
Efficient Resource Management

Submitted to Theoretical Computer Science. Comments are welcome!

for Linear Logic Proof Search

Iliano Cervesato1, Joshua S. Hodas2, and Frank Pfenning1

1 Department of Computer Science, Carnegie Mellon University

Pittsburgh, PA 15213-3891, USA

E-mail: {iliano|fp}@cs.cmu.edu
2 Computer Science Department, Harvey Mudd College

Claremont, CA 91711, USA

E-mail: hodas@cs.hmc.edu

August 29, 1997

Abstract

The design of linear logic programming languages and theorem provers opens a number of
new implementation challenges not present in more traditional logic languages such as Horn
clauses (Prolog) and hereditary Harrop formulas (λProlog and Elf). Among these, the problem
of efficiently managing the linear context when solving a goal is of crucial importance for the
use of these systems in non-trivial applications. This paper studies this problem in the case
of Lolli [HM94], though its results have application to other systems. We first give a proof-
theoretic presentation of the operational semantics of this language as a resolution calculus.
We then present a series of resource management systems designed to eliminate the non-
determinism in the distribution of linear formulas that undermines the efficiency of a direct
implementation of this system.

1 Introduction

Linear logic [Gir87] views logical assumptions as consumable resources. This allows elegant and
concise formalizations of a number of problems which are difficult to represent in traditional logics.
In particular, many problems centered around the notion of a state that evolves as a computation
proceeds fall into this category. Consequently, several logic programming languages based on linear
logic have been designed in recent years [AP91, HP91, HM94, Mil96]. Others are the subject of
extensive research. Each proposal is accompanied by interesting theoretical results that show its
computational relevance, and by numerous examples that prove its practical significance. However,
to our knowledge, usable implementations have thus far been released only for Lolli [HM94] and
Lygon [HP91].

Linear logic programming languages offer the implementor new challenges not present in more
traditional logic languages such as Prolog or λProlog. Among these, the efficient management of
the linear formulas contained in the context is of crucial importance for the use of these languages
in non-trivial applications.

Managing the clauses of a program is particularly simple in Prolog : The only predicates that can
modify the program are the extra-logicals assert and retract, which have global effect [LO87].
In languages admitting implications in goals, λProlog [Mil91] and Elf [Pfe94] for example, the use
of scoped assumptions causes the program to grow and contract, but in a simple stack-like fashion.
The matter is more complicated in the case of linear logic due to the strict rules placed on the use
and reuse of assumptions.

The problem is best exemplified by considering the rule for proving the goal G1 ⊗ G2:

∆1 −→ G1 ∆2 −→ G2

∆1,∆2 −→ G1 ⊗ G2

When the interpreter needs to use this rule during the bottom-up search for a proof (i.e., when
solving a goal upward from the root to the leaves), the current context has not already been divided
into ∆1 and ∆2. The naive choice is to generate all partitions of the assumption set until a pair
∆1,∆2 with the desired properties is found. This non-deterministic behavior is clearly unacceptable
since the number of partitions grows exponentially with the number of assumptions in the context.
Considering the frequency with which ⊗ and other multiplicative connectives occur in practice, an
interpreter for a linear logic programming language based on such a generate-and-test algorithm
would be usable only for the smallest of toy problems.

In this paper, we begin by reiterating the deterministic solution to this problem presented in the
original work on Lolli [Hod94, HM94]. We will then concentrate on less apparent issues in context
management involving the additive connectives and constants. We do not treat other sources of
non-determinism, which can be handled according to standard techniques in a logic programming
framework [Pfe92], or that we might want to keep open in a theorem prover and in the implementa-
tion of a concurrent linear logic programming language such as ACL [KY93]. Similarly, we do not
consider orthogonal issues in linear proof search, such as the permutability of inference rules, which
have been treated exhaustively elsewhere [GP94, Min93, Tam94]. We will focus our attention on
the language Lolli [Hod94, HM94], that we used to test the techniques described below [CHMP].
However, our results have already been applied to prototype implementations [HP96, LP97] of a
programming language based on Miller’s specification logic Forum [Mil96]. They should apply
equally well to implementations of other linear logic programming languages such as Lygon [HP91]
and to a concrete realization of the linear logical framework LLF [CP96]. It is also possible to
adapt our techniques to the development of theorem provers for linear logic, but our main goal
has been to remove non-determinism in order to obtain a satisfactory and predictable operational
semantics for logic programming. In related work, Harland and Pym [HP97] present a less com-
mitted framework for resource management strategies in general linear logic proof search which
relies on Boolean constraints. As far as we can see, their framework does not have an immedi-
ate operational interpretation or efficient implementation and thus does not directly address our
problem. It is possible, however, that our solution could be expressed within their framework.

This paper is organized as follows. Section 2 introduces the fragment of linear logic we consider
and presents its semantics as a proof-theoretic resolution system, an uncommitted starting point
for an implementation as a logic programming language. In Section 3, we fully expose the context
splitting non-determinism exemplified above and give a context management scheme that elimi-
nates it. A more subtle context handling problem, the possibility of weakening the linear context
in the presence of additive truth, is pointed out in Section 4 and solved by means of a more refined
context management system. Section 5 discusses and solves a remaining problem concerned with
the duplication of linear resources when processing an additive conjunction. We discuss further
steps towards an efficient implementation of Lolli in Section 6. Finally, we summarize our work
and compare it with other proposals in the literature in Section 7.

2

2 Resolution for Linear Hereditary Harrop Formulas

The programming language Lolli [Hod94, HM94] is based on the fragment of linear logic freely
generated by the operators ⊤, &, −◦, ⊃ and ∀. The connective ⊃ is called intuitionistic implication
and is defined as A ⊃ B ≡ !A−◦B. Positive occurrences of 0, 1, ⊕, ⊗, !, ∃ and the syntactic
equality among atomic formulas, a

.
= a′, are also allowed, as they do not invalidate any essential

properties of the language. This extended fragment is called the language of linear hereditary
Harrop formulas (LHHF for short). It is formally defined by the following grammar:

Program formulas: D ::= a | ⊤ | D1&D2 | G−◦D | G ⊃ D | ∀x.D
Goal formulas: G ::= a | ⊤ | G1&G2 | D−◦G | D ⊃ G | ∀x.G

| a1
.
= a2 | 1 | 0 | G1 ⊕ G2 | G1 ⊗ G2 | !G | ∃x.G

where a, possibly subscripted, stands for the syntactic category of atomic formulas. We do not
make any assumption about the structure of the terms embedded in atomic formulas. We write
[t/x]G for the capture-free substitution of the term t for the variable x in the goal formula G.

Descriptions of deductive systems treat logical assumptions in a variety of different ways, e.g.,
as sets, multisets, or sequences of formulas. In our setting it is critical that different occurrences
of the same hypothesis can be distinguished, while the order of the assumptions does not matter.
This can be achieved by uniquely labelling each assumption and annotating certain inference rules
with corresponding labels. We adopt this technique, but drop the labels in the actual presentation
for the sake of readability. We will point out a few places in the correctness proofs where the fact
that each assumption has a unique label is critical.

A set of uniquely labelled program formulas will be called a context and denoted by a Greek
letter Γ, ∆, or Ξ, depending on its role in a judgment. We write “·” for the empty context and
∆, D for the result of adding D with a new (implicit) label to the context ∆. We overload “,” and
also write ∆1,∆2 for the disjoint union of two contexts. Other standard operations and predicates
on sets will also be used, with the proviso that we consider context difference ∆1 −∆2 only when
∆2 ⊆ ∆1.

The logic of LHHF is conveniently described by sequents of the form:

Γ;∆ =⇒ G

where Γ and ∆ are called the intuitionistic and the linear contexts respectively, and together
constitute the program. G is a positive formula called the goal. The formulas in the intuitionistic
context are treated as if they were implicitly preceded by the modal operator !, so that the expres-
sion above corresponds to the more traditional linear logic sequent !Γ,∆ =⇒ G. This manner of
structuring the sequents and the use of ⊃ retains desirable aspects of the semantics of ! (in par-
ticular formulas in the intuitionistic context can be used arbitrarily many times), while preventing
unwanted behaviors.

Hodas and Miller discuss a proof system, L, for LHHF based on sequents of this form [HM94].
They also prove the soundness and completeness of L with respect to the usual rules for linear logic
restricted to the language of LHHF . Most importantly, they prove that LHHF possesses the neces-
sary computational properties to be considered an abstract logic programming language [MNPS91].
In particular, every provable sequent of L can be transformed into an equivalent proof that con-
sults the program only when the goal formula is atomic (thus proofs are goal-directed [MNPS91]),
and at that point selects and operates upon a single program formula in order to proceed with
the derivation (thus proofs are focused [AP91]). Proofs with both properties are called uniform.
Hodas and Miller capture this behavior in the system L′ which eliminates the left-hand rules of
the logic in favor of a single rule for backchaining.

3

Residuation

dec-atm
a′ ≫ a \ a′

.
= a

dec-⊤
⊤ ≫ a \0

D ≫ a \G
dec-∀

∀x.D ≫ a \∃x.G

D ≫ a \G′

dec-−◦
G−◦D ≫ a \G′ ⊗ G

D ≫ a \G′

dec-⊃
G ⊃ D ≫ a \G′⊗ !G

D1 ≫ a \G1 D2 ≫ a \G2
dec-&

D1&D2 ≫ a \G1 ⊕ G2

Resolution

D ≫ a\G Γ,D;∆ =⇒ G
res-atm int

Γ,D;∆ =⇒ a

D ≫ a\G Γ;∆ =⇒ G
res-atm lin

Γ;∆,D =⇒ a
. .

res- .=
Γ; · =⇒ a

.
= a

res-1
Γ; · =⇒ 1

res-⊤
Γ;∆ =⇒ ⊤

(No rule for 0)

Γ;∆ =⇒ G1 Γ;∆ =⇒ G2
res-&

Γ;∆ =⇒ G1&G2

Γ;∆1 =⇒ G1 Γ;∆2 =⇒ G2
res-⊗

Γ;∆1,∆2 =⇒ G1 ⊗ G2

Γ;∆ =⇒ G1
res-⊕1

Γ;∆ =⇒ G1 ⊕ G2

Γ;∆ =⇒ G2
res-⊕2

Γ;∆ =⇒ G1 ⊕ G2

Γ;∆,D =⇒ G
res-−◦

Γ;∆ =⇒ D−◦G

Γ,D;∆ =⇒ G
res-⊃

Γ;∆ =⇒ D ⊃ G

Γ; · =⇒ G
res-!

