ

0
@

1
A; ð2Þ

where i (j) runs from 1 to at most n (m), so the total
computational time for Ψ(v) scales as mn for each given input
v. This means Ψ(v) can be computed by a circuit Cn with
polynomial size poly(n) for a given input v∈ {0, 1}n. If a quantum
state has a RBM representation (even if its explicit form is
unknown), computing Ψ(v) is characterized by the computational
complexity class P/poly20, which represent problems that can be
solved by a polynomial-size circuit even if the circuit cannot be
constructed efficiently in general. The circuit here corresponds to
a RBM representation, with the input given by a specific v and the
output given by the value of Ψ(v).

We have introduced in ref. 21 a specific quantum many-body
state, denoted as ΨGWD, for which we proved it is #P-hard
to calculate its wave function ΨGWD(v) in the computational basis

v (#P-hard is a known computational complexity class that
in general requires exponential calculation time). If this
state ΨGWD has a RBM representation, it means #P ⊂ P/poly,
an unlikely result in computational complexity theory as
this means the polynomial hierarchy collapses22. The
state ΨGWD (with its explicit form given in Supplementary
Note 3) is just a two-dimensional cluster state after a layer
of translation-invariant single-qubit unitary operations. This
state ΨGWD is a special instance of states that can be
generated by a constant-depth quantum circuit (which is a
special polynomial-size circuit). It also belongs to the projected
entangled pair states (PEPS) and the ground states of gapped
Hamiltonians. Combining the results above, we arrive at the
following theorem:

Theorem 1: There exist states, which can be generated by a
constant-depth quantum circuit or expressed as PEPS or ground
states of gapped Hamiltonians, but cannot be efficiently
represented by any RBM unless the polynomial hierarchy
collapses in the computational complexity theory.

The above argument holds for the exact representation of Ψ(v)
with an RBM. As proved in Supplementary Note 3, under
reasonable conjectures about computational complexities, the
same result also holds for approximate representations of Ψ(v)
with RBMs.

Note that 2D cluster states can be efficiently represented by
RBMs. While after a layer of single-qubit operations which do not
change the quantum phase according to the classification scheme
in refs. 16, 23, the output state ΨGWD cannot be efficiently
represented by RBMs any more. So the RBM representation is not
closed under unitaries that preserve a quantum phase.

Representational power of deep Boltzmann machines. Now we
show with DBMs, i.e., with one more layer of hidden neurons,
most physical states, including all the states in Theorem 1, can be
efficiently represented. For this purpose, first we introduce a
couple of gadgets that will simplify our construction.

A gadget is a complex function of binary variables after
encapsulation of hidden neurons in a DBM network as shown in
Fig. 3a, where the input is represented by port neurons (for
connection of different gadgets) and the output is the value of the
function. We use gadgets as basic elements in a large DBM. As
examples, we define the Hadamard gadget and phase gadget as
shown in Fig. 3b, which will play the role of elementary gates for
construction of DBM representations of quantum circuits. The
weight function WH is given by Eq. (1) and Wθ is the solution of
the equation

P
h e

Wθ x1;hð ÞþWθ x2;hð Þ ¼ eiθx1δx1x2 , which may take the

a b

c d

Visible neuron

Hidden neuron

Fig. 1 Illustration of Boltzmann machine neural networks. a Restricted
Boltzmann machine (RBM) which has only one hidden layer and no
intra-layer connections. b Deep Boltzmann machine (DBM) which has at
least two hidden layers and no intra-layer connections. General DBMs are
equivalent to DBMs with two hidden layers after rearrangement of odd and
even layers. c Fully connected Boltzmann machine which has intra-layer
connections. d Reduction of fully connected Boltzmann machine to DBMs
with two hidden layers
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Fig. 2 Representation of Graph states by RBMs. a Graph representation of
an example graph state. b Representation of the graph state with a
restricted Boltzmann machine. One hidden neuron with the Hadamard
weight function WH (explicit form given in Eq. (1) of the text) simulates the
correlation in the wave function between each pair of connected qubits in
any graph states
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form

