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Abstract—Location-awareness of mobile objects is the key to 
numerous emerging ubiquitous computing applications. We show 
that RFID technology can be leveraged to achieve mobile object 
localization in an inexpensive, power efficient, scalable, widely 
applicable, flexible, and user-friendly manner. We outline the 
challenges that can adversely affect RFID-based localization 
techniques, and propose solutions to mitigate them. We present 
several algorithms for RFID-based mobile object localization that 
compare favorably or exceed previous methods in terms of 
accuracy, speed, reliability, scalability, and cost. 
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I. INTRODUCTION 
The confluence of radio frequency identification (RFID) and 
other wireless technologies lies at the heart of many emerging 
applications, such as remote medicine, robotic teams, wireless 
sensing, early warning systems (e.g., for tsunamis, earthquakes, 
and chemical spills), locating points of interests (e.g., ATMs, 
banks, and hospitals), and automated inventory management 
[1, 2, 9, 10, 13, 15, 16, 17, 24]. Such applications require 
capabilities that include object identification, real-time object 
tracking, and position localization. 

While typical RFID technology is sufficient for object 
tracking and identification, it does not normally provide object 
localization capabilities. Several RFID-based localization 
techniques for mobile objects have been proposed [5, 8, 11, 
12]. However, these localization techniques tend to 
compromise key requirements such as accuracy, speed, power, 
cost, scalability, and reliability, which severely degrade the 
utility of these methods. Moreover, some previous localization 
methods also require cumbersome non-RFID technologies such 
as ultrasonic sensors, vision sensors, cameras, etc. 

We propose to address these limitations by developing a 
scalable and reliable RFID-based localization approach that 
accurately and quickly determines the positions of mobile 
objects. Our approach consists of two separate techniques to 
localize target tags, as well as localize readers attached to 
mobile objects. To localize mobile target tags, we vary the 
reader power levels over a set of calibrated reference tags 
having known sensitivities. Separately, we determine the 
positions of target mobile readers by measuring their proximity 
to reference tags. Moreover, these two approaches can be 
combined to yield even higher accuracy and efficiency. 

We have implemented, tested, and evaluated the proposed 
approach to confirm its general applicability, scalability, and 
reliability. Our approach suits a wide-range of requirements 
and tradeoffs including accuracy, speed, cost, and power. We 
have also identified several key challenges (e.g., environmental 
interferences, tag sensitivity, spatial arrangements of tags etc.) 
that adversely affect the performance of RFID-based object 
localization, and we propose mitigating techniques. 

This paper is organized as follows. In section II, we 
describe related research efforts to localize mobile objects 
based on RFID technology. Several localization challenges and 
mitigating techniques are presented in section III. We present 
our localization approach in section IV, discuss implementation 
details and results in section V, and conclude in section VI with 
future research directions. 

II. RELATED WORK 
RFID-based localization for mobile objects can be broadly 

classified into tag and reader-based localization techniques, 
wherein position estimates of tags and readers attached to such 
objects are determined. In this paper, we focus on the 
localization of mobile objects by utilizing the far-field radio-
wave interaction between the RFID tags and readers (i.e., other 
RF-based localization approaches utilizing near-field, surface 
acoustic waves, microwaves, GPS, etc. are outside the scope of 
this work). Related research work includes the following.  

Chae and Han [5] describe a two-step approach to localize 
mobile robots in an indoor environment. In their first step, an 
onboard RFID reader is coarsely localized with respect to 
neighborhood active reference tags. In the second step, a vision 
sensor combined with a feature detection algorithm identifies 
key environmental features to minimize the localization error to 
an average of 0.23 meters. Their approach is less applicable in 
different scenarios as the onboard vision sensor requires a 
sufficiently illuminated environment and objects must be 
within line-of-sight (a fundamental drawback that RFID was 
intended to eliminate in the first place).  

Choi and Lee [8] propose to localize mobile robots in an 
indoor environment by utilizing ultrasonic sensors in 
combination with an onboard reader. In the first stage, the 
global position of the mobile robot is estimated through 
onboard reader localization with respect to the neighborhood 
passive reference tags. The second stage uses ultrasonic sensors 
for local position estimates. While their approach can yield 
higher accuracy, it is inherently not a pure RFID-based method, This research is supported by National Science Foundation grant CNS-0716635
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but rather a sound-based approach and is thus highly limited by 
issues such as environmental noise, line-of-sight, etc.  

