
Efficient Resource Oblivious Algorithms for Multicores with False Sharing

Richard Cole
Computer Science Dept.

Courant Institute of Mathematical Sciences, NYU
New York, NY 10012, USA

Email: cole@cs.nyu.edu

Vijaya Ramachandran
Dept. of Computer Science

University of Texas at Austin
Austin, TX 78712, USA

Email: vlr@cs.utexas.edu

Abstract—We consider algorithms for a multicore environ-
ment in which each core has its own private cache and false
sharing can occur. False sharing happens when two or more
processors access the same block (i.e., cache-line) in parallel,
and at least one processor writes into a location in the block.
False sharing causes different processors to have inconsistent
views of the data in the block, and many of the methods
currently used to resolve these inconsistencies can cause large
delays.

We analyze the cost of false sharing both for variables stored
on the execution stacks of the parallel tasks and for output
variables. Our main technical contribution is to establish a
low cost for this overhead for the class of multithreaded block-
resilient HBP (Hierarchical Balanced Parallel) computations.
Using this and other techniques, we develop block-resilient
HBP algorithms with low false sharing costs for several
fundamental problems including scans, matrix multiplication,
FFT, sorting, and hybrid block-resilient HBP algorithms for
list ranking and graph connected components. Most of these
algorithms are derived from known multicore algorithms, but
are further refined to achieve a low false sharing overhead.

Our algorithms make no mention of machine parameters,
and our analysis of the false sharing overhead is mostly in
terms of the the number of tasks generated in parallel during
the computation, and thus applies to a variety of schedulers.

Keywords-false-sharing; cache-efficiency; multicores

I. INTRODUCTION

We consider the design of efficient multithreaded algo-
rithms (see, e.g., [15], chapter 27) with low false sharing
overhead for a multicore computing environment. We model
a multicore as consisting of p cores (or processors) with
an arbitrarily large shared memory, where each core has a
private cache of size M . Data is organized in blocks of size
B, and the initial input of size n is in the main memory, in
n/B blocks.

There has been considerable work recently on developing
efficient algorithms for multicores [20], [9], [4], [10], [11],
[5], [23], [2], [17]; many of these algorithms are multi-
threaded. An efficient multicore algorithm attempts to obtain
both work-efficient speed-up and cache-efficiency. However,
none of these prior results has addressed false sharing costs
when considering cache-efficiency, with the exception of our

This work was supported in part by NSF Grants CCF-0830516 (Richard
Cole) and CCF-0830737 (Vijaya Ramachandran).

sorting algorithm in [12]; but even there, only some of the
possible instances of false sharing were considered.

Cache Misses and False Sharing. When a core C needs
a data item x that is not in its private cache, it reads in
the block (i.e., cache-line) β that contains x from main
memory at the cost of one cache miss. This new block
replaces an existing block in the private cache. If another
core C ′ modifies an entry in block β, then C and C ′ will
have different local views of the block β, and this will need
to be resolved in some manner the next time core C needs
to access data in β. A commonly employed mechanism in
current multicores is to use a cache coherence protocol in
which the hardware invalidates the copy of β in C’s cache
when C ′ modifies β, and the next time core C needs to
access data in β, an updated copy of β is brought into C’s
cache. In the absence of cache coherence, some method of
assigning ownership to a block is needed so that the updates
to items in a block are correctly performed. For instance, the
Backer protocol [8] is an alternate method to handle this.

The situation described above in which two or more cores
access portions of the same block during a time interval
when at least one core writes into the block is called false-
sharing. The delay caused by false sharing can be quite
significant, and this is a caching delay that is present only
in the parallel context. For instance, consider a parallel
execution in which q ≥ 2 cores between them perform
multiple accesses to a block β, which include x ≥ 1 writes.
These accesses could cause Ω(b · x) delay at Ω(q) cores
accessing β, where b is the delay due to a single cache
miss. These costs might arise if two cores are sharing a
block (which occurs for example if data partitioning does
not match block boundaries) or if many cores access a single
block (which could occur if the cores are all executing very
small tasks). Further, x can be arbitrarily large unless care
is taken in the algorithm design. We will refer to any access
of a block that is not in cache due to false sharing as a false
sharing miss, or an fs miss for short.

The cost of false sharing is drawing renewed attention
with the advent of multicore computing. However, a similar
communication cost is present in any parallel computation.
For instance, many parallel models such as the BSP [22]

Table I
FS MISS BOUNDS FOR SOME OF OUR BLOCK-RESILIENT HBP ALGORITHMS; O(·) OMITTED ON EVERY TERM.
L(r) IS THE BLOCK-SHARING FUNCTION AND SC IS A CENTRALIZED SCHEDULER THAT DOES NOT KNOW THE VALUE OF B.
THE INPUT SIZE IS n, EXCEPT FOR MATRIX COMPUTATIONS, WHERE THE INPUT SIZE IS n2 ; λ IS 3 FOR MM AND log2 7 FOR STRASSEN.

ALL CACHE AND FS MISS COSTS ARE IN UNIT OF b, THE COST OF ONE CACHE MISS.

Block New Results Known Results
Resilient HBP Fs Misses with Z Value of Z for Sequential Cache Misses w/ Z Critical path-

Algorithm L(r) Parallel Tasks Scheduler SC Cache Misses Q Parallel Tasks [14] length T∞

Scans (PS, MT) 1 B · Z p n/B Q+ Z [19], [14] logn

Depth-n-MM 1 B · Z p3/2 n3/(B
√
M) Q+ Z

1
3 n

2

B
+ Z [19], [14] n

MM, Strassen 1 B · Z p log p nλ/(B ·M
λ
2−1) Q+ Z

1
3 n

2

B
+ Z log2 n

RM to BI 1 B · Z p n2/B Q+ Z ·B logn
Direct BI to RM

√
r n√

p
B · Z p n2/B Q+ Z ·B logn

BI-RM (gap RM) gap min{ n√
p
, B log2B}B · Z p n2/B Q+ Z ·B logn

BI-RM for FFT 1 B · Z p · log logn
log(n2/p)

n2

B
log logM n Q+ ZB + n2

B
log logB n logn

FFT, Sort [12] 1 B · Z p · logn
log(n/p)

n
B

logM n Q+ Z ·B logn · log logn

LR (Hybrid HBP) 1 B · Z p · log2 n
log(n/p)

n
B

logM n Q logn+ Z ·B log2 n · log logn

consider the cost of sending packets between processors.
But there is also an implicit cost associated with assembling
and unpacking these packets; this can be viewed as being
part of the cost in the ‘o’ term in the LogP [16] model. Thus,
in any parallel environment, one either pays for packing and
unpacking data in packets that are moved between proces-
sors, or one has to deal with false sharing misses if the data
is prepackaged in blocks. Distributed memory architectures
incur the former type of costs, and these costs are typically
masked by the large cost of transporting a packet across
the communication network. The architectures for current
multicores incur the latter type of costs, and further, data
is accessed at a fine-grained level. Hence we have the
current need to develop algorithmic strategies to minimize
the cost of fs misses. However, we note, that in one way or
another, this cost is present in any parallel environment. The
algorithmic techniques we present in this paper for reducing
the cost of fs misses will also help to reduce the packing
and unpacking costs in other parallel environments, since we
minimize the number of data boundaries at which different
tasks interact.

Resource Obliviousness. The notion of a cache oblivious al-
gorithm was introduced in [18], where a sequential algorithm
is not allowed the use the cache parameters, namely the
cache size M and the cache line or block size B, although
these parameters are used in the analysis of the caching
performance of the algorithm.

In a multicore that supports a multithreaded parallel
environment, we are interested in both parallelism and cache
efficiency. The notion of a multicore oblivious algorithm
was introduced in [11]. Such an algorithm uses no multicore
parameters but is allowed to include some simple hints to
the run-time scheduler. It was shown in [11] that these
hints could be used by a suitable scheduler (that knows the
multicore parameters) to efficiently schedule the algorithm

on multicores with a multilevel cache hierarchy and any
given number of cores. The PCO model [6] is a variant
of the multicore oblivious framework in [11], again for a
multilevel cache hierarchy. The results in [11], [6] consider
cache misses, but as with most prior work on multicore
algorithms, assume that no false sharing occurs.

An algorithm that is efficient while being oblivious to ma-
chine parameters has the benefit of maintaining its efficiency
across a range of machines, resulting in portable efficient
code. In a multicore environment we also have the issue
that a multicore algorithm could be scheduled in different
ways, leading to different performance bounds. For instance,
the multicore oblivious algorithms in [11] were shown to
achieve efficiency under a specific scheduler.