Γ; · =⇒ !G

Γ;∆ =⇒ [c/x]G
res-∀

Γ;∆ =⇒ ∀x.G

Γ;∆ =⇒ [t/x]G
res-∃

Γ;∆ =⇒ ∃x.G

Figure 1: R, a Resolution Calculus for LHHF.

In Figure 1 we present a new resolution system, called R, for LHHF . This system is different
from but equivalent to the system L′. It is easy to show that the judgment Γ;∆ =⇒ G is
provable in R if and only if the sequent Γ;∆ −→ G is provable in L′. In this and all subsequent
proof systems, the right introduction rule for universal quantification is assumed to carry the usual
proviso that the introduced constant does not appear free in the lower sequent. Similarly, the
variable x does not appear free in a, ∀x.D and ∃x.G in rule dec-∀.

The rules in the bottom section of Figure 1 describe how to reduce non-atomic goal formulas.
They stem from the right introduction rules of linear logic, and are essentially identical to the
right rules for L′ [HM94]. R differs from L′ in the treatment of atomic goal formulas. In order
to handle these goals, Hodas and Miller rely on the function ‖ · ‖, which converts a formula in
the program to a (possibly infinite) set of clauses, each defining a single ground atom. Here, we
embed the process of clause selection and elaboration into the proof system itself, giving it a more
syntactic and operational flavor.

4

When the goal formula a is atomic (Figure 1, center), a program formula D is selected from
either the intuitionistic context (rule res-atm int) or from the linear context (rule res-atm lin).
In either case, the program formula D and atomic goal a are passed to the residuation judgment

D ≫ a \G

(Figure 1, top) in order to produce a residual subgoal G. The computation then proceeds by
solving G. Note that when res-atom lin is used, D is removed from the context so that it may
not be used again.

The residuation judgment has the property that G and D together imply a, that is, solving G
is sufficient for a proof of a. In fact, it satisfies the stronger property that from the proof of G
and the assumption D we can immediately construct a proof of a by using only left rules of the
sequent calculus (or, equivalently, by using only elimination rules in natural deduction).

Moreover, the residuation judgment is completely deterministic: when D and a are given, there
always exists a unique subgoal G such that D ≫ a \G. This means that all non-determinism in
proof search is isolated in the resolution judgment Γ;∆ =⇒ G, which leads to an economical and
uniform presentation of the various context management systems and their equivalence proofs.

Finally, the residuation judgment D ≫ a \G is parametric in the atomic goal a, which means
we can use it to compile D to G without knowledge of a.

3 A Resource Consumption Calculus for LHHF

The resolution calculus presented in the last section does not commit to any strategy in order
to split the linear context when processing multiplicative goals from the bottom up. The non-
determinism involved in this open choice can be computationally harmful unless we devise a sound
and complete method to split the linear context deterministically. Let us restate the problem in
terms of the proof system just described. The resolution rule for the connective ⊗ is as follows:

Γ;∆1 =⇒ G1 Γ;∆2 =⇒ G2
res-⊗

Γ;∆1,∆2
︸ ︷︷ ︸

∆

=⇒ G1 ⊗ G2

In order to construct a proof of the formula G1 ⊗ G2, we need to split the original linear context
∆ into ∆1 and ∆2 so that G1 can be solved using the resources in ∆1 and G2 can be solved using
the resources in ∆2. Since intuitionistic formulas are reusable, all of Γ is copied to each of the two
premisses. Assume that ∆ contains n formulas. Then there are 2n possible splits. In the worst
case, finding a workable split (or determining that none exists) will require trying them all.

This problem was given a deterministic solution by Hodas and Miller in [HM94] in what they
called the I/O model of execution for Lolli. We will instead use the name resource management
system and refer to our presentation of this deduction system as RM1.

The rule above, res-⊗, attempts to split the context ∆ at a stage when the resources needed
to prove the two subgoals G1 and G2 are completely unknown. However, if the original goal is to
succeed, all resources not used to prove G1 will be used to solve G2, and vice versa. The key idea
behind the resource consumption model is, therefore, to upgrade the role of goal formulas to be
active resource consumers. Under this view, we will give one of the subgoals, say G1, the whole
linear context ∆; it will consume part of it and return the remaining portion ∆2 to be used by
G2. This change in perspective fits well with a common view held in the linear logic community
of goals as active processes.

5

D ≫ a \G Γ,D;∆I\∆O =⇒ G
rm1-atm int

Γ,D;∆I\∆O =⇒ a

D ≫ a \G Γ;∆I\∆O =⇒ G
rm1-atm lin

Γ;∆I ,D\∆O =⇒ a
. .

rm1-
.

=

Γ;∆I\∆I =⇒ a
.
= a

rm1-1

Γ;∆I\∆I =⇒ 1

rm1-⊤

Γ;∆,∆O\∆O =⇒ ⊤
(No rule for 0)

Γ;∆I\∆O =⇒ G1 Γ;∆I\∆O =⇒ G2
rm1-&

Γ;∆I\∆O =⇒ G1&G2

Γ;∆I\∆′ =⇒ G1 Γ;∆′\∆O =⇒ G2
rm1-⊗

Γ;∆I\∆O =⇒ G1 ⊗ G2

Γ;∆I\∆O =⇒ G1
rm1-⊕1

Γ;∆I\∆O =⇒ G1 ⊕ G2

Γ;∆I\∆O =⇒ G2
rm1-⊕2

Γ;∆I\∆O =⇒ G1 ⊕ G2

Γ;∆,∆O ,D\∆O =⇒ G
rm1-−◦

Γ;∆,∆O\∆O =⇒ D−◦G

Γ,D;∆I\∆O =⇒ G
rm1-⊃

Γ;∆I\∆O =⇒ D ⊃ G

Γ; ·\ =⇒ G
rm1-!

Γ;∆I\∆I =⇒ !G

Γ;∆I\∆O =⇒ [c/x]G
rm1-∀

Γ;∆I\∆O =⇒ ∀x.G

Γ;∆I\∆O =⇒ [t/x]G
rm1-∃

Γ;∆I\∆O =⇒ ∃x.G

Figure 2: RM1, a Resource Management System for LHHF

This basic idea is formalized in Figure 2 by means of judgments of the form:

Γ;∆I\∆O =⇒ G

where ∆I is the linear part of the context that is given as input in order to prove G. In general,
G will be just one of the subgoals produced during the derivation of a top-level goal A. The proof
of G will consume part of ∆I and return the portion it did not use as the output context ∆O, that
will need to be consumed by some other subgoal derived from A. Clearly the output context for
the original overall goal A should be empty. Indeed, the soundness and completeness theorems for
resource consumption below states that Γ;∆ =⇒ G is derivable if and only if Γ;∆\ · =⇒ G is
derivable, where “·” represents the empty context.

In their original paper, Hodas and Miller write this judgment I{G}O, with G being the goal
formula, and I and O being the input and the output contexts respectively [HM94]. The main
difference with respect to our judgment is that in their presentation I and O are lists. Each element
can be either a linear program formula, an intuitionistic program formula (marked with the tag
“!”), or the special constant del. This is very close to their original Prolog implementation of
LHHF [CHMP]. Here, ∆I and ∆O are instead sets of labelled formulas and the intuitionistic part
of the context has been separated out. This is consistent with the resolution judgment presented
in Section 2, and permits easier proofs of soundness and completeness. We also make use of the
residuation judgment in place of the special predicate pickr which they appeal to. Details of the
correctness proofs following Hodas and Miller’s formulation can be found in [Hod94, Section 7.1].

6

When considering the judgment Γ;∆I\∆O =⇒ G, we adopt a computational point of view in
which the schematic variables Γ, ∆I and G are given as input to the rules, while ∆O is returned
as an output value from the resolution of the goal. This is consistent with a left-to-right subgoal
selection strategy, that we adopt as well. Note, however, that the rules themselves do not commit
to this operational interpretation. Rather, they are fully declarative.

We will not discuss the system RM1 in detail since it is isomorphic to the one presented by
Hodas and Miller. We will simply point out a few features that will be relevant to the discussion
of the refinements we present below.

• The resolution rules for the equality test (rule res-
.
=) and for the multiplicative unit (rule

res-1) require an empty linear context, i.e., solving these goals does not consume resources.
InRM1 we model this behavior by returning as output the same context these rules received
as input. In a similar fashion, the exponential “!” expects its subgoal to be solvable in an
empty linear context. Therefore, rule rm1-! passes the empty linear context to its premiss
and returns the whole input context as output. In this rule and elsewhere, we write an output
context that must be empty due to global invariants as “ ”. We use “·” for the empty context
in other circumstances, e.g., when the emptiness of a context needs to be checked to match
a rule, or when setting an input context to empty.

• In the resolution system, ⊤ succeeds as a goal in any linear context. We model this behavior
by allowing this formula to consume an arbitrary portion ∆ of its input context.