Hähnel et al [11] propose using a laser range scanner 
combined with an RFID reader onboard a mobile robot. The 
laser range scanner is used to learn a map comprised of 
reference tags, which in turn is used to estimate the position 
and orientation of mobile robots. However, this approach 
imposes line-of-sight constraints, and moreover tag orientation 
issues degrade the detection probability of the reference tags, 
resulting in high localization errors in the 1 to 10 meters range.  

Han et al [12] propose mobile object localization by using 
reference tags and onboard mobile readers. Localization error 
is minimized using a triangular tag arrangement scheme, 
yielding average localization error of 0.09 meter in a small test 
region of one meter square. Koch et al [14] propose mobile 
object localization technique based on passive and active 
reference tags and onboard readers. Position estimates of the 
mobile objects can be determined within 0.1 meter accuracy on 
average.  

Milella et al [18] utilize an onboard monocular camera, a 
reader and a tag bearing estimation technique based on “fuzzy 
inference system” to localize mobile robots. The average 
localization error is 0.64 meter. Senta et al [20] present a 
mobile robot localization technique based on reference tags, 
onboard readers, and a support vector machine (SVM)-based 
machine learning approach. This method yields localization 
errors of over 0.2 meters, and is limited by the spatial tag 
arrangement, measurement noise, and tag-reader proximity.  

Seo and Lee [21] describe a mobile object localization 
system that transmits an RFID signal from an onboard reader to 
the neighborhood beacon, which in turn responds with an 
ultrasonic signal. The estimated distance is computed based on 
the time difference between transmitted and received signals, 
with an average localization error in the range of 0.2 to 1.6 
meters. Vorst et al [23] present a mobile object localization 
approach using reference tags, onboard readers, and a particle 
filter-based technique. They compare prior-obtained training 
data with real-time RFID measurements to yield an average 
localization error in the range of 0.2 to 0.6 meters.  

The effectiveness of the previous approaches is hindered by 
reliance on line-of-sight techniques, combining multiple non-
RFID (e.g., ultrasonic sensors, cameras, lasers etc.) and RFID 
components in an ad-hoc manner, large numbers of onboard 
components, high localization delays, and heavy power 
requirements [5, 8, 11, 18]. Moreover, some of the above 
methods are too expensive or unwieldy due to the cost, size, 
and weight of the required infrastructure. Finally, the above 
approaches ignore the key issue that the RFID equipment itself 
can introduce significant amount of experimental errors. For 
example, previous works ignore the fact that identical tags can 
have widely varying detection sensitivities, which can greatly 
affect the experimental outcomes, as shown by Chawla, 
Robins, and Zhang [6]. Thus, instead of addressing and 
mitigating these basic principles (as we do in this paper), 
previous research efforts resort to Herculean efforts to reduce 
errors on other fronts, often resulting in a hodgepodge of ad-
hoc and ineffectual techniques. 

III. LOCALIZATION CHALLENGES 
All RFID-based localization techniques have inherent 

position estimate errors due to various external (e.g., 
environmental) and internal (e.g., RFID tags and reader related) 
factors. This section describes key issues that induce 
localization errors and propose techniques to mitigate them. 

A. Interferrence and RF Occlusion 
Environmental factors such as radio noise and occlusions 

by liquids or metals can cause radio-wave scattering and 
attenuation, which can in turn result in localization errors. 
Mitigating techniques such as electrostatic shielding, full 
faraday cycle analysis, and path-loss contour mapping can help 
reduce the impact of such factors on localization accuracy [22]. 
Deploying more tags and readers in the experimental region 
can also reduce adverse interference and occlusion effects. 

B. Tag Sensitivity  
Tag detection sensitivity is characterized by the minimum 

power needed to read the tag at a particular distance.  It is a 
function of chip threshold power sensitivity, tag antenna gain, 
and the chip’s high impedance state [19]. Moreover, tag 
manufacturing variability can dramatically affect the detection 
sensitivities of tags. Thus, tags with low sensitivities become 
invisible at shorter distances than their higher-sensitivity 
counterparts, leading to position estimation errors. To address 
this issue, we propose a pre-processing step of sorting (i.e., 
“binning”) the tags based on their detection sensitivities, and 
classify them as “highly sensitive”, “average sensitive” and 
“low sensitive” using read measurements over different power 
and distance combinations [6]. This enables only uniformly-
sensitive tags to be deployed in the same experiment, resulting 
in more meaningful and consistent experimental results. 
Curiously, previous works all seem to ignore this critical issue. 