In this paper, we confine our attention to multicores with
private caches, and we present multicore algorithms whose
efficiency we analyze in terms of the number of parallel tasks
generated during the computation (and in some cases, also
as a function of the task sizes). Thus, our algorithms can be
analyzed across a wide range of schedulers. We demonstrate
the efficiency of our algorithms with a simple centralized
scheduler. We have also established efficiency under the
Priority Work Stealing (PWS) scheduler [12], and in recent
work [13] we establish bounds for our algorithms under the
well-known randomized work-stealing (RWS) scheduler. We
use the term resource oblivious to denote that our algorithms
are independent of machine parameters, and yet are analyzed
to run efficiently under different schedulers.

The focus of this paper is on reducing the cost of false
sharing; in a companion paper [14] we show that the same
class of algorithms has good cache miss bounds, again as
a function of the number of parallel tasks generated during
the computation. Thus, combining the results in the current
paper with those in [14], we have a collection of resource
oblivious multithreaded algorithms for several fundamental
problems that are efficient with respect to both cache miss

2

overhead and false sharing costs when scheduled by a run-
time scheduler that is economical in the number of parallel
tasks that it generates.

Our Contributions. Our main contribution is to set up a
framework to analyze – and optimize for – the caching
overhead of fs misses while also allowing for high par-
allelism. We start with a basic primitive, the Balanced
Parallel (BP) computation; Hierarchical Balanced Parallel
(HBP) computations are obtained through sequencing and
parallel recursion [12]. We further introduce the notion of
a block-resilient computation, for which we establish that
any shared block is accessed O(B) times and hence incurs
O(B) fs misses. The main challenge here is in bounding the
accesses to blocks stored on the execution stack of recursive
procedures that have parallelism. However, even outside of
the execution stack, a shared block can have an unbounded
number of accesses in the fairly asynchronous environment
in which we schedule our algorithms, if care is not taken
with the algorithm design. We present additional techniques
for reducing the cost of fs misses, namely gapping, and
minimizing the block sharing function L(r); in most of our
algorithms L(r) = O(1), and when that is not achieved, we
resort to gapping to reduce the cost of fs misses.

We present and analyze block resilient HBP algorithms
for scans, matrix transposition (MT), matrix multiplication,
converting a matrix between row major (RM) and bit inter-
leaved (BI) layouts, and FFT, and hybrid HBP algorithms
for list ranking (LR) and graph connected components (CC)
(a hybrid HBP algorithm is obtained by sequencing ω(1)
HBP computations). Most of these are known algorithms,
but some are new; also many of the known algorithms are
modified to make them block-resilient. These algorithms will
achieve relatively low fs miss cost under most schedulers;
we illustrate their performance by analyzing their fs miss
cost when scheduled by the simple centralized scheduler,
which we call SC , that is used in [9] (SC does not know the
block size). A summary of our results is in Table I, where,
for each algorithm, ∆(n, p,B) gives an upper bound on the
worst case cost of fs misses across all processors (measured
in units of cache miss cost), when scheduled by SC on p
processors, where B is the block size, which is unknown to
SC .
Roadmap. In Section II we describe the multithreaded
computation model, and we discuss our set-up for fs miss
costs and introduce the block-sharing function L(r). In
Section III we define the classes of BP and HBP algorithms,
and in Section IV we describe the data layout used in our
algorithms. In Section V we define the notion of block-
resilience, and we establish the important technical result
that in a block-resilient HBP computation, any shared block
is transferred at most O(B) times, where B is the number of
words in a block. In Section VI we present block-resilient
HBP algorithms for several problems, and in Section VII

we illustrate our results by analyzing the fs miss overhead
of these algorithms using the centralized scheduler SC . We
conclude in Section VIII.

II. COMPUTATION MODEL

We model a computation as a directed acyclic graph (dag)
D (good overviews can be found in [15], chapter 27, [7]). D
is restricted to being a series-parallel graph, where each node
in the graph corresponds to a size O(1) computation. Recall
that a directed series-parallel graph has start and terminal
nodes. It is either a single node, or it is created from two
series-parallel graphs, G1 and G2, by one of:

1. Sequencing, where the terminal node of G1 is con-
nected to the start node of G2.

2. A parallel construct (binary forking), with a new
start node s and a new terminal node t, where s is
connected to the start nodes for G1 and G2, and their
terminal nodes are connected to t.

One way of viewing this is that the task represented by
graph G decomposes into either a sequence of two subtasks
(corresponding to G1 and G2 in (i)) or into two independent
subtasks which could be executed in parallel (corresponding
to G1 and G2 in (ii)). The parallelism is instantiated by
enabling two threads to continue from node s in (ii) above;
these threads then recombine into a single thread at the
corresponding node t. This multithreading corresponds to
a fork-join in a parallel programming language.

We will be considering algorithms expressed in terms of
tasks, a simple task being a size O(1) computation, and
more complex tasks being built either by sequencing, or by
forking, which is often expressed as recursive subproblems
that can be executed in parallel. Such algorithms map to
series-parallel computation dags, also known as nested-
parallel computation dags.

Parallel tasks can be scheduled on cores using either a
centralized scheduler or a distributed work stealing sched-
uler. In either case, each processor will execute a sequence
of tasks during the computation, where a task is a fragment
of a sequential execution of the multithreaded computation.
Following the work-stealing terminology, we will often refer
to any such task, other than the initial task that starts the
execution, as a stolen task. We will also use the term parallel
task to denote either the initial task or a stolen task.

Execution Stack. We now describe where the variables
generated during the computation are stored, including the
variables needed for synchronization at joins and for man-
aging procedure calls. In a single processor algorithm a
standard solution is to use an execution stack. We proceed in
the same way, with one stack per thread. Before elaborating
we define task kernels.

Definition II.1. For a task τ , its task kernel τK is the
portion of τ ’s computation dag that remains after the
computation dags for all its stolen subtasks are removed.

3

The original task in the algorithm and each stolen sub-
task will have a separate computation thread. The work
performed by a computation thread for a task τ is to execute
the task kernel τK for task τ . Each computation thread will
keep an execution stack on which it stores the variables it
creates: variables are added to the top of the stack when
a subtask begins and are released when it ends. For each
procedure the thread initiates, it creates a segment to hold the
variables declared by the procedure. The segment is placed
at the top of Sτ . When the procedure completes, the space
used by the segment is released.

Usurpations. As the execution of a task kernel τK proceeds,
the processor executing it may change. This change can
occur at a join node v at which a stolen subtask τ ′ ends, and
it occurs if the processor C ′ that was executing τ ′ reaches
the join node after the processor C that had been executing
τK . Then, C ′ continues the execution of τK going forward
from node v. C ′ is said to usurp the computation of τK ; we
also say that C ′ usurps C. Indeed, if there are k steals of
tasks from τ , then there could be up to k usurpations during
the computation of τK .

A. Cache Misses

The parallel execution of a multithreaded algorithm causes
it to incur additional cache misses over those incurred in a
sequential execution, and it also introduces fs misses. In this
paper we consider the overhead due to fs misses, but we first
outline our treatment of cache misses in [14]. Following the
cache-oblivious model [18], an optimal cache replacement
policy is assumed at the private cache of each processor.

The dependence of cache miss costs on the data layout
has been widely addressed in the extensive work on cache
efficient algorithms, in both the sequential and parallel set-
ting. In [14] we set up a systematic method for analyzing the
cache miss costs in a computation by defining the following
cache-friendliness function f(r).

Definition II.2. A task τ that accesses r words of data is
f -cache friendly if these r words of data are contained in
O(r/B+f(r)) blocks. A computation has cache friendliness
function f(r) if every task in it is f -cache friendly.

For instance, f(r) = 1 if τ accesses an array stored in
contiguous locations; if τ access a

√
r×
√
r submatrix of a

matrix stored in RM (i.e., row major) order, then f(r) =
√
r.

Since we consider the overhead of fs misses in this paper,
our analysis does not use the cache-friendliness function
f(r); instead it uses the block sharing function L(r) defined
in the next section. Nonetheless, the algorithms we present
in this paper all continue to achieve the cache miss bounds
established in [14] while additionally achieving the upper
bounds on the cost of fs misses that we establish here.

B. False Sharing Misses

An fs miss occurs if two or more processors access values
stored in a block β within the same time interval, and at least
one of the accesses is a write. We refer to such a block β
as a writable block in this time interval. We assume that
fs misses are handled under a cache coherence protocol
whereby a write into a location in a shared block β by
core C invalidates the copy of β in every other cache that
holds β at the time of the write. This is done to maintain
data consistency across all copies of a block in caches at
all times. There are other ways of dealing with fs misses
(see, e.g., [21]), but we believe that the fs miss cost with
our invalidation rule is likely as high as (or higher than)
that incurred by other mechanisms. Thus, our upper bounds
should hold for most of the coping mechanisms known for
handling fs misses.

We do not make any assumptions about the manner in
which a shared block is transferred to processors that need
it and have invalidated their local copy. The only assumption
we make about fs misses is that a processor cannot unduly
delay transferring a requested block. For specificity, we
assume that the delay for a single block transfer is of the
same magnitude as the cache miss delay. Thus, the cost of
an fs miss is at least that of one cache miss, but it could be
much larger, depending on the number of cores that share a
block β and write into it; in fact, the cost of an fs miss could
be unbounded in a scenario where several cores repeatedly
write into locations in the block, if the system mechanism
for transferring access to the block does not ensure fairness.
Our upper bounds apply even to such situations, hence the
bounds we obtain are truly worst-case.

