
SI R
INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by
the National Science Foundation
Engineering Research Center Program,
the University of Maryland,
Harvard University,
and Industry

TECHNICAL RESEARCH REPORT

Efficient Retrieval of Similar Time Sequences 
Under Time Warping

by B. Yi, H. V. Jagadish, C. Faloutsos

T.R. 97-77



E�cient Retrieval of Similar Time Sequences Under

Time Warping

Byoung-Kee Yi

Dept. of Computer Science

University of Maryland

College Park, MD

kee@cs.umd.edu

H.V. Jagadish

AT&T Labs

Florham Park, NJ

jag@research.att.com

Christos Faloutsos�

Dept. of Computer Science

and Inst. for Systems Research

University of Maryland

College Park, MD

christos@cs.umd.edu

Abstract

Fast similarity searching in large time-sequence databases has attracted a lot of research interest

[1, 5, 2, 6, 3, 10]. All of them use the Euclidean distance (L2), or some variation of Lp metrics. Lp

metrics lead to e�cient indexing, thanks to feature extraction (e.g., by keeping the �rst few DFT

coe�cients) and subsequent use of fast spatial access methods for the points in feature space.

In this work we examine a popular, �eld-tested dissimilarity function, the \time warping" distance

function which permits local accelerations and decelerations in the rate of the signals or sequences.

This function is natural and suitable for several applications, like matching of voice, audio and

medical signals (e.g., electrocardiograms) However, from the indexing viewpoint it presents two

major challenges: (a) it does not lead to any natural \features", precluding the use of spatial access

methods (b) it is quadratic (O(len1 � len2)) on the length of the sequences involved.

Here we show how to overcome both problems: for the former, we propose using a modi�cation

of the so- called \FastMap", to map sequences into points, trading o� a tiny amount of \recall"

(typically zero) for large gains in speed. For the latter, we provide a fast, linear test, to help us

discard quickly many of the false alarms that FastMap will typically introduce. Using both ideas in

cascade, our proposed method consistently outperformed the straightforward sequential scanning on

both real and synthetic datasets and achieved up to 7.8-time speed-up (780%).

1 Introduction

A doctor watching an electrocardiogram is often looking for a pattern that is indicative of a problem.

We would like for a computer to watch the readings on an electrocardiograph, and to cause an alert,

or take other appropriate action, when a pattern is observed that is characteristic of a particular type

�Currently on leave at Carnegie Mellon University, Pittsburgh, PA. This research was partially supported by the NSF

under Grants No. EEC-94-02384, IRI-9205273 and IRI-9625428.
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of heart failure. In database terms, a query response is expected when a given sequence approximately

matches any one of several patterns in a database.

Applications of approximate sequence matching abound: in �nancial time sequences (\�nd stocks

that move like Microsoft"); digital audio/voice clips (\�nd clips that sound like a given person") [1, 5];

scienti�c databases (\�nd times in the past that had similar solar magnetic wind patterns with the ones

today" [14]).

In the area of speech recognition, this problem has been studied extensively, and is called the \(dy-

namic) time warping". Virtually all speech recognition systems speed-up and slow down portions of the

speech samples to be matched. Standard techniques to accomplish this use dynamic programming, with

quadratic complexity (i.e., proportional to the product of the lengths of the sequences being matched).

The same ideas could be used for matching in a database context, but are likely to prove too expensive.

We would like to have a very fast matching technique, and ideally even an indexing technique for this

purpose.

In this paper we propose two such techniques. The �rst technique is based on FastMap [4]. The idea

here is to make use of the given distance measures to map sequences into points in k-d space, and to

�nally build an index structure. The other technique we propose de�nes a new distance function which

uniformly underestimates the original distance function. This function can be computed much faster

than the original distance so that it can be used as a �lter to help us discard quickly non-qualifying

sequences.

