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Abstract. We present the first protocol for distributed RSA key gener-
ation which is constant round, secure against malicious adversaries and
has a negligibly small bound on the error probability, even using only
one iteration of the underlying primality test on each candidate number.

1 Introduction

The idea of distributed key generation is to generate a key in secret shared
form among a number players such that it is never available in a single location.
Together with a protocol for distributed signatures, for instance, one gets a
distributed signature scheme that has no single point of attack throughout its
lifetime.

Specifically for distributed RSA key generation, the main problem is to gen-
erate a modulus such that the prime factors are shared among the players. Two
approaches have been suggested in the literature: Boneh and Franklin (BF) [4]
suggest to generate a random candidate modulus N = ab where a, b are random
and shared among the players. One then runs a so-called biprimality test involv-
ing an exponentiation modulo N which is easy to do in a distributed fashion,
and will accept an N with more than two prime factors with probability at most
1
2 . An alternative method was suggested by Algesheimer et al.(ACS) [1], where
one generates candidate primes separately in shared form and tests each one
for primality, by doing a Miller-Rabin primality test securely, i.e., by doing the
required exponentiation while base, exponent and modulus are all secret-shared.

We now compare the methods and discuss whether there is room for im-
provement. Boneh and Franklin’s test is very efficient because the modulus N is
public. On the other hand, one has to wait until both factors a and b happen to
be prime which requires more candidates than the standard method. The error
probability is unfortunately very hard to bound: using only the worst-case result
of 1

2 leads to a very poor result that would seem to require many iterations of
the biprimality test to bring the error down. For the Miller-Rabin test, it was
shown by Damg̊ard et al.[11] that the average case behavior is much better than
the worst case, most composites pass the test with probability much smaller
than the worst case, and hence for large numbers, only one iteration of the test
is necessary for negligible error probability. One might hope for a similar result
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for the biprimality test, but this turns out to be unclear. The method from [11]
relies heavily on the fact that for any prime factor p in a number N to be tested,
p does not divide N − 1. To argue in a similar way for the biprimality test, one
would need that if N = ab and p divides a, p does not divide (a− 1)(b − 1), but
this is clearly not true in general.

Algesheimer et al. test each candidate prime individually and so need fewer
candidates, and one can use [11] to estimate the error. On the other hand, all
exponentiations must be done with a secret modulus which makes them much
slower. According to [1], for a small number of players (the interesting case in
practice) the computational complexity of BF is somewhat larger than ACS while
the communication is smaller. The big difference, however, is that BF is constant-
round for checking a candidate while ACS require θ(n) rounds for checking an n-
bit prime. While Algesheimer et al. claim that this is not important, we disagree,
and believe the issue is very significant both from a theoretic and a practical point
of view (see discussion at the end of the introduction).

Our conclusion is that in many, if not most cases BF is the more attractive
approach. It is therefore of interest to construct a protocol with a good bound
on the error probability which is as efficient as BF. In this paper we do this by
combining the two methods from [1,4] to get, in a sense, the best of both worlds.
We are going to compute a public candidate modulus N = ab like Boneh and
Franklin, but we are going to test a and b for primality separately, as follows: if
we choose a = b = 3 mod 4, then doing the Miller-Rabin test say on a reduces to
testing if r(a−1)/2 mod a = ±1 for a random base r. Now, because N is public,
we can very efficiently choose a random g ∈ Z∗

n and compute y = ga−1 mod N
in secret shared form using essentially Boneh and Franklin’s protocol. Now we
just need to reduce y modulo the secret a and test against 1,−1. This can be
done efficiently and in constant-round using a subprotocol from ACS. Note that
there is no need for an exponentiation mod a, we just need a reduction, which
is something ACS must do for every secure multiplication.

In this way, we get a protocol that is essentially as fast as Boneh and Franklin’s,
but where we can directly use [11] to estimate the error. Note that when testing
a candidate, we can run the (simpler) biprimality test first without affecting the
error probability since it never rejects a good modulus. This way, even if we cannot
prove how well it does in the average case, we still get maximal mileage from it.

A second contribution of the paper is an efficient way to get a protocol secure
against active (malicious) adversaries. Both BF and ACS were described for
passive adversaries. Frankel et al. [14] suggested a way to get active security
for the Boneh-Franklin protocol, but estimated themselves that the cost of this
would be prohibitive in practice.