Wθðx; hÞ ¼ � ln 2
2

þ θ

2
ix þ iπxh: ð3Þ

We can combine two gadgets g1, g2 into one gadget g by two types
of fusion rules shown in Fig. 3c:

rule I: gð�; �Þ ¼
X
x

g1ð�; xÞg2ðx; �Þ; ð4Þ

rule II: gð�; x; �Þ ¼ g1ð�; xÞg2ðx; �Þ; ð5Þ

where rule I simulates matrix multiplication.
With these tools, now we construct efficient DBM representa-

tions of any quantum states generated by a polynomial-size
circuit. The Hadamard gadget and phase gadget shown in
Fig. 3b are used to construct three elementary quantum gates:
Hadamard gate H, phase gate Z(θ) with an arbitrary phase θ,
and controlled phase flip gate CZ, which together are
universal for quantum computation24, 25. The initial state of the
circuit is taken as (|0〉 + |1〉)⊗n, an equal superposition of
computational basis states, which is represented by the wave
function ϕ0(x1, …, xn)= 1, the identity gadget. Denote the wave
function after applying t-layer of elementary gates as ϕt(x1,…, xn).
As shown in Fig. 3d, using rule I (corresponding to matrix
multiplication), the Hadamard gadget and phase gadget simulate
gates H and Z(θ). Using rule II with the Hadamard gadget, we
have

ϕtþ1 � � � xi; xiþ1 � � �ð Þ ¼ �1ð Þxixiþ1ϕt � � � xi; xiþ1; � � �ð Þ=
ffiffiffi
2

p
; ð6Þ

which simulates the CZ gate except for the unimportant
normalization factor 1/

ffiffiffi
2

p
. The above procedure can be

parallelized as illustrated in Fig. 3e, which shows the DBM

representation of an example circuit. For a quantum circuit
of depth T, we apply T steps of fusion rules, and each step needs
O(n) neurons. So the DBM representation of the output state of
the quantum circuit takes O(nT) neurons. This DBM representa-
tion is sparse, meaning that each neuron has a constant
coordination number (number of connected edges) that does
not increase with the size of neural network. We therefore have
the following theorem:

Theorem 2: Any quantum state of n qubits generated by a
quantum circuit of depth T can be represented exactly by a sparse
DBM with O(nT) neurons.

Using the above theorem, we now construct efficient DBM
representation of any tensor network states, which include the
PEPS and the multi-scale entanglement renomalization ansatz
(MERA) as special cases26, 27. Suppose the local tensor is Ab1���bdp,
which has one (or zero) physical index p and d bond indices b1,
…, bd, each ranging from 1 to the bond dimension D. Without
loss of generality, we assume p is binary and D= 2k for some
integer k and write the local tensor as a function Ax1���xc , where
each xi is a binary variable and c= kd + 1. The state of Aj i ¼P

x1;���;xc Ax1���xc x1; � � � ; xcj i can be generated by a quantum circuit
with the number of elementary gates on the order of O(22(kd+1))
=O(D2d)25, which is square of the Hilbert space dimension of
span (|x1, …, xc〉). Using Theorem 2, the state
|A〉 can be represented exactly by a DBM with O(D2d) neurons,
and the resultant representation is called the local tensor gadget.
We use fusion rule I to link two local tensor gadgets to simulate
contraction of bond index and put physical index in the visible
layer, as shown in Fig. 4. We thus have the following theorem:

Theorem 3 A tensor network state with bond dimension D,
maximum coordination number d, and n local tensors, can be
represented efficiently and exactly by a sparse DBM with O(nD2d)
neurons.
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Rule II: g (·, x, ·)
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Phase
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Control-Z
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DBM representation
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g1(·, x) g2(x,: ·)

g1(·, x) g2(x, ·)

