
Journal of Cloud Computing:
Advances, Systems and Applications

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems

and Applications (2019) 8:5

https://doi.org/10.1186/s13677-019-0128-9

RESEARCH Open Access

Efficient resource provisioning for
elastic Cloud services based on machine
learning techniques
Rafael Moreno-Vozmediano1* , Rubén S. Montero1, Eduardo Huedo1 and Ignacio M. Llorente1,2

Abstract

Automated resource provisioning techniques enable the implementation of elastic services, by adapting the available
resources to the service demand. This is essential for reducing power consumption and guaranteeing QoS and SLA
fulfillment, especially for those services with strict QoS requirements in terms of latency or response time, such as web
servers with high traffic load, data stream processing, or real-time big data analytics. Elasticity is often implemented in
cloud platforms and virtualized data-centers by means of auto-scaling mechanisms. These make automated resource
provisioning decisions based on the value of specific infrastructure and/or service performance metrics. This paper
presents and evaluates a novel predictive auto-scaling mechanism based on machine learning techniques for time
series forecasting and queuing theory. The new mechanism aims to accurately predict the processing load of a
distributed server and estimate the appropriate number of resources that must be provisioned in order to optimize
the service response time and fulfill the SLA contracted by the user, while attenuating resource over-provisioning in
order to reduce energy consumption and infrastructure costs. The results show that the proposed model obtains a
better forecasting accuracy than other classical models, and makes a resource allocation closer to the optimal case.

Keywords: Cloud computing, Elasticity, Auto-scaling, Machine learning

Introduction
Service elasticity is a common feature offered by many

cloud platforms and virtualized data-centers. This can

be defined as the ability to adapt the system to work-

load changes, by autonomously provisioning and depro-

visioning resources, so that at each point in time, the

available resources match the current service demand as

closely as possible [1]. The advantages of using service

elasticity mechanisms are twofold. On the one hand, it

provides Quality of Service (QoS) to the users, which

can be expressed using different service metrics, such as

response time, throughput (e.g., requests/s), service avail-

ability, and so on, depending on the service type. The QoS

levels agreed between the service provider and user are

defined by means of Service Level Agreements (SLAs), in

such a way that service level failures can result in cost

penalties for the service provider and a potential loss of

*Correspondence: rmoreno@ucm.es
1Computer Science School, Complutense University, 28040 Madrid, Spain
Full list of author information is available at the end of the article

clients. On the other hand, service elasticity enables power

consumption to be reduced, by avoiding resource over-

provisioning. Over-provisioning is a typical and simple

solution adopted bymany service providers to satisfy peak

demand periods and guarantee QoS during the service

lifetime. However, this results in a waste of resources that

remain idle most of the time, with the consequent super-

fluous power consumption and CO2 emissions. The use

of service elasticity mechanisms enables a reduction in

the number of resources needed to implement the service

and, along with other efficient techniques for server con-

solidation, virtual machine allocation, and virtual machine

migration, it can lead to important energy savings for the

datacenter or cloud provider [2–4].

Cloud providers often implement elasticity by using

auto-scaling techniques [5]. These make automated scal-

ing decisions based on the value of specific perfor-

mance metrics, such as hardware metrics (e.g. CPU or

memory usage) or service metrics (e.g., queue length,

service throughput, response time, etc.). Auto-scaling

mechanisms can be classified as reactive and proactive.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0128-9&domain=pdf
http://orcid.org/0000-0001-9723-8100
mailto: rmoreno@ucm.es
http://creativecommons.org/licenses/by/4.0/

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 2 of 18

Reactive mechanisms are continuously monitoring the

system, and trigger a particular scaling action when a spe-

cific condition is met (e.g., provisioning or removing a

given number of resources when a particular metric is

higher or lower than a particular threshold). The main

problem with reactive mechanisms is that the reaction

time (time elapsed from the detection of the trigger con-

dition until the resources are ready for use) can be insuffi-

cient to avoid the overloading of the system; furthermore,

these mechanisms can cause system instability due to the

continuous fluctuation of allocated resources. In contrast,

proactive (or predictive) mechanisms try to predict the

amount of resources needed during the next time period,

based on statistical or mathematical models of observed

workloads and system metrics. Although most existing

cloud platforms and providers use reactive models, there

is a great deal of research on predictive models based

on time series analysis, queuing theory, reinforcement

learning, or control theory, among other aspects [6].

Time series analysis has been widely used to implement

auto-scaling mechanisms for applications that exhibit

some kind of temporal patterns. Most of these proposals

(e.g., [7–10]) use linear statistical methods for time-series

forecasting, mainly based on Box and Jenkins [11] autore-

gressive models (e.g., AR, ARMA, ARIMA, or ARMAX)

for predicting service metrics (e.g., the server load) from

historical observations. However, as these service met-

rics can exhibit non-linear patterns, some key features

of the input data may not be properly captured by these

linear models. Some other studies [12, 13] use nonlinear

regression models based on neural networks. The main

inconvenience of these methods is the difficulty of design-

ing the network topology of the neural network so that it

is efficient, in addition to the training of algorithms, which

can be slow, and can get stuck in local minima. Regarding

the limitations of these methods, in this work we pro-

pose a novel predictive auto-scaling mechanism based on

Machine Learning (ML) techniques for time series fore-

casting, in particular, the Support Vector Machine (SVM)

regression technique [14, 15], combined with queue the-

ory for modeling the system performance. The main

advantage of the SVM regression model is that it fits well

to input data with both linear and nonlinear patterns, and

always reaches a unique global solution, with reasonable

training times.

This auto-scaling mechanism is aimed at achieving an

accurate prediction of the load of an elastic cloud ser-

vice (e.g., a web server cluster or data stream process-

ing server), as shown in Fig. 1. This figure represents

a typical elastic web server cluster, consisting on a ser-

vice front-end, acting as load balancer, and a variable

number of backend servers that process users requests.

The auto-scaling mechanisms should allow the system to

dynamically adapt to workload changes, by autonomously

provisioning and de-provisioning resources (i.e., back-

end servers), so that at each point in time, the available

resources match the current service demand as closely

as possible. More specifically, we propose the use of

SVM regression to predict the server’s processing load

(requests/s) based on historical observations, and then

we model the performance of the system using a M/M/c

queue model [16] to determine the optimal number of

resources (backend servers) that must be allocated to sat-

isfy the predicted server demand and fulfill the SLAs (e.g.,

response time), while trying to avoid excessive resource

over-provisioning, thereby reducing energy consumption

and infrastructure costs.

We have compared the proposed ML-based auto-

scaling mechanism with other classical forecasting mech-

anisms, including prediction based on last value, the mov-

ing average model, and the linear regression model. Our

results show that the SVM regression model displays bet-

ter forecasting accuracy than the classical models, and

facilitates better resource allocation, closer to the optimal

case.

The main contributions of this paper are the following:

• A novel auto-scaling method based on ML

techniques aimed at optimizing the service latency

(response time) and reducing over-provisioning of

elastic cloud services.
• A SVM regression model for predicting the server’s

processing load.
• Optimal selection of SVM regression model

parameters based on an analytical method.
• A queue-based performance model for determining

the number of resources that must be provisioned

based on the predicted load.
• An evaluation using load data from a real server.

This paper is organized as follows: Related work section

includes the related work on dynamic resource provi-

sioning mechanisms for providing service elasticity. The

ML-based forecasting techniques and the performance

model are described in Time series forecasting using

machine learning techniques section and Performance

model section. Evaluation section evaluates the accu-

racy of ML-based forecasting methods and the result-

ing resource allocation decisions. Finally, Conclusion and

Future Work section summarizes the main conclusions of

the paper.

Related work
There are many different proposals and implementations

of techniques for dynamic resource provisioning for pro-

viding service elasticity to different kind of distributed

services, such as web servers [7–9, 17, 18], comput-

ing clusters and grids [19–23], big-data clusters [24–26],

and so on, which are based on different auto-scaling

mechanisms. Besides the time series forecasting methods

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 3 of 18

Fig. 1 Elastic cloud service. This figure represents a typical elastic web server cluster, consisting on a service front-end, acting as load balancer, and a
variable number of backend servers that process users requests. The cloud auto-scaling mechanisms allow to dynamically adapt the system to
workload changes, by autonomously provisioning and deprovisioning resources (i.e., back-end servers), so that at each point in time, the available
resources match the current service demand as closely as possible

mentioned above, there are many other proposals and

realizations of auto-scaling strategies based on many dif-

ferent mechanisms, such as threshold-based policies, con-

trol theory, reinforcement learning, or queuing theory,

among others.