We suggest an alternative method where our secure computation is based on
replicated integer secret sharing suggested by Damg̊ard and Thorbek [13]. Here,
the secret is shared additively over the integers, but each player gets several shares.
Because of this replication, the scheme allows for secure multiplication in much the
same way as Shamir’s scheme. The observation is that because the scheme is also
additive over the integers, we can use Algesheimer et al.’s protocol for modular
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reduction which exactly requires such a sharing scheme. This is in contrast to their
original protocol where one uses Shamir’s scheme for multiplication and so one
must convert back and forth between the schemes throughout the protocol using
interactive procedures. Finally, we make the scheme verifiable by keeping players
committed to their shares.

The price we pay for the simplifying the protocol is that computational com-
plexity of the scheme does not scale well with the number of players, but we
believe this is not a serious issue: in contrast to earlier proposals the protocol is
genuinely practical for less than, say, 10 players, and in threshold cryptography,
one usually thinks of the number of players as a small constant. For instance,
in the framework for distributed RSA signatures suggested by the authors[12],
it is natural to run a 3-party protocol where a PC, a server and a mobile device
held by the user execute the protocol.

Our protocol is secure against an active and static adversary corrupting any
minority of the players, and the cost of going from passive security to active
security is a constant factor, both regarding computations, network traffic and
the number of rounds. In practice the constant is fairly low, covering committing
including local exponentiations, which are already done in the passive protocol,
and broadcast of commitments.

We close the introduction by discussing the claim by Algesheimer et al. that
the difference in communication and round complexities between BF and ACS
do not matter because one can test many candidates in parallel. We disagree with
this: It is true that on a network with large round trip time, one can make the
average cost of a protocol go down if many instances are to be done in parallel.
Each player sends the next message in an instance as soon as he is ready to do
so, and if we have enough instances, each player has enough local computation
to keep him busy until the other players respond. Ideally, this means that the
amortized time per instance can be almost as if there were no network delays.
This is the basis of the ACS claim that their large round complexity is not a
problem, since of course we can test many candidate primes in parallel. However,
on the other hand, the real time elapsed from we start until we are done can of
course never be smaller than the time it takes to do a single instance stand-alone.

The ACS protocol has some constant number of rounds for every bit in a
candidate prime number so for 1000-2000 bit RSA, it will have something like
5000- 10.000 rounds pr. test (as opposed to our protocol with less than 100 rounds
pr. test.) If we further assume a malicious adversary and that we are running
on a network as the Internet that is basically asynchronous, rounds will tend
to take a long time: a corrupt player may not send anything, so to distinguish
this from a delay of an honest player’s message, one has to wait long enough in
each round so that the chance of an honest player’s message failing to arrive is
negligible. Otherwise, we may exclude an honest player as being corrupt, and
then the protocol is no longer secure. If, for instance, we need to set a time-out
of 1 second to be sure to avoid mistakes, 5000-10.000 rounds will take between
1 and 3 hours to execute. The conclusion is that when the number of rounds is
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very large, as for ACS, the parallellization paradigm only make sense on a fast
network with very strong guarantees on delivery time.

2 Security Model

The protocols described in this paper are all three player protocols, where we
assume that at most one of the players are corrupted. The protocols can be
generalized to n players, however, the underlying secret sharing scheme does not
scale well in the case of many players. Corruption of players is either considered
to be passive, where a corrupt player still follows the protocol, or active where
a corrupted player can misbehave arbitrarily.

Our security model only ensure that misbehavior can be detected, it might
not be the case that the honest players can tell which player misbehaved. Fur-
thermore, the protocols does not guarantee termination, in case of dishonest be-
havior. This simplifies the protocols and security proofs. Both detecting which
player misbehaved and guaranteed termination can, however, easily be ensured
by applying digital signatures such that all messages are signed.

We assume point to point secure communication channels, meaning authen-
ticated and only the length of messages are leaked to the adversary. We also
use a broadcast channel, however, since the channel does not have to ensure
synchronous broadcast and we allow abort, this can easily be implemented on
top of the point to point channels. The player that broadcast a message sends
the message to the two other players, they send what they have received to each
other to check if they agree. If they do not agree on what they have received
they tell the other players and stop the protocol.