The rest of the paper is organized as follows. Section 2 provides a survey on related works. In

Section 3, we lay out the basic framework and de�ne the problem under study. In Section 4, we present

the two proposed techniques in detail. We also discuss how to combine the two techniques, as well

as some variants of the basic techniques. In Section 5, we present empirical results comparing the

performance of the techniques. Finally, Section 6 concludes this work.

2 Related Works

Similarity-based matching of time sequences has attracted a lot of attention in the signal processing

area, and speci�cally in speech processing. However, they assumed a small dataset (e.g., a few tens of

phonemes) and were more concerned with the precision rather than e�ciency in the presence of large

datasets.

Speed is the main focus in the recent database work on sequence matching. In [1], we examined

the Euclidean distance, and suggest using the Discrete Fourier Transform (DFT). We argued that

most of real signals need only a few DFT coe�cients to approximate them. Then, we proposed an

indexing mechanism called F-Index which takes a few �rst coe�cients and regards them as a point in

the Euclidean space, hence it makes possible to use readily available Spatial Access Methods(SAMs).

The proposed method may allow a few false alarms which can be removed in the post-processing stage,

but guarantees no false dismissals. This method was proposed for matching sequences of equal length.

In [5] we generalized the approach for subsequence matching.
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Follow-up work by Goldin and Kanellakis [6] suggested that we normalize the sequences �rst, to allow

for di�erences in level and scale.

All the above approaches assume Euclidean distance as the underlying similarity measure. Agrawal

et al [2] introduce a new distance function for time sequences, aiming to capture the intuitive notion

that two sequences should be considered similar if they have enough non-overlapping time-ordered pairs

of similar subsequences. The model allows the amplitude of one of the two sequences to be scaled by any

suitable amount and its o�set adjusted appropriately. It also allows non-matching gaps in the matching

subsequences.

Ra�ei and Mendelzon [10] extend previous work by proposing techniques to handle moving average

and time scaling(i.e., globally stretching or shrinking of the time axis), but not time warping.

In [7], we et al develop domain independent framework for de�ning queries in terms of similarity

of objects. Our framework has three components: a pattern language, a transformation rule language,

and a query language. The framework can be tuned to the needs of a speci�c application domain, such

as time sequences, molecules, text strings or images, by the choice of these languages.

Sheshadri et al [13] suggest a new data model and an algebraic language for sequences in general.

They also propose a sophisticated optimization technique, but do not mention about similarity among

sequences and query processing technique based on similarity.

A topic that none of the above articles has tackled is the problem of indexing, when local, time-

warping transformations are allowed. This is a di�cult problem, because the DFT methods of [1, 5] do

not work any more. This is exactly the focus of the rest of this work.

3 Background

We assume that all our sequences are sampled between the same time intervals, and samples are real

numbers, e.g., hx1; : : : ; xni such that xi = f(i � �t) for some (unknown) real-valued function f . We

will denote a sequence hx1; : : : ; xni as ~x. Table 3 gives a list of symbols used in the rest of the paper.

We consider the Lp metric family of distance functions. For two sequences ~x = hx1; : : : ; xni, ~y =

hy1; : : :yni this distance is de�ned as follows:

Dp(~x; ~y) =
nX
i=1

jxi � yij
p

For p = 1 this reduces to the `Manhattan' or `city-block' distance; for p = 2 it becomes the popular

Euclidean distance.

3.1 The Time-Warping Transformation

Given a sequence ~x = hx1; : : : ; xni, let Head(~x) denote x1 and Rest(~x) denote hx2; : : : ; xni. Then, we

want to allow the stuttering transformation on a sequence, possibly with a penalty (\cost"):

� stutteri(~x) : repeats xi and shifts the elements to the right.
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Symbol De�nition

Dp Lp-based distance function

Dbase base distance function, e.g., D1 or D2

Dwarp time warping distance

Dlb distance function to lower-bound Dwarp

~x time sequence

hi null time sequence

xi i-th element of ~x

j~xj length of ~x

Head(~x) the �rst element of ~x

Rest(~x) the rest of ~x but the �rst

N database size

k dimension in a Euclidean space

� tolerance in range query

Table 1: List of symbols

Following [9], for any non-null sequences ~x and ~y, the (dynamic) time warping distance is de�ned as

follows.