Threshold-based mechanisms are reactive auto-scaling

algorithms implemented by various cloud providers and

platforms (e.g. Amazon EC2, RightScale, andOpenNebula

[27]) that enable users to define scaling-up and scaling-

down policies or rules based on different metrics. These

rules are defined in terms of specific upper and/or lower

thresholds for the selected metric, so that if the metric

is over (or under) the established threshold for a given

time interval, it triggers a scaling action by adding (or

removing) a given amount of resources from the infras-

tructure. Some research works have proposed certain

improvements to the basic threshold-based mechanisms,

for example Hasan et al. [28] propose the use of auto-

scaling policies based on four threshold values, allowing

finer autoscaling decisions than if only two thresholds

are used; Chieu et al. [29] suggest an extension of the

RightScale method based on the number of active ses-

sions, so that to trigger the provisioning of a new instance,

the number of active sessions in all instances must exceed

a certain threshold.

There are several auto-scaling mechanism proposals

based on the concepts of control theory. They usually

implement a controller that is responsible for maintain-

ing the output of the system (e.g., the throughput or the

latency of the system) at a specific level, by adjusting the

control input (e.g., the number of allocated resources).

Most control-based systems are reactive mechanisms,

for example Lim et al. [30] propose extending the

cloud platform with an external feedback controller that

enable users to automate the resource provisioning, and

introduce the concept of proportional thresholding, a

new control policy that takes into account the coarse-

grained actuators provided by resource providers; and

Padala et al. [31] also use a feedback control system to

dynamically allocate resources to applications running

on virtualized infrastructure. This is based on a MIMO

(multi-input, multi-output) resource controller that deter-

mines appropriate allocations of multiple resources to

achieve application-level SLOs. However, there are also

some proposals related to proactive control-based auto-

scaling mechanisms; for example, Roy et al. [9] propose

a predictive solution based on a look-ahead optimiza-

tion controller. This iteratively solves an optimization

problem over a predefined horizon, taking into account

current and future constraints, by combining the control-

based solution with a time series mechanism, based

on autoregressive moving average forecasting, to pre-

dict the workload of the application. A major draw-

back of control theory approaches is the difficulty of

selecting the correct gain parameters for the model,

as these may cause system instability if they are not

adequate.

There are also several auto-scaling mechanisms based

on Reinforcement Learning (RL) techniques, a type of

automatic decision-making approach. The main compo-

nent of RL systems is a decision-making agent that learns

from experience, and decides on the best action to execute

(e.g., adding or removing resources) to obtain a maximum

reward (e.g., to maximize application throughput, or min-

imize response time). According to Dutreilh et al. [32], RL

approaches are well-suited to autonomic resource alloca-

tion in clouds as they do not require the a priori knowl-

edge of the application performance model, but rather

learn it as the application run. However, they have to face

several problems such as: having good policies in the early

phases of learning, time for the learning to converge to

an optimal policy, and coping with changes in the appli-

cation performance behavior over time. These authors

propose to deal with these problems using appropriate

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 4 of 18

initialization for the early stages of learning, convergence

speedup techniques to reduce the error and improve

learning time, and performance model change detection.

Other studies have also addressed these problems, for

example, Tesauro et al. [33] propose a hybrid approach

than combines the strengths of both RL and queuingmod-

els, in which RL trains offline on data collected while a

queuing model policy controls the system, in order to

avoid suffering potentially poor performance in live online

training; and Barrett et al. [34] use a RL algorithm known

as Q-learning to implement optimal scaling policies in

cloud environments, and propose a parallel version of the

Q-learning algorithm to reduce the execution time.

Queueing theory can also be used to implement

autoscaling mechanisms, by using a queue model of the

system andmaking decisions based on different optimiza-

tion parameters, such as average queue length, average

queue time, or average response time. For example, Salah

et al. [35] propose a Markov chain analytical model,

based on a finite queueing system, to provide elastic-

ity for cloud-hosted applications; and Kaur and Chana

[36] propose a QoS-aware resource elasticity framework,

modeled as a closed-form queuing network model, which

implements a proactive technique for estimating the elas-

ticity level of machines required at each tier of the

application.

Queuing theory has also been combined with other

techniques, such as time-series prediction [7, 8], to

improve the quality of auto-scaling mechanisms. This

combined approach has also been utilized in this work:

we first use an efficient time series model, based on SVM

regression, to predict the load of a distributed server,

and, based on these predictions, we propose a queue

performance model to make a near-optimal resource

provision for the server. This auto-scaling approach is

well-suited to applications that exhibit either linear or

non-linear temporal patterns, it is easy to implement as

it does not require the development of complex con-

trollers or decision making agents, and it requires a

reasonably short execution time to make auto-scaling

decisions.

Time series forecasting usingmachine learning

techniques
The auto-scaling method proposed in this work is based

on forecasting the load of a distributed server, so that

we can estimate the optimal number of resources that

must be allocated to satisfy the predicted demand in order

to optimize the service response time and reduce over-

provisioning. The forecasting method uses time series

modeling, i.e., based on past observations of the server

load we develop an appropriate model to describe the

structure of the series, and we use this model to predict

future values.

Time-series analysis is a broad discipline that has been

applied to many different fields, such as business, eco-

nomics, finance, science, and engineering. There aremany

different methods for time-series modeling and forecast-

ing, although some of the most popular are the statistical

methods developed by Box and Jenkins [11], such as the

ARMA and ARIMAmodels. The main advantage of these

models is their flexibility and simplicity when represent-

ing several varieties of time series, as these characteristics

make them quick and easy to use. They do, however,

present an important limitation due to their linear behav-

ior; this makes them inadequate in many practical situ-

ations. More recently, different methods for time series

forecasting based on ML techniques have been proposed

[37, 38], including Artificial Neural Networks (ANNs)

[39, 40] and Support Vector Machine (SVM) methods

[41, 42], which have inherent nonlinear-modeling capa-

bilities. ANN methods are inspired by biological systems,

and try to learn from experience to provide generalized

results based on their knowledge; ANNs are data-driven

and self-adaptive methods that do not make a priori

assumptions about the models or data distributions. The

main drawback of ANN methods is that they can suffer

from multiple local minima, and do not provide a unique

global solution. In contrast, SVMs are nonlinear and used

for classification, regression, and time-series prediction

based on the structural risk minimization principle. SVMs

map the input data into a high-dimensional space using

nonlinear mapping, and then perform a linear regression

of this space. The main advantage of SVM is that the solu-

tion obtained is always unique and globally optimal. In this

work we use the SVMmethod for time series forecasting.

Time series training data

A time series is a set of time dependent observations of

one or more variables of a system. For example, for a dis-

tributed service, such as a web server cluster or a data

stream processing server, we take the values of the hourly

average system load (measured in requests/s) for N time

periods, resulting in a time series s = {s1, s1, . . . , sN },

si ∈ R,∀i ∈ {1,N}. The goal of the forecasting method

is to predict the value of this variable for the subsequent

time periods, i.e., sN+1, sN+2, . . . ; this is known as the

forecasting horizon.

Before applying the SVM technique for time series

forecasting, the observed data must be modeled as

input/output pairs, called training sets, by splitting

the time series into windows of lagged variables of

size T, i.e., for each training input window xm =

{sm−T−1, . . . , sm−2, sm−1}, the corresponding training out-

put is ym = sm.

The time series training set is therefore defined byM =

N − T − 1 input/output pairs (xm, ym)m=1...M, which can

also be expressed in matrix form, as follows:

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 5 of 18

• The [M × T] input training matrix:

X =

⎡

⎢

⎢

⎢

⎣

sN−1 sN−2 . . . sN−T−1

sN−2 sN−3 . . . sN−T−2

...
...

. . .
...

sT sT−1 . . . s1

⎤

⎥

⎥

⎥

⎦

• The [M × 1] output training vector:

Y =

⎡

⎢

⎢

⎢

⎣

sN
sN−1

...

sT+1

⎤

⎥

⎥

⎥

⎦

The support vector regression model

A detailed description of SVM theory and its applica-

tions [41, 43–46] is beyond the scope of this paper, so this

section highlights the main elements of the SVM model

for time series forecasting used in this work, which is

based on the sequential minimal optimization algorithm

for SVM regression [14, 15].

SVM is a machine learning technique that learns from

nonlinear input training data using a linear learner. For

this purpose, the SVM regressionmaps the input data into

a high-dimensional feature space via nonlinear mapping

using a kernel function. Then, a linear regression model

is used to regress in the new feature space. In the case

of time series forecasting, where we have a training set

of M input/output pairs (xm, ym)m=1...M, the SVM regres-

sion can approximate the value of the time series at time t,

using the following function:

ŷt = b +

M
∑

m=1

wm × K (xt , xm) (1)

where b is a constant (bias term);wm are the weight factors

(W = {w1,w2, . . . ,wM}is the weight vector); xt is the time

series data window at time t; and K is the kernel function.