• The operational behavior of additive conjunction & requires that we solve both subgoals G1
and G2 in the same linear context. This is modelled in RM1 by giving the original input
context to both G1 and G2, and expecting them to return the same output context, ∆

O,
that will be the output context of the compound formula G1&G2 (rule rm1-&).

• The rule for multiplicative implication (rm1-−◦) requires some attention. Let ∆
I be the

original input context. In order to process this connective, we need to augment ∆I with the
antecedent D of the implication. Let ∆O be the context returned after solving its consequent
G. We can return ∆O as the output of the proof of D−◦G only if we are sure that the newly
added instance ofD does not appear in ∆O. This is because this D must be consumed during
the proof of G. We enforce this constraint by writing ∆I as ∆,∆O and passing ∆,∆O, D as
the input context to the premiss of the rule. By expecting ∆O as the output of the whole
subproof, we assert that ∆, D represents the portion of the input context that is consumed
while proving G. No such complications are needed for the rule dealing with intuitionistic
implication since its assumption is added to the intuitionistic context.

We conclude this section with the statements and sketches of the proofs of the soundness and
completeness of RM1 with respect to R. These results depend on two simple lemmas that we
present first and that provide some insight into the behavior of these systems.

An important invariant of RM1, as well as of the enhanced versions to be introduced, is that,
when the judgment Γ;∆I\∆O =⇒ G is derivable, the output context ∆O is always a subset of
the input context ∆I. This property is formalized in the following lemma. Note that in this and
many statements in the sequel, we will abbreviate phrases such as “if the judgment J is derivable,
then . . . ” as “if J , then . . . ”.

Lemma 3.1 (Subcontext for RM1)

If Γ;∆I\∆O =⇒ G, then ∆O ⊆ ∆I.

7

Proof.

The proof proceeds by an easy structural induction on a derivation I of Γ;∆I\∆O =⇒ G. 2X

We introduced the output context ∆O of a judgment Γ;∆I\∆O =⇒ G as the part of the
input context ∆I not consumed in order to prove G. We can indeed write ∆I as ∆,∆O, where
∆ corresponds to the portion of the linear context actually used by G. Since ∆O does not play
any active role in the derivation, its actual composition, or its very presence, are unimportant:
it can be replaced with any other context ∆′ yielding a derivation of G with an isomorphic rule
arrangement. This intuition is formalized in the next lemma.

Lemma 3.2 (Output context replacement for RM1)

If Γ;∆,∆O\∆O =⇒ G, then Γ;∆,∆′\∆′ =⇒ G is derivable for every context ∆′.

Proof.

By induction on the structure of a derivation of Γ;∆,∆O\∆O =⇒ G. 2X

In Sections 4 and 5, we will take advantage of two specific situations: the case where ∆′ is
some subcontext of ∆O, possibly ·, and when ∆′ extends ∆O with additional program formulas.
We therefore state the following corollaries.

Corollary 3.3 (Output context deletion for RM1)

If Γ;∆I\∆O =⇒ G, then Γ; (∆I −∆O)\ · =⇒ G.

Proof.

Apply the previous lemma with ∆′ = ∆I −∆O. 2X

Corollary 3.4 (Output context augmentation for RM1)

If Γ;∆I\∆O =⇒ G, then Γ; (∆I,∆)\ (∆O,∆) =⇒ G for every context ∆.

Proof.

Apply the previous lemma with ∆′ = ∆O,∆. 2X

Similar results hold for the context management systems to be introduced in Sections 4 and 5. For
the sake of conciseness, their statement will be kept implicit.

The soundness theorem of RM1 with respect to R relates any derivation in the resource
management system to a resolution proof. As expected, the resources returned in the output
context ∆O, which are superfluous in order to prove a goal G from a given input context ∆I,
should be elided from ∆I in order to construct a correct resolution derivation.

Theorem 3.5 (Soundness of RM1 with respect to R)

If Γ;∆I\∆O =⇒ G, then Γ; (∆I −∆O) =⇒ G.

Proof.

This relatively simple proof proceeds by induction on the structure of a derivation I of
Γ;∆I\∆O =⇒ G. Observe that, by the subcontext lemma 3.1, ∆O ⊆ ∆I , and therefore the
expression (∆I −∆O) is well-formed. We only show the details of the case in which the derivation
I ends with an application of rule rm1-atm lin. The remaining cases are similar or simpler.

8

Case rm1-atm lin: Suppose the given derivation has the form

I =

D

D ≫ a \G′

I ′

Γ;∆I0\∆
O =⇒ G′

rm1−atm lin

Γ;∆I0, D\∆
O =⇒ a

with ∆I = ∆I0, D and G = a.

By induction hypothesis on I ′, there is a derivation R′ of Γ; (∆I0 − ∆
O) =⇒ G′. We can

then apply rule res-atm lin to D and R′ to obtain a derivation R of

Γ; (∆I0 −∆
O), D =⇒ a.

Then the equation (∆I0 −∆
O), D = (∆I0, D)−∆

O yields the desired result. 2X

We expect the completeness theorem to state that if the judgment Γ;∆ =⇒ G is derivable
in R, then so is Γ;∆\ · =⇒ G in RM1. However, we need to generalize this result to cope with
intermediate judgments, in particular those produced as premisses of rule res-⊗. This is achieved
in the following theorem, from which the expected property is obtained by choosing ∆O to be
empty. Notice the quantification pattern in this statement, which will recur in similar results in
subsequent sections.

Theorem 3.6 (Completeness of RM1 with respect to R)

If Γ;∆ =⇒ G, then, for every context ∆O, the judgment Γ;∆,∆O\∆O =⇒ G is derivable.

Proof.

The proof proceeds by induction on the structure of a derivation R for Γ;∆ =⇒ G. We give
the details of two cases. The remaining possibilities are handled in a similar or simpler manner.

Case res-1:
R = res-1

Γ; · =⇒ 1

with ∆ = · and G = 1.

Then, by rule rm1-1, for every ∆
O, the judgment Γ;∆O\∆O =⇒ 1 is derivable. This

concludes this case since (·,∆O) = ∆O.

Case res-⊗:

R =

R1

Γ;∆1 =⇒ G1

R2

Γ;∆2 =⇒ G2
res-⊗

Γ;∆1,∆2 =⇒ G1 ⊗ G2

with ∆ = ∆1,∆2 and G = G1 ⊗ G2.

By induction hypothesis on R1, for every context ∆
O
1 there is a derivation of

Γ;∆1,∆
O
1 \∆

O
1 =⇒ G1. Similarly, by induction hypothesis on R2, Γ;∆2,∆

O\∆O =⇒ G2
for every context ∆O. In particular, for ∆O1 = ∆2,∆

O, there is a derivation of

Γ;∆1,∆2,∆
O\∆2,∆

O =⇒ G1.

Therefore, by rule rm1-⊗, Γ;∆1,∆2,∆
O\∆O =⇒ G1 ⊗ G2. 2X

9

4 Removing Non-Determinism from the Treatment of ⊤

While the resource management policy enforced by system RM1 removes the most serious cause
of non-determinism present in the resolution system R, it is not yet fully deterministic. This is
due to the operational semantics of the logical constant ⊤, as presented in rule rm1-⊤:

rm1-⊤
Γ;∆,∆O
︸ ︷︷ ︸

∆I

\∆O =⇒ ⊤

This goal is allowed to consume any portion ∆ of its input context. If ∆I contains n formulas, we
are left with 2n possible output contexts ∆O that might be passed to the remaining computation.
An alternative interpretation of this behavior views the branches of a proof tree ending with the
resolution of ⊤ as permitting arbitrary weakening on the linear context. System RM1 does not
address this hidden source of context management non-determinism.

Hodas and Miller initially underestimated the importance of this issue [HM94]. However the
subsequent development of sample applications to accompany the first public release of Lolli showed
this problem to be critical in practice. The solution we describe is adapted from Hodas’ disserta-
tion [Hod94, Section 7.4], and was incorporated into that implementation.

Roughly speaking, the idea is that once ⊤ has been encountered as a goal, the remaining
subgoals do not need to consume all of their input context since the unused formulas could be
“pumped back” to the place in the proof tree where ⊤ was first seen. That is, ⊤ should not
actively consume resources on its own; rather, it should give permission to later goals to ignore
resources which otherwise would have to be consumed.

We obtain this behavior by adding an extra parameter to the resource management judgments
of RM1. We now use sequents of the form:

Γ;∆I\∆O =⇒v G

where v is a boolean-valued flag (the ⊤-flag or slack indicator) to be considered as another output
argument of the resolution of the goal G. Whenever v = 0, the resolution of G uses exactly the
resources in ∆I −∆O. If instead this flag has the value 1, G uses ∆I −∆O for sure, but may also
absorb part or all of the output context ∆O. In this case, we say that ∆O is the slack of that
branch of the proof tree. When v = 0, the computation has no slack. The resulting system, called
RM2, is presented in Figure 3.

The main changes with respect to RM1 concern the rules that close the proof trees, and the
binary rules. Rules rm2-

.
= and rm2-1:

rm2-
.

=

Γ;∆I\∆I =⇒0 a
.
= a

rm2-1
Γ;∆I\∆I =⇒0 1

both pass their linear context as the output context for the remainder of the computation, since
neither can consume any resources. These rules set the ⊤-flag to 0 since no occurrence of ⊤ is
encountered during the proof of either 1 or the equality test. In contrast, when ⊤ is processed as
a goal in rule rm2-⊤:

rm2-⊤
Γ;∆I\∆I =⇒1 ⊤

it passes its input context as output too, but raises the ⊤-flag, indicating that it can be considered
to have consumed some of those resources if that proves necessary. The subsequent computation
will use this information for context management.