De�nition 1 The time warping distance between two sequences is de�ned as:

Dwarp(hi; hi) = 0;

Dwarp(~x; hi) = Dwarp(hi; ~y) =1;

Dwarp(~x; ~y) = Dbase(Head(~x); Head(~y)) +min

8>><
>>:

Dwarp(~x; Rest(~y)); (x� stutter)

Dwarp(Rest(~x); ~y); (y � stutter)

Dwarp(Rest(~x); Rest(~y)) (no stutter)

9>>=
>>;

where hi denotes a null sequence. Dbase can be any of the distance functions de�ned previously, although

our primary concern is with D1, or the city-block distance. Also note that this de�nition does not require

two sequences to be of the same length. In the case of time warping distance, we allow as many stuttering

as needed at no cost.

De�ned as a recurrence, the time-warping distance can be computed by a dynamic programming

algorithm (see Appendix A or [9]) whose complexity is O(j~xj � j~yj). See [12] for more details and other

variants of the basic algorithm.

Figure 1 shows two time sequences, before and after the time warping. The sequences are mixtures of

similar harmonics: x(t) = 10 sin(0:5t)+5 sin(0:25t) and y(t) = 11 sin(0:55t)+4:5 sin(0:26t) respectively.

Note that how time warping automatically adjusts peaks and valleys of two sequences.

Proposition 1 Dwarp() does not satisfy triangle inequality.
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Figure 1: Illustration of two similar sequences, before and after time warping

Proof: By counter-example, consider ~x = h0i, ~y = h1; 2i, and ~z = h1; 2; 2i. Then, we have

Dwarp(~x; ~z) = 5 > Dwarp(~x; ~y) +Dwarp(~y; ~z) = 3 + 0 = 3

which completes the proof.

This fact has signi�cant implication on the method we can use for indexing: Any indexing technique

which assumes the triangle inequality implicitly or explicitly, can not avoid producing false dismissals.

This is a very strict requirement: all the spatial access methods, as well as all the methods that use

distance/metric/vantage-point trees, can not avoid false dismissals. The only method that guarantees no

false dismissals is sequential scanning, which will be prohibitive for a large collection of long sequences,

because of the the quadratic nature of Algorithm 3.

To resolve the issue, we propose a method that trades-o� a tiny percentage of false dismissals, for

signi�cant speed-up. Namely, our goal is to provide an e�cient retrieval technique, while keeping the

false dismissals as few as possible.

4 Proposed Techniques

Suppose there is a database containing many time sequences of arbitrary length and that a user wants to

�nd all sequences similar to a certain query sequence, that is, all sequences within � units of time-warping

distance. This type of query is e�ectively a range query.

A straightforward way to process such query is to scan all sequences and compute Dwarp() for each

scanned sequence, to select those that qualify. While very simple, it can be very slow, because,

� it reads every sequence in the database (and thus scales poorly), and

� it computes the (expensive) time warping distance from each sequence of the database.
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What is unique in this problem is that not only I/O cost(the �rst case) matters, but also computa-

tion cost(the second case) does. Consequently, any promising techniques should address both of these

problems.

To solve these problems, we propose the following techniques.

� To use FastMap to build index structure to speed up query processing. This technique may result

a few false dismissals. We will also discuss how to reduce false dismissals.

� To use a new distance function which uniformly underestimate time warping distance. This

approach guarantees no false dismissals.

� To use the combination of the two techniques. Since the two techniques are independent of each

other, they can be combined in a pipelined manner.

In the subsequent sections, we describe precisely the proposed techniques.