The goal of the SVM algorithm is to find the optimal

weight vector,W, that minimizes the regularized risk, Rreg ,

defined as follows:

Rreg =
1

2

M
∑

m=1

w2
m + C

M
∑

m=1

Lǫ(ym, ŷm) (2)

The first term of the risk function enforces flatness in

the feature space, by penalizing themodel complexity. The

second term is the Vapnik ǫ-insensitive loss function [46],

which measures the empirical error between the model

estimation (ŷm) and the real data (ym), penalizing those

errors larger than ±ǫ, and is defined as follows:

Lǫ

(

ym, ŷm
)

=

{

|ym − ŷm| − ǫ if|ym − ŷm| > ǫ

0, otherwise
(3)

Constant C in Eq. 2 (with C > 0) modulates the

trade-off between the model flatness and the amount of

tolerated deviations larger than ǫ. The optimal values of

both ǫ and C are data dependent, and have to be chosen

by the user. However, there are some analytical methods

that can help to select these parameters [47].

To cope with errors larger than ǫ, the slack variables,

ξ and ξ∗ can be introduced into the model. These repre-

sent the functional distance of two possible, but mutually

exclusive samples. So, the expression of regularized risk

to be minimized in Eq. 2 can therefore be reformulated as

follows:

Rreg =
1

2

M
∑

m=1

w2
m + C

M
∑

m=1

(ξm + ξ∗
m)

subject to

⎧

⎨

⎩

ym − ŷm − b ≤ ǫ + ξ∗
m

ŷm + b − ym ≤ ǫ + ξm
ξm, ξ

∗
m ≥ 0

(4)

The minimization of Eq. 4 is a standard problem of

minimization with constraints, which can be solved by

applying Lagrangian theory. Then, the weight vector, W,

can be obtained from Lagrange multipliers, αm and α∗
m,

which are associated with a specific training point:

wm = αm − α∗
m,∀m ∈ {1,M}

subject to

{
∑M

m=1(αm − α∗
m) = 0

αm,α
∗
m ∈[0,C]

(5)

Based on the Karush-Kuhn-Tucker conditions [44], only

a reduced number of coefficients αm and α∗
m will be

non-zero, and the training points associated with these

parameters refer to the model support vectors.

Kernel functions

The kernel function [15, 48] transforms the nonlinear

input space into a high-dimensional feature space. In

this space, the problem can be solved as a linear prob-

lem. Some of the most common kernel functions are the

following:

• Polynomial kernel. One of the most common

polynomial kernels is:

K
(

x, x′
)

=
(

x · x′ + 1
)p

(6)

where x · x′ is the dot product of feature vectors x
and x′, and p ∈ N is the exponent of the kernel,

chosen by the user.
• Normalized polynomial kernel. The normalized

polynomial kernel is a variant of the polynomial

kernel, which can defined as:

K
(

x, x′
)

=

(

x · x′ + 1
)p

||x||||x′||
(7)

where ||x|| and ||x′|| are the Euclidean norms of

vectors x and x′, respectively.

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 6 of 18

• RBF kernel. The radial basis function (RBF) or

Gaussian kernel is defined as:

K
(

x, x′
)

= e−γ ||x−x′||2 (8)

where ||x − x′||2 represent the Euclidean distance

between feature vectors x and x′, and γ ∈ R is a

user-defined parameter.

In the literature we can find many other kernel func-

tions, such as the Fourier kernel [46], the Pearson VII

function-based kernel (PUK) [49], and the multilayer per-

ceptron kernel [50], among others. However, in this work

we will use the above-defined basic kernels.

Forecast accuracy measures

Different error measures can be used to evaluate the accu-

racy of the forecasting models. Some of the most common

error measures are the following:

• Mean Absolute Error (MAE):

MAE =
1

n

n
∑

i=1

|yi − ŷi| (9)

• Mean Squared Error (MSE):

MSE =
1

n

n
∑

i=1

(

yi − ŷi
)2

(10)

• Root Mean Squared Error (RMSE):

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

(11)

If the previous accuracy measures are applied to the

training data set of the time series, they provide an esti-

mation of how the forecasting model fits these historical

data, i.e., they measure the expected or estimated predic-

tion error of the forecasting model. On the other hand,

if we apply these accuracy measures to the forecast data

within the forecasting horizon, assuming we know the real

values of the time series for this period, we obtain the real

prediction error made by the forecasting model.

Performancemodel
The time series forecasting method described in the pre-

vious section enables load predictions to be made for

an elastic cloud service based on historical observations.

The next challenge to address is the development of an

accurate performance model, based on these predictions,

to decide the optimal number of resources (i.e., backend

servers) that must be allocated to the system, in order

to fulfill the SLAs contracted with the users. The system

performance model proposed in this work is based on

queuing theory.

We assume that the server, as shown in Fig. 1, has a sin-

gle front-end entry point for all the users, and the various

client requests are distributed to different parallel backend

servers using a load balancer. This distributed server can

be modeled as a M/M/c queue [16], as shown in Fig. 2.

The M/M/c queue model is based on the following

parameters:

• c is the number of parallel servers in the system.
• λ is the arrival rate, i.e., the average number of

requests that reach the system per time unit, modeled

as a Poisson distribution.
• μ is the service rate, i.e., the average number of

requests that a server can process per time unit.

And the following performance measures:

• ρ is the system utilization factor, which is defined as

follows:

ρ =
λ

cμ
(12)

• Wq is the average queue time, i.e., the time a user

request is waiting in the system queue before being

processed, which can be computed as:

Wq =
ccρc+1P0

λc! (1 − ρ)2
(13)

Fig. 2M/M/c queue model for the distributed server.This is a graphical representation of a M/M/c queue model, with c parallel servers (c > 1), each
serving user requests. All requests reaching the system join a single queue, and they are served in their order of arrival. λ is the arrival rate, i.e., the
average number of requests that reach the system per time unit, modeled as a Poisson distribution. μ is the service rate, i.e., the average number of
requests that a server can process per time unit

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 7 of 18

where P0 is the probability of the system being idle

(i.e., no requests in the queue), which can be

computed as:

P0 =

(

ccρc

c! (1 − ρ)
+

c−1
∑

n=1

(cρ)n

n!

)−1

(14)

• W is the average response time, i.e., the time a user

must wait for his request to be processed, which can

be computed as:

W = Wq +
1

μ
(15)

For the system to be stable, ρ must be less than 1. So,

the goal of the performance model is to find, for each time

period, the minimum number of servers (c) that maintain

system stability (ρ < 1) while satisfying the response time

(W) contracted by the user in the SLA.

In this study, we have considered an auto-scaling period

of one hour, i.e., the auto-scaling system predicts the aver-

age server load for the following hour, and then, based

on this prediction and using the M/M/c queuing model,

it adjusts the number of resources assigned to the server

for this time period. We have chosen this auto-scaling

period (one hour) for two main reasons: firstly, the con-

tinuous fluctuation of allocated resources can cause sys-

tem instability, similarly to reactive auto-scaling models;

and secondly, many infrastructure providers (e.g. cloud

providers) use a minimum charging period of one hour,

so if we allocate new resources to the system, it makes no

sense to withdraw them within the next one-hour period.

However, the proposed auto-scaling mechanisms could

work with different auto-scaling periods, according to the

system requirements.

Evaluation
In this section, we first present the parameters and results

of the SVM-based forecasting model for predicting the

load of an elastic cloud service based on historical load

observations (input training data set). Then, using these

predictions and theM/M/c queue performance model, we

show the estimated resource allocation results (i.e., the

number of backend servers) for the distributed server. To

prove the accuracy of the forecasting models we use a test

data set, which allows us to compare the predicted server

loads and estimated allocation results with the real server

loads and optimal resource allocations for this test inter-

val. In this work we compare the proposed SVM-based

forecasting methods with some basic forecasting methods

(namely, based on last-value, moving average, and linear

regression), but not against other auto-scaling approaches

proposed in the literature. This comparison is not fea-

sible in most cases, because most of the proposals lack

sufficient information to reproduce the proposed auto-

scaling method and its results, such as the parameters of

the input model, the workloads used to feed the model or

even a detailed description of the model itself. In addition,

because different auto-scaling methods use very differ-

ent metrics and objective functions, it may not always be

possible to compare them.

The input data chosen to train the forecasting model

and evaluate our proposal were obtained from real web

service logs from the Complutense University of Madrid.

These data were gathered over a four-week period on an

hourly basis. To emulate a server with high data traffic

load, the data collected have been extrapolated one order

of magnitude. These input training data, summarized in

Fig. 3, represent the hourly average load (expressed in

requests per second) of the server.