10

D ≫ a \G Γ,D;∆I\∆O =⇒v G
rm2-atm int

Γ,D;∆I\∆O =⇒v a

D ≫ a \G Γ;∆I\∆O =⇒v G
rm2-atm lin

Γ;∆I ,D\∆O =⇒v a
. .

rm2-
.

=

Γ;∆\∆ =⇒0 a
.
= a

rm2-1
Γ;∆\∆ =⇒0 1

rm2-⊤
Γ;∆\∆ =⇒1 ⊤

(No rule for 0)

Γ; ∆I\∆O =⇒0 G1 Γ;∆I\∆O =⇒0 G2
rm2-&00

Γ;∆I\∆O =⇒0 G1&G2

Γ;∆I\∆O =⇒0 G1 Γ;∆I\∆2,∆
O =⇒1 G2

rm2-&01
Γ;∆I\∆O =⇒0 G1&G2

Γ;∆I\∆1,∆
O =⇒1 G1 Γ;∆I\∆O =⇒0 G2

rm2-&10
Γ;∆I\∆O =⇒0 G1&G2

Γ;∆I\∆O1 =⇒1 G1 Γ;∆I\∆O2 =⇒1 G2
rm2-&11

Γ;∆I\∆O1 ∩∆
O

2 =⇒1 G1&G2

Γ;∆I\∆′ =⇒v G1 Γ;∆′\∆O =⇒w G2
rm2-⊗vw

Γ;∆I\∆O =⇒v∨w G1 ⊗ G2

Γ;∆I\∆O =⇒v G1
rm2-⊕1

Γ;∆I\∆O =⇒v G1 ⊕ G2

Γ;∆I\∆O =⇒v G2
rm2-⊕2

Γ;∆I\∆O =⇒v G1 ⊕ G2

Γ;∆O,∆,D\∆O =⇒0 G
rm2-−◦0

Γ;∆O,∆\∆O =⇒0 D−◦G

Γ;∆I ,D\∆O =⇒1 G
rm2-−◦1

Γ;∆I\∆I ∩∆O =⇒1 D−◦G

Γ,D;∆I\∆O =⇒v G
rm2-⊃

Γ;∆I\∆O =⇒v D ⊃ G

Γ; ·\ =⇒v G
rm2-!

Γ;∆\∆ =⇒0 !G

Γ;∆I\∆O =⇒v [c/x]G
rm2-∀

Γ;∆I\∆O =⇒v ∀x.G

Γ;∆I\∆O =⇒v [t/x]G
rm2-∃

Γ;∆I\∆O =⇒v ∃x.G

Figure 3: RM2, an Improved Resource Management System for LHHF

Rule rm1-& is split into four rules in RM2. Each rule handles one possible combination of
⊤-flags returned by the two premisses. If no ⊤ was encountered while solving either G1 or G2 (rule
rm2-&00), then the context is managed as in the previous system and the ⊤-flag for the proof of
the compound goal G1&G2 is set to 0.

When exactly one of the two premisses sets the slack indicator, then the behavior of the rule
is determined by the other premiss. Consider for example the case where the left premiss sets the

11

⊤-flag (the other case, rule rm2-&01, is symmetrical). We have the following rule:

Γ;∆I\∆1,∆
O =⇒1 G1 Γ;∆I\∆O =⇒0 G2

rm2-&10
Γ;∆I\∆O =⇒0 G1&G2

Let ∆ be the portion of the context used while proving G2 (clearly, ∆
I = ∆,∆O). Since both G1

and G2 must consume the same portion of the context, the proof of G1 can use part of ∆ but no
formula from ∆O. However, it does not need to consume explicitly all the formulas in ∆, because,
unlike G2, its slack indicator is set. We can therefore write the output context of G1 as ∆1,∆

O,
where ∆1 is the actual slack of this branch of the proof tree, and is some subcontext of ∆. The
⊤-flag for the proof of G1&G2 is set to 0: since both premisses must consume the same resources
and G2 cannot take up slack, the composed goal cannot have any slack. For the same reason, the
output context of G1&G2 is ∆

O.

In the final case, if both premisses return their ⊤-flag set to 1, both subgoals allow arbitrary
slack. Therefore, we set the ⊤-flag for the proof of the compound formula, since in this case any
excess resources can be “pumped back” to both premisses. The output context for the compound
goal is the intersection of the output contexts returned by each of the premisses: since both
branches must end up having consumed the same resources, only what is not used in either branch
can be forwarded. This yields the following rule:

Γ;∆I\∆O1 =⇒1 G1 Γ;∆I\∆O2 =⇒1 G2
rm2-&11

Γ;∆I\∆O1 ∩∆
O

2 =⇒1 G1&G2

Slack handling in the rule for multiplicative conjunction is quite simple since resources are
allowed to flow freely from one premiss to the other. We set the ⊤-flag if either subgoal allows
slack, indicated by v ∨ w. The overall output context is the linear context returned after proving
the right premiss. It will be convenient to distinguish four rules for this connective, corresponding
to the four possible slack indicator combinations in the premisses.

Finally, the rule for ! resets the ⊤-flag regardless of whether ⊤ has been encountered while
solving its subgoal or not. Since the output context must coincide with the input context in this
rule, there is no place for any slack.

We will now formalize the correspondence between RM2 and RM1 (and indirectly to R). As
with the basic resource management scheme, the output context of an RM2 is always a subset of
its input context.

Lemma 4.1 (Subcontext for RM2)

If Γ;∆I\∆O =⇒v G, then ∆
O ⊆ ∆I .

Proof.

By induction on the structure of a derivation for Γ;∆I\∆O =⇒v G. 2X

The output context replacement property applies also to RM2, as expressed by the following
lemma.

Lemma 4.2 (Output context replacement for RM2)

If Γ;∆,∆O\∆O =⇒v G, then Γ;∆,∆
′\∆′ =⇒v G is derivable for every context ∆

′.

12

Proof.

By induction on the structure of a derivation for Γ;∆,∆O\∆O =⇒v G. 2X

While in the previous lemmas the two different judgments that participate in RM2 behaved
uniformly, we must treat the two possible values of the ⊤-flag separately in the following soundness
result. Indeed, whenever slack is not permitted, every RM2 judgment is provable in RM1.
However, when the ⊤-flag is set to 1, any portion of the output context can be “pumped back” to
some occurrence of ⊤. These facts are formally expressed in the following theorem.

Theorem 4.3 (Soundness of RM2 with respect to RM1)

i . If Γ;∆I\∆O =⇒0 G, then Γ;∆
I\∆O =⇒ G.

ii . If Γ;∆I\∆O =⇒1 G, then Γ;∆
I\∆ =⇒ G for every context ∆ ⊆ ∆O.

Proof.

The proof proceeds by mutual induction on the structure of a derivation I of Γ;∆I\∆O =⇒v G
for the two parts of the statement. We will consider one representative situation. The remaining
cases are similar or simpler.

Case rm2-⊗10:

I =

I1

Γ;∆I\∆′ =⇒1 G1

I2

Γ;∆′\∆O =⇒0 G2
rm2-⊗10

Γ;∆I\∆O =⇒1 G1 ⊗ G2

with G = G1 ⊗ G2.

By induction hypothesis (ii) on I1, there is a derivation of Γ;∆
I\∆∗ =⇒ G1 for every

context ∆∗ ⊆ ∆′. By the subcontext lemma 4.1 on I2, ∆
O ⊆ ∆′, and therefore ∆′ = ∆̃,∆O

for some context ∆̃. Therefore, for any ∆ ⊆ ∆O, there is a derivation I ′1 of

Γ;∆I\ ∆̃,∆ =⇒ G1.

By induction hypothesis (i) on I2, Γ;∆
′\∆O =⇒ G2. By the output context replacement

lemma 3.2, there is a derivation I ′2 of

Γ; ∆̃,∆\∆ =⇒ G2.

It suffices now to apply rule rm1-⊗ to I
′
1 and I

′
2 to obtain the desired result. 2X

As an immediate consequence of this result, we have thatRM1 admits weakening on the linear
context whenever it corresponds to an RM2 derivation that allows slack. This is formalized as
the following corollary.

Corollary 4.4 (Weakening in RM2 in the presence of slack)

If Γ;∆I\∆O =⇒1 G, then Γ;∆
I,∆\∆O =⇒ G for any context ∆.

Proof.

By the replacement lemma 4.2, we have that Γ;∆I,∆\∆O,∆ =⇒1 G is derivable for every
context ∆. By the above soundness theorem, Γ;∆I,∆\∆′ =⇒ G for every ∆′ ⊆ ∆O,∆. The
desired derivation is obtained by choosing ∆′ to be ∆O. 2X

13

Notice that a similar property does not hold in RM2 since all slack is collected in the output
context.

The completeness of RM2 with respect to RM1 is expressed by the following theorem. De-
pending on whether the given derivation of the judgment Γ;∆I\∆O =⇒ G mentions certain
occurrences of rule rm1-⊤, the slack indicator of the corresponding RM2 judgment will be set to
0 or 1. Notice that, in the latter case, ∆O will in general be a subcontext of the produced output
context.

Theorem 4.5 (Completeness of RM2 with respect to RM1)

If Γ;∆I\∆O =⇒ G, then

• either Γ;∆I\∆O =⇒0 G,

• or Γ;∆I\∆,∆O =⇒1 G for some ∆ ⊆ ∆
I −∆O.

Proof.

The proof proceeds by induction on the structure of a derivation I of Γ;∆I\∆O =⇒ G. We
show the details of the most complex case.

Case rm1-&:

I =

I1

Γ;∆I\∆O =⇒ G1

I2

Γ;∆I\∆O =⇒ G2
rm1-&

Γ;∆I\∆O =⇒ G1&G2

with G = G1&G2.