4.1 FastMap-Based Technique

The �rst technique we propose is based on a method called \FastMap" [4]. It works as follows: Given

N objects and a distance function, it maps the objects into N points in a k�d space, so that the

original distances are preserved well. The parameter k may be given by the user or can be tuned

for better system performance in our application. The key idea is to pretend as if objects are indeed

points in some unknown, n-dimensional space, and try to project these points on k mutually orthogonal

directions, using only the distance information.

After the objects are mapped into k�d points, we can use any spatial access method to organize

them and to search for range queries. FastMap is linear on the number N of objects (i.e., sequences).

Moreover, it takes O(k) time to map a query sequence into a k�d point, that is, the time is constant

with respect to the database size N .

Like every other method (see Proposition 1), FastMap may introduce false dismissals, if the triangle

inequality is not obeyed. We observed that we can avoid more false dismissals, if we use square root of

the original distances. Thus, we use this technique for the rest of this work.

Algorithm 1 describes how range queries are handled using FastMap. If FastMap is applied on the

square rooted distances, the search range should also be square rooted. Note that F (~s) denotes the k�d

coordinates of a sequence ~s. In the �ltering step, two sequences are compared in terms of k�d Euclidean

distance rather than the time warping distance. Irrelevant sequences are �ltered out at this step. Some

non-qualifying sequences may be included, but those are removed in the post-processing step.

Algorithm 1 is faster than the naive method for two reasons. First, it scans fewer of sequences.

Second, the �ltering step is also faster because k is much smaller than sequence length (usually some

�xed constant, say, 6). Filtering may remove some of qualifying sequences resulting false-dismissals,

because we can not guarantee that the Euclidean distance in the k�d space lower-bounds the time

warping distance. This is the case even if we use the square root of the time warping distance, but the

probability of false-dismissals is very low in practice, as we will see later.
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algorithm fastmap-range-search

R := fg; /* response set */

/* filtering step */

Given ~q, foreach sequence ~si in the database S,

if (D2(F (~q); F (~si)) � �), then add i to R;

/* post-processing step */

Foreach i in R,

if (Dwarp(~q; ~si) > �), then remove i from R;

Report R;

end algorithm

Algorithm 1: Pseudo-code of �-Range Query using on FastMap

4.2 Lower-bounding Technique

For two given sequences ~x = hx1; : : : ; xmi and ~y = hy1; : : : ; yni, let max(~x) and max(~y) denote the

maximum values in ~x and ~y, respectively. min(~x) andmin(~y) are de�ned similarly, but by the minimum

values. A pair hmax(~x); min(~x)i de�nes a range within which a sequence ~x can uctuate. Without loss

of generality, we assume max(~x) � max(~y).1

We �rst consider the possible arrangement of ranges of two sequences being compared. It is rather

straightforward to see that there are only three possibilities as seen in Figure 2.

Observation 1 Given two ranges, R~x = hmax(~x); min(~x)i and R~y = hmax(~y); min(~y)i, there are three

possible arrangements of the ranges.

1. R~x and R~y overlap (min(~x) � max(~y); min(~x) � min(~y)).

2. R~x encloses R~y (min(~x) < min(~y)).

3. R~x and R~y are disjoint (min(~x) > max(~y)).

The proposed method is motivated by the following simple observation:

Observation 2 jmax(~x)�max(~y)j � Dwarp(~x; ~y).

Checking its validity is rather straightforward. Since max(~x) should match at least an element of ~y,

say yi, and we assumed max(~x) � max(~y),

jmax(~x)�max(~y)j � jmax(~x)� yij � Dwarp(~x; ~y):

The consequence of this observation is the absolute di�erence in the maximum values can serve as

a distance that lower-bounds the time warping distance. While this is true, however, it may not be

1Otherwise, we can switch their roles.
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Figure 2: Possible arrangements of R~x and R~y

very useful because it may underestimate too much. Thus, our goal is to �nd a tighter lower-bound,

preferably some additive measure.