Parameter selection for the SVM forecasting model

The basic parameters of a time-series forecasting model

(see “Time series training data” section) are: the size of

the training data (N), the lag period (T), and the forecast-

ing horizon. The training data set must be large enough

to capture the time series behavior, so in this work we

have collected data from a 4-week period, i.e., N = 672

hours. To choose an appropriate lag period, we analyzed

the seasonal patterns of the time series, by measuring the

autocorrelation of the input training data, shown in Fig. 4.

As we can see, the input data exhibit a clear autocorrela-

tion for a lag interval of 24 h. For this reason, the chosen

lag period was T = 24 hours. Finally, the forecasting hori-

zon chosen in our model was one hour, i.e., based on the

last N observations, the forecasting model predicts the

value of the time series for the next hourly period. We

chose this horizon because, in general, the accuracy of the

prediction worsens as the forecasting horizon increases,

so it is more accurate to apply the forecasting model and

make a new prediction each hour. Furthermore, in this

work, we obtained these hourly predictions for a test inter-

val of 24 h. For this test interval, the real values of the time

series were known, so we were able to compare the pre-

dicted values with the real values, allowing us to validate

the forecasting model.

Besides these basic parameters, the SVM regres-

sion model presented in The support vector regression

model section uses some additional configuration param-

eters that must be adjusted by the user. In particular,

the C parameter of the regularized risk in Eq. 2, the

ǫ parameter of Vapnik loss function (Eq. 3), and the γ

parameter of the RBF kernel function (Eq. 8) must be opti-

mally selected to obtain good estimation accuracy. In the

literature there are many different approaches for select-

ing these parameters [47, 51–53]. In this work we have

used the analytical methods proposed by Cherkassky and

Ma [47].

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 8 of 18

Fig. 3 Summary of input training data. This graph displays the input data used for the training of the SVM-based forecasting model presented in this
work. This data were obtained from real web service logs from the Complutense University of Madrid and were gathered over a four-week period
on an hourly basis. To emulate a server with high data traffic load, the data collected have been extrapolated one order of magnitude. These input
training data represent the hourly average load (expressed in requests per second) of the server for a 4-week period (i.e., N = 672 hours)

The value of the regularization parameter, C, can be

related to the range of response values in the training data.

Therefore, according to [47], it can be chosen as follows:

C = max
(

|ȳ + 3σy|, |ȳ − 3σy|
)

(16)

where ȳ and σy are the mean and standard deviation of the

y values of training data.

On the other hand, the ǫ parameter should be propor-

tional to the input noise level and should also depend on

the number of training samples. According to [47], it can

be chosen as follows:

ǫ = 3σ

√

ln n

n
(17)

where n is the number of samples in the training input

data, and σ is the estimated noise variance observed

from the training data, which can be obtained by fitting

the input data using a low-bias model, such as a linear

Fig. 4 Autocorrelation analysis of input training data. To choose an appropriate lag period, we analyzed the seasonal patterns of the time series, by
measuring the autocorrelation of the input training data for different lag values, as shown in this figure. This was achieved using the Excel
autocorrelaction function (rk , where k is the lag interval), which is computed, as rk = sk/s0 , where sk is the autocovariance function at lag k, and s0 is
the variance of the time series. As we can see in this figure, the input data exhibit a clear autocorrelation for a lag interval of 24 h. For this reason, the
chosen lag period was T = 24 hours

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 9 of 18

estimator. In our case, we used a first order linear regres-

sion model to estimate the y values of the training data, so

the estimated noise variance can be computed as follows:

σ 2 =
1

n − 1

n
∑

i=1

(

yi − ŷi
)2

(18)

Finally, the γ parameter of RBF kernel function should

be selected to reflect the range of the input training data,

and can be chosen as follows:

γ ∼ [0.1 − 0.5] × range(x) (19)

where range(x) = max(x) − min(x) for the input training

data.

Using the input data shown in Fig. 3, and applying

the previous formulation for the SVM regression model

parameters, we obtained the values displayed in Table 1.

Forecasting results

The prediction models presented in this work forecast the

average hourly load of a distributed server for a 24 h test

interval, based on the historical data shown in Fig. 3, using

the parameters specified in the previous section.

The experimental environment used in this work to run

the SVM regression models is based on the WEKA tool

[54] fromWaikato University, with the time series analysis

package.

The results of this section are intended to prove that

the SVM regression model outperforms other simpler

forecasting methods. For this reason, we compared the

behavior of the SVM-based models with the following

three simple forecasting methods:

• Forecasting model #1 (based on the last value). The

estimated value of the server load in the current time

interval is equal to the value in the previous time

interval, i.e., ŷ(t) = y(t − 1).
• Forecasting model #2 (based on a simple moving

average). The estimated value of the server load in

the current time interval was computed as the

moving average (MA) of order three (i.e., anMA(p)

model, with p = 3).
• Forecasting model #3 (based on linear regression).

The estimated value of the server load in the current

time interval was computed using an autoregressive

Table 1 Selected values for the SVM parameters

Parameter Value

C 1.9

ǫ 0.027

γ [0.2 − 1.0]

(AR) model with a lag period of 24 h (i.e., an AR(p)

model, with p = 24)

In addition to these basic methods, we also evaluated

the SVM-based forecasting models using three different

kernel functions:

• Forecasting model #4 (SVM with a polynomial

kernel). This is based on SVM regression with a

polynomial kernel (see Eq. 6) of order p = 1. We

empirically tested higher order polynomials kernels,

but they offered no better results than order p = 1,

and took more time to execute.
• Forecasting model #5 (SVM with a normalized

polynomial kernel). This is based on SVM regression

with a normalized polynomial kernel (see Eq. 7) of

order p = 2. As in the previous case, polynomials

kernels of higher orders did not outperform order

p = 2, and took more time to execute.
• Forecasting models #6 to #8 (SVM with a RBF

kernel). This is based on SVM regression with a RBF

kernel (see Eq. 8). According to Table 1, the optimal

values for the γ parameter are between 0.2 and 1.0, so

we executed the forecasting algorithm using three

different values of this parameter: low value

(γ = 0.2), medium value (γ = 0.6), high value

(γ = 1.0), corresponding to forecasting models #6,

#7, and #8, respectively.

A summary of all the forecasting methods used in this

work is shown in Table 2.

Figure 5 shows the prediction results for the 24 h test

interval using the various forecasting methods compared

to the real values of the average server load for the same

hours. The error bars of the different graphs represent the

expected error of the model computed as the RMSE of the

training data for each time interval.

Figure 6 shows the accuracy of the different forecasting

models for the 24 h test interval, where the MAE, MSE,

and RMSE values represent the real prediction error of

each forecasting model for this period.

Table 2 Summary of different forecasting models

Forecasting ModelMethod Parameters

#1 Last Value

#2 Moving Average MA(3)

#3 Linear Regression AR(24)

#4 SVM - Polynomial Kernel C = 1.9, ǫ = 0.027, p = 1

#5 SVM - Normal. Polyn. Kernel C = 1.9, ǫ = 0.027, p = 2

#6 SVM - RBF Kernel C = 1.9, ǫ=0.027, γ = 0.2

#7 SVM - RBF Kernel C = 1.9, ǫ=0.027, γ = 0.6

#8 SVM - RBF Kernel C = 1.9, ǫ=0.027, γ = 1.0

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 10 of 18

Fig. 5 Predicted server loads obtained with different forecasting models (#1 to #8). This figure shows the prediction results for the 24 h test interval
using the various forecasting models (#1 to #8) compared to the real values of the average server load for the same hours. The bar errors of the
different graphs represent the expected error (RMSE) of the model. This is computed as the error between the estimated data obtained by the
forecasting model for the training period and the real training data of the time series

As we can see, SVM-based forecasting (models #4 to

#8) is more accurate than the three basic methods (mod-

els #1 to #3), as prediction errors (MAE, MSE, and RMSE)

are lower in all cases. In addition, if we compare the

SVM-based methods, the RBF kernel with γ = 0.2 and

γ = 1.0 (models #6 and #8) obtains better results than the

polynomial kernels.

Resource allocation results

Once the server load predictions had been obtained,

based on the different forecasting models, we were

able to apply the M/M/c queue performance model

presented in Performance model section to obtain

the number of resources (i.e., number of backend

servers) that must be provisioned in order to satisfy

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 11 of 18

Fig. 6 Accuracy of different forecasting models (real prediction error for the forecasting period) This figure shows the accuracy of the different
forecasting models for the 24 h test interval (forecasting horizon), where the MAE, MSE, and RMSE values represent the real prediction error of each
forecasting model for this period. They are computed as the error between the data obtained by the forecasting model and the real data of the time
series for the forecasting horizon

the expected load and fulfill the SLA contracted by

the user, expressed in terms of maximum response

time.