Definition II.3. Suppose that block β is moved m times
from one cache to another due to fs misses during a time
interval T = [t1, t2]. Then m is defined to be the block delay
incurred by β during T .

The block wait cost incurred by a task τ on a block β is
the delay incurred during the execution of τ due to fs misses
when accessing β, measured in units of cache misses.

Note that the block wait cost incurred by a task τ on a
block β is the delay incurred due to fs misses as measured
in units of cache misses. Clearly, the block delay of a block
β during a time interval T is an upper bound on the block
wait cost incurred by any task on block β during T , though
the latter could be smaller for some or all tasks. In this paper
we will usually use the block delay incurred by β to upper
bound the block wait cost at each task that accesses β. (In
our recent work on false sharing costs under randomized
work stealing [13], which builds on the current paper, we
perform a more refined analysis to bound the block wait
costs instead of simply using the block delay.)

For blocks storing data on the execution stack, we view a
block β as existing for a time interval T , which begins when

4

a variable is first added to β and ends when that variable is
released. If β is subsequently reused to store another portion
of the execution stack, those accesses will not contribute to
the block wait cost for accesses during T , hence for the
purposes of analyzing the overall delay τ incurs, we can
view this as a new block.

Definition II.4. A task τ of size r is L(r)-block sharing, if
there are at most O(L(r)) writable blocks that τ can share
with all other tasks that could be scheduled in parallel with τ
and that could access a location in the block. A computation
has block sharing function L if every task in it is L-block
sharing.

Definition II.5. An algorithm is limited-access if each of its
writable variables is accessed O(1) times.

The two main algorithmic techniques that we use to
reduce the cost of fs misses are to enforce limited access
and to try to obtain O(1)-block sharing. In some algorithms,
we also use a gapping technique to reduce the fs miss cost.
These techniques reduce the number of blocks in a task that
are subject to fs misses as well as the number of accesses that
give rise to fs misses in a given block, and are thus helpful
in reducing the block delay. However, there is inevitable
contention at a block storing a portion of the execution stack
of a task, and this contention can give rise to significant
block delays especially in recursive algorithms. We address
this cost in Section V, where we obtain manageable bounds
on the block delay for the class of block-resilient hierarchical
balanced parallel (HBP) computations. Algorithms for many
common problems fall into this class, as we show in Section
VI.

III. HBP ALGORITHMS

We present the definition of HBP computations, intro-
duced in [12]. In the following, we define the size of a
task τ , denoted |τ |, to be the number of already declared
distinct variables it accesses over the course of its execu-
tion (this does not includes variables τ declares during its
computation).

Definition III.1. A BP computation π is an algorithm that is
formed from the down-pass of a binary forking computation
tree T followed by its up-pass, and satisfies the following
properties.
i. In the down-pass, a task that is not a leaf performs only
O(1) computation before it forks its two children. Likewise,
in the up-pass each task performs only O(1) computation
after the completion of its forked subtasks. Finally, each leaf
node performs O(1) computation.
ii. Each node declares at most O(1) variables, called local
variables; π may also use size O(|T |) arrays for its input
and output, called global variables.
iii. Balance Condition. Let w be a node in the down-pass
tree and let v be a child of w. There is a constant 0 < α < 1

such that |τv| ≤ α|τw|.

A simple BP example is the natural balanced-tree proce-
dure to compute the sum of n integers.

Definition III.2. A Hierarchical Balanced Parallel (HBP)
Computation is one of the following:
1. A Type 0 Algorithm, a size O(1) sequential computation.
2. A Type 1 Algorithm, a BP computation.
3. Sequencing. A Type t sequenced HBP algorithm results
when O(1) HBP algorithms are called in sequence, where
these algorithms are created by rules 1, 2, or 4, and where
t is the maximum type of of the sequenced HBP algorithms.
4. Recursion. A Type t + 1 recursive HBP algorithm, for
t ≥ 1, results if, on an input of size n, it calls, in succession,
a sequence of c = O(1) ordered collections of v(n) ≥ 1
parallel recursive subproblems, where each subproblem has
size Θ(r(n)), and r(n) ≤ αn for a constant 0 ≤ α < 1.
Often, we will let b = 1/α.

Each of the c collections can be preceded and/or followed
by a sequenced HBP algorithm of type at most t, and at least
one of these calls is of type exactly t. If there are no such
calls, then the algorithm is of Type 2 if c ≥ 2 and is Type 1
(BP) if c = 1.

Each collection of parallel recursive subproblems is orga-
nized in a BP-like tree Tf , whose root represents all of the
v(n) recursive subproblems, with each leaf containing one of
the v(n) recursive subproblems. In addition, we require the
same balance condition as for BP computations for nodes
in the fork tree.

In the rest of the paper we will use t, c, v, r, α and b
as specified in the above definition.

Matrix Multiply (MM) with 8-way recursion is an exam-
ple of a Type 2 HBP algorithm. Given as input two n × n
matrices to multiply, it makes 8 recursive calls in parallel to
subproblems with size n/2 × n/2 matrices. This recursive
computation is followed by 4 matrix additions, which are BP
computations. Here c = 1, v(n2) = 8, and r(n2) = n2/4.

Depth-n-MM [18], [11] is another Type 2 HBP algorithm
for MM with c = 2, v(n2) = 4, and r(n2) = n2/4. For
both algorithms f(r) =

√
r if the matrices are in row major

(RM), and f(r) = O(1) if they are in bit-interleaved (BI)
format.

The HBP class is closely related to the Hierarchical Di-
vide and Conquer (HD&C) class in [4] (after the parallelism
is exposed in the HD&C algorithms). The main differences
are that we allow sequencing of HBP computations even at
the top level, and that we allow a non-constant number of
subproblems to be called recursively.

An HBP algorithm is block-resilient if (i) it is limited-
access, (ii) it satisfies certain requirements on the data
layout, and (iii) it is top dominant. We specify the data layout
requirements in Section IV and we define top dominance in

5

Section V. Block-resilience will be key to reducing the cost
of fs misses on the execution stacks of tasks.

IV. DATA LAYOUT

The layout of data plays an important role in the number
of cache and fs misses incurred by a computation. In this
section we describe the data layout that our HBP algorithms
will use.

We start by defining local and global variables.

Definition IV.1. A variable x declared in a procedure P is
called a local variable of P . A variable y accessed by P
and declared in a procedure Q calling P or used for the
inputs or outputs of the algorithm A containing P is said
to be global with respect to P . Note that y would be a local
variable of Q if declared in Q.

An algorithm’s input and output variables are always
global variables. All other variables will be local to some
procedure within the algorithm’s execution. The local vari-
ables are all stored on execution stacks as we explain next.

A. Execution Stack

Let τ be a task of size n in a Type 2 HBP computation.
The execution stack Sτ for τ consists of an initial segment of
size S(n) for τ ’s local variables and then log v(n) segments
each of O(1) length to keep track of parallel recursive calls;
each recursive call will then create similar entries following
the initial entries for τ . The topmost segment on Sτ will
either be one of the above types of segments or, if τ is
currently executing a BP computation τ ′ within the HBP
computation, at the top there will be O(log |τ ′|) segments
of length O(1) for this BP computation. An analogous
organization applies to type t > 2 HBP computations.

The execution stack Sτ is created by the processor C that
starts τ ’s execution. The variables on Sτ may be accessed by
stolen subtasks, which can cause fs misses. Also, if another
processor C ′ takes over τ ’s execution through usurpation
(i.e., by being the second, and hence last, processor to finish
the work preceding a join, see Section II), then C ′ will
continue using Sτ for the remainder of τ ’s computation (at
least until yet another processor takes over τ ’s computation).
The analysis of fs miss costs needs to handle the possible
resulting moves of blocks storing the execution stack due to
the usurpation.

In addition to the variables stored on the execution stacks,
an HBP algorithm A needs variables in which to store its
output. These output variables, which may be arrays, are
stored in memory locations separate from those used for the
execution stacks, and share no blocks with the execution
stacks. Also, note that in an HBP algorithm A, the only
variables guaranteed to be non-writable are those for the
input, which again is not stored on any execution stack.

B. Data Layout in a BP Computation
Recall that a BP computation comprises a tree Td of fork-

ing nodes, called the down-pass tree, followed by leaf nodes,
followed by a complementary tree Tu of join nodes, called
the up-pass tree. Also, recall that each node performs O(1)
operations. We now specify some data layout requirements
on both global and local variables. These are not required for
the results in this paper, but they are needed for our results
on cache and fs misses under randomized work stealing [14],
[13], and all of the algorithms we present in this paper satify
these requirements.