C. Tag Spatiality 
RFID-based mobile localization techniques typically utilize 

reference tags placed in known locations. The positions of 
these reference tags can significantly affect the localization 
accuracy, and regular placements of reference tags tend to yield 
lower positioning errors, as opposed to random arrangements. 

D. Tag Orientation 
Tag and reader interaction is significantly affected by the 

tag orientation. For example, Bolotnyy and Robins analyzed 
how tag orientation impacts the tag detection probability [3, 4]. 
In particular, they discovered that when multiple tags are 
placed on same object, orthogonal orientations yield much 
higher detection probabilities than parallel orientations. 

 

 

 
                                   (a)                     (b) 

Figure 1.  Tag orientations: (a) 3D orthogonal, (b) Planar orthogonal 
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Figure 1(a), shows a 3D object with multiple orthogonally 
oriented tags, and Figure 1(b) shows an orthogonal planar (i.e., 
horizontal and vertical) orientations of two tags. In section IV, 
our experiments indicate that horizontal planar orientation 
increases tag sensitivity. Thus, utilizing multiple tags in 
orthogonal spatial and horizontal planar orientation improves 
localization accuracy.  

E. Reader Locality 
Theoretically, the RFID power-distance relationship is 

characterized based on the Friis transmission equation given as 
follows [7]: 
 
 

(1) 
 
 

Here, PR is the power transmitted by the reader, PT is the 
power received at the tag, GR and GT are the antenna gain of 
the reader and the tag, λ is the radio-wave wavelength, and D 
is the distance between the tag and reader. For a typical RFID 
system, the variables λ, GR, and GT are the design parameters. 
Thus, by knowing the reader and tag power levels, the distance 
between them can be estimated. Alternatively, if the distance 
between the readers and tags are known, then the received 
power at the tags can be determined. Thus, the reader location 
impacts the localization accuracy. We propose that more tags 
should be placed in the region near the trajectory of mobile 
objects in order to improve the overall localization accuracy. 

Our main principle behind above mitigating techniques is 
“to identify and minimize possible errors at the sources where 
they arise”. This leads to efficient localization techniques, 
fewer onboard components, lower power requirements, and 
higher localization accuracy. In the following section, we use 
this principle to develop techniques for minimizing the mobile 
localization errors.  

IV. MOBILE OBJECT LOCALIZATION USING RFID 
The proposed localization approach utilizes two different 

techniques. In the first technique, an onboard reader and 
reference tags embedded in the environment are used to 
coarsely localize the mobile object. The second technique 
varies the power levels of environment-embedded readers to 
localize the onboard tag via the empirical power-distance 
relationship (calibrated using reference tags at known 
positions). To ensure uniform behavior from the tags, we test, 
sort, and select them on their (similar) detection sensitivity. 
Also, by employing multi-tags [3, 4], we reduce the 
uncertainties when inferring the position of onboard tags. 
Finally, we combine these localization techniques and propose 
several heuristics for significantly improving the localization 
accuracy.  

While tags are sorted, placed, and calibrated as part of 
offline pre-processing phase, the actual localization and error-
minimization heuristics are performed in real-time. By dividing 
the task of localization into separate phases, we reduce the time 
required to estimate positions of mobile objects. We describe 
key aspects of the proposed localization approach below. 

A. Calibrated Tags 
The accuracy of our localization approach relies on the tags 

having uniform detection sensitivities. Also, this property can 
help localization speed improve with higher tag sensitivities. 
Thus, as an offline pre-processing quality-control check, the 
sensitivities of all the tags are tested and characterized, to 
ensure that only tags with uniform (and high) sensitivities are 
used in our subsequent localization experiments. We have also 
developed a four-way multi-tag platform that provides higher 
operational reliability, as illustrated in Figure 2. 
 

 

 

 

 
Figure 2.  A four-way multi-tag platform 

Figure 2 shows the design of our four-way multi-tag 
platform consisting of four “Impinj Dogbone Monza 3” UHF 
passive tags mounted on a vertical stand made of Lego bricks 
(our choice of Lego components is based on the versatility of 
Lego bricks as well as the transparency of their plastic material 
to radio-waves). We have built 33 such platforms, and each tag 
on the platform was calibrated separately using the techniques 
described by Chawla, Robins, and Zhang [6]. We have 
performed two types of platform calibration experiments to 
ensure uniform detection sensitivity across variables such as 
tag rotation and proximity, described as follows. 