Fig. 3 Representation of universal quantum computational states by DBMs. a Gadget is a complex function of binary variables represented by port neurons,
a short-hand notation after encapsulation of hidden neurons. b Two elementary gadgets for representation of quantum circuits: the Hadamard gadget with
weightWH given by Eq. (1) and the phase gadget with weightWθ given by Eq. (3). c Two types of fusion rules for gadgets: rule I and rule II and their neural
network representation. d Fusion with Hadamard or phase gadgets with rule I or rule II simulates application of three elementary quantum gates: the
Hadamard gate, the phase gate, and the controlled phase flip gate, which together make universal quantum computation. The figure illustrates evolution of
the wave function from step t to step t + 1. e Representation of an example quantum circuits with elementary gadgets. To represent circuits of depths T, we
need to apply T steps of fusions with elementary gadgets, and gadget fusions in the same step can be applied in parallel. The identity gadget is a special
phase gadget with θ= 0. After the last step of computation, port neurons become visible neurons to represent the index of physical qubits, and we get a
DBM representation of the output state
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We use Theorem 3 as a tool to prove the following major
Theorem 4 for the representation of ground states of physical
Hamiltonians, and for this proof we take D= 2 and d= 4, so
the factor O(D2d) becomes a moderate constant in the
representation. The detailed proof of Theorem 4 is included
in Supplementary Note 5. The basic idea is to use tensor
network state to simulate Hamiltonian evolution along imaginary
time until one arbitrarily approaches the ground state28, 29.
Recently, quantum simulation based on truncated Taylor series
has been proposed15 which has exponential improvement
on precision compared to traditional methods based on
Trotter decomposition. Inspired by this idea, we construct tensor
network simulation for imaginary time evolution of any
Hamiltonian based on truncated Taylor series. Compared to
the previous method28, our construction offers exponential
improvement on precision in representation. We arrive at the
following theorem:

Theorem 4 The ground state of any Hamiltonian can be
represented by a sparse DBM with neuron number

O
1
Δ

nþ log
1
ϵ

� �
m2

� �
; ð7Þ

where n is the particle number, m is the number of interaction
terms in the Hamiltonian, Δ is the energy gap, and ε is the
representational error.

This representation is efficient as long as the energy gap Δ
vanishes with size of the system n no faster than 1/poly(n), which
is typically true for physical Hamiltonians (even if they are
gapless in the thermodynamic limit).

Discussion
With the success of deep learning methods, a question
often raised is why the depth of a neural network is so
important7. Our proof of the exponential separation in
efficiencies of using DBMs and RBMs to represent quantum
many-body states helps to address this question in the context of
the quantum world. We have proven that most physical states,
either from quantum dynamics or as ground states of many-body
Hamiltonians, can be efficiently represented by DBMs. Our proof
provides a systematic approach to construct polynomial-size
DBMs to represent those quantum states. In practice, one
typically use learning algorithms to directly find RBMs or

DBMs to approximate the quantum states, and in that case,
depending on the problem, significantly smaller size neural net-
works could be found compared with what is indicated by those
general theorems. In Supplementary Note 6, we introduce a
prototype reinforcement learning algorithm to train DBMs to
approximate ground states. Confronted with real strongly corre-
lated models, there is certainly much room for improving the
learning algorithms with either RBMs or DBMs, which represents
an interesting frontier for computational many-body physics. The
rigorous results obtained in this paper, on the one hand, show the
power and limitations of representing quantum states with RBMs
or DBMs, which is a question of fundamental interest, and on the
other hand, may find interesting applications in different areas
that require efficient representation of quantum states, including,
for instance, classification of topological quantum phases16, 17,
construction of holographic models18, 19, and solving quantum
many-body problems5.