Global Variables: We assume that the writes to the
global variables (typically arrays of size n) obey the follow-
ing well-buffered rule.

Well Buffered Rule. Let v be a node in the down-pass tree
and let T be the subtree in the down-pass tree rooted at v.
Suppose that T ’s nodes can access an array A. Then all the
accesses by T occur in an interval I of length Θ(|T |) and
the only nodes that can access I are those in T and in the
complementary tree in the up-pass tree. Furthermore, v can
only access the middle of I: there are left and right portions
of I of length Θ(|T |) that v cannot access, and which can
be accessed only by v’s left and right subtrees, respectively.
An analogous definition applies to nodes in the up-pass tree.

Note that prefix-sums can be implemented as a sequence
of two well-buffered BP computations, where the input data
is viewed as being at the leaves of a balanced binary tree.
The first BP computation computes the sums of values in
each subtree, storing them in infix order; these are the inputs
to the second computation which finds the prefix sums.

Local Variables: The local variables are used to store
the data needed by individual computation nodes; by the
BP definition, there are at most e = O(1) such (one-word)
variables per node. When the computation of a task τ begins,
its local variables are added to its thread’s execution stack,
and when it ends, this space is released.

We limit the BP algorithms we consider to obey the fol-
lowing constraint (achieved by a natural scoping of variables
and the use of return value variables).

Local Constraint. Writes to local variables by the task for a
node v are to v’s local variables, and in the up-pass possibly
to the local variables at parent(v) in Td.

C. Data layout in an HBP computation
The rules restricting the writes in BP computations apply

equally to the down-pass and up-pass trees used to instantiate
recursive calls in HBP algorithms. The subgraphs corre-
sponding to the recursive computations are analogous to the
leaves of a BP computation. This permits us to perform an
analysis of the HBP computations which is similar to that
for the BP computations.

To enable such an analysis, we require that the writes by
the recursive computations to the local variables (arrays) of

6

their calling procedures obey an analog of the well-buffered
rule for BP global variable access, namely that the left-to-
right sequence of recursive computations write to successive
disjoint portions of the parent’s arrays. Further, we require
that within each recursive procedure, its writes to these
arrays be similarly constrained. A simple way of ensuring
this is to impose the following constraint:

HBP Data Accesses. In order to enforce limited access
writes, a recursive call performs its writes to the array
of variables of its calling program by means of a BP
computation that occurs at the end of the recursive call. The
collection of these BP computations terminating the recur-
sive calls obeys the well buffered rule for a BP collection
when accessing an array A.

V. BOUNDING THE TRANSFERS OF A SINGLE BLOCK

The limited access property states that each writable
variable is accessed O(1) times, and this would appear to
bound the block delay of any block by O(B). However, due
to procedure calls, including recursive ones, over time more
than B variables could all be stored in a block β on an
execution stack, and so the limited access property does not
suffice to yield the O(B) bound that we seek on the number
of accesses to β.

Consider, for instance, the execution stack Sτ of a BP
computation τ . Sτ has height O(log n), where n is the size
of τ . However, a block on Sτ stores the data for a subtree
of τ of depth that can be up to d = Θ(min{B, log n}),
and hence up to 2Θ(d) different values can be stored in β
during this computation, even though it is a limited-access
computation.

In this section we establish that for a block β on the
execution stack Sτ of any task τ in the class of block-
resilient HBP algorithms, the block delay Y (τ,B) is in fact
bounded by O(B); block-resilience is defined in Definition
V.6. Since a block delay of Θ(B) is inevitable in an
asynchronous setting even if every location in the block is
accessed only once, this is an optimal upper bound on the
block delay for a block on the execution stack.

In Section V-A we present some preliminary results. In
Sections V-B and V-C, respectively, we bound Y (τ,B) by
O(B) for BP and block-resilient HBP computations.

A. Preliminaries
We will assume the following property holds for space

allocation by the runtime system.

Property V.1. (Space Allocation Property.) Whenever a
processor requests space it is allocated in block sized units;
naturally, the allocations to different processors are disjoint
and entail no block sharing.

In accordance with Property V.1 we will assume that each
new instantiation of a block on an execution stack represents
a new block. This is consistent with our definition of block

delay and block wait cost (Definition II.3) since two different
accesses to the same block in different instantiations on an
execution stack will not contribute to each other’s block wait
costs. This assumption will play an important role in the
proof of Lemma V.7.

To simplify the discussion, we assume that each stolen
subtask begins at the right child of the fork node from which
it was stolen. Incidentally, this rule enables constant factor
reduction in the worst-case bound on cache misses compared
to having the task at either child being stolen.

The next observation follows from the fact that the kernel
τK of a task τ corresponds to the portion of τ that remains
after its stolen subtasks are removed, together with the fact
that τK is executed in a modified depth first search order
in which a (join) vertex is explored only when all of its
in-edges have been traversed.

Observation V.2. Let D be the series-parallel computation
dag for a task τ , and let τK be its kernel. Consider the
start nodes for all of τK’s stolen subtasks, and let v be the
deepest such node in D. Let Pτ be the path in D from the
root of D to the parent of v. Then, the set of tasks stolen
from τK consists of the tasks corresponding to those nodes
of D that are the right child of a node on Pτ but are not
themselves on Pτ .

We will refer to the path Pτ in the above definition as the
steal path of τ . Note that if a task stolen from τ accesses
τ ’s execution stack, then the segment it accesses on τ must
correspond to that for a node on Pτ .

Let β be a block on the execution stack of a task τ . The
following lemma establishes that the block delay incurred by
β can be bounded as a function of the number of accesses
to β by stolen subtasks of τ , independent of the number of
accesses to β by the processor executing the kernel of τ .

Lemma V.3. Let β be a block on the execution stack Sτ of
a task τ , and let T ′ be any sub-interval of time during which
τ is executed. Suppose that processors C1, · · · , Ck are the
only processors executing stolen subtasks of τ during T ′.
Further suppose that they access block β a total of x times
during T ′. Then β incurs a block delay of at most 2x + u
during T ′, where u is the number of β-accessing usurpations
of τ that occur during T ′.

Proof: By Definition II.3 we need to bound the number
of times β is moved between caches. Processors C1, · · · , Ck
cause at most x moves of block β to their caches as a
result of their x accesses. Thus processor C needs at most
x moves of block β to its cache to handle all its accesses
to β, regardless of their number. If the execution of τ shifts
from C to C ′ due to a usurpation, then C will not access
Sτ any further, since it has completed its execution of τK .
Thus the usurpation, if it accesses β, causes just one move
of the block to C ′, and hence there are only u additional
moves of β due to usurpations. This proves the lemma.

7

B. Block Delay in a BP Computation
In this section we bound the block delay Y (τ,B) of any

block on τ ’s execution stack by O(min{B, log |τ |}) when
τ is a task in a BP computation.

This bound is shown by demonstrating that the only
segments read by stolen subtasks of τ are those for nodes on
Pτ , that these segments are all present on Sτ at one moment
in common and hence occupy disjoint locations, and as their
variables are limited access, a bound of O(B) on Y (τ,B)
ensues. The bound of O(log |τ |) follows because there are
O(log |τ |) such segments and they each have size O(1).

Lemma V.4. Let A be a limited-access BP algorithm and
let τ be a parallel task in the execution of A. Let β be a
block used for τ ’s execution stack Sτ . Then β incurs a block
delay of O(min{B, log(|τ |)}) during τ ’s execution.

Proof: By Observation V.2, there is a single path Pτ ,
starting at the root node of τ , such that stolen subtasks of
τ correspond to off-path right children of Pτ . Each node v
of Pτ stores O(1) local variables contiguously on Sτ in its
segment; we will denote the segment for v by σv . As noted
earlier, the only segments that can be accessed by the stolen
subtasks of Pτ are the segments for nodes on Pτ . In addition,
these segments for nodes on Pτ occupy disjoint portions of
Sτ , so there is no re-use of β for different variables. As each
of the variables stored on Sτ is a limited access variable, it
follows that β can be accessed O(min{B, log(|τ |)}) times
by the stolen subtasks, since |Pτ | ≤ log(|τ |).

Finally, usurpations can only occur on the up-pass of the
computation, when the segments on Sτ are all segments
for nodes on Pτ , and thus only these segments can be
accessed by a usurped portion of the computation. But
O(min{B, log(|τ |)}) bounds the total length of the portion
of segments of Pτ on β, and hence the number of accesses
to β, and hence the number of usurpations accessing β.

The result now follows from Lemma V.3.
Note that a BP computation of size r may produce an

output of length r. This output is not part of the local
variables of the BP computation, and hence is not consid-
ered in Lemma V.4; by limited access, each block in the
output is accessed O(B) times. This output will need to be
considered if the BP computation is called from within an
HBP computation; this will be addressed in the next section.