By induction hypothesis on Ii either Γ;∆
I\∆O =⇒0 Gi or Γ;∆

I\∆i,∆
O =⇒1 Gi for some

∆i ⊆ ∆
I−∆O, for i = 1, 2. Since there are two possibilities for each of the two subderivations

Ii, we must consider four possible ⊤-flag combinations:

Subcase (0,0): Then, the induction hypothesis has produced derivations of Γ;∆I\∆O =⇒0
G1 and Γ;∆

I\∆O =⇒0 G2. Combining them by means of rule rm2-&00 yields the
desired result.

Subcase (0,1): We have derivations of Γ;∆I\∆O =⇒0 G1 and Γ;∆
I\∆2,∆

O =⇒1 G2
for some ∆2 ⊆ ∆

I −∆O. It suffices then to apply rule rm2-&01.

Subcase (1,0): We proceed in a symmetric way.

Subcase (1,1): We know that Γ;∆I\∆1,∆
O =⇒1 G1 for some ∆1 ⊆ ∆

I − ∆O and
Γ;∆I\∆2,∆

O =⇒1 G2 for some ∆2 ⊆ ∆
I − ∆O. An application of rule rm2-&11

yields a derivation of

Γ;∆I\ (∆1,∆
O) ∩ (∆2,∆

O) =⇒1 G1&G2,

which is the desired result if we take ∆ to be ∆1 ∩∆2 and we observe that (∆1,∆
O) ∩

(∆2,∆
O) = ∆,∆O. 2X

It is important to note that RM1 and RM2 improve the efficiency of the resolution system R
in two different ways. The proofs obtainable in RM1 are in one to one correspondence with the
derivations we could achieve withR. RM1 improves the efficiency of proof-search by pruning from
the search space branches corresponding to unsuccessful splits of the linear context. In contrast,

14

the system RM2 actually collapses some proofs by identifying successful derivations that differ
only by the distribution of unused assumptions among various occurrences of ⊤. For example,
consider an attempt to solve the goal a−◦ b−◦ c−◦ (⊤ ⊗ ⊤) in the empty context. There are eight
distinct proofs in RM1 corresponding to the different ways of dividing the consumption of the
context (a, b, c) between the two occurrences of ⊤. This is summarized in the following schematic
derivation:

rm1-⊤
·; a, b, c\∆=⇒ ⊤

rm1-⊤
·; ∆\ ·=⇒ ⊤

rm1-⊗
·; a, b, c\ ·=⇒ ⊤ ⊗ ⊤

rm1-−◦ (3 times)
·; ·\ ·=⇒ a−◦ b−◦ c−◦ (⊤ ⊗ ⊤)

where ∆ can be any of the 8 subcontexts of (a, b, c). On the other hand, there is only one proof of
a−◦ b−◦ c−◦ (⊤ ⊗ ⊤) in RM2:

rm2-⊤
·; a, b, c\ a, b, c=⇒1 ⊤

rm2-⊤
·; a, b, c\ a, b, c=⇒1 ⊤

rm2-⊗11
·; a, b, c\ a, b, c=⇒1 ⊤ ⊗ ⊤

rm2-−◦1 (3 times)
·; ·\ ·=⇒1 a−◦ b−◦ c−◦ (⊤ ⊗ ⊤)

5 Improving the Treatment of Additive Conjunction

The system RM2 presented in the last section achieves determinism in context management to
the extent that no arbitrary context splitting choices remain. Nevertheless, a close examination of
the rules reveals that some serious efficiency and completeness problems still remain. In particular,
the rules concerning & are unsatisfactory. The problem is already present in RM1, where we had
the following rule:

Γ;∆I\∆O =⇒ G1 Γ;∆I\∆O =⇒ G2
rm1-&

Γ;∆I\∆O =⇒ G1&G2

Assuming a sequential execution for the two premisses, this rule requires that we first solve G1
obtaining, say, an output context ∆O1 . Then G2 will be proved and return the output context ∆

O
2 .

At this point, and only at this point, we check that ∆O1 and ∆
O
2 are equal.

Even though this test can be done efficiently (for example by having a bit vector where each
position records whether the corresponding resource has been used), we may end up rejecting
many pairs of proofs before finding a pair that consumes the same set of resources. At best this
is inefficient. At worst, when a proof of G2 proceeds down a divergent path that it might avoid
with better pruning, it leads to added incompleteness in the system. Further, in a language with
a notion of side-effect (such as screen output), an avoidable failed proof may nevertheless produce
a recordable effect.

An example, written using Lolli ’s concrete syntax, will help illustrating this point. Lolli allows
mixing intuitionistic and linear clauses in a program. It distinguishes the latter with the keyword
LINEAR. In the programs below, we will make use of the logical constant 1, written true, and
of three connectives, −◦, & and ⊗, written :- (with the arguments reversed), & and , (comma),
respectively. Program clauses are terminated with a dot (.). We rely on the extra-logical operator
write, which outputs the string it is given as an argument.

Consider the following example:

test :- (a & b), c.

15

LINEAR c.

a.

b :- c, write "Some Output". % Fails, but prints

In a left-to-right execution model, the goal ‘?- test.’ is solved by first proving a (without con-
suming any linear resources), then attempting to prove b. The clause for this goal is selected and
its body attempted. The linear resource c is consumed, the message is printed, and b succeeds. At
this point, the resources consumed while solving a and b are compared and the conjunction fails
since the latter conjunct used c while the former did not. This causes the failure of the original
query. Clearly, it would be preferable for the attempt to solve b to fail as soon as c is accessed, so
that the message is never printed.

Even in a Prolog-based implementation [HM94] (one is included in [CHMP]), where the con-
straint on the output contexts is enforced by unification rather than by an after-the-fact check,
the same problem occurs if we replace the body of the rule for b with ‘c, write "Some Output",
true’. The problem is that an “output constraint” on the result of the search is not as strong
as a priori constraining the input. This is because intermediate rules (those dealing with ⊤ in
particular), prohibit the propagation of constraints on the output all the way to the input.

In order to more quickly recognize those failures caused by the second goal incorrectly accessing
resources unused by the first, we could modify the rule rm1-& as follows:

Γ;∆I\∆O =⇒ G1 Γ;∆
I −∆O\ · =⇒ G2

rm1-&′

Γ;∆I\∆O =⇒ G1&G2

In this rule, we give G2 exactly the portion of the linear context that it can use and expect the
empty context as an output. In this way, the resources not consumed by G1 are inaccessible to
G2; this achieves our purposes.

This change will not, however, help the system to detect early enough failures caused by the
second conjunct failing to consume resources that the first conjunct does use. To see how this
becomes an issue, consider another Lolli program:

test :- (a, c) & b.

LINEAR a.

LINEAR c.

b :- c & (write "Some Output", c). % Fails, but prints

If we execute the query ‘?- test.’ the system will first solve the goal to the left of the additive
conjunction by consuming a and then c. At this point it will attempt to prove b. Since the left
conjunct has used all of the resources in the input context, b can and must use them all as well
(so there is no new restriction added by the change to the rule for & we just described). The rule
for b is selected, and its left conjunct is solved using just c. At this point, since the right conjunct
can only use c but the overall proof of b was supposed to use both a and c, we know enough to
fail. Unfortunately, the system will not recognize this situation and will print the message. The
resource c will then be consumed and the proof of b will succeed, having consumed c. Only when
checking that all the resources passed to b have been used, will the system finally recognize the
failure, and cause the original query to fail.

In order to obtain the desired behavior, we modify the form of our judgment to include three
input contexts on the left of the arrow:

Γ; Ξ;∆I\∆O =⇒v G

16

D ≫ a \G (Γ,D); Ξ;∆I\∆O =⇒v G
rm3-atm int

(Γ,D); Ξ;∆I\∆O =⇒v a

D ≫ a \G Γ;Ξ;∆I\∆O =⇒v G
rm3-atm lax

Γ;Ξ; (∆I ,D)\∆O =⇒v a

D ≫ a \G Γ;Ξ;∆I\∆O =⇒v G
rm3-atm strict

Γ; (Ξ,D);∆I\∆O =⇒v a
. .

rm3-
.

=

Γ; ·;∆I\∆I =⇒0 a
.
= a

rm3-1

Γ; ·;∆I\∆I =⇒0 1

rm3-⊤

Γ;Ξ;∆I\∆I =⇒1 ⊤
(No rule for 0)

Γ; Ξ;∆I\∆O =⇒0 G1 Γ; (Ξ,∆I −∆O); ·\ =⇒v G2
rm3-&0v

Γ;Ξ;∆I\∆O =⇒0 G1&G2

Γ;Ξ;∆I\∆′ =⇒1 G1 Γ; (Ξ,∆I −∆′);∆′\∆O =⇒v G2
rm3-&1v

Γ;Ξ;∆I\∆O =⇒v G1&G2

Γ; ·; (Ξ,∆I)\∆′ =⇒0 G1 Γ; (Ξ ∩∆′); (∆I ∩∆′)\∆O =⇒v G2
rm3-⊗0v

Γ;Ξ;∆I\∆O =⇒v G1 ⊗ G2

Γ; ·; (Ξ,∆I)\∆′ =⇒1 G1 Γ; ·;∆′\∆O =⇒v G2
rm3-⊗1v

Γ;Ξ;∆I\∆I ∩∆O =⇒1 G1 ⊗ G2

Γ;Ξ;∆I\∆O =⇒v G1
rm3-⊕1

Γ;Ξ;∆I\∆O =⇒v G1 ⊕ G2

Γ;Ξ;∆I\∆O =⇒v G2
rm3-⊕2

Γ;Ξ;∆I\∆O =⇒v G1 ⊕ G2

Γ; (Ξ,D);∆I\∆O =⇒v G
rm3-−◦

Γ;Ξ;∆I\∆O =⇒v D−◦G

(Γ,D);Ξ;∆I\∆O =⇒v G
rm3-⊃

Γ;Ξ;∆I\∆O =⇒v D ⊃ G

Γ; ·; ·\ =⇒v G
rm3-!