Universal Composability and Common Reference String. We use the
Universal Composability (UC) framework [7,8] to specify the security of our pro-
tocols. The active secure versions of our protocols assumes the (chosen) common
reference string model (CRS), where all players have access to a common string,
which can contain key material used to implement, in our case, commitments.
The CRS model is used to improve the power of the simulator. Concretely in
our case the reference string contains among others an RSA key N used to im-
plement commitments. By giving the simulator additional information on some
elements in ZN , the commitment scheme is not binding for the simulator, which
is needed for our proofs. The CRS model might be circumvented by letting each
player choosing its own N that will be used by the other players, when commit-
ting values, however, this is conceptually more complicated, and less efficient.
Therefore it has been left out. On the other hand, the CRS model might be
justifiable in the case of a PKI based on a CA. The CA’ public key might be
used as N , and as long as the CA does not actively cheats e.g., corrupts one of
the players in the protocol, during key generation the protocol remains secure.

Definition 1. Let APass be the class of passive static adversaries corrupting at
most one of the three players; and let AAct be the class of active static adversaries
corrupting at most one of the three players.
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3 Probabilistic Primality Test

In this section we present a probabilistic primality test based on the Miller-Rabin
test [19]. The advantage of the test described here is, as we will see later, that it
can be very efficiently implemented as a distributed protocol. By requiring that
the candidate a being tested fulfills a ≡ 3 (mod 4) the Miller-Rabin test on a
reduces to testing if v(a−1)/2 (mod a) ≡ ±1 for a random base v.

ProbPrime. Takes input a and N s.t. a|N . We assume a ∈ [2n−1, 2n] and
N ∈ [22n−2, 22n].

1. v ∈R ZN .
2. γa ← v(a−1)/2 mod N
3. If ±1 ≡ γa (mod a), then output Probably prime, else output Composite.

The correctness and the error probability are stated in the following theorems.
Since the protocol is based on the Miller-Rabin test these theorems are likewise
based on error estimates of this test.

Theorem 1. ProbPrime is a Monte Carlo algorithm with random input v. A
correctly formed prime a ≡ 3 (mod 4) is always accepted, and for worst case
input it accepts a composite with probability < 1

4 .

Proof. ProbPrime is essentially the Miller-Rabin test restricted to numbers
a ≡ 3 (mod 4) and therefore always accepts correctly formed primes, and has
the same worst case error estimate: 1

4 ([19]).

Theorem 2. Let ProbPrime be utilized to generate probable primes by in-
putting randomly chosen n bit integers ai ≡ 3 (mod 4), running the test t in-
dependent times on each ai and outputting the first number passing all test. Let
Pn,t denote the probability that a composite number is output. Assuming the
Extended Riemann Hypothesis and ai > 2.3 × 1010 then Pn,1 < n243−√

n and
Pn,t < n3/22tt−1/243−√

tk for 2 ≤ t ≤ n/9.

Proof. Damg̊ard et al. [11] estimates Pn,1 < n242−√
n and Pn,2≤t≤n/9 <

n3/22tt−1/242−√
tk for the Miller-Rabin test for input chosen uniformly random

in the set Iodd(n) of n bit odd positive integers. We restrict the set we choose
candidates from to I3 mod 4(n) the set of n bit positive integers a ≡ 3 (mod 4).

Let Sodd(n) and S3 mod 4(n) denote the density of the false positives, composite
numbers accepted with high probability in Iodd(n) and I3 mod 4(n) respectively.
Since I3 mod 4(n) is half the size of Iodd(n), S3 mod 4(n) is at most the double of
Sodd(n), which therefore at most doubles the average error probability.

We then consider the density of primes in I3 (mod 4)(n) compared with Iodd(n).
Heuristically the density of primes in Iodd(n) and I3 mod 4(n) are asymptotically
the same. However, by assuming the Extended Riemann Hypothesis and that
ai > 2.3 × 1010 the concrete bound 1: |π(x, 4, 3) − x

2 log x | < x
log 2x = x

2 log x
2

log x

1 This bound follows from [2][Theorem 8.8.18].
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can be found. This means that the difference between the density of primes in
Iodd(n) and I3 (mod 4)(n) is at most: 2

ln x which for 2n = x > 2.3 × 1010 means
2

ln(x) < 2. This gives us another doubling of the average error probability and
our average error probability is therefore 4 times higher than the one from [11]
on the original Miller-Rabin test.