In addition, as we know the real hourly load of the

server for the 24 h test interval, we were able to compare

the optimal number of resources that should be provi-

sioned based on the real load, called optimal allocation,

with the estimated resource allocation based on the fore-

casted loads, called estimated allocation. We were there-

fore able to determine, for each forecasting model and

each hourly period, whether the server was being over-

provisioned (where estimated allocation > optimal allo-

cation), under-provisioned (where estimated allocation

< optimal allocation)), or correctly provisioned (where

estimated allocation = optimal allocation).

To apply the M/M/c model, we first defined the param-

eters to be used in the model, summarized in Table 3:

• The arrival rate (λ) is the average load of the server

(expressed in requests/s) each hour. We considered

the predicted load obtained for each one of the

Table 3 M/M/c queueing model parameters

Param. Meaning Value

λ Arrival rate Real or forecast server load (requests/s)

μ Service rate 200 requests/s

ρ System utilization < 1

W Average response time ≤ 7.5 ms

Wq Average queue time ≤ 2.5 ms

forecasting models for the 24 h test interval, as well as

the real load of the server for the same period.
• The service rate (μ) is the number of requests that

each backend server can process per time unit. In this

work, we assumed a value of μ = 200 requests/s for

each backend server. This is a typical throughput

value of a mid-range server (e.g., an Amazon EC2

medium instance) serving dynamic content requests

(e.g., PHP) [55, 56].
• The system utilization factor (ρ) must be less than 1

to guarantee system stability. The number of

provisioned resources must be sufficient to guarantee

this condition.
• The average queue time (Wq) and the average

response time (W = 1/μ + Wq), which are limited

by the SLA contracted by the user. In this work, we

assumed that the user SLA established a limit value

forWq that could not exceed 50% of the minimum

response time, i.e.,Wq ≤ 0.5 × 1/μ = 2.5ms. Hence,

the maximum response time (W) imposed by the

SLA was 7.5 ms.

Next, using the real and forecast server load values

obtained by the different forecasting models as input (i.e.

real and forecast λ values), we applied the M/M/c queu-

ing model to determine the number of resources (backend

servers) that must be provisioned, in order to guarantee

system stability (ρ < 1) and fulfill the maximum response

time imposed by the SLA (W ≤ 7.5 ms).

To measure the goodness of the different forecasting

models, we will use three different metrics: i) the number

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 12 of 18

of provisioned resources; ii) the number of SLA vio-

lations; and iii) the number of unserved requests. We

considered that the SLA of a request is violated when its

response time is W > 7.5 ms. In addition, we also estab-

lished a maximum limit (time-out) of 1 s for serving a

request, so that if the response time exceeds this limit,

the request is considered as unserved. Form the point of

view of the user, the optimal resource allocation is the

one that minimize the number of resources, and hence

the cost of the infrastructure, while also minimize the

number of SLA violations, and the number of unserved

request. When the number of provisioned resources is

too low (under-provisioning) the cost of the infrastructure

decreases, but the number of SLA violations and unserved

requests increases. On the other hand, if the number

of provisioned resources is too high (over-provisioning),

the number of SLA violations and unserved requests

would be negligible, but the cost of the infrastructure

shoots up.

Table 4 shows the hourly results of the provisioning for

the 24 h test interval. The Optimal column shows the

optimal allocation results based on the real load of the

server. Columns "#1" to "#8" show the estimated allo-

cation results computed from the predicted server loads

(i.e., the central load values displayed in Fig. 5 for the

forecasting models #1 to #8, respectively). For these eight

columns, this table also relates whether the system is being

over-provisioned (↑), under-provisioned (↓), or correctly

provisioned (=).

Regarding the number of provisioned resources in

Table 4, we can see that, in most cases, the esti-

mated allocation value based on SVM forecasting

models (columns #4 to #8) is closer to the opti-

mal value than the simple forecasting models (columns

#1 to #3). This fact is most evident in Fig. 7,

which shows the total number of over-provisioned

and under-provisioned resources over the 24 h test

interval.

If we look at the total number of over-provisioned

resources, we can see that the SVM-based models (#4 to

#8) outperform the simple forecasting methods (#1 to #3);

forecasting model #6 (SVM - RBF Kernel, λ = 0.2) is

Table 4 Allocation 1: Optimal resource allocation (based on real load) vs. estimated resource allocation (based on predicted loads,
forecasting models #1 to #8)

Time Optimal #1 #2 #3 #4 #5 #6 #7 #8

00:00 37 38(↑) 42(↑) 40(↑) 39(↑) 37(=) 36(↓) 36(↓) 38(↑)

01:00 36 37(↑) 40(↑) 41(↑) 39(↑) 38(↑) 34(↓) 36(=) 35(↓)

02:00 29 36(↑) 37(↑) 37(↑) 34(↑) 36(↑) 35(↑) 33(↑) 34(↑)

03:00 38 29(↓) 34(↓) 37(↓) 36(↓) 37(↓) 37(↓) 40(↑) 39(↑)

04:00 44 38(↓) 34(↓) 41(↓) 42(↓) 41(↓) 42(↓) 43(↓) 42(↓)

05:00 35 44(↑) 37(↑) 44(↑) 44(↑) 44(↑) 41(↑) 42(↑) 43(↑)

06:00 49 35(↓) 40(↓) 41(↓) 39(↓) 41(↓) 40(↓) 42(↓) 42(↓)

07:00 46 49(↑) 42(↓) 49(↑) 48(↑) 51(↑) 49(↑) 48(↑) 48(↑)

08:00 58 46(↓) 43(↓) 49(↓) 48(↓) 51(↓) 49(↓) 47(↓) 50(↓)

09:00 64 58(↓) 51(↓) 62(↓) 62(↓) 62(↓) 65(↑) 66(↑) 66(↑)

10:00 71 64(↓) 56(↓) 67(↓) 65(↓) 67(↓) 67(↓) 65(↓) 66(↓)

11:00 61 71(↑) 65(↑) 71(↑) 71(↑) 69(↑) 69(↑) 69(↑) 70(↑)

12:00 67 61(↓) 66(↓) 64(↓) 64(↓) 62(↓) 61(↓) 63(↓) 63(↓)

13:00 73 67(↓) 66(↓) 63(↓) 61(↓) 64(↓) 65(↓) 67(↓) 66(↓)

14:00 61 73(↑) 67(↑) 66(↑) 65(↑) 64(↑) 67(↑) 67(↑) 67(↑)

15:00 61 61(=) 67(↑) 66(↑) 65(↑) 62(↑) 63(↑) 66(↑) 64(↑)

16:00 63 61(↓) 65(↑) 65(↑) 64(↑) 60(↓) 58(↓) 55(↓) 57(↓)

17:00 43 63(↑) 62(↑) 60(↑) 59(↑) 57(↑) 58(↑) 57(↑) 56(↑)

18:00 56 43(↓) 56(=) 53(↓) 50(↓) 50(↓) 50(↓) 51(↓) 51(↓)

19:00 51 56(↑) 54(↑) 52(↑) 52(↑) 52(↑) 49(↓) 45(↓) 46(↓)

20:00 52 51(↓) 50(↓) 43(↓) 42(↓) 47(↓) 44(↓) 44(↓) 45(↓)

21:00 43 52(↑) 53(↑) 48(↑) 46(↑) 49(↑) 46(↑) 49(↑) 49(↑)

22:00 42 43(↑) 48(↑) 46(↑) 45(↑) 46(↑) 40(↓) 42(=) 42(=)

23:00 41 42(↑) 45(↑) 32(↓) 32(↓) 38(↓) 38(↓) 39(↓) 41(=)

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 13 of 18

Fig. 7 Over- and under-provisioning of resources using different forecasting models, based on the resource allocation of Table 4 This figure shows
the total number of over-provisioned and under-provisioned resources over the 24 h test interval for the different forecasting models (#1 to #8),
based on the resource allocation of Table 4. This is computed as the difference between the number of resources that should be provisioned
according to the predicted load of the different forecasting models, and the optimal number of resources that should be provisioned according to
the real load of the server for the 24 h test interval

the best case. If we look at the total number of under-

provisioned resources, the best forecasting methods are,

once again, the SVM-based forecasting models #5 (SVM

- Normal. Polynomial Kernel) and #8 (SVM - RBF Kernel,

λ = 1.0).

Figures 8 and 9 show, respectively, the percentage of

SLA violations and unserved requests on each hourly

period for forecasting models #3, #5, and #8 (in order

to avoid a mesh of points in the graph, we have chosen

these three cases in representation of the basicmodels, the

polynomial SVM-based models, and the RBF SVM-based

models, respectively). In addition, Table 5 shows the total

number of SLA violations and unserved requests over the

24 h test interval, expressed as a percentage with respect

the total number of requests.