1) Proximity Sensitivity Calibration: In this experiment, 
we ensured that the four-way multi-tag platforms consisting of 
four proximate equally sensitive tags (Figure 2) all have 
similar sensitivities. This was achieved by determining the 
average read count of constituent tags having matching 
orientations with respect to the reader’s antennas. Thus, tags at 
position one, two, three, and four were oriented towards 
antenna one, two, three, and four, respectively. We kept the 
reader power level constant at 31.6 dBm and varied the 
distance between the reader and the multi-tags within the 
range of 1.27 to 3.81 meters. 

We also varied the reader power level within the range of 
25.6 to 31.6 dBm, keeping the distance between them constant 
at 2.54 meters. We repeated the calibration experiment three 
times and computed the average. While the combination of 
power level and distance range was comparatively small, 
variations in the tag sensitivities are evident at this scale. 
Figures 3(a), 3(b), and 3(c) illustrate the results of this 
experiment by varying the distance and keeping the reader 
power constant. For example, at a distance of 2.54 meters 
away from the reader, position four yields the highest average 
read counts. This is due to antenna four being nearer to the tag 
at position four than antenna one. Also, at 2.54 meters tag 
position three yields the lowest average read count, due to the 
shape of the RF signal lobe emitted by the antenna. Similar 
conclusions can be drawn from Figures 3(d), 3(e), and 3(f). 



2) Rotation Sensitivity Calibration: In this experiment, we 
determined the impact on tag sensitivity of rotating the multi-
tag platforms. We varied the reader power level between 25.6 
and 31.6 dBm and kept the distance between the reader and 
the four-way multi-tag platform constant at 2.54 meters. 
Separately, we varied the distance between the reader and the 
four-way multi-tag platform within the range of 1.27 to 3.81 
meters and kept the reader power level constant at 31.6 dBm. 
We then rotated each multi-tag platform counter-clockwise, 
repeating each calibration three more times and computed 
their average.  

Figures 4(a)-4(l) and 5(a)-5(l) illustrate the impact of 
rotation on the average read-counts. In particular, each row of 
graphs depicts the average read count of four tags facing four 
antennas. When the platform is rotated counter-clockwise, 
these values are interchanged (e.g., tag at position one faces 
antenna one, and after a rotation, tag two takes that position 
and retains the read-count within permissible error range).  

By combining the calibration results from the proximity 
and rotation experiments, it is evident that the 33 four-way 
multi-tags consisting of individually equally-sensitive tags are 
sensitivity invariant. This provides confidence that using these 
uniformly-sensitive multi-tags in subsequent localization 
experiments will help to minimize uncertainties due to tag 
variations, measurement noise, spatial orientations, etc.  

B. Localization Approach 
We now describe the proposed mobile object localization 

approach that consists of two different techniques based on the 
four localization algorithms. In the first technique, we localize 
readers onboard the mobile objects with respect to an 
environment instrumented with stationary reference four-way 
multi-tags. We measure the encountered unique tag IDs as the 
object moves around the environment. We associate a 
timestamp with each such measurement, resulting in a list of 
tuples of the type 〈Tag ID, Timestamp〉. Thus, we determine 
the path of the mobile objects by knowing the location of 

reference tags and the measurement time. We call this 
algorithm “Measure and Report”.  

Mobile objects can be localized more accurately by using a 
regular arrangement of stationary reference tags. However, the 
limited read-range of the onboard reader, as well as the 
uncertainties in the actual locations of the reference tags, can 
introduce errors into the resulting position estimates. To 
minimize such errors, in our second technique we vary the 
power levels of the readers embedded in the environment in 
order to localize the target multi-tags onboard mobile objects 
using empirical power-distance relationships calibrated against 
reference tags. We provide three algorithms that control the 
reader power level in different ways, yielding tradeoffs 
between localization accuracy and overall speed.  