Γ; ·;∆I\∆I =⇒0 !G

Γ;Ξ;∆I\∆O =⇒v [c/x]G
rm3-∀

Γ;Ξ;∆I\∆O =⇒v ∀x.G

Γ;Ξ;∆I\∆O =⇒v [t/x]G
rm3-∃

Γ;Ξ;∆I\∆O =⇒v ∃x.G

Figure 4: RM3, a Further Improved Resource Management System for LHHF.

In this judgment (which also features the slack indicator v of RM2) the input linear context is
logically divided into two parts: the strict context Ξ that must be entirely consumed during the
resolution of the goal G, and the lax context ∆I whose contents might be consumed while solving
G. Thus the strict context Ξ will be managed like the linear context in the system R; only the
lax context ∆I may transmit unused resources to the output ∆O, as in RM2. The rules defining
the semantics of this judgment are represented in Figure 4; together with the rules for residuation,
they constitute the system RM3. We will now briefly describe the principal characteristics of this
system.

17

First, since we have split the linear context, we need to provide two separate rules for accessing
a linear formula when the goal is atomic (rules rm3-atm lax and rm3-atm strict). The rules for
the equality judgment and for proving the goal 1 are straightforward (rules rm3-

.
= and rm3-1):

since neither is allowed to consume any resources, the strict context (which contains resources
that must be consumed) must be empty; the lax context is passed over unmodified as output.
In contrast, the rule for ⊤ deletes whatever portion of the strict context it is provided with, and
forwards as output its lax context, while setting the ⊤-flag to indicate that the output is now slack
(rule rm3-⊤).

The rules for & are more complicated. In order to solve the goal G1&G2 with respect to the
linear context Ξ;∆I, we first solve G1 in Ξ;∆

I, obtaining the output context ∆′ (remember, Ξ
must be entirely consumed in each of the two conjuncts). Two different courses of action are now
possible, depending on the value of the slack indicator:

1. If this flag was not set (rules rm3-&0v), the output is fixed to be ∆
′ = ∆O. Moreover, G2

must consume everything that has been used by G1, i.e., Ξ as well as ∆
I − ∆′. These two

components are packaged together into the strict context of the judgment for G2. Since this
goal is not allowed to consume any other resources, it is given an empty lax context.

2. If the resolution of G1 has encountered an occurrence of ⊤ and slack is admitted (rules
rm3-&1v), G2 must still consume every resource used by G1 (i.e. Ξ,∆

I − ∆′), but is also
allowed to access the resources not used by this goal (∆′), therefore, we supply this as the lax
context for the proof of G2. The output context and slack indicator for this second premiss
then provide the corresponding values for the lower sequent.

When solving a goal of the form G1 ⊗ G2, the strict context Ξ must be consumed by either
G1 or G2. Since the first of these subgoals may use an arbitrary part of Ξ as well as some portion
of the lax context ∆I , we put both Ξ and ∆I in the lax context of G1 and leave the strict context
empty. As with & , how to solve G2 depends on the value of the ⊤-flag.

1. If no slack is allowed (rules rm3-⊗0v), G2 must consume whatever portion of the original
strict context G1 did not use, and may consume some formulas in ∆

I that were not already
consumed by G1. Therefore, we restore the remainder of Ξ and ∆

I to the strict and lax
contexts of the judgment for G2, respectively. To do this we take the intersection of these
contexts with the output context ∆′ of G1.

The importance of requiring assumptions to have unique labels is particularly apparent in
this rule. Indeed, assume we drop this requirement and try to prove the goal a ⊗ a in a
situation where both the strict and the lax context contain only the (unlabelled) assumption
a. In order to do so, both copies of a are packaged in the lax context of the leftmost premiss
of these rules. A derivation I1 of

·; ·; (a, a)\ a=⇒0 a

is easily found. We need now to intersect the resulting output context (a) with the original
strict and lax contexts (both a) in order to assemble the rightmost premiss. Without labels
to distinguish the occurrences of the context formula a we started with, both intersections
evaluate to a and a derivation I2 of

·; a; a\ a =⇒0 a

is incorrectly produced. These two derivations can then be combined by means of rule
rm3-⊗00: a single linear assumption a has been consumed in order to prove the goal a ⊗ a.

18

Unique labelling prevents this erroneous behavior by distinguishing which occurrence of a is
returned in the output context of I1. Then, intersection will cause either the strict or the lax
context of the rightmost premiss to be empty. Therefore, both assumptions a will be used to
prove a ⊗ a. Notice that the overall sequent ·; a; a\ ·=⇒0 a ⊗ a has two derivations since
the leftmost premiss can consume either the strict or the lax assumption a in order to prove
the subgoal a, leaving the other assumption for the second subgoal.

2. If the slack indicator was set by the proof of G1 (rules rm3-⊗1v), all the strict resources in
the original Ξ can be “pumped back” to G1 in the case that G2 does not use them. Therefore
we call this goal with an empty strict context and the output context of G1, ∆

′, as its lax
context. We must be careful, however, not to return strict resources from Ξ as part of the
output context of G1 ⊗ G2, since they are presumed to have been used by the slack consumer
in G1. Therefore we intersect the context returned by G2 with the original lax input context
∆I of the composed goal.

The rule dealing with linear implication takes advantage of the strict context to simplify the
task of managing the new assumption (rules rm3-−◦). Since D must be used while proving G,
it is simply put into the strict context of this subgoal. The rules for ⊃, !, ⊕, and the quantifiers
display no interesting new features.

We conclude this section by proving the correspondence between RM2 and RM3. We first
present an adaptation of the subcontext lemma already encountered in the previous two context
management systems. Notice that the output context may not mention any formula occurring in
the strict context.

Lemma 5.1 (Subcontext for RM3)

If Γ; Ξ;∆I\∆O =⇒v G, then ∆
O ⊆ ∆I.

Proof.

By induction on the structure of a derivation for Γ; Ξ;∆I\∆O =⇒v G. 2X

Next, we need to prove a version of the output context replacement lemma specifically tailored
for RM3. Notice that this property holds only relative to the lax context. This is due to the fact
that, by the above subcontext lemma, no assumption in the strict context is ever passed as output.

Lemma 5.2 (Output context replacement for RM3)

If Γ; Ξ;∆,∆O\∆O =⇒v G, then Γ; Ξ;∆,∆
′\∆′ =⇒v G is derivable for every context ∆

′.

Proof.

By induction on the structure of a derivation of Γ; Ξ;∆,∆O\∆O =⇒v G. 2X

The soundness theorem below maps derivations in RM3 to RM2 proofs by collapsing the
strict and lax context of that system into the single input context of an RM2 sequent. Care must
be taken in the presence of slack since, due to the form of rule rm2-⊤, part of the strict context
might need to be returned as output in that system.

Theorem 5.3 (Soundness of RM3 with respect to RM2)

i . If Γ; Ξ;∆I\∆O =⇒0 G, then Γ; (Ξ,∆
I)\∆O =⇒0 G.

19

ii . If Γ; Ξ;∆I\∆O =⇒1 G, then Γ; (Ξ,∆
I)\ (∆O,Ξ′) =⇒1 G for some context Ξ′ ⊆ Ξ.

Proof.

The proof is conducted by mutual induction on the structure of a derivation I of
Γ; Ξ;∆I\∆O =⇒v G for the two parts of the theorem. We develop three representative cases.

Case rm3-⊤:
I = rm3-⊤
Γ; Ξ;∆I\∆I =⇒1 ⊤

with ∆O = ∆I and G = ⊤.

Then, we can take Ξ as Ξ′ and apply rule rm2-⊤ to obtain the desired derivation of
Γ; (Ξ,∆I)\ (Ξ,∆I) =⇒1 ⊤.

Case rm3-&01:

I =

I1

Γ; Ξ;∆I\∆O =⇒0 G1

I2

Γ; (Ξ,∆I −∆O); ·\ · =⇒1 G2
rm3-&01

Γ; Ξ;∆I\∆O =⇒0 G1&G2

with G = G1&G2.

By induction hypothesis on I1 and I2, there are derivations of Γ; (Ξ,∆
I)\∆O =⇒0 G1 and

Γ; (Ξ,∆I −∆O)\Ξ′ =⇒1 G2 for Ξ
′ ⊆ Ξ,∆I −∆O. By the replacement lemma 4.2, we can

transform the latter derivation into a proof of Γ; (Ξ,∆I)\ (Ξ′,∆O) =⇒1 G2. It suffices then
to apply rule rm2-&01 to obtain the desired result.

Case rm3-⊗10:

I =

I1

Γ; ·; (Ξ,∆I)\∆′ =⇒1 G1

I2

Γ; ·; ∆′\∆O1 =⇒0 G2
rm3-⊗10

Γ; Ξ;∆I\∆I ∩∆O1 =⇒1 G1 ⊗ G2

with ∆O = ∆I ∩∆O1 and G = G1 ⊗ G2.

By induction hypothesis on I1 and I2, the sequents Γ; (Ξ,∆I)\∆′ =⇒1 G1 and
Γ;∆′\∆O1 =⇒0 G2 are derivable (in the first case, since we start from an empty strict
context, the only possibility for Ξ′ is ·). We can therefore apply rule rm2-⊗10 and obtain a
derivation of

Γ; (Ξ,∆I)\∆O1 =⇒1 G1 ⊗ G2.