Regarding the SLA violations results, we can see that

all the forecasting models produce a high number of SLA

violations: between 40% and 50% of the total number of

requests, as shown in Table 5. This is because all the fore-

casting models cause under-provisioning of resources in

several hourly periods (about half of the periods in most

cases). This under-provisioning results in a high num-

ber of SLA violations, which can reach, in some cases,

almost the 100% of requests, as shown in Fig. 8. If we

Fig. 8 Percentage of SLA violations for forecasting models #3, #5, and #8, based on the resource allocation of Table 4 This figure shows the
percentage of SLA violations on each hourly period for forecasting models #3, #5, and #8 (in order to avoid a mesh of points in the graph, we have
chosen these three cases in representation of the basic models, the polynomial SVM-based models, and the RBF SVM-based models, respectively)

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 14 of 18

Fig. 9 Percentage of unserved requests for forecasting models #3, #5, and #8, based on the resource allocation of Table 4 This figure shows the
percentage of unserved requests on each hourly period for forecastingmodels #3, #5, and #8 (in order to avoid amesh of points in the graph, we have
chosen these three cases in representation of the basic models, the polynomial SVM-based models, and the RBF SVM-based models, respectively)

compare the percentage of total SLA violations of the dif-

ferent forecastingmodels in Table 5, we can see that two of

the basic forecasting models (specifically, models #2 and

#3) behave slightly better than the SVM-based models.

This is because the number of hourly periods with a high

shortage of resources for these two forecasting models is

lower than for other models.

On the other hand, regarding the unserved requests

results in Fig. 9, we can see that in most hourly periods the

percentage of unserved requests is negligible, and only in

a few periods this percentage exceeds 10%. Regarding the

percentage of total unserved requests in Table 5, we can

see that most SVM-based models outperforms the basic

models, being forecasting models #5 and #8 those that

present the best behavior.

Table 5 Percentage of SLA violations and unserved requests
over total number of requests for the 24 h test interval, based on
the resource allocation of Table 4

Resource allocation SLA Violations (%) Unserved Requests (%)

Optimal 0.4% 0.4%

Fcast. #1 46.0% 5.4%

Fcast. #2 41.9% 5.4%

Fcast. #3 41.1% 3.6%

Fcast. #4 44.3% 4.5%

Fcast. #5 44.5% 3.1%

Fcast. #6 47.9% 3.7%

Fcast. #7 45.3% 3.8%

Fcast. #8 44.1% 3.2%

We can conclude that the models that perform better

are those thatminimize the number of under-provisioning

periods and under-provisioned resources (so reducing the

number of SLA violations, and unserved requests), but at

the same time they do not exceed too much the number

of over-provisioned resources (so avoiding a significant

infrastructure cost increasing). Therefore, the SVM-based

forecasting models #5 and #8 exhibit the best trade-off for

the three considered metrics (number of resources, num-

ber of SLA violations, and number of unserved requests).

However, it is important to notice that them basic model

#3 also present a good trade-off of the three metrics and a

better behavior regarding SLA violations.

In order to reduce the number of SLA violations, we

achieved a second resource allocation based on the pre-

dicted load values displayed on Fig. 5, but instead of using

the central load values of the graphs, we used the central

load values plus half the expected error (represented by

the error bars in Fig. 5). Table 6 shows the hourly results

of this new provisioning, and Fig. 10 shows the total num-

ber of over-provisioned and under-provisioned resources

over the 24 h test interval.

Regarding the number of over-provisioned resources,

we can see that SVM-based forecasting models outper-

forms the basic models, being forecasting models based

on RBF Kernel (models #6, #7, and #8) the ones that

behave better. However, these models do not offer the

best results regarding the number of under-provisioned

resources, in fact, models #7 and #8 are the worst cases,

while forecasting models #3 and #5 are the ones with less

number of under-provisioned resources.

If we analyze the number of SLA violations and

unserved requests for this new resource allocation, as

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 15 of 18

Table 6 Allocation 2: Optimal resource allocation (based on real load) vs. estimated resource allocation (based on predicted loads plus
half the expected error, forecasting models #1 to #8)

Time Optimal #1 #2 #3 #4 #5 #6 #7 #8

00:00 37 43(↑) 47(↑) 44(↑) 43(↑) 40(↑) 38(↑) 38(↑) 39(↑)

01:00 36 42(↑) 45(↑) 45(↑) 43(↑) 41(↑) 36(=) 37(↑) 37(↑)

02:00 29 41(↑) 42(↑) 41(↑) 38(↑) 40(↑) 37(↑) 35(↑) 35(↑)

03:00 38 39(↑) 39(↑) 41(↑) 40(↑) 40(↑) 40(↑) 41(↑) 41(↑)

04:00 44 43(↓) 39(↓) 45(↑) 46(↑) 45(↑) 45(↑) 44(=) 43(↓)

05:00 35 49(↑) 42(↑) 48(↑) 48(↑) 47(↑) 44(↑) 44(↑) 44(↑)

06:00 49 40(↓) 45(↓) 45(↓) 43(↓) 44(↓) 43(↓) 44(↓) 44(↓)

07:00 46 54(↑) 47(↑) 53(↑) 52(↑) 54(↑) 51(↑) 49(↑) 50(↑)

08:00 58 51(↓) 48(↓) 53(↓) 52(↓) 54(↓) 52(↓) 49(↓) 51(↓)

09:00 64 63(↓) 56(↓) 66(↑) 66(↑) 65(↑) 67(↑) 67(↑) 67(↑)

10:00 71 69(↓) 61(↓) 71(=) 69(↓) 70(↓) 70(↓) 67(↓) 67(↓)

11:00 61 76(↑) 70(↑) 75(↑) 75(↑) 73(↑) 71(↑) 71(↑) 71(↑)

12:00 67 66(↓) 71(↑) 68(↑) 68(↑) 66(↓) 64(↓) 65(↓) 65(↓)

13:00 73 72(↓) 71(↓) 67(↓) 65(↓) 67(↓) 68(↓) 68(↓) 68(↓)

14:00 61 78(↑) 72(↑) 70(↑) 69(↑) 67(↑) 69(↑) 68(↑) 69(↑)

15:00 61 66(↑) 72(↑) 70(↑) 69(↑) 66(↑) 66(↑) 67(↑) 65(↑)

16:00 63 65(↑) 70(↑) 68(↑) 68(↑) 64(↑) 61(↓) 57(↓) 58(↓)

17:00 43 68(↑) 67(↑) 64(↑) 63(↑) 60(↑) 61(↑) 59(↑) 58(↑)

18:00 56 48(↓) 61(↑) 57(↑) 54(↓) 54(↓) 53(↓) 53(↓) 52(↓)

19:00 51 61(↑) 59(↑) 56(↑) 56(↑) 56(↑) 51(=) 47(↓) 48(↓)

20:00 52 56(↑) 55(↑) 47(↓) 46(↓) 50(↓) 47(↓) 46(↓) 46(↓)

21:00 43 57(↑) 58(↑) 52(↑) 50(↑) 52(↑) 49(↑) 51(↑) 50(↑)

22:00 42 48(↑) 53(↑) 50(↑) 49(↑) 49(↑) 43(↑) 43(↑) 44(↑)

23:00 41 47(↑) 50(↑) 36(↓) 36(↓) 41(=) 41(=) 41(=) 42(↑)

Fig. 10 Over- and under-provisioning of resources using different forecasting models, based on the resource allocation of Table 6 This figure shows
the total number of over-provisioned and under-provisioned resources over the 24 h test interval for the different forecasting models (#1 to #8),
based on the resource allocation of Table 6. This is computed as the difference between the number of resources that should be provisioned
according to the predicted load of the different forecasting models, and the optimal number of resources that should be provisioned according to
the real load of the server for the 24 h test interval

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 16 of 18

shown in Table 7, we can see that the percentage of

total SLA violations in all the cases is considerably

lower than in the first resource allocation: between 8%

for the best case (forecasting model #3) and about

34% for the two worst cases (forecasting models #7

and #8). Similarly, unserved requests have been also

significantly reduced with regard to the first resource

allocation, being forecasting models #3 and #5 the

two best cases, with a negligible number of unserved

requests.

In conclusion, we can assert that, in general, SVM-

based forecasting models outperform basic forecast-

ing models regarding the number of over-provisioned

resources. However, regarding the number of SLA vio-

lations and unserved requests, some of the SVM-based

models have worse results than basic models. Accord-

ing to the results of the second allocation, based on the

predicted load values plus half the expected error, the

model that offers the best tradeoff of the three con-

sidered metrics (number of resources, number of SLA

violations, and number of unserved requests) is the

forecasting model #5 (SVM - normalized polynomial

model).