In the first algorithm, we linearly increment the reader 
power level from lowest to highest in order to determine the 
minimum power level required to detect reference and onboard 
multi-tags. While this approach finds the minimum tag 
detection power levels, it may take more time to converge. 
Alternatively, we can instead vary the power level from highest 
to lowest in order to detect tags, since tags are typically not 
located near readers. Thus, stepping down the power level (i.e., 
from highest to lowest) will minimize the average number of 
iterations required to determine the minimum tag detection 
power level. We call this algorithm “Linear Search”.  

In the second algorithm, we start at a mid-value power 
level, and then either step-up or step-down based on the 
reader’s ability to find the tags. Thus, we can converge faster 
on the minimum power level required for tag detection. We call 
this algorithm “Binary Search”. Note that these two algorithms 
search for only one tag per execution cycle. Our third algorithm 
addresses this limitation by determining the minimum power 
levels of large groups of tags in parallel. Thus, it is equivalent 
to running a Linear Search algorithm in parallel for all the tags. 
This algorithm is called “Parallel Search”. Since Parallel 
Search can determine the minimum power-levels of onboard 
tags in parallel, it enables the simultaneous localization of 
multiple mobile objects.  

(a)                                                                       (b)                                                                        (c) 
 

(d)                                                                        (e)                                                                        (f) 
 

Figure 3. Multi-tag sensitivity measurements under proximity metric using constant-distance/variable-power and variable-distance/constant-power configurations.



Table I gives the time complexity of each algorithm. While 
the Measure-and-Report algorithm is the fastest algorithm, both 
the Linear Search and Binary Search algorithms take 

considerably more time due to their operating in a serial 
manner. Since, the Parallel Search algorithm is independent of 
the number of tags and only dependent on the number of power 
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(e)                                                    (f)                                                    (g)                                                   (h) 
 

(i)                                                     (j)                                                    (k)                                                  (l) 
 

Figure 4. Multi-tag sensitivity measurements under rotation metric using variable-distance/constant-power configuration 
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Figure 5. Multi-tag sensitivity measurements under rotation metric using constant-distance/variable-power configuration. 



levels, it requires less time than the Linear Search or Binary 
Search algorithms. Moreover, the algorithms that take more 
time tend to generate higher resolutions of the minimum power 
level required to detect tags. Alternatively, the faster algorithms 
trade off localization accuracy for speed. 

TABLE I.  TIME-COMPLEXITY OF LOCALIZATION ALGORITHMS  

Localization 
Technique 

Localization 
Algorithm Time Complexity 

Reader Localization Measure and Report O(1) 

Tag Localization 
Linear Search [6] O(N·P) 
Binary Search [6] O(N·LogP) 
Parallel Search [6] O(P) 

N = Number of tags, P = Number of reader power levels used 

We can utilize these algorithms in different combinations to 
trade off localization accuracy, speed and power requirements. 
Furthermore, localization errors can occur due to (1) the 
onboard reader operating range, (2) implicitly identifying the 
four-way multi-tag platforms with the nearest reference tags, 
and (3) the inherent minimum power level estimation errors of 
the algorithms. We discuss these errors along with mitigating 
techniques below. 

C. Localization Error and Heuristics 
Localization errors occur in the first technique (i.e., 

onboard reader localization) due to limitations in the power and 
read-range of the onboard reader. Since mobile objects can 
move arbitrarily, an inexpensive and reliable way to reduce this 
type of error is by placing more densely/regularly arranged 
reference tags in the nearby region. In the second technique 
(i.e., onboard tag localization), errors in position estimates 
occur by identifying the onboard multi-tag with the nearest 
neighborhood reference tags.  

  
         RFID antenna         Target tag         Reference tag              Radio wave             Localization error 

 

 
 

 

 

 

 

 

 
Figure 6.  Sources of localization errors. 

 

Figure 6 depicts four antennas emitting radio waves 
forming an intersection region where onboard target tags (i.e., 
four-way multi-tag platforms) are likely to be present. This 
intersection region gives coarse-level position estimates of the 
four-way multi-tag platforms, which is further refined by using 
the positions of nearby reference tags to estimate the positions 
of multi-tags. However, this can lead to potential “round off” 

errors. In order to minimize possible localization errors, we 
have developed eleven heuristics that utilize the differences in 
the reader power levels, the orthogonal positions of the readers, 
and the neighborhood reference tags. We describe these error 
mitigation heuristics in detail below. 