To get better intuition and insight, let us take an example which is illustrated in Figure 3. Two

time sequences ~x (solid) and ~y (dashed) are presented. Corresponding ranges R~x and R~y overlap. The

shaded region between the two sequences is separated into two disjoint parts A and B. A is the shaded

region above max(~y) and below min(~x), and B lies in between.
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Figure 3: Illustrated example: intuitive idea behind Dlb

Note that Dwarp(~x; ~y) is just area(A) + area(B) after time warping, and time warping attempts to

minimize this sum. One interesting point here is that it may reduce area(B), but not area(A). The

reason is because stuttering increases area(A) for elements either below min(~x) or above max(~y), but

has no e�ect on area(A) for other elements. Suppose A0 and B0 denote A and B after time warping,

respectively. Then we make the following observation.
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Observation 3 area(A) � area(A0) � area(A0) + area(B0) = Dwarp(~x; ~y)

From these observations, we are now ready to give a formal de�nition of our new distance function

Dlb() as follows:

De�nition 2 (A new distance function Dlb)

Dlb(~x; ~y) =

8>><
>>:

P
xi>max(~y) jxi �max(~y)j+

P
yj<min(~x) jyj �min(~x)j if R~x and R~y overlapP

xi>max(~y) jxi �max(~y)j+
P

xi<min(~y) jxi �min(~y)j if R~x encloses R~y

max(
Pm

i=1 jxi �max(~y)j;
Pn

j=1 jyj �min(~x)j) if R~x and R~y are disjoint

Note that both minimum and maximum values of a sequence can be calculated when the sequence

is registered into a database by scanning once and can be stored with the sequence for future uses.

Moreover, the arrangement of ranges of two sequences can be determined in constant time by simple

comparisons. Finally, the de�nition of Dlb requires just one scan of each sequence, thus we can calculate

the Dlb distance between two sequences in linear time in the length of sequences. This may result in a

great improvement unless Dlb underestimates Dwarp too much. We will verify our claim by experiments.

We claim that Dlb uniformly lower-bounds Dwarp for any two sequences ~x and ~y.

Theorem 1 (Lower-bounding) For any two sequences ~x = hx1; : : : ; xmi and ~y = hy1; : : : ; yni,

Dlb(~x; ~y) � Dwarp(~x; ~y)

Proof: See Appendix B.

As a direct consequence of theorem 1, we obtain the following corollary.

Corollary 1 (No False-Dismissals) For any two sequences ~x = hx1; : : : ; xmi and ~y = hy1; : : : ; yni,

if Dwarp(~x; ~y) � �, then Dlb(~x; ~y) � �.

As we have shown in a previous paper[5], lower-bounding the actual distance with another distance is

a condition that guarantees no false dismissals for range queries and nearest neighbor queries[8].

Algorithm 2 describes how range queries can be processed. Other types of queries can be handled

similarly.

In the �ltering step, irrelevant sequences are �ltered out quickly because the Dlb distance can be

computed fast (linear time on the dimensionality k, typically k � 10). Some non-qualifying sequences

may be included in the result of this step because Dlb lower-bounds our object distance Dwarp. However,

those non-qualifying sequences are removed in the post-processing step.

Note that the algorithm does not reduce the number of sequences to be scanned. Instead, the speed-

up comes from faster distance calculation. But, in many applications, the length of sequences can be

very long and quadratic-time distance calculation should be avoid as often as possible. This fact justi�es

the e�ectiveness of the algorithm.
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algorithm lower-bound-search

R := fg;

/* filtering step */

Given ~q, foreach sequence ~si in the database S,

if (Dlb(~q; ~si) � �), then add i to R;

/* post-processing step */

Foreach i in R,

if (Dwarp(~q; ~si) > �), then remove i from R;

Report R;

end algorithm

Algorithm 2: �-Range Query based on Dlb

4.3 Combining the Two Techniques

A careful consideration of the two techniques proposed in the previous sections can lead more e�cient

algorithm. In Algorithm 1, we compare �ltered sequences using the time warping distance only. How-

ever, we can use the lower-bounding distance before calculating time warping distance. It may require

extra cost if the sequence is really a qualifying sequence, but may save great amount of computational

cost otherwise. This observation leads to a exible multi-stage query processing system as shown in

Figure 4, in which FastMap and Dlb serve as a primary and a secondary �lter respectively.