Finally, it is important to remark that the execution of

the proposed auto-scaling mechanism, including both the

server load forecast (using basic or SVM-based models),

and the resource estimation, takes only a few seconds (less

than one minute in the worst case). Furthermore, using

the appropriate techniques, cloud resource instances can

also be provisioned or de-provisioned in a matter of sec-

onds [57–59]. Therefore, auto-scaling actions (including

startup/shutdown of resource instances) can be done with

a minimum delay, typically between 1 and 5 min. To deal

with this delay, and taking into account that we use an

auto-scaling period of an hour, we can call the auto-scaler

a few minutes before the next auto-scaling period, so that

the required resources are ready when this period begins.

Table 7 Percentage of SLA violations and unserved requests
over total number of requests for the 24 h test interval, based on
the resource allocation of Table 6

Resource allocation SLA Violations (%) Unserved Requests (%)

Optimal 0.4% 0.4%

Fcast. #1 11.2% 0.4%

Fcast. #2 15.2% 0.7%

Fcast. #3 10.8% 0.1%

Fcast. #4 17.6% 0.5%

Fcast. #5 8.0% 0.1%

Fcast. #6 19.3% 0.5%

Fcast. #7 34.6% 1.5%

Fcast. #8 33.6% 1.3%

Conclusion and future work
In this paper, we have presented an auto-scaling method

for adaptive provisioning of elastic cloud services, based

on ML time-series forecasting and queuing theory, aimed

at optimizing the latency (response time) of the service,

and reducing over-provisioning. The auto-scaling system

uses a SVM regression to predict the processing load of a

web server, based on historical observations. Before apply-

ing the SVM regression model, we fine-tuned its param-

eters, allowing us to capture the nonlinear and temporal

patterns of the input data, and achieve an accurate predic-

tion. Using the historical load values of a real web service

as input data, we applied the SVM forecastingmodel using

various kernel functions (polynomial kernel, normalized

polynomial kernel, and RBF kernel) and different config-

uration parameters. We compared the accuracy of these

predictions with those obtained from other simple meth-

ods (last value, MA, and AR models), by computing the

MAE and RMSE error measurements for the 24 h test

interval. Our results show that the SVM-based regres-

sion model has better prediction accuracy than the simple

methods.

In addition, the proposed auto-scaling mechanism com-

bines the SVM forecasting method with a M/M/c queue-

based performance model. This allowed us to estimate

the appropriate number of resources that must be provi-

sioned, according to the predicted load, in order to reduce

the service time, and fulfill the SLA contracted by the

user. The experimental results also show that, in general,

resource allocations based on SVM forecasting are closer

to the optimal allocation (based on real load observa-

tions) than those based on simple forecasting methods. In

particular, SVM forecasting models based on normalized

polynomial kernels give the best allocation results with

regard to the number of over-provisioned resources, the

number of SLA violations, and the number of unserved

requests.

As future work, we plan to extend both the fore-

casting and performance models to other distributed

services, such as big data clusters (e.g., Hadoop or

Spark clusters), with the goal of implementing effi-

cient auto-scaling mechanisms for these architectures.

The forecasting and performance models should be

adapted to the particularities and functionality of

the different components in these kinds of clus-

ters, such as Mapreduce, HDFS, YARN, and Spark

components.

Abbreviations

ANN: Artificial Neural Network; AR: Autoregressive; ARIMA: Autoregressive
Integrated Moving Average; ARMA: Autoregressive Moving Average; ARMAX:
Autoregressive Moving Average with eXternal input; HDFS: Hadoop
Distributed File System; MA: Moving Average; MAE: Mean Absolute Error;
MIMO: Multiple Input, Multiple Output; ML: Machine Learning; MSE: Mean
Squared Error; QoS: Quality of Service; RBF: Radial Basis Function; RL:
Reinforcement Learning; RMSE: Root Mean Squared Error; SLA: Service Level

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 17 of 18

Agreement; SLO: Service Level Objective; SVM: Support Vector Machine; YARN:
Yet Another Resource Negotiator

Acknowledgements

Not applicable.

Funding

This research was supported by the Comunidad de Madrid (Spain), through
research grant P2018/TCS4499. This funding allowed us to acquire the
computing resources needed for completing this research.

Availability of data andmaterials

The input data chosen to train and evaluate the forecasting model proposed
in this work were obtained from real web service logs from the Complutense
University of Madrid. These input and test data sets are available as
supplementary material to this manuscript and also at https://goo.gl/Jez9Kg.

Authors’ contributions

RMV conceived the study, carried out its design, conducted the experimental
section, and drafted the manuscript. RSM participated in the definition and
implementation of the experimental section, and helped to refine the
manuscript. EH participated in the definition and implementation of the
queue-based performance model, and also helped to refine the manuscript.
IML coordinated the research, participated in the analysis of different
SVM-based methods, and helped to draft and refine the manuscript. All
authors read and approved the final manuscript.

Authors information

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Computer Science School, Complutense University, 28040 Madrid, Spain.
2 IACS/SEAS, Harvard University, 02138 MA Cambridge, USA.

Received: 9 December 2018 Accepted: 29 March 2019

References

1. Herbst N, Kounev S, Reussner R (2013) Elasticity in cloud computing: What
it is, and what it is not. In: Proceedings of the 10th International
Conference on Autonomic Computing (ICAC 13). USENIX, San Jose.
pp 23–27

2. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing.
Futur Gener Comput Syst 28(5):755–768. Special Section: Energy
efficiency in large-scale distributed systems

3. Dougherty B, White J, Schmidt D (2012) Model-driven auto-scaling of
green cloud computing infrastructure. Futur Gener Comput Syst
28(2):371–378

4. Ye K, Huang D, Jiang X, Chen H, Wu S (2010) Virtual machine based
energy-efficient data center architecture for cloud computing: A
performance perspective. In: Green Computing and Communications
(GreenCom) 2010 IEEE/ACM Int’l Conference on Int’l Conference on
Cyber, Physical and Social Computing (CPSCom). pp 171–178

5. Papadopoulos A, Ali-Eldin A, Årzén K, Tordsson J, Elmroth E (2016) Peas: A
performance evaluation framework for auto-scaling strategies in cloud
applications. ACM Trans Model Perform Eval Comput Syst 1(4):15:1–15:31

6. Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of
auto-scaling techniques for elastic applications in cloud environments. J
Grid Comput 12(4):559–592

7. Jiang J, Lu J, Zhang G, Long G (2013) Optimal cloud resource auto-scaling
for web applications. In: 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. ACM, New York. pp 58–65

8. Messias V, Estrella JC, Ehlers R, Santana MJ, Santana RC, Reiff-Marganiec S
(2016) Combining time series prediction models using genetic algorithm

to autoscaling web applications hosted in the cloud infrastructure. Neural
Computing and Applications 27(8):2383–2406

9. Roy N, Dubey A, Gokhale A (2011) Efficient autoscaling in the cloud using
predictive models for workload forecasting. In: Proceedings of the 2011
IEEE 4th International Conference on Cloud Computing, CLOUD ’11. IEEE
Computer Society, Washington, DC. pp 500–507

10. Verma M, Gangadharan G, Narendra N, Vadlamani R, Inamdar V,
Ramachandran L, Calheiros R, Buyya R (2016) Dynamic resource demand
prediction and allocation in multi-tenant service clouds. Concurrency and
Computation: Practice and Experience 28(17):4429–4442. CPE-15-0088.R1

11. Box G, Jenkins G (1990) Time Series Analysis, Forecasting and Control.
Holden-Day, Incorporated, San Francisco

12. Islam S, Keung J, Lee K, Liu A (2012) Empirical prediction models for
adaptive resource provisioning in the cloud. Future Generation
Computer Systems 28(1):155–162

13. Jiang Y, Perng C, Li T, Chang R (2012) Self-adaptive cloud capacity
planning. In: 2012 IEEE Ninth International Conference on Services
Computing. pp 73–80

14. Shevade S, Keerthi S, Bhattacharyya C, Murthy K (2000) Improvements to
the smo algorithm for svm regression. IEEE Transactions on Neural
Networks 11(5):1188–1193

15. Schölkopf B, Smola A (2002) Learning with Kernels. MIT Press, Cambridge
16. Gross D, Shortle J, Thompson JM, Harris C (2008) Fundamentals of

queueing theory. Wiley, Hoboken
17. Moreno-Vozmediano R, Montero R, Llorente I (2011) Elastic management

of web server clusters on distributed virtual infrastructures. Concurrency
and Computation: Practice and Experience 23(13):1474–1490

18. Qu C, Calheiros R, Buyya R (2016) A reliable and cost-efficient auto-scaling
system for web applications using heterogeneous spot instances. Journal
of Network and Computer Applications 65:167–180

19. Cocaña-Fernández A, Sánchez L, Ranilla J (2016) Leveraging a predictive
model of the workload for intelligent slot allocation schemes in
energy-efficient {HPC} clusters. Engineering Applications of Artificial
Intelligence 48:95–105