TABLE II.  LOCALIZATION ERROR HEURISTICS 

Error Heuristic Description 

Absolute Difference [6] 
Compute the absolute difference of the reader power 
levels between the neighborhood and onboard multi-
tags. There are four such heuristics. 

Minimum Power  
Reader Selection [6] 

Compute the absolute difference of the power levels 
between the neighborhood and onboard multi-tags 
using the minimum power levels of the two orthogonal 
readers. There are two such heuristics. 

Root Sum Square  
Absolute Difference [6] 

Compute the square root of the sum of squares of the 
absolute difference of the reader power levels between 
the neighborhood and onboard multi-tags. There are 
four such heuristics. 

Meta-Heuristic [6] 
Compute the minimum over all power levels obtained 
using above the heuristics. Thus, it is a meta-heuristic 
that enables minimum tag detection power levels. 

 

V. EXPERIMENTS AND RESULTS 
This section presents the implementation details, evaluation 

methodology, and experimental results pertaining to the 
proposed mobile object localization approach. Furthermore, we 
compare the proposed localization approach with existing 
mobile object localization techniques. Our experiments were 
performed in an indoor environment using one onboard reader 
and one four-way multi-tag platform per mobile object. Also, 
one stationary reader, four antennas, and 33 reference tags were 
embedded in the surrounding environment. Table III describes 
the experimental setup and implementation details. 

TABLE III.  EXPERIMENTAL SETUP DETAILS 

Type Technology Parameters 

Workstation 
CPU AMD Athlon 

64 @ 2GHz OS WinXP 

RAM 1 GBytes PL C++/C# 
Hard Disk 100 GBytes API M4 LIB 

RFID 
Equipment 

Reader 
Type 

ThingMagic 
M4 iDtronic 
Voltaire CF 

Protocol EPC 
Gen2 

Antenna Linear with 
6dBi gain 

Reader 
Devices 3 

Tag 

Impinj 
Dogbone 
Monza 3  

93x23 mm 

Antennas 6 

Environment 
Map Area 8 m2 Reference 

Multi-Tags 33 Room 
Volume 41 m3 

Robots Kit Lego 
Mindstorms Robots 2 

Onboard Control Model HP iPAQ 
hx2490 PDAs 2 

Onboard Link Type Bluetooth Bluetooth 
Dongles 2 

 

We developed two mobile robots using Lego Mindstorm 
kits. Figure 7(a) illustrates the mobile robots with their onboard 
controller consisting of one HP iPAQ hx2490, one iDtronic 
Voltaire portable RFID reader, and one four-way multi-tag 
platform. Figure 7(b) depicts our experimental railroad track 
for operating these mobile robots. Also, shown are the four-



way multi-tag platforms used as the reference tags. We 
coarsely localize the mobile objects by utilizing the onboard 
reader to read the reference tags encountered during motion 
and transmit the tag IDs to the backend workstation using the 
onboard bluetooth link. At any location we can further refine 
the coarse-level position estimates by varying the stationary 
reader power levels to localize the onboard multi-tags. 

 

 

 

 

 

 

 

 

 

 
                          (a)                                                            (b) 

Figure 7.  Experiment components: (a) Mobile robot platform, and (b) Track 

Note that approaches that utilize only RFID technology for 
precise localization impose speed limits on the moving objects 
due to the delays inherent in determining the minimum tag 
detection power levels, and the reader's operational speed. 
Thus, while coarser position estimates can be obtained for tags 
moving at several meters per second, slower speeds are still 
necessary for more precise localization. Such locomotion speed 
limitations are also present in other existing RFID-based 
mobile object localization techniques. 

A key aspect of the proposed localization approach is to 
limit/eliminate the use of onboard non-RFID components, 
while still obtaining good localization accuracy and speed. This 
approach enables low on-board power consumption, as well as 
reduced overall cost and complexity. Our localization apparatus 
uses a single rechargeable 1440 mAh Lithium-Ion battery for 
the onboard PDA control, RFID reader and bluetooth link. 
Thus, by reducing the needed onboard components, we reduce 
the power requirements of the mobile objects. Furthermore, to 
improve localization speed, we divide the proposed localization 
approach into a setup phase and a localization phase, thus 
decoupling the initial time-consuming calibration process from 

the subsequent localizations of the mobile objects. 