By the subcontext lemma 4.1, ∆O1 ⊆ Ξ,∆
I. Therefore, ∆O1 = ∆

O
1 ∩(Ξ,∆

I) = (∆O1 ∩Ξ), (∆
O
1 ∩

∆I). This serves our purpose since Ξ′ = ∆O1 ∩ Ξ ⊆ Ξ. 2X

We have been unable to obtain a direct inductive proof of the completeness ofRM3 with respect
to RM2. Instead, we define an intermediate resource management system between RM2 and
RM3. The system RM

′

2
differs from RM2 by the replacement of rules rm2-&00 and rm2-&10

with the following two rules:

Γ;∆I\∆O =⇒0 G1 Γ;∆I −∆O\ · =⇒0 G2
rm

′

2
-&00

Γ;∆I\∆O =⇒0 G1&G2

20

and
Γ;∆I\∆1,∆

O =⇒1 G1 Γ;∆I −∆O\ · =⇒0 G2
rm

′

2
-&10

Γ;∆I\∆O =⇒0 G1&G2

which borrow ideas from the rule rm1-&
′ we discussed above. Modifying rules rm2-&01 and

rm2-&11 in a similar way is counterproductive. Every proof in RM2 can be transformed into an
almost isomorphic derivation in RM ′

2
, as formalized by the following lemma.

Lemma 5.4 (Completeness of RM ′

2
with respect to RM2)

For every derivation I of Γ;∆I\∆O =⇒v G in RM2 there is a derivation of the same
judgment in RM ′

2
.

Proof.

The proof proceeds by an easy induction on the structure of I, with applications of the output
context replacement lemma 4.2 in correspondence of rules rm2-&00 and rm2-&10. 2X

We are now in a position to prove the completeness of RM3 with respect to RM2, via RM
′

2
.

Theorem 5.5 (Completeness of RM3 with respect to RM2)

i . If Γ;∆I\∆O =⇒0 G, then Γ; Ξ; (∆
I − Ξ)\∆O =⇒0 G for every Ξ ⊆ ∆

I −∆O.

ii . If Γ;∆I\∆O =⇒1 G, then Γ; Ξ; (∆
I − Ξ)\ (∆O − (Ξ ∩∆O)) =⇒1 G for every Ξ ⊆ ∆I .

Proof.

By Lemma 5.4, we can translate the premisses of this statement into RM ′

2
derivations. We

proceed then by mutual induction on the structure of a derivation I for Γ;∆I\∆O =⇒v G relative
to the rules of this formalism.

We sketch this proof, the most complex in the paper, by presenting the details of three of the
hardest cases.

Case rm′
2
-&01:

I =

I1

Γ;∆I\∆O =⇒0 G1

I2

Γ;∆I\∆O,∆2 =⇒1 G2
rm

′

2
-&01

Γ;∆I\∆O =⇒0 G1&G2

with G = G1&G2.

By induction hypothesis on I1 and I2, there are derivations I
′
1 and I

′
2 of Γ; Ξ

′; (∆I −
Ξ′)\∆O =⇒0 G1 for every Ξ

′ ⊆ ∆I −∆O and

Γ; Ξ′′; (∆I − Ξ′′)\ (∆O,∆2)− (Ξ
′′ ∩ (∆O,∆2)) =⇒1 G2

for every Ξ′′ ⊆ ∆I .

We set Ξ′ to be Ξ, and take Ξ′′ = (Ξ, (∆I − Ξ))−∆O = ∆I −∆O. We can then reduce the
expressions appearing in the last judgment:

∆I − Ξ′′ = ∆I − (∆I −∆O) = ∆O,

21

and

(∆O,∆2)− (Ξ
′′ ∩ (∆O,∆2)) = (∆O,∆2) − ((∆

I −∆O) ∩ (∆O,∆2))
= (∆O,∆2) − ((∆

I ∩ (∆O,∆2)) − (∆
O ∩ (∆O,∆2))).

Now, since by the subcontext lemma 4.1 ∆O,∆2 ⊆ ∆
I, we have that ∆I∩(∆O,∆2) = ∆

O,∆2.
Moreover, ∆O ∩ (∆O,∆2) = ∆

O. Therefore the above expression reduces to (∆O,∆2) −
((∆O,∆2)−∆

O), i.e., ∆O.

The endsequent of I ′2 can therefore be rewritten as Γ; (Ξ, (∆
I−Ξ))−∆O ; ∆O\∆O =⇒1 G2.

We can now apply the replacement lemma 5.2 and obtain a derivation I ′′2 of the judgment
Γ; (Ξ, (∆I−Ξ))−∆O; ·\ · =⇒1 G2. We can then use rule rm3-&01 to I

′
1 and I

′′
2 in order to

obtain the desired result.

Case rm′
2
-⊗01:

I =

I1

Γ;∆I\∆′ =⇒0 G1

I2

Γ;∆′\∆O =⇒1 G2
rm

′

2
-⊗01

Γ;∆I\∆O =⇒1 G1 ⊗ G2

with G = G1 ⊗ G2.

By induction hypothesis, the sequents Γ; Ξ′; (∆I−Ξ′)\∆′ =⇒0 G1 for every Ξ
′ ⊆ ∆I−∆′,

and Γ; Ξ′′; (∆′ − Ξ′′)\ (∆O − (∆O ∩ Ξ′′)) =⇒1 G2 for every Ξ
′′ ⊆ ∆′ are derivable. In

particular, for Ξ′ = ·, we obtain Γ; ·; ∆I\∆′ =⇒0 G1.

If we set Ξ′′ = ∆′ ∩ Ξ for an arbitrary context Ξ ⊆ ∆I (note that this acceptable since
Ξ′′ ⊆ ∆′), the second judgment above rewrites to

Γ; (∆′ ∩ Ξ); (∆′ − (∆′ ∩ Ξ))\ (∆O − (∆O ∩∆′ ∩ Ξ)) =⇒1 G2.

Let us rewrite the various expressions appearing in it. ∆′−(∆′∩Ξ) = (∆′∩∆I)−(∆′∩Ξ) =
∆′ ∩ (∆I −Ξ), since ∆′ ⊆ ∆I by the subcontext lemma 4.1. On the other hand, since by the
same lemma ∆O ⊆ ∆′, we have that ∆O − (∆O ∩∆′ ∩Ξ) = ∆O − (∆O ∩ Ξ). After carrying
out these simplifications, our judgment rewrites to

Γ; (∆′ ∩ Ξ); (∆′ ∩ (∆I − Ξ))\ (∆O − (∆O ∩ Ξ)) =⇒1 G2.

We are now in the position of applying rule rm3-⊗10, obtaining the expected Γ; Ξ; (∆
I −

Ξ)\ (∆O − (∆O ∩ Ξ)) =⇒1 G2.

In this part of the proof, we relied on the equality (∆1 ∩∆2)− (∆1 ∩∆3) = ∆1 ∩ (∆2−∆3),
which holds only if every element in these contexts has exactly one occurrence. Otherwise,
we have the following counterexample, where ∆1 = (a, a), ∆2 = (a, a, a) and ∆3 = (a).

((a, a) ∩ (a, a, a))− ((a, a) ∩ (a)) = (a, a)− (a) = (a) 6=

(a, a)∩ ((a, a, a)− (a)) = (a, a) ∩ (a, a) = (a, a)

The unique labelling of context assumptions ensures that no such situation can arise, and
therefore entitles us to make use of the above equivalence.

Case rm′
2
-−◦ 1:

I =

I1

Γ;∆I, D\∆O1 =⇒1 G1
rm

′

2
-−◦1

Γ;∆I\ (∆I ∩∆O1) =⇒1 D−◦G1

22

with ∆O = ∆I ∩∆O1 and G = D−◦G1.

By induction hypothesis, there is a derivation of the judgment

Γ; Ξ′; ((∆I, D) − Ξ′)\ (∆O1 − (∆
O

1 ∩ Ξ
′)) =⇒1 G1

for every Ξ′ ⊆ ∆I , D. Let us take an arbitrary context Ξ ⊆ ∆I and consider Ξ′ = Ξ, D.
Then, we have the following instance of the above judgment:

Γ; Ξ, D; ((∆I, D)− (Ξ, D))\ (∆O1 − (∆
O

1 ∩ (Ξ, D))) =⇒1 G1.

Observe that (∆I , D)− (Ξ, D) = ∆I − Ξ.

By applying rule rm3-−◦ , we obtain a derivation of the judgment

Γ; Ξ; (∆I − Ξ)\ (∆O1 − (∆
O

1 ∩ (Ξ, D))) =⇒1 D−◦G1.

In order to show that the output context in this judgment coincides with the expected
(∆I ∩∆O1)− (∆

I ∩∆O1 ∩ Ξ), we must distinguish two cases:

D ∈ ∆O
1
: Let ∆O1 = ∆

O
2 , D. Then, (∆

I ∩ ∆O1) − (∆
I ∩ ∆O1 ∩ Ξ) = ∆

O
2 − (∆

O
2 ∩ Ξ) =

(∆O2 , D) − ((∆
O
2 ∩ Ξ), D) = ∆

O
1 − (∆

O
1 ∩ (Ξ, D)).

D 6∈ ∆O
1
: Then, (∆I∩∆O1)−(∆

I∩∆O1 ∩Ξ) = ∆
O
1 −(∆

O
1 ∩Ξ) = ∆

O
1 −((∆

O
1 ∩Ξ), (∆

O
1 ∩D)) =

∆O1 − (∆
O
1 ∩ (Ξ, D)).

In both cases, we have taken implicit advantage of several simple facts about sets and relied
upon our unique labelling assumption. 2X

6 Implementation Issues

The system RM3 provides a satisfactory solution to all the resource management problems we
discussed in the previous sections. Unfortunately, it does so at a rather high price since most of
its rules involve complex operations on the context (exhaustive tests on the status of one of the
contexts, shuffling formulas from the strict to the non-strict context or vice versa, etc.).