Post-processing:

(optional)Bypass Bypass (optional)

Lowerbounding

Filter
Index Distance Dwarp()

ComputationSequence
Query

Sequences
Matching

Filter

FastMap

Index
FastMap Sequences

Figure 4: Proposed System Structure

It consists of three stages and they are connected in a pipelined manner. The input to each stage is

a list of sequence ID's in the database of concern and the query sequence and output is a list of ID's

of qualifying sequences at a stage. The �rst stage �lters out irrelevant sequences using FastMap index

only. Filtering at this stage reduces both I/O cost and CPU cost. Those sequences that pass through

the �rst �ltering stage are compared with the query sequence by Dlb() at the next stage. Finally, the

post-processing stage selects only those sequences which really match the query sequence. One of two

�ltering stages or both can be bypassed depending on the desirable time-recall trade-o�.

10



5 Experimental Results

To show the e�ectiveness of our proposed methods, we performed experiments on real time sequences

(human electrocardiograms(ECG); and daily stock price data), as well as arti�cially generated se-

quences using sinusoids. Range queries with varying query objects and search ranges (= tolerances)

were performed on these sequences. We compared proposed methods and sequential scanning method

in terms of average response time and average recall. All methods were implemented in C on a Pen-

tium(100MHz) PC with 32 MB of memory and a 2GB Seagate SCSI disk(10msec average seek time),

running FreeBSD(BSD4.4Lite-based). We measured the wall-clock time on this dedicated system.

We designed the experiments to answer the following questions:

� Which of the proposed techniques and their variant shows the best performance in terms of both

response time and false dismissals?

� How well each method scales as sequence length or database size grows?

The experimental parameters and their de�nitions are summarized in Table 2.

Parameter De�nition

N number of sequences in a database

L (average) length of sequences in a database

k dimensionality of target space ( = 6 )

Table 2: Summary of Experimental Parameters and De�nitions

5.1 Experimental Settings

For the experiment, we prepared three datasets. Samples of these time sequences are plotted in Figure 5.

� SINE: A dataset of synthetic time sequences. They were generated using sine curves as follows.

s(t) =
SX
i=1

Ai sin(fi � t + pi) + �i

where S is the number of sinusoids. Ai; fi; pi denote amplitude, frequency and phase of i-th

sinusoid, respectively, and they were chosen randomly within some ranges. �i is a small white noise

term. 400 sequences were generated, 100 for each S = 2; 3; 4; 5. Each sequence has length = 128.

� ECG: 406 sequences of human electrocardiogram(ECG) data. Their lengths vary from 640 to

840.

� STOCK: Stock price time sequences were generated by extracting 150 most recent(as of 6/5/96)

daily high values from 640 stocks. These time sequences were normalized by subtracting the

average, as was done in [6, 2].
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Figure 5: Sample Time Sequences

Before building a FastMap index, we must determine the dimensionality k of the target space. In

experiments not reported here for brevity, we observed that k = 6 was a good choice for all our the

datasets. Other parameters are summarized in Table 3.

Dataset Database Size (N) Sequence Length (L)

SINE 400 128

ECG 406 740

STOCK 640 150

Table 3: Experimental Parameter Settings

As the range query methods, 4 algorithms were compared. These include,

� Naive: The straightforward method, bypassing both �lters in Figure 4.

� FM: Algorithm 1, bypassing the lower-bounding distance �lter in Figure 4.