20. Marosi A, Kovács J, Kacsuk P (2013) Towards a volunteer cloud system.
Future Generation Computer Systems 29(6):1442–1451

21. Montero R, Moreno-Vozmediano R, Llorente I (2011) An elasticity model
for high throughput computing clusters. Journal of Parallel and
Distributed Computing 71(6):750–757

22. Rodero-Merino L, Vaquero LM, Gil V, Galán F, Fontán J, Montero RS,
Llorente IM (2010) From infrastructure delivery to service management in
clouds. Future Generation Computer Systems 26(8):1226–1240

23. San-Aniceto I, Moreno-Vozmediano R, Montero R, Llorente I (2011) Cloud
capacity reservation for optimal service deployment. In: Proceedings of
the The Second International Conference on Cloud Computing, GRIDs,
and Virtualization, Rome. IARIA Conference. pp 52–59

24. Gandhi A, Thota S, Dube P, Kochut A, Zhang L (2016) Autoscaling for
hadoop clusters. In: 2016 IEEE International Conference on Cloud
Engineering (IC2E). MDPI, Basel. pp 109–118

25. Li Z, Yang C, Liu K, Hu F, Jin B (2016) Automatic scaling hadoop in the
cloud for efficient process of big geospatial data. ISPRS International
Journal of Geo-Information 5(10):173

26. Smowton C, Balla A, Antoniades D, Miller C, Pallis G, Dikaiakos MD, Xing W
(2017) A cost-effective approach to improving performance of big
genomic data analyses in clouds. Future Generation Computer Systems
67:368–381

27. Moreno-Vozmediano R, Montero R, Llorente I (2012) Iaas cloud
architecture: From virtualized data centers to federated cloud
infrastructures. Computer 45(12):65–72

28. Hasan M, Magana E, Clemm A, Tucker L, Gudreddi S (2012) Integrated and
autonomic cloud resource scaling. In: 2012 IEEE Network Operations and
Management Symposium. pp 1327–1334

29. Chieu T, Mohindra A, Karve A (2011) Scalability and performance of web
applications in a compute cloud. In: Proceedings of the 2011 IEEE 8th
International Conference on e-Business Engineering, ICEBE ’11. IEEE
Computer Society, Washington, DC. pp 317–323

30. Lim H, Babu S, Chase J, Parekh S (2009) Automated control in cloud
computing: Challenges and opportunities. In: Proceedings of the 1st
Workshop on Automated Control for Datacenters and Clouds, ACDC ’09.
ACM, New York. pp 13–18

31. Padala P, Hou K, Shin K, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A
(2009) Automated control of multiple virtualized resources. In:

https://goo.gl/Jez9Kg

Moreno-Vozmediano et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:5 Page 18 of 18

Proceedings of the 4th ACM European Conference on Computer
Systems, EuroSys ’09. ACM, New York. pp 13–26

32. Dutreilh X, Kirgizov S, Melekhova O, Malenfant J, Rivierre N, Truck I (2011)
Using Reinforcement Learning for Autonomic Resource Allocation in
Clouds: towards a fully automated workflow. In: 7th International
Conference on Autonomic and Autonomous Systems (ICAS’2011). IARIA,
Venice. pp 67–74

33. Tesauro G, Jong NK, Das R, Bennani MN (2006) A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation. In: Proceedings of
the 2006 IEEE International Conference on Autonomic Computing (ICAC).
IEEE Computer Society, Washington, DC. pp 65–73

34. Barrett E, Howley E, Duggan J (2013) Applying reinforcement learning
towards automating resource allocation and application scalability in the
cloud. Concurrency and Computation: Practice and Experience
25(12):1656–1674

35. Salah K, Elbadawi K, Boutaba R (2016) An analytical model for estimating
cloud resources of elastic services. Journal of Network and Systems
Management 24(2):285–308

36. Kaur PD, Chana I (2014) A resource elasticity framework for qos-aware
execution of cloud applications. Future Generation Computer Systems
37:14–25. Special Section: Innovative Methods and Algorithms for
Advanced Data-Intensive ComputingSpecial Section: Semantics,
Intelligent processing and services for big dataSpecial Section: Advances
in Data-Intensive Modelling and SimulationSpecial Section: Hybrid
Intelligence for Growing Internet and its Applications

37. Ahmed N, Atiya A, Gayar NE, El-Shishiny H (2010) An empirical
comparison of machine learning models for time series forecasting.
Econometric Reviews 29(5-6):594–621

38. Bontempi G, Taieb S, Borgne YL (2013) Business Intelligence: Second
European Summer School, eBISS 2012, Brussels, Belgium, July 15-21,
2012,. Springer Berlin Heidelberg, Berlin

39. Allende H, Moraga C, Salas R (2002) Artificial neural networks in time
series forecasting: a comparative analysis. Kybernetika 38(6):685–707

40. Zhang G (2003) Time series forecasting using a hybrid {ARIMA} and neural
network model. Neurocomputing 50:159–175

41. Thissen U, van Brakel R, de Weijer A, Melssen W, Buydens L (2003) Using
support vector machines for time series prediction. Chemometrics and
Intelligent Laboratory Systems 69(1–2):35–49

42. Müller K, Smola A, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1997)
Artificial Neural Networks – ICANN’97: 7th International Conference
Lausanne, Switzerland, October 8–10, 1997. In: Proceedings chap.
Predicting time series with support vector machines. Springer Berlin
Heidelberg. pp 999–1004

43. Burges C (1998) A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery 2(2):121–167

44. Smola A, Schölkopf B (2004) A tutorial on support vector regression.
Statistics and Computing 14:199–222

45. Suykens J, Vandewalle J (1999) Least squares support vector machine
classifiers. Neural Processing Letters 9(3):293–300

46. Vapnik V (1998) Statistical Learning Theory. Wiley-Interscience, New York
47. Cherkassky V, Ma Y (2004) Practical selection of svm parameters and noise

estimation for svm regression. Neural Netw. 17(1):113–126
48. Shawe-Taylor J, Cristianini N (2004) Kernel Methods for Pattern Analysis.

Cambridge University Press, New York
49. Üstün B, Melssen W, Buydens L (2006) Facilitating the application of

support vector regression by using a universal pearson {VII} function based
kernel. Chemometrics and Intelligent Laboratory Systems 81(1):29–40

50. Rauber T, Berns K (2011) Kernel multilayer perceptron. IEEE Computer
Society, Washington

51. Boardman M, Trappenberg T (2006) A heuristic for free parameter
optimization with support vector machines. In: The 2006 IEEE International
Joint Conference on Neural Network Proceedings. pp 610–617

52. Cassabaum M, Waagen D, Rodriguez J, Schmitt H (2004) Unsupervised
optimization of support vector machine parameters. In: Proceedings of
SPIE 5426, Automatic Target Recognition XIV. SPIE, Bellingham.
pp 316–325

53. Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple
parameters for support vector machines. Machine Learning 46(1):131–159

54. Frank E, Hall M, Holmes G, Kirkby R, Pfahringer B (2005) WEKA–A machine
learning workbench for data mining. Springer, Boston

55. Iqbal W, Dailey M, Carrera D, Janecek P (2011) Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Future
Gener. Comput. Syst. 27(6):871–879

56. Kujawa L (2013) Performance benchmark of popular php frameworks.
https://systemsarchitectdotnet.wordpress.com/2013/04/23/performance-
benchmark-of-popular-php-frameworks/. Posted on April 23

57. Razavi K, Kolk GVD, Kielmann T (2015) Prebaked μVMs: scalable, instant
VM startup for IaaS clouds. In: Proceedings of the 35th IEEE International
Conference on Distributed Computing Systems. pp 245–255

58. Razavi K, Costache S, Gardiman A, Verstoep K, Kielmann T (2015) Scaling
VM deployment in an open source cloud stack. In: Proceedings of the 6th
Workshop on Scientific Cloud Computing

59. Manco F, Lupu C, Schmidt F, Mendes J, Kuenzer S, Sati S, Yasukata K,
Raiciu C, Huici F (2017) My VM is lighter (and safer) than your container. In:
Proceedings of the 26th Symposium on Operating Systems Principles.
pp 218–233

https://systemsarchitectdotnet.wordpress.com/2013/04/23/performance-benchmark-of-popular-php-frameworks/
https://systemsarchitectdotnet.wordpress.com/2013/04/23/performance-benchmark-of-popular-php-frameworks/

	Abstract
	Keywords

	Introduction
	Related work
	Time series forecasting using machine learning techniques
	Time series training data
	The support vector regression model
	Kernel functions
	Forecast accuracy measures

	Performance model
	Evaluation
	Parameter selection for the SVM forecasting model
	Forecasting results
	Resource allocation results

	Conclusion and future work
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors information
	Competing interests
	Publisher's Note
	Author details
	References