C. Block Delay in an HBP Computation
We now bound Y (τ,B) for a task in a block-resilient

HBP algorithm A with computation dag D. For this, we
first define top-dominance and then block-resilience. Al-
though these definitions are quite technical, we describe in
the next section block-resilient HBP algorithms for several
fundamental algorithms, many of which are known multicore
algorithms, or small variants of such algorithms.

Before entering into the first definition, we make one
observation regarding the size of a non-recursive procedure

B called from a procedure A. The size of B could be larger
than the size of A. This could occur, for example, if A has a
large collection of local variables, and many or all of these
variables form the input to B. Accordingly, we use n to
denote the size of an invocation of A and m to denote the
size of the corresponding invocation of B.

Definition V.5. Let A be a Type t ≥ 2 HBP algorithm with
computation dag D. A is S(n)-top dominant, top dominant
for short, if S(n) is non-decreasing, and if, for each size n
invocation of A,
(i) The size, X(n), of A’s segment on the execution stack
satisfies X(n) = O(S(n)).
(ii) The total length of the segments for the nodes along any
computation path P in D is O(X(n)).
(iii) Every Type t′ ≥ 2 procedure B called by A is SB((m)-
top-dominant, and further if the call to B results in an
invocation of size m, then SB(m) = O(X(n)).

We will refer to S(n) as the space bound of the top
dominant algorithm A since the space used on the execution
stacks in the computation of A is bounded by S(n). Note
that by this definition, a computation cannot be top dominant
if it uses only constant space for its local variables.

Later in this section we will show that algorithms in
a fairly natural class of ‘fast shrinking’ algorithms that
generate parallel recursive tasks of geometrically decreas-
ing sizes are all top dominant. In all of our algorithms,
X(n) = Θ(S(n)) for all inputs of length n.

We are now ready to define block-resilience.

Definition V.6. An HBP algorithm is block-resilient if it is
limited access, top dominant, and its accesses also observe
the well-buffered rule and the local constraint.

We now bound Y (D,B) for block-resilient HBP tasks.
As for BP computations, the main idea is to note that
the only segments accessed by stolen tasks are those for
nodes on Pτ . Here the difficulty is that some of these
segments could occupy the same locations on β, albeit
at different times. Despite this, we show that the total
length of the portions of the segments overlapping β for
nodes on Pτ is Y (τ,B) = O(min{S(|τ |), B)}). Together
with the limited access property this implies there are only
O(min{S(|τ |), B)}) accesses to these segments, which in-
cludes all accesses by stolen subtasks. We also need to bound
the number of usurpations, since in an HBP computation,
usurped tasks may access segments stored in β which are
for nodes not on Pτ . Here too we show that there are only
O(min{S(|τ |), B)}) such accesses.

Lemma V.7. Let A be a block-resilient HBP algorithm with
space bound S(n). Let τ be a parallel task in the execution
of A, and let β be a block used for τ ’s execution stack Sτ .
Then the block delay incurred by β during the execution of
τ is bounded by Y (τ,B) = O(min{S(|τ |), B)}).

8

Proof: We partition the accesses to β into two cate-
gories: 1. those accessing segments for nodes on Pτ , the
Pτ -segments, and 2. those accessing segments for nodes not
on Pτ . The Pτ -segments could be accessed by stolen tasks,
by the computation of usurped portions of the task kernel,
and by the computation of the initial non-usurped portion.
We show that the number of accesses to the Pτ -segments
is bounded by O(min{S(|τ |), B)}). Then, by Lemma V.3,
we can conclude that the Category 1 accesses contribute
O(min{S(|τ |), B)}) to the block delay. The segments in
Category 2 are accessed only by the processors executing
τK , since stolen subtasks can only access segments for
nodes on Pτ . Thus by Lemma V.3, the number of block
transfers induced by the Category 2 accesses is bounded
by the number of distinct usurpations which execute one or
more of these accesses, and it suffices to bound this number.

Category 1: Accesses to segments on Pτ .
Let σ′ be the segment on the bottom of β (i.e. all other
segments present at the same time as σ′ were added to
the execution stack Sτ later than σ′), and let τ ′ be the
corresponding task. The block β will be deallocated when
τ ′ completes its computation, and we need to bound the
number of accesses to β until this event occurs.

In the cases below, we will either directly show a bound
of O(min{S(|τ |), B)}) on the number of accesses, or we
will show that the sum of the lengths of the segment
portions overlapping β for nodes on Pτ is bounded by
O(min{S(|τ |), B)}). We call this the length bound. By
the limited access property, this implies the same bound
on the number of Category 1 accesses. (In most of the
cases below, we show a bound of O(min{S(|τ ′|), B)}) =
O(min{S(|τ |), B)}).)

Case 1. σ′ is the segment for a node in a BP computation.
Then β is deallocated once this BP computation completes,
and hence the bound from Lemma V.4 applies, a bound of
O(min{log(τ ′′), B}, where τ ′′ is the BP task at hand; by the
top dominance of τ , this is bounded by O(min{S(|τ |), B)}).

Case 2. σ′ or a portion of σ′ fills β.
During τ ′’s lifetime all the accesses to β are to σ′ and hence
by limited access there are only O(B) = O(min{S(τ ′), B})
such accesses.

Case 3. τ ′ is a task of type t′ > 1 and X(|τ ′|) ≤ B.
Then the other segments that appear in β are all part of τ ′’s
computation and by top dominance the length of the subset
of the Pτ -segments is O(X(τ ′)) = O(min{S(τ ′), B}).

Case 4. τ ′ is a task of type t′ > 1 and X(|τ ′|) ≥ B.
For each of its up to c collections of recursive calls, τ ′

will generate on Pτ a sequence of log(v(|τ ′|) size O(1)
segments for nodes along a path in the BP-like forking tree
that generates the v(n) recursive tasks. As in Lemma V.4,
for each collection the length bound is O(min{ht(τ ′), B});
but ht(τ ′) = O(log v(|τ ′|) = O(S(|τ ′|), the last bound

following by top dominance; thus the length bound per
collection is O(min{S(τ ′), B}). Because c = O(1), the
overall length bound is also O(min{S(τ ′), B}).

To complete the Case 4 bound, we need to consider the
space in β used by the segments σ′′ for the procedures,
recursive or non-recursive, called by τ ′. Let τ ′′ be one such
task. If S(|τ ′′|) ≤ B then, as in Case 3 the space in β used
by τ ′′’s segment plus the segments its computation generates
that have nodes on Pτ is bounded by O(min{S(τ), B}).
Otherwise, the segments generated by τ ′′’s computation all
lie outside β as στ ′′ fills the remaining space in β and thus
τ ′′ uses space O(min{S(|τ ′′|), B}) = O(min{S(τ), B})
in β. There are at most 2c + 1 such recursive and non-
recursive procedure calls, and as c = O(1), this is a total of
O(min{S(τ), B}) space used in β.

Case 5. σ′ is the segment for a node in a tree forking
recursive calls.
A length bound of O(min{S(τ), B}) is obtained by an
analysis largely identical to that for Case 4.

It follows that there are at most O(min{S(τ), B}) Cat-
egory 1 accesses, and hence at most O(min{S(τ), B})
transfers of β due to these accesses.

Category 2: Accesses to segments for nodes not on Pτ .
As already noted, the Category 2 accesses we need to
bound are all due to usurpations, and occur in the following
situation. Following a usurpation by a processor C ′, C ′

continues the execution of τK . This includes the execution
of as yet unexecuted nodes that are descendants of nodes
on Pτ and to the left of this path (recall that off-path right
children of nodes on Pτ are the nodes where stolen subtasks
begin). If C ′’s first access to β is to a segment for such
a node then this causes an additional transfer of β. So
we need to bound the number of usurpations causing this
type of access. Recall that, by Lemma V.3, each usurpation
contributes at most O(1) to the block delay of β.

We obtain the desired bound by associating each usurp-
ing processor with the segment for a distinct node on
Pτ as follows. Let v be the node at which the stolen
subtask causing the usurpation started. We will associate
this usurpation with the segment for the parent of node
v; note that this associated segment is for a node on
Pτ . Some of these associated segments may overlap β
(Category 1 segments) while others may be more recently
added and may lie above β on Sτ (Category 2 segments).
The number in Category 1 is readily bounded: There are
O(min{S(|τ |), B)}) such segments overlapping β, since, by
the argument for Category 1 accesses, between them, these
segments incur O(min{S(|τ |), B)}) accesses to β. So the
usurping processors associated with Category 1 segments
cause O(min{S(|τ |), B)}) additional accesses.

The only usurping processors C remaining to be consid-
ered are those whose associated segments do not overlap β.
Such segments are all higher up on Sτ than β (i.e. more

9

recently added). Let C be such a usurping processor, let σ
be the associated segment, and let σ′ be the topmost segment
on Sτ overlapping β during σ’s lifetime. As σ is a segment
for a node on Pτ , so is σ′. Since we are now considering
accesses to segments on β for nodes not on Pτ , the access
by C which causes the additional transfer can occur only
after σ′ ceases to be on Sτ . Consequently, there is a distinct
segment σ′ overlapping β and on Pτ for each such usurping
processor, and thus there are at most O(min{S(|τ |), B)})
such usurping processors, as there are O(min{S(|τ |), B)})
segments σ′ for nodes on Pτ overlapping β.