This situation is complicated by the fact that, in an actual implementation, the order in which
clauses occur in the program and the order in which new assumptions are added to it during
execution must be preserved so that the programmer can predict in which sequence clauses are
tried when solving atomic goals. Thus we store the intuitionistic, strict and non-strict assumptions
in a common data structure, differentiating the role of each formula by means of a tag. Further,
when a formula is consumed, it is generally more efficient to mark it as such (rather than actually
delete it) in order to facilitate backtracking. In this type of implementation, each time we perform
a test to check, for instance, if the strict context is empty, we have to visit all the formulas present
in all contexts. Similar costs are incurred when we perform operations like taking the intersection
of two contexts.

We have achieved a substantial improvement in performance by maintaining additional infor-
mation about the program, in particular the number of formulas present in the strict and non-strict
contexts. The implementation of the operations that manipulate the context are in charge of main-
taining the correct value of these counters. In particular, each time an output context is produced,
we must make available the number of formulas it contains. Then, checking the emptiness of the
strict context, for example, reduces to an inexpensive arithmetic comparison. This approach also
benefits the implementation of the context operations themselves by limiting the portion of the

23

context they need to examine: for example, if the context contains s strict assumptions, a routine
implementing rule rm3-⊤ can return as soon as it has encountered s strict resources. This can
produce significant speed-ups since a typical Lolli context consists of a large body of intuitionis-
tic program clauses loaded from a file followed by assumptions made at run-time (which should
therefore be accessed first).

The rules for handling the tensor still perform a relatively expensive operation, since they must
move the contents of the strict context into the non-strict context unless the former is initially
empty. We can eliminate this overhead for nested occurrences of ⊗ by requiring this connective
to be parsed as a left associative operator. In this way, the leftmost occurrence of ⊗ will undergo
the shuffling process. But, since all inner occurrences appear in the left conjunct (G1 in rules
rm3-⊗vw), they will be proved with an empty strict context, avoiding any additional shuffling.

The techniques presented in this section have been applied into an enhanced version of the
ML interpreter for Lolli. A series of implementations realizing each of the ideas discussed in this
paper is available by anonymous ftp (see [CHMP] for details). The declarative nature of the rules
makes these same ideas applicable to implementations based on other programming paradigms. In
particular, the original Prolog prototype (also available in [CHMP]) for Lolli [HM94] can be easily
adapted to take advantage of these observations.

7 Conclusions and Related Work

The issue of efficient context management has proved to be crucial for the use of linear logic
programming languages in non-trivial applications. In this paper, we have presented a general
technique that not only eliminates sources of non-determinism deriving from naive context man-
agement, but also permits early recognition of certain failure situations. We have implemented
these ideas in the interpreter for a new release of the language Lolli [CHMP]. Tests showed a gen-
eral improvement in performance and, in some examples, arbitrary speed-ups. We also achieved
convergence for some previously non-terminating programs. The determinism also simplifies the
programmer’s task: Despite the apparent complexity of RM3 it is relatively straightforward to
predict the operational behavior of programs and avoid inefficient generate-and-test situations.

To our knowledge, the only other authors who have been concerned with the issue of efficiency
in context management for linear logic programming languages are the designers of Lygon. In their
first publication on this subject [HW94], they build on the work of Hodas and Miller and indepen-
dently develop a system with the characteristics of Hodas’ efficient handling of ⊤. They do not,
however, present a notion equivalent to our strict context, and make no mention of techniques akin
to our linear formula counters to reduce the overhead at the implementation level. They recently
proposed a new and promising approach to context management based on the idea of maintaining
boolean constraints in order to specify how linear resources should be distributed [HP97]. We are
currently investigating a related method as a way to achieve a practical implementation of linear
higher-order unification [CP97].

Our analysis was motivated primarily by the goal of building an efficient interpreter [CHMP],
but should also be applicable to the design of compilers which will ultimately be necessary for the
execution of large programs. We expect that compilation techniques developed for Prolog [LO87]
and λProlog [Kwo94, NJK95] may be combined with our methods.

The results described in the paper can be applied to other programming languages based on
linear logic. Hodas and Polakow have extended the system RM3 to Miller’s specification logic
Forum [Mil96] and have based a prototype implementation on it [HP96]. López and Pimentel have
designed another implementation of Forum on a system similar to RM3 but currently without
a slack indicator [LP97]. These techniques should extend just as easily to implementations of

24

Lygon [HP91, HW94] and other linear languages.

Acknowledgments

We would like to thank Vladimir Alexiev, James Harland, Dale Miller, Jeffrey Polakow and Roberto
Virga, as well as the anonymous reviewers of the 1996 International Workshop on Extensions of
Logic Programming (ELP’96), for their valuable comments on early versions of this paper.

References

[AP91] Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical processes with built-in
inheritance. New Generation Computing, 9:445–473, 1991.

[CHMP] Iliano Cervesato, Joshua S. Hodas, Dale Miller, and Frank Pfenning. Some implemen-
tations of the linear logic programming language Lolli. Available on the World Wide
Web at address ftp://ftp.cs.cmu.edu/user/iliano/misc/lolli.tar.gz.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, edi-
tor, Proceedings of the Eleventh Annual Symposium on Logic in Computer Science —
LICS’96, pages 264–275, New Brunswick, New Jersey, 27–30 July 1996. IEEE Com-
puter Society Press. This work also appeared as Preprint 1834 of the Department of
Mathematics of Technical University of Darmstadt, Germany.

[CP97] Iliano Cervesato and Frank Pfenning. Linear higher-order pre-unification. In
G. Winskel, editor, Twelfth Annual Symposium on Logic in Computer Science —
LICS’97, pages 422–433, Warsaw, Poland, 29 June – 2 July 1997. IEEE Computer
Society Press.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[GP94] Didier Galmiche and Guy Perrier. Foundations of proof search strategies design in
linear logic. In Symposium on Logical Foundations of Computer Science, pages 101–113,
St. Petersburg, Russia, 1994. Springer-Verlag LNCS 813. Also available as Technical
Report CRIN 94-R-112 from the Centre di Recherche en Informatique de Nancy.

[HM94] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110(2):327–365, 1994. Extended abstract
in the Proceedings of the Sixth Annual Symposium on Logic in Computer Science,
Amsterdam, July 15–18, 1991.

[Hod94] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory, Design
and Implementation. PhD thesis, University of Pennsylvania, Department of Computer
and Information Science, 1994.

[HP91] James Harland and David Pym. The uniform proof-theoretic foundation of linear logic
programming. In V. Saraswat and K. Ueda, editors, Proceedings of the International
Logic Programming Symposium, pages 304–318, San Diego, California, October 1991.

[HP96] Joshua S. Hodas and Jeffrey Polakow. Forum as a logic programming language: Pre-
liminary results and observations. In M. Okada, editor, Proceedings of the Linear Logic
’96 Meeting, Tokyo, Japan, 1996. Elsevier Electronic Notes in Theoretical Computer
Science, volume 3.

25

[HP97] James Harland and David Pym. Resource distribution via boolean constraints. In
W. McCune, editor, Proceedings of the Fourteenth International Conference on Auto-
mated Deduction — CADE-14, Townsville, Australia, July 1997. To appear.

[HW94] James Harland and Michael Winikoff. Deterministic resource management for the linear
logic programming language Lygon. Technical Report TR 94/23, Melbourne University,
Department of Computer Science, 1994.

[Kwo94] Keehang Kwon. Towards a Verified Abstract Machine for a Logic Programming Lan-
guage with a Notion of Scope. PhD thesis, Department of Computer Science, Duke
University, December 1994. Available as Technical Report CS-1994-36.

[KY93] Naoki Kobayashi and Akinori Yonezawa. ACL — A concurrent linear logic program-
ming paradigm. In D. Miller, editor, Proceedings of the 1993 International Logic Pro-
gramming Symposium, pages 279–294, Vancouver, Canada, October 1993. MIT Press.

[LO87] Timothy G. Lindholm and Richard A. O’Keefe. Efficient implementation of a defensible
semantics for dynamic Prolog code. In J.L. Lassez, editor, Proceedings of the Fourth
International Conference on Logic Programming — ICLP’87, pages 21–39, Melbourne,
Australia, 1987. MIT Press.

[LP97] Pablo López and Ernesto Pimentel. A lazy splitting system for Forum. In M. Falaschi,
M. Navarro, and A. Policriti, editors, Proceedings of the Joint Conference on Declarative
Programming — APPIA-GULP-PRODE’97, pages 247–258, Grado, Italy, 1997.

[Mil91] Dale Miller. A logic programming languagewith lambda-abstraction, function variables,
and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[Mil96] Dale Miller. A multiple-conclusion specification logic. Theoretical Computer Science,
165(1):201–232, 1996.

[Min93] Grigori Mints. Resolution calculus for the first order linear logic. Journal of Logic,
Language and Information, 2(1):59–83, 1993.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157,
1991.

[NJK95] Gopalan Nadathur, Bharat Jayaraman, and Keehang Kwon. Scoping constructs in
logic programming: Implementation problems and their solution. Journal of Logic
Programming, 25(2):119–161, 1995.

[Pfe92] Frank Pfenning. Computation and deduction. Unpublished lecture notes, 277 pp.
Revised May 1994, April 1996, May 1992.

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, editor,
Proceedings of the 12th International Conference on Automated Deduction, pages 811–
815, Nancy, France, June 1994. Springer-Verlag LNAI 814. System abstract.

[Tam94] T. Tammet. Proof strategies in linear logic. Journal of Automated Reasoning, 12:273–
304, 1994. Also available as Programming Methodology Group Report 70, Chalmers
University, 1993.

26