� LB: Algorithm 2, bypassing the FastMap index �lter in Figure 4.

� FM+LB: The proposed \combined" method, which enables both �lters in Figure 4.

To measure how many false-dismissals are introduced by FastMap, we use the \recall" concept from

Information Retrieval[11].

De�nition 3 Recall is de�ned as follows:

recall �
retrieved and relevant

relevant

The (ideal) recall value of 1.0 means there are no false-dismissals, while a recall value of 0.0 means that

no relevant objects are retrieved.
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5.2 Average Response Time and Recall

To compare the various proposed method, we performed range queries over 7 randomly selected query

objects and calculated the average response time and recall. Search ranges were chosen such that average

number of matching sequences be approximately 1 (best match case) at the minimum range and 5% of

the database size at the maximum range. Then, we compared the basic techniques(LB, FM) with the

straightforward method(Naive). The results are shown in Figure 6. For all methods, response time

grows as search range. We observe that search range has little e�ect on recall.

In response time, FM was the fastest of all methods. LB was comparable with FM in STOCK.

In recall, the value of LB was always 1 as we expected. For FM, the value was 1 except for one case

in ECG (� 0.964). Thus, we can conclude that all proposed methods outperformed straightforward

method in response time with little compromise in recall.
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Figure 6: Comparison of the Basic Techniques (LB with crosses; FM with squares) against the Naive

Method (Naive with diamonds).

Next, we compared FM with FM+LB. Since the latter does not introduce any more false-dismissals

than the former, we only compared them in terms of average response time. Figure 7 shows the result
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of this comparison. In all cases, the combined technique performed consistently faster than its basic

counterpart.
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Figure 7: Comparison of FastMap (FM with diamonds) against the combined technique (FM+LB

with crosses). Response time versus tolerance.

Finally, we summarize the speed-up by all proposed techniques over Naive method at the minimum

and maximum search ranges in Table 4. The values report the ratio of the response time (Naive over the

respective competitor). Notice that our proposed method achieves up to almost an order of magnitude

(7.8 times) better response time, for real datasets (STOCK), and over an order of magnitude (12

times), for the synthetic SINE dataset.

5.3 Scalability Test

In this section, we present the scalability test results on FM+LB method. Only FM+LB was chosen

among proposed techniques, because it was clear in the previous section that it is the most promising

method. Tests were performed in two ways. First, we generated extra synthetic datasets with varying

lengths in the same way as previously and then performed range queries with a search range so that as
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Method Speed-up at Speed-up at

Min Range Max Range

LB 2.43 1.49

FM 10.59 2.88

FM+LB 12.01 3.08

(a) SINE

Method Speed-up at Speed-up at

Min Range Max Range

LB 2.24 1.68

FM 4.92 3.17

FM+LB 5.56 3.84

(b) ECG

Method Speed-up at Speed-up at

Min Range Max Range

LB 3.71 2.46

FM 5.31 2.67

FM+LB 7.82 3.71

(c) STOCK

Table 4: Speed-up by Proposed Techniques: ratio of response time of the Naive method over each

competitor.
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many as 5% of sequences in each dataset be retrieved. Figure 8(a) shows the result. We can see that

proposed technique performs about 3 times faster than Naive method.

Next, we generated 800 sequences of length 32 and ran range queries with a �xed search range, over

200, 400, 600, and 800 sequences from this dataset. As we can see in Figure 8, the proposed technique

scales up smoothly with the database size, with increasing performance gap over the Naive method.

Remarkably, in all cases, the recall value of the proposed method was 1, hence there were no false

dismissals.
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Figure 8: Scalability of FM+LB: response time versus (a) average sequence length (b) database size

(Naive with diamonds; FM+LB with crosses).