This shows that there are at most O(min{S(|τ |), B)})
transfers of β due to usurpations of τK’s computation.

Next, we define the fairly natural class of ‘fast shrinking’
HBP algorithms, and we show that algorithms in this class
are top dominant.

Definition V.8. Let A be a Type t HBP algorithm whose
work is polynomially bounded. Then, A is fast shrinking
if there is a non-decreasing function S(n) = Ω(log n)
satisfying the following three conditions:
(i) A size n invocation of A has an initial segment of size
Θ(S(n)).
(ii) There is a constant ν < 1 such that c·S(r(n)) ≤ νS(n).
(iii) Any Type 2 ≤ t′ < t procedure B called by A is
fast shrinking, and if their invocations have sizes m and
n respectively, then the space bound SB(m) for B satisfies
SB(m) = O(S(n)).

All of the HBP algorithms we present are fast shrink-
ing. The polynomially bounded work is required to ensure
log v(n) = O(log n) for all HBP subcomputations; we can
remove this restriction by requiring S(n) = Ω(log(n·v(n)))
(instead of Ω(log n)) in each HBP procedure in the algo-
rithm.

Lemma V.9. If Type t A is fast shrinking then it is top
dominant.

Proof: We use induction on t.

Base case: t = 2.
Recall that A makes O(1) calls to BP procedures, and
that it makes c = O(1) collections of recursive calls to
subproblems of sizes bounded by r(n), and that v(n) upper
bounds the number of recursive calls in each collection of
recursive calls (see Definition III.2). We note that as A’s
work is polynomially bounded, v(n) must be polynomially
bounded too, and so log v(n) = O(log n).

Next, we observe that it suffices to prove property (ii) in
Definition V.5 (for properties (i) and (iii) follow immediately
from the corresponding properties in Definition V.8). To this
end, let P be a path in D. We identify the sequence of
segments that are created for the nodes on P . First, for each
BP task τ called by A, each of the O(log n) nodes of τ that
are on P will have a segment of length O(1). Second, for

each collection of recursive calls made by A, there will be a
forking tree to instantiate the recursive calls. Each such tree
will have log v(n) = O(log n) nodes on P , and each node
will have a segment of length O(1). Third, in each collection
of recursive calls made by A, there will be one recursive task
whose computation nodes intersect with P . Each such task
τ has a segment of length at most S(r(n)) = O(S(n)). The
total length of the segments in the above three categories is
O(log n+ S(n)) = O(S(n)).

In addition, each of the c successive recursive calls whose
nodes overlap with P will generate segments for the BP
tasks it calls and for any further recursive calls it may make.
So the total length of the segments for all the nodes on P is
bounded by O(S(n)+cS(r(n))+· · ·+ciS(r(i)(n))+· · ·) =
O(S(n) + νS(n) + · · ·+ νiS(n) + · · ·) = O(S(n)).

Inductive step: t > 2.
The one change to the argument in the base case is that
we need to account for the length of the segments of the
non-recursive procedures called by A. But, by induction, as
they are fast shrinking each such procedure B will generate
segments of total length O(SB(n)) = O(S(n)) for the nodes
along any path P . Hence the total length of the segments
for non-recursive procedures is O(S(n)) as in the base case,
and the overall bound follows as before.

In summary, in this section we have established that
in any block-resilient HBP, the block delay incurred by a
single shared block in a task τ is bounded by Y (τ,B) =
O(min{S(τ), B}) for an HBP computation, and Y (τ,B) =
O(min{log |τ |, B} for a BP computation. Since both S(τ)
and log τ depend only on the size of τ , we will henceforth
refer to Y as Y (r,B), where r is the size of the task τ .

VI. HBP ALGORITHMS

Table 1 (in Section I) lists the block-resilient HBP and
hybrid HBP algorithms that we present and analyze in
this paper. We now describe these algorithms, starting with
known algorithms that are inherently block-resilient HBP.

Scans and MA (Matrix Addition) [4] can be implemented
as a single BP computation. Prefix sums (PS) can be
implemented as a sequence of two BP computations, where
the first BP computation computes sums of disjoint sub-
arrays of size 2i, for i ≤ log n and the second BP
computation computes the final output. These are type 1
HBP computations with f(r) = O(1), L(r) = O(1), and
Y (r,B) = O(min{log r,B}) by Lemma V.4.

Matrix Computations. For matrix computations, we as-
sume that the matrix is in the bit interleaved (BI) layout,
which recursively places the elements in the top-left quad-
rant, followed by recursively placing the top-right, bottom-
left, and bottom-right quadrants. The advantage of the BI
layout is that it results in BP tasks that are O(1)-friendly,
and have O(1)-block sharing, which allows us to obtain good
cache and fs miss bounds. We describe several methods to

10

convert between the standard row major (RM) layout and
BI; these methods can be used in conjunction with our
algorithms for BI if the input and output matrices are to
be in RM.

MT is matrix transposition when the n × n matrix is
given in the BI layout. When we expose the parallelism
in the recursive algorithm in [18] we obtain a BP compu-
tation with f(r) = O(1), L(r) = O(1), and Y (r,B) =
O(min{log r,B}).

MM. This algorithm multiplies two n×n matrices by recur-
sively multiplying eight n/2 × n/2 matrices, and performs
the matrix additions for the divide and combine steps using
MA. This results in a Type 2 HBP computation with c = 1
collection of v = 8 subproblems of size s(m) = m/4, where
m = n2 is the size of the matrix. This algorithm computes
the 8 recursive submatrices in new subarrays. These matrices
are then combined with pairwise matrix additions, performed
using MA, and the final four submatrices are written back to
the four quadrants in the parent matrix. Thus each variable
in this algorithm is written only a constant number of
times, and the algorithm is inherently limited access. When
the matrices are in the BI layout, this computation has
f(r) = O(1) and L(r) = O(1), The space used for local
variables when multiplying k×k submatrices is S(k2) = k2.
Since this is a fast shrinking computation it is top dominant
by Lemma V.9, hence Y (r,B) = O(min{r,B}) by Lemma
V.7. The sequential cache complexity is Θ(n3

B
√
M

), and
T∞ = O(log2 n).

Strassen. This algorithm has the same HBP structure and
parameters as MM, except that v = 7 instead of 8. Hence
this is is a top dominant computation with L(r) = O(1),
Y (r,B) = O(min{r,B}), and sequential cache complexity
Θ(nλ

BMγ), where λ = log2 7 and γ = (λ/2) − 1 and T∞
remains O(log2 n).

Since we have assumed in the above algorithms that
matrices are in the BI layout, we need methods to convert
between the traditional RM (row major) layout and the BI
layout. It turns out that RM to BI is easy to execute with
O(1) block-sharing, while BI to RM requires more effort.

RM to BI. We use a simple BP computation that recursively
converts each quadrant in parallel, with all writes in BI order.
The writes are thereby arranged so that tasks share L(r) =
O(1) blocks for writing. Reading, however, is only f(r) =√
r-friendly. (This is an example of an algorithm where f(r)

is larger than L(r).) This is a type 1 HBP computation with
Y (r,B) = O(min{log r,B}).

Direct BI to RM. This uses the same recursion as RM
to BI. Thus Y (r,B) remains O(min{B, log r}). However,
since the writes are to an output matrix in RM, both L(r) and
f(r) are

√
r, and so this computation is

√
r-block sharing.

We describe improved methods for BI to RM later.

FFT. We expose the parallelism in the cache-oblivious FFT
algorithm in [18]. As noted in [11], this is also a low-depth
multicore algorithm. The algorithm views the input as a
square matrix, which it transposes, then performs a sequence
of two recursive FFT computations on independent parallel
subproblems of size Θ(

√
n), and finally performs MT on

the result. The sequential time is O(n log n), the sequential
cache complexity is O(nB · logM n) [18], and the parallel
depth is readily seen to be O(log n · log log n).

We keep the matrices in the BI representation. Thus, the
HBP algorithm FFT, when called on an input of length n,
makes a sequence of c = 2 calls to FFT on v(n) =

√
n

subproblems of size s(n) =
√
n with a constant number of

MT computations performed before and after each recursive
call. We have f(r) = O(1) and L(r) = O(1), outside of
the cost to convert between BI and RM formats. At the end,
to convert to the RM format we use either the Direct BI to
RM described above, or BI-RM for FFT (described below),
which will give an improved bound for block delay. This
is a fast shrinking Type 2 HBP with S(r) = Θ(r), hence
Y (r,B) = O(min{B, r}).

We now turn to HBP algorithms which need some mod-
ifications in order to achieve block-resilience (primarily the
limited access property).