Two examples of concrete bounds of the average error probability on n = 1024
are P1024,1 < 2−38 and P1024,4 < 2−105. This means that running the test only
one or a few times on each number is sufficient in practise.

4 Replicated Integer Secret Sharing

Secret sharing [20] is a known primitive used in many cryptographic protocols.
This section describes an additive secret sharing scheme over the integers that
enables multi party computation (MPC) over integers in a given interval. Addi-
tive secret sharing over the integers makes it possible to share an integer in some
public known interval [−T, T ], by choosing the shares s0, . . . , sn ∈R [−2κT, 2κT ],
where κ is the security parameter, such that s =

∑
si. The shares are chosen

in the lager interval to make a sharing of s statistically close to a sharing of
zero, and therefore an adversary only gains negligible information of s even if
all except one share is known to the adversary. Addition of two additive secret
shared integers is done by locally adding the shares, however multiplication is
not strait forward.

Replicated Integer Secret Sharing (RISS) is a revised variant of additive integer
secret sharing, where multiplication and other calculations are made possible by
replicating the shares, s.t. each player holds multiple shares, in case of three
players they each holds two shares. The product of two secrets s and t can be
rewritten as st = (s1, s2, s3) × (t1, t2, t3) = s1t1 + s1t2 + · · · s3t2 + s3t3, and
therefore replicating the shares enables multiplication, because each product on
the right hand side are known to at least one player.

When a dealer wants to share a secret s it is done as in the nonreplicated case:
The dealer generates three uniform random numbers s1, s2 and s3 ∈ [−2κT, 2κT ]
s.t. s = s1 + s2 + s3 then the dealer distributes these shares such that player 1
gets s2 and s3, player 2 gets s1 and s3 and player 3 gets s1 and s2.

In the rest of this section we will see how to implement multi party compu-
tation based on RISS, and Verifiable Replicated Integer Secret Sharing (VRISS)
an active secure version of RISS. The specification of MPC using (V)RISS is
defined as the ideal functionality FRISS in figure 1. The intuition of FRISS is a
black box where the players can input values, associated with an index, then the
players can do some computations on the values and the box can output results
to one or more players. The simulator ideal-world adversary is allowed to delay
output from FRISS maybe for infinitely long time, however, not to change values
inside the functionality nor input or output from honest players.

4.1 Passive Secure Protocol Realizing FRISS

We will here describe some protocols based on RISS, which together implements
the functionality FRISS. In this section we prove the security of the passive
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Ideal functionality FRISS

When started FRISS initializes an empty list L, let L(i) denote either the value or
the memory that can store a value at index i. All output from FRISS can be delayed
(maybe infinitely) by the adversary.
Input: Upon receiving (Input, pid, i, x) from player pid and (Input, pid, i) from all
other players store x at L(i).
Output: Upon receiving (Output, pid, i) from all players; send (Value,L(i)) to player
pid.
Publish: Upon receiving (Publish, i) from all players; send (Value,L(i)) to the ad-
versary and afterward to all players. (Maybe output to some or all players is delayed
by the adversary)
Addition and Multiplication: Upon receiving (ADD, i, j, k) or (MUL, i, j, k) from all
players store at L(i) the sum or the product of L(j) and L(k).
Constant Addition and Multiplication: Upon receiving (C-ADD, i, j, x) or
(C-MUL, i, j, x) from all players store at L(i) the sum or product of L(j) and x.
Detected Misbehavior: Upon receiving (Misbehavior) from the adversary, at any
point in the protocol. Then output (Misbehavior) to all players and halt (Note: This
part is only necessary for active secure protocols)

Fig. 1. Ideal functionality defining the security of RISS and VRISS (See section 4.2)

secure protocols, therefore we only consider the security when the players follow
the protocols as described. In section 4.2 active secure protocols are described.

It is easy to see that if the shares of s ∈ [−T, T ] has been chosen uniformly
s.t: s1, s2 ∈R [−2κT, 2κT ] and s3 = s− s1 − s2 and s.t s3 ∈ [−2κT, 2κT ] then two
shares of s are indistinguishable from two shares of a sharing of zero, because
the distributions are statistically close, with security parameter κ.