6 Conclusions

We focused on the fast similarity search on a large collection of time sequences, when the dissimilarity

function is the \time-warping" distance [9], as it happens in audio and biological time sequences. The

major contribution of this work is the idea to trade-o� a tiny amount of \recall" (typically zero) to

achieve signi�cant speed-up (up to 7.8-time, on real data) We proposed and combined two methods:

� FastMap on the square-root of the time-warping distance, to map sequences to points

� a lower-bounding, linear distance function, to accelerate the post-processing.

Minor contributions include:

� the introduction of the time-warping distance to database audience, along with pointers to the

related speech processing literature.

� implementation of proposed methods and experimental results on real and synthetic datasets
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A Appendix: Time Warping Distance Algorithm

Here we give the pseudo-code to compute the time-warping distance between two sequences ~x and ~y.

The idea is to build an auxiliary matrix M [i; j], which will store the cost of matching the �rst i samples

of ~x with the �rst j samples of ~y; thus, M [m;n] is the desired cost (if m and n are the lengths of ~x and

~y respectively).

algorithm time-warping-distance(~x, ~y)

/* Initializations */

m := j~xj; n := j~yj;

M [0; 0] := 0:0;

M [1 : : :m; 0] := 1;

M [0; 1 : : :n] := 1;

/* Compute partial results */

for 1 � i � m,

for 1 � j � n,

M [i; j] := Dbase(xi; yj) + minf M [i� 1; j];M [i; j� 1];M [i� 1; j � 1] g;

return M [m;n];

end algorithm

Algorithm 3: Time Warping Distance

B Appendix: Proof of Theorem 1

Theorem 1 (Lower-bounding) For any two sequences ~x = hx1; : : : ; xmi and ~y = hy1; : : : ; yni,

Dlb(~x; ~y) � Dwarp(~x; ~y)

Proof: Let w~x(k) and w~y(k) be two warping functions whose domains are both f1; � � � ;Mg such that

MX
k=1

jxw~x(k) � yw~y(k)j = Dwarp(~x; ~y):

There must exist such warping functions, although they may not be unique. We will show that the

theorem holds for each possible arrangement of ranges.

R~x and R~y overlap: For an arbitrary k, there are three possibilities.

case 1: xw~x(k) > max(~y) and yw~y(k) < min(~x)

jxw~x(k) � yw~y(k)j � jxw~x(k) �max(~y)j+ jyw~y(k) �min(~x)j:
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case 2: xw~x(k) > max(~y) and yw~y(k) � min(~x)

jxw~x(k) � yw~y(k)j � jxw~x(k) �max(~y)j:

case 3: xw~x(k)
� max(~y) and yw~y(k)

< min(~x)

jxw~x(k) � yw~y(k)j � jyw~y(k) �min(~x)j:

Other cases are either not possible, or irrelevant because none of xw~x(k) and yw~y(k) contributes to Dlb.

Note that these cases are mutually exclusive. Thus, adding up both sides of the above inequalities

through all k proves the theorem.

R~x encloses R~y: For an arbitrary k, there are only two possibilities.

case 1: xw~x(k) > max(~y)

jxw~x(k) � yw~y(k)j � jxw~x(k) �max(~y)j:

case 2: xw~x(k) < min(~y)

jxw~x(k) � yw~y(k)j � jxw~x(k) �min(~y)j:

Similarly, adding up both sides of the above inequalities through all k proves the theorem.

R~x and R~y are disjoint: For an arbitrary k,

xw~x(k) > max(~y) and yw~y(k) < min(~x):

Consequently we have,
MX
k=1

jxw~x(k) � yw~y(k)j �
MX
k=1

jxw~x(k) �max(~y)j:

Also,
MX
k=1

jxw~x(k) � yw~y(k)j �
MX
k=1

jyw~y(k) �min(~x)j:

Therefore,
MX
k=1

jxw~x(k) � yw~y(k)j � max(
MX
k=1

jxw~x(k) �max(~y)j;
MX
k=1

jyw~y(k) �min(~x)j):

From the above case analysis, the theorem holds. 2
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