Depth-n-MM. The standard version this algorithm is CO-
MM [4], [20], which is obtained by exposing the parallelism
in the cache-oblivious matrix multiplication algorithm [18].
It has c = 2 sequenced collections of recursive calls each
to v = 4 parallel subproblems of size s(n2) = n2/4. It
performs O(n3) work, has O(n3/(B

√
M)) sequential cache

complexity, and O(n) critical path length.
CO-MM is not a limited access algorithm, since each

entry in the matrix is written n times. Hence, we convert
it into a limited access algorithm as follows. Each MM
subproblem creates 4 subarrays to store the results of the 4
recursive calls that it makes. Each array entry is then written
and read only twice (once for each of the two recursive calls
made in sequence on that subarray). After the computation
of a submatrix is completed, we use a BP computation to
add it back to the appropriate quadrant in the parent matrix.
We note that this causes the algorithm to use O(n2 · log p)
extra space, but this is still a better bound than the excess
space of Θ(n2 · p1/3) incurred by MM.

This algorithm is a type 2 HBP with f(r) = O(1) and
L(r) = O(1) when the matrices are in the BI layout. Since
this is a fast shrinking computation it is top dominant, hence
Y (r,B) = O(min{r,B}).

BI-RM (gap RM). We have the same algorithm as as Direct
BI to RM, but to mitigate the fs miss cost, we use a gapping
technique. The destination array representing the RM matrix
will be given gaps as follows: between r× r subarrays (for
values of r corresponding to recursive subproblems) the rows
will be given a length r/ log2 r gap. Now, tasks of size r2

11

for r = Ω(B log2B) share zero blocks for their writing.
This gives a cost of O(Br) for the fs misses for a size r2

task, for r = O(B log2B). So L(r2) = O(r), but only for
r ≤ B log2B.

The justification for this choice of size is that it increases
the size of the array by only a constant multiplicative
factor (since

∑
r=2i

1
log2 r

= O(1)). Indeed a gap of
r/[log r(log log r)2], or any analogous sequence of iterates,
also works, reducing the fs miss cost correspondingly.

Having written to an array with gaps one needs to
compress the array using a standard scan. This is a BP
computation which has f(r) = O(1) and L(r) = O(1).
This is a sequence of two BP computations so we have
Y (r,B) = O(min{log r,B}).

We now turn to BI-RM for FFT, which is a new algorithm
for converting from BI to RM. Although the number of
operations is now ω(n2), this algorithm achieves a lower
block delay cost than BI-RM (gap RM), and is a better
choice for FFT, and for all three MM algorithms.

BI-RM for FFT. This is an O(n2 log log n) operation
algorithm with T∞ = O(log n). The algorithm divides the
input BI array of length n2 into n subproblems, each of
which it recursively converts to the RM order. Then, using a
BP computation, it copies the n subarrays into one subarray,
accessing data according to the RM order in the target
output. This is a type 2 HBP computation that calls c = 1
collection of v(n2) = n subproblems of size s(n2) = n.
The BP computation for the copying is organized so that
the writes are in RM order, and hence L(r) = O(1).

This is a fast shrinking Type 2 HBP with S(r) = Θ(r),
hence Y (r,B) = O(min{B, r}). It can be shown that
f(r) =

√
r; we omit the details here.

Finally, we discuss SPMS sort [12].

SPMS Sort. ([12]) The SPMS sort has the same structure as
FFT, though its forking trees have the more relaxed property
that the subproblem sizes decrease by at least constant every
O(1) levels rather than every level. As shown in [12], it has
f(r) =

√
r and L(r) = O(1). Its space usage for local

variables is S(r) = Θ(r), and it is fast shrinking, similar to
FFT. Hence Y (r,B) = O(min{B, r}).

We use SPMS Sort in the following two hybrid HBP
algorithms, LR and CC.

List Ranking (LR). Efficient multicore algorithms for LR
based on eliminating large independent sets are given in
[3], [11], [5]. As in [5] we adapt the PRAM algorithm
whose first stage performs O(log log n) stages of eliminating
a constant fraction of the elements in the linked list. To
find a large independent set, we use the method MO-IS
in [11] that constructs an O(log(k) r)-size coloring of the
linked list, and then extracts an independent set of size
at least r/3 (r is the current length of the linked list) by
examining elements of each color class in turn. A phase

on a list of length r performs O(log(k) r) calls to SPMS
on inputs whose combined length is r, and as shown in
[11], incurs O(rB logM r) cache misses in parallel time
O(log r · log log r · log(k) r). The algorithm switches to
pointer jumping when the list has length O(n/ log n), and
its overall cost is O(n log n) work, O((n/B) logM n) cache
misses, and O(log2 n log log n) parallel time. As the LR
algorithm is essentially a sequencing of iterations of SPMS
sort, Y (r,B) = O(min{B, r}).

In [13] we introduce gapping into this LR algorithm to
further reduce the cost of fs misses under the RWS scheduler.

CC. We use the connected components algorithm in [11].
The dominant cost is log n stages of list ranking, so each of
the work, parallel time, cache complexity, and fs miss cost
increases by a factor of log n.

Other multithreaded algorithms, such as I-GEP [9] and
LCS [10] can be analyzed similarly. We omit the details
here.

VII. SCHEDULING BOUNDS

In this section we bound the block delay of the algorithms
we have presented when scheduled by SC , the simple
centralized multicore-oblivious scheduler used in [9]. For
this analysis we will bound Y (r,B) by O(B), ignoring the
dependence on r. We will also explain below, by means of
an example, why in the absence of the HBP properties, the
false sharing costs could be considerably larger than those
achieve with block-resilient HBP algorithms. The example
illustrating this will be the depth n MM algorithm.

We have established in Section V that each block in a
linear space block-resilient algorithm incurs at most O(B)
cache miss cost due to fs misses. Thus, if the algorithm is
O(1) block-sharing and we have an upper bound of S on the
number of steals in the computation when scheduled by a
given scheduler, the total number of parallel tasks, including
the initial task, is S + 1, and hence the total overhead due
to fs misses is bounded by O(B · (S + 1)) cache misses.
If we employ gapping, we may get better bounds by also
considering the sizes of the parallel tasks.

A Centralized Scheduler SC . Let us consider the simple
centralized scheduling algorithm in [9], which we will
denote by SC . We assume that SC does not know the block
size B, so it schedules obliviously with respect to block size
B. Given p processors, the scheduler SC expands the binary
forking in BP and HBP computations, in a BFS manner
until there are at least p tasks, all of approximately the same
depth, and it schedules these tasks on the p processes. Given
the balanced nature of HBP computations, typically the
entire computation is decomposed into a sequence of groups
of p roughly equal-sized parallel tasks by this scheduler.
Thus we can readily bound the number of parallel tasks.

In the following, we use ∆(n, p,B) to denote the block
delay cost in the computation when scheduled by SC (re-

12

call this is in units of cache misses). We let Q(n,M,B)
be the sequential cache complexity of the algorithm. If
∆(n, p,B) = O(Q(n,M,B)), then the overhead of the
cost due to fs misses is absorbed by the sequential cache
complexity of the algorithm, and hence will not dominate the
running time of the computation. (For most of the algorithms
we consider it is well-known that the parallel cache com-
plexity with private caches is at least that of the sequential
cache complexity on a single cache of the same size.) In
many cases, we achieve ∆(n, p,B) = O(Q(n,M,B)) for
reasonable sized inputs.

Scans. The scheduler SC will unfold the BP tree for log p
levels and will schedule the p tasks, each of size n/p, on
the p processors. This results in p parallel tasks, hence the
block delay cost is ∆(n, p,B) = O(p · B) for Scans and
Prefix Sums. Since Q(n,M,B) = O(n/B), we will have
∆(n, p,B) = O(Q(n,M,B)) when n = Ω(p · B2). For
MA, MT and RM to BI, the input size is n2, and the same
result holds with n replaced by n2.

Depth-n-MM. Here we have a sequence of
√
p parallel

executions of matrix multiplications on (n/
√
p) × (n/

√
p)

matrices. Since we assume the BI format, we have both f(r)
and L(r) being O(1). The number of parallel tasks is p3/2

hence the block delay cost is ∆(n, p,B) = O(B ·p3/2), and
∆(n, p,B) = O(Q(n,M,B)) when n2 = Ω(p·B4/3M1/3).

By contrast, consider the original Depth n MM algorithm
in [4], [20]. This algorithm fails to be block-resilient because
it is not limited-access; in fact, each location in the output
matrix is accessed n times in this algorithm. Consider a
single parallel computation on the p cores in the sequence
of
√
p parallel computations scheduled by SC . Each core

updates a disjoint output matrix of size n2/p, and due to
the BI format, it shares just two blocks with other cores.
But a core will update each entry in the portion of the
output matrix assigned to it n/

√
p times as it performs its

computation, and under an adverse asynchronous execution,
each of its updates to the shared block may entail false
sharing with the other core that shares this block. Across the
p cores, this could result in n ·B ·√p transfers of blocks due
to false sharing. The entire computation performs a sequence
of
√
p parallel executions of this type, resulting in a worst-

case bound of n ·B · p block transfers due to false sharing.
By contrast, since the maximum number of processors that
can be used work-efficiently is O(n2), the block-resilient
depth-n-MM bound of O(B · p3/2) is only O(

√
n · B · p)

even at the highest level of parallelism, and is smaller for
lower levels of parallelism.