Lemma 1. Generating and distributing shares in RISS UC-realizes Input in
FRISS with respect to all APass adversaries.

Addition and Constant Multiplication. To add shared numbers, each player
locally adds the shares. Multiplication by a public known constant is done in the
same way by locally multiplying the constant with the shares.

Lemma 2. Since addition and constant multiplication in RISS only involves
local computations it UC-realizes Addition, Constant Addition and Constant
Multiplication in FRISS with respect to all APass adversaries.

Jointly Generating (Pseudo) Random Sharing of Zero. The multipli-
cation protocol has to generate a random nonreplicated integer secret sharing
of zero, such that no player know the complete sharing. By using the technique
pseudo random secret sharing (PRSS) [9] in a novel way, this can be implemented
as a noninteractive protocol. If the players pairwise share a secret key for a pseudo
random function (PRF) in the same way they would share a RISS share, they
can use this PRF and the keys to generate three numbers r1, r2, r3 ∈R [−2n, 2n]
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this is a replicated integer secret sharing of r = r1 + r2 + r3. 0 can be written as
0 = r − r = (r1 + r2 + r3) − (r1 + r2 + r3) = (r1 − r2) + (r2 − r3) + (r3 − r1),
and each of the three summands can be calculated by one of the players. The
shares of zero have size n + 2. If one of the players is corrupt there are n + 1
bit uncertainty for the adversary of the two shares the adversary does not know;
due to the fact that there are n+1 different equally possible values for the share
rx unknown to the adversary. We will later use PRSS to generate random secret
shared values, and publicly known random values. Given point to point secure
channels between the players the shared keys can easily be set up beforehand.

Multiplication. To multiply two RISS shared numbers 〈a〉R and 〈b〉R, such
that 〈c〉R = 〈a〉R × 〈b〉R, each player i locally multiplies the local shares ai−1
and ai+1 of a and bi−1 and bi+1of b. Now each player holds some shares of 〈ab〉R,
however, not all of these shares are replicated, to solve this and to bring the
number of shares at each player down to two again, each player sum shares of
ab and replicates the shares again. To rerandomize the shares a nonreplicated
integer sharing of zero is added to the result before replication.

MUL(〈a〉R, 〈b〉R) Player i holds ai−1, ai+1, bi−1 and bi−1. S.t. −2n < ab < 2n.

– Calculate 〈ab〉Ii ← (ai−1 × bi−1) + (ai−1 × bi+1) + (ai+1 × bi−1)
(Note that 〈ab〉I is a nonreplicated integer secret sharing of a × b)

– Jointly generate a κ + n bit integer secret sharing of zero 〈0〉I .
– 〈c〉Ri−1 ← 〈ab〉Ii + 〈0〉Ii
– Send 〈c〉Ri−1 to player Pi+1, and wait for 〈c〉Ri+1 from player Pi−1.

Lemma 3. Multiplication in RISS UC-realizes Multiplication in FRISS with
respect to all APass adversaries.

Proof. We simulate multiplication by using sharings of zero instead of the real
values. This is statistically close to the real values because the interval of the
shares are κ bit greater than the values. Afterward the simulator can simulate
any result by adjusting the share not known to the adversary. This will result in
a share in the correct interval, except with negligible probability.

Theorem 3. MPC with RISS UC-realizes FRISS with respect to all APass ad-
versaries.

Proof. lemma 1 - 3

4.2 Verifiable Replicated Integer Secret Sharing

The previous section described how RISS can be used to do multiparty com-
putation securely against a passive adversary. To extend the security to active
security, and ensure that secret values are not leaked, and that the adversary
cannot influence the output of a protocol except by changing the input of a
corrupted machine, we need to force the players to follow the protocol. We note
that the protocol we describe in this section does not guarantee termination, and
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we cannot always determine who has been misbehaving if dishonest behavior is
detected. However, to resolve conflicts of which player cheated, digital signatures
might be utilized.

To obtain an active secure version of RISS, we need to ensure that, when a
player shares a value the player is committed to this value, and that a receiver
of a share is committed to the received value. We also need to enforce that each
player proves to the others that calculations has been done correctly. To achieve
these goals we need to assume the chosen common reference string (CRS) model
for our commitments.