Methods
Representation of a fully connected Boltzmann machine by a DBM.
Here we prove that any fully connected Boltzmann machine (with intra-layer
edges) can be efficiently simulated with DBMs (without intra-layer connections)
as shown in Fig. 1d. The key point is to simulate the interaction between
two neurons by a gadget

P
h e

W1 x1 ;hð ÞþW2 x2 ;hð Þ ¼ eW0 x1 ;x2ð Þ. Suppose the
interaction term is Jx1x2 in W0, we need W1 +W2= a − ln 2 + b(x1 + x2)(2h − 1) +
c(2h − 1) + d(x1 + x2) to simulate the interaction with the aid of hidden neuron h,
where the parameters a, b, c, d need to satisfy the equations ea cosh(c) = 1,
eaed cosh(b + c)= 1, eae2d cosh(2b + c) = eJ. These equations have solutions,
one of them is

a ¼ �d ¼ �J=2; b ¼ �c ¼ �i arccosðeJ=2Þ: ð8Þ

Derivation of the weight functions WH and Wθ. In the main text, we give the
expression for WH and Wθ which can be obtained by setting a general form for
them as a + bx + ch + dxh and solving the resultant equations for the parameters a,
b, c, d. Here, we give the detailed derivation.

For the Hadamard gadget which is used to construct RBM representation for
graph states and simulate H and CZ gates, the equation we need to solve is

X
h¼0;1

eWH x1;hð ÞþWH x2;hð Þ ¼ Hx1x2 ; ð9Þ

where the correlation

Hx1x2 ¼
ð�1Þx1x2ffiffiffi

2
p ¼ cos

π

4
2 x1 þ x2ð Þ � 1½ �

� �
: ð10Þ

The last step in Eq. (10) is valid since we have Hx1x2 ¼ 1=
ffiffiffi
2

p
, 1/

ffiffiffi
2

p
, −1/

ffiffiffi
2

p
when

x1 + x2= 0, 1, 2, respectively. Using the relation

cosX ¼ eiX þ e�iX

2
¼

X
h

eiXð2h�1Þ�ln 2; ð11Þ

with X= π/4[2(x1 + x2) − 1], we get

WH xi;h
� � ¼ iπxih� iπ 2xi þ h½ �=4þ iπ=4� ln 2ð Þ=2;

for xi= x1 or x2.
For the phase gadget which is used to simulate Z(θ) gate, it needs to satisfy

X
h¼0;1

eWθ x1;hð ÞþWθ x2;hð Þ ¼ ZðθÞx1x2 ¼ δx1x2 e
iθx1 : ð12Þ

We simulate δx1x2 by the following observation:

δx1x2 ¼
1þ eiπ x1þx2ð Þ

2
¼

X
h

eiπ x1þx2ð Þh�ln 2: ð13Þ

Note that δx1x2 e
iθx1 ¼ δx1x2 e

iθ x1þx2ð Þ=2, we have the solution

Wθ xi;h
� � ¼ iπxihþ iθxi � ln 2ð Þ=2: ð14Þ

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.

a

b
Local tensor gadget

Fig. 4 Representation of tensor network states with DBMs. a Illustration of
a tensor network state. b Representation of this tensor network state by a
DBM. Visible (hidden) neurons play the role of physical (bond) indices,
respectively. Port neuron represents either the bond index for the next step
of tensor contraction or the physical index if there is no further contraction.
The gray box stands for the local tensor gadget Ax1 ���xc which can be
efficiently represented with a DBM

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00705-2 ARTICLE

NATURE COMMUNICATIONS |8:  662 |DOI: 10.1038/s41467-017-00705-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Received: 18 May 2017 Accepted: 18 July 2017

References
1. Schollwöck, U. The density-matrix renormalization group in the age of matrix

product states. Ann. Phys. 326, 96–192 (2011).
2. Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled

pair states, and variational renormalization group methods for quantum spin
systems. Adv. Phys. 57, 143–224 (2008).

3. Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Simulation of quantum
many-body systems with strings of operators and monte carlo tensor
contractions. Phys. Rev. Lett. 100, 040501 (2008).

4. Sfondrini, A., Cerrillo, J., Schuch, N. & Cirac, J. I. Simulating two-and three-
dimensional frustrated quantum systems with string-bond states. Phys. Rev. B
81, 214426 (2010).

5. Carleo, G. & Troyer, M. Solving the quantum many-body problem with
artificial neural networks. Science 355, 602–606 (2017).

6. Deng, D.-L., Li, X. & Sarma, S. D. Exact machine learning topological states.
Preprint at http://arxiv.org/abs/1609.09060 (2016).

7. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
8. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett.

86, 5188–5191 (2001).
9. Verstraete, F., Wolf, M. M., Perez-Garcia, D. & Cirac, J. I. Criticality, the area

law, and the computational power of projected entangled pair states. Phys. Rev.
Lett. 96, 220601 (2006).

10. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303,
2–30 (2003).

11. Freund, Y. & Haussler, D. Unsupervised Learning of Distributions of Binary
Vectors Using Two Layer Networks. Report No. UCSC-CRL-91-20
(University of California, 1994).

12. Le Roux, N. & Bengio, Y. Representational power of restricted boltzmann
machines and deep belief networks. Neural Comput. 20, 1631–1649 (2008).

13. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
14. Poulin, D., Qarry, A., Somma, R. & Verstraete, F. Quantum simulation of time-

dependent hamiltonians and the convenient illusion of hilbert space. Phys. Rev.
Lett. 106, 170501 (2011).

15. Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating
hamiltonian dynamics with a truncated taylor series. Phys. Rev. Lett. 114,
090502 (2015).

16. Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected topological
orders in interacting bosonic systems. Science 338, 1604–1606 (2012).

17. Schuch, N., Pérez-Garca, D. & Cirac, I. Classifying quantum phases using
matrix product states and projected entangled pair states. Phys. Rev. B 84,
165139 (2011).

18. Swingle, B. Entanglement renormalization and holography. Phys. Rev. D 86,
065007 (2012).

19. Pastawski, F., Yoshida, B., Harlow, D. & Preskill, J. Holographic quantum
error-correcting codes: toy models for the bulk/boundary correspondence.
J. High Energy Phys. 2015, 149 (2015).

20. Arora, S. & Barak, B. Computational Complexity: A Modern Approach
(Cambridge University Press, 2009).

21. Gao, X., Wang, S.-T. & Duan, L.-M. Quantum supremacy for simulating a
translation-invariant ising spin model. Phys. Rev. Lett. 118, 040502 (2017).

22. Babai, L., Fortnow, L. & Lund, C. in Proc. 31st Annual Symposium on
Foundations of Computer Science 16–25 (IEEE, 1990).

23. Hastings, M. B. & Wen, X.-G. Quasiadiabatic continuation of quantum states:
The stability of topological ground-state degeneracy and emergent gauge
invariance. Phys. Rev. B 72, 045141 (2005).

24. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52,
3457–3467 (1995).

25. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum
Information (Cambridge University Press, 2010).

26. Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many
body systems in two and higher dimensions. Preprint at http://arxiv.org/abs/
cond-mat/0407066 (2004).

27. Vidal, G. Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007).
28. Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Computational complexity

of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007).
29. Vidal, G. Efficient simulation of one-dimensional quantum many-body

systems. Phys. Rev. Lett. 93, 040502 (2004).

Acknowledgements
We thank Ignacio Cirac, Shengtao Wang, Giuseppe Carleo, and Zhengyu Zhang for
helpful discussions. This work was supported by the Ministry of Education and the
National key Research and Development Program of China. L.-M.D. acknowledges in
addition support from the AFOSR MURI program.

Author contributions
X. G. and L.-M. D. contributed substantially to this work.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00705-2.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00705-2

6 NATURE COMMUNICATIONS |8:  662 |DOI: 10.1038/s41467-017-00705-2 |www.nature.com/naturecommunications

http://arxiv.org/abs/1609.09060
http://arxiv.org/abs/cond-mat/0407066
http://arxiv.org/abs/cond-mat/0407066
http://dx.doi.org/10.1038/s41467-017-00705-2
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Efficient representation of quantum many-body states with deep neural networks
	Results
	Summary of major results
	Neural network quantum states
	Power and limitations of restricted Boltzmann machines
	Representational power of deep Boltzmann machines

	Discussion
	Methods
	Representation of a fully connected Boltzmann machine by a DBM
	Derivation of the weight functions WH and W&#x003B8;
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