MM and Strassen. In both of these algorithms, SC unfolds
O(log p) levels of recursion in order to generate p recur-
sive tasks of maximum size (log p1/3 levels for MM and
log p1/ log2 7 levels for Strassen). After computing on these
p parallel tasks, O(log p) levels of matrix additions remain
to complete the computation, each of which is performed

with p parallel tasks. Hence the number of parallel tasks is
O(p log p) for both algorithms, and the block delay cost un-
der the centralized scheduler is ∆(n, p,B) = O(B ·p log p),
and ∆(n, p,B) = O(Q(n,M,B)) if n2 = Ω(B4/λM1/λ ·
(p log p)2/λ), where λ = log2 7 for Strassen, and 3 for MM.

BI to RM for FFT. We have one recursive call to√
n subproblems. The recursion needs to be unraveled

i = O(log logn
log(n2/p)) time in order to generate p parallel

tasks that can be scheduled on the p processors. Thus,
the number of parallel tasks is O(p · log logn

log(n2/p)), and
the block delay cost is O(B · p log logn

log(n2/p)); We claim
∆(n, p,B) = O(Q(n,M,B)) if n2 = Ω(p · (B2 +
M)). To see this, observe that it suffices to have B2 ·
p · logM · log logn2

log(n2/p) = O(n2 log n2), and for this

B2 · p · logM logn2

log(n2/p) = O(n2 log n2), or equivalently
B2 ·p · logM = O(n2 · log(n2/p)) suffices. If Mp = O(n2),
then logM = O(log(n2/p)), and B2 · p = O(n2) suffices,
yielding that the condition p(B2 +M) = O(n2) suffices.

FFT and SPMS Sort. In FFT we have c = 2 recursive calls
to
√
n subproblems interleaved with the BP computation

MT. As in BI to RM for FFT, the recursion needs to be
unraveled i = O(log logn

log(n/p)) time in order to generate p
parallel tasks that can be scheduled on the p processors.
Since c = 2, there are 2i = O(log n/ log(n/p)) calls to
MT, each of which is scheduled using p parallel tasks. Hence
the computation is scheduled with O(p · (log n)/ log(n/p))
parallel tasks, leading to a block delay cost of O(B ·
(p log n)/ log(n/p)) cache misses. Similar to BI-RM for
FFT, ∆(n, p,B) = O(Q(n,M,B)) if n = Ω(p ·(B2 +M)).

We now turn to the algorithms that use gapping.

BI to RM (gap RM). We have a sequence of two BP
computations where the second is simply a scan with L(r) =
O(1), thus its block delay cost is O(pB). For the first BP
computation we have L(r) =

√
r if r = O(B2 log4B) and

is zero otherwise. Thus, if n2/p > B2 log4B there is no
fs miss cost here; for smaller values of n2/p, the block
delay cost is O(

√
n2/p · Bp) = O(Bn

√
p), and hence

∆(n, p,B) = O(Q(n,M,B)) if n2 = Ω(pB2 log4B).
(In contrast, if we stay with Direct BI to RM, we have
L(r) =

√
r, so ∆(n, p,B) = Θ(Bn

√
p) for all n, and then

∆(n, p,B) = O(Q(n,M,B)) only if n2 = Ω(pB4)).

List Ranking and CC. The total number of parallel tasks
under SC is dominated by the O(log n) sorting steps in the
pointer jumping phase, leading to block delay cost of O(B ·
p·log2 n
log(n/p)) cache misses. For CC, this cost is multiplied by a
factor of log n.

Other Schedulers. We have bounded the fs miss cost cost
incurred by our block-resilient HBP algorithms when sched-
uled by the natural centralized scheduler SC . In principle we
can apply the bounds we have obtained for L(r) and Y (r,B)
in Section VI (together with the sizes of the tasks scheduled

13

on the processors as needed), to determine the block delay
overhead for these algorithms under any scheduler.

In recent research [13] that builds on the results in this
paper, we analyze the performance of randomized work
stealing [7], [1] when fs misses are considered, and we
present improved bounds for series-parallel dags, and further
improved bounds for block-resilient HBP computations.

VIII. DISCUSSION

In this paper we have presented a collection of algorithmic
techniques to mitigate the overhead of false sharing. In
particular, we have established that any block-resilient HBP
algorithm with block-sharing function L(r) = O(1) incurs a
cost of no more than O(B) cache misses due to false sharing,
for each parallel task generated in the computation. We have
shown that many of the known highly parallel multithreaded
algorithms can be adapted to satisfy these requirements. We
also used an alternate gapping technique to reduce the false
sharing overhead in an algorithm that does not achieve O(1)
block sharing. Our results are general and apply to any
scheduling algorithm, and we illustrated our results using
the simple centralized scheduler used in [9].

Our results are for multicores with private caches. How-
ever, they also hold at higher levels of a cache hierarchy,
where the bound is in terms of the number of parallel tasks
scheduled at caches at that level. Centralized schedulers,
such as those in [4], [11], [6] reduce the number of parallel
tasks at higher level caches in an attempt to minimize cache
misses. By the results we have presented in this paper, this
strategy also reduces the false sharing costs, provided the
algorithms are block-resilient, with O(1)-block sharing or
suitable gapping.

REFERENCES

[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data
locality of work stealing. Theory of Computing Systems,
35(3), 2002. Springer.

[2] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava.
Fundamental parallel algorithms for private-cache chip mul-
tiprocessors. In Proc. ACM SPAA, pages 197–206, 2008.

[3] L. Arge, M. T. Goodrich, and N. Sitchinava. Parallel external-
memory graph algorithms. Proc. IPDPS, 2010.

[4] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran,
S. Chen, and M. Kozuch. Provably good multicore cache
performance for divide-and-conquer algorithms. In Proc.
SODA, pages 501–510, 2008.

[5] G. Blelloch, P. Gibbons, and H. Simhadri. Low depth cache-
oblivious algorithms. In Proc. ACM SPAA, pages 189–199,
2010.

[6] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V.
Simhadri. Scheduling irregular parallel computations on
hierarchical caches. In ACM SPAA, 2011.

[7] R. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, pages 720–748, 1999.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuzmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Proc. ACM PPoPP, pages 207–216, 1995.

[9] R. Chowdhury and V. Ramachandran. The cache-oblivious
Gaussian Elimination Paradigm: Theoretical framework, par-
allelization and experimental evaluation. Theory Comput Syst,
47(1):878–919, 2010.

[10] R. A. Chowdhury and V. Ramachandran. Cache-efficient
dynamic programming algorithms for multicores. In Proc.
ACM SPAA, pages 207–216, 2008.

[11] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachan-
dran. Oblivious algorithms for multicores and network of
processors. In Proc IPDPS, 2010.

[12] R. Cole and V. Ramachandran. Resource oblivious sorting on
multicores. In Proc. ICALP, Track A, 2010.

[13] R. Cole and V. Ramachandran. Analysis of randomized work
stealing with false sharing. CoRR, abs/1103.4142, 2011.

[14] R. Cole and V. Ramachandran. Revisiting the cache miss
analysis of multithreaded algorithms. In Proceedings of the
Tenth Latin American Theoretical Informatics Symposium,
LATIN ’12, 2012.

[15] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. MIT Press, 2009.

[16] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, S. E.,
R. Subramonian, and T. von Eicken. Logp: Toward a realistic
model of parallel computation. In Proc. ACM PPoPP, pages
1–12, 1993.

[17] R. Dorrigiv, A. Lopez-Ortiz, and A. Salinger. Brief announce-
ment: Optimal speedup on a low-degree multi-core parallel
architecute (LoPRAM). In ACM SPAA, pages 185–187, 2008.

[18] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In Proc. FOCS, pages 285–297,
1999.

[19] M. Frigo and V. Strumpen. The cache complexity of
multithreaded cache oblivious algorithms. In Proc. of the
18th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 271–280, New York, NY, USA, 2006.
ACM.

[20] M. Frigo and V. Strumpen. The cache complexity of mul-
tithreaded cache oblivious algorithms. Theory Comput Syst,
45:203–233, 2009.

[21] J. L. Hennessy and D. A. Patterson. Computer Architecture,
A Quantitative Approach, 4th Edition. Elsevier, 2007.

[22] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[23] L. G. Valiant. A bridging model for multi-core computing.
In Proc. ESA, volume 5193 of LNCS, pages 13–28, 2008.

14