During the setup phase, we distributed 33 reference tags 
across a 2D region and calibrated their empirical power-
distance relationships. In the localization phase, we estimated 
positions by using the proposed localization approach. For each 
phase, we utilized the localization algorithms in different 
combinations in order to minimize localization errors. We used 
the Linear Search algorithm in the setup phase, while the 
Binary Search algorithm was used in the localization phase, 
combined with the Measure and Report algorithm. Figures 8(a) 
and 8(b) illustrate the localization accuracy independently 
along the X and Y-axis. Our data confirms that along both axes 
the proposed localization approach closely approximates the 
actual mobile robot positions. 

Also, we hypothesized that increasing the number of 
reference tags increases the localization accuracy only up to a 
certain point. To test this hypothesis, we varied the number of 
references tags from 1 to 33 and determined that the range of 
localization error varied from 1.2 to 0.2 meters, as depicted in 
Figure 8(c). Thus, adding additional inexpensive passive 
reference tags increases the localization accuracy only up to a 
point (e.g., with only 22 reference tags, 88% of the maximum 
possible localization accuracy was achieved). Finally, we 
compared the proposed localization approach with existing 
localization techniques, as summarized in table IV. 

TABLE IV.  COMPARISON OF PROPOSED APPROACH WITH EXISTING RFID-
BASED MOBILE LOCALIZATION TECHNIQUES 

Technique 
Average Time (min) Test 

area 
(m2) 

Localization 
Error (m) Setup 

Phase 
Localization 

Phase 
Chae and Han [5] NR NR 48.36 0.23 
Choi and Lee [8] NR NR 14.4 0.016 – 0.024 
Hähnel et al [11] NR NR 784 1 – 10 

Han et al [12] NR NR 1 0.09 
Koch et al [14] NR NR 60 0.1 

Milella et al [18] NR NR 70 0.64 
Senta et al [20] NR NR 2 0.2 

Seo and Lee [21] NR NR 5 0.2 – 1.6 
Vorst et al [23] NR NR 125 0.2 – 0.6 

Proposed 
Localization 

Approach: (Alg. IA, 
IB, II, III, IV)  

29.78, 
161.23, 
47.24, 
1.67, 

0 

1.42, 
5.28, 
1.95, 
1.67, 

0 

8 0 – 0.9 
Avg. = 0.23 

NR – Not Reported; Alg. IA – Linear Search (High to Low); Alg. IB – Linear Search (Low to High); Alg. 
II – Binary Search (Low to High); Alg. III – Parallel Search; and Alg. IV – Measure and Report 

The maximum time required by the proposed localization 
approach in the setup phase is due to the Linear Search 
algorithm operating in low-to-high mode. While this setup 

(a)                                                                       (b)                                                                        (c) 
 

 

Figure 8. Localization accuracy: (a) Along the X-axis, (b) Along the Y-axis, and (c) Impact of the number of reference tags on localization accuracy 



time is not trivial, the setup phase is an offline pre-processing 
step that is invoked only infrequently. We note that tags are 
susceptible to changes in the operating environment (e.g., 
ambient temperature and humidity, presence of metals and 
liquids, etc.). Therefore, repeating the tag binning process and 
the setup phase occasionally can ensure that consistently high 
localization accuracy is achieved and maintained. To aid the 
end-user with the real-time tracking and visualization of the 
target mobile objects, we have developed a GUI-based 
mapping application, as shown in Figure 9. Using this 
application, the user can experiment with different parameters 
(e.g., number of antennas, combinations of localization 
algorithms, error heuristics etc.) and study their impact on the 
overall localization accuracy and speed. 

 

 

 

 

 

 

 

 

Figure 9.  Graphical visualization interface for the RFID localization system. 

VI. CONCLUSION 
In this paper, we have proposed an accurate, scalable, 

reliable, power-efficient approach to localize mobile objects. 
We have outlined several localization challenges and proposed 
practical techniques to mitigate them. We deployed uniformly- 
sensitive four-way multi-tag platforms in order to improve the 
mobile object localization accuracy and speed. Furthermore, 
we analyzed the impact of the number of reference tags on the 
localization accuracy, and compared the proposed approach to 
existing localization approaches in terms of accuracy, speed, 
and power consumption. While these experiments were 
performed in an indoor setting, the proposed localization 
approach is general enough to be widely applicable (e.g., to 3D 
regions, outdoor environments, multiple stationary and mobile 
object localization, etc.).  Future research can also strive for 
further improvements in the overall localization speed. 
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