Commitment Scheme. Fujisaki and Okamoto [15](see Damg̊ard and Fujisaki
[10] for a revised version) describes an integer commitment scheme, which is ad-
ditively homomorph and can be simulated in UC in the CRS model. The com-
mon reference string used consists of an RSA modulus NCRS and two elements
g, h ∈ ZNCRS , where the discrete log between g and h is unknown to the players,
however, not to the simulator, which allows simulation. When a player wants to
commit to a value s a uniform random value r∈R ZNCRS is chosen and the commit-
ment of s is: com(s, r) #→ gshr mod NCRS, this scheme is additive homomorphic
because: com(s+t, rs+rt) = (gshrs)×(gthrt) mod NCRS To open a commitment
s and r are revealed. These commitments are statistically hiding and computation-
ally binding, assuming the strong RSA assumption. If the discrete log between g
and h is known the commitments are no longer binding.

We also need an other primitive from the commitment scheme, which is the
ability to prove that two commitments c1 and c2 are commitments of the same
value. In the case where the same base (g and h) is used this is an easy task. To
show that c1 = com(s, r1) and c2 = com(s, r2) the prover shows that c1 × c−1

2 =
com(s − s, r1 − r2) can be opened to zero. In the case where different bases are
used the problem is more difficult, however, in our case with three players and
at most one corrupted player, there exists an easy solution. The prover just need
to prove to the two others that he is committing correctly if none of the two
verifiers are corrupted, because if the prover is corrupted then both verifiers are
honest and can thus trust each other, if one of the verifiers is corrupt, then the
prover is honest and by assumption committed to the correct value. The actual
protocol proving s = ŝ for (gshr) and (ĝŝĥr̂) is the following:

1. Generate:
s1, s2 s.t. s1 +s2 = s = ŝ; r1, r2 s.t. r1 +r2 = r and r̂1, r̂2 s.t. r̂1 + r̂2 = r̂

2. Publish:
c1 = gs1hr1 mod N , c2 = gs2hr2 mod N , ĉ1 = ĝs1 ĥr̂1 mod N and
ĉ2 = ĝs2 ĥr̂1 mod N

3. Open c1 and ĉ1 to verifier 1 and c2 and ĉ2 verifier 2. Both accept if cx and
ĉx opens to the same value.

Generating Shares. When player i wants to share a secret s it is done as in the
passive case, with the exception that before the shares are distributed the player
broadcasts a commitment of each share, this is also a commitment to s due to the
additive homomorphic property of com(). When the shares are distributed as in
RISS, player i opens the commitment to each share to the receivers of the share.
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Addition, Constant multiplication. As in the passive case addition and
constant multiplication can be computed without communication between the
players. This can be done because when a player adds shares of two secrets a and
b locally, the other players can calculate com(ai + bi) due to the additive homo-
morphic property of com(). Analogously with constant multiplication because:
com(cai, cri) = gcaihcri = (gaihri)c

Joint Generation of Shares. Utilizing pseudo random secret sharing enables
active secure generation of a random secret shared number s, by only one broad-
cast message pr. player. This is done by generating shares s1, s2 and s3 as in
the passive case, and in addition generate the randomness r1, r2 and r3 for the
commitments by the PRF and the shared keys. Now each player calculates the
commitments cx = com(sx, rx) to the two shares and broadcasts the result. All
three players can check if the two commitments to the same share are equal,
if not, one of the players misbehaved. Because of the additive homomorphism
of com() the joint sharing of zero can also be done in one round with only one
broadcast message pr. player.

VRISS Multiplication. Enabling multiplication in VRISS requires that one
player can prove to the others that he have multiplied two committed values
correctly. This can be done if the prover is committed to a and b with ca =
com(a, ra) and cb = com(b, ry) and proves that cab = com(ab, rab). First let:

cab ← (ca)bhr mod Ncrs ≡ gabhrab+r mod Ncrs

This is indeed a commitment to ab with the base g and h. To prove that it is
correct the prover proves that cab base ca and h is a commitment to the same
value as cb base g and h using the algorithm described earlier. Now the passive
protocol is executed with each player committing and proving to the others that
the commitments are well formed and that the steps of the protocol has been
followed.

Theorem 4. Assuming the strong RSA assumption and the existence of PRF,
then MPC with VRISS UC-realizes FRISS with respect to all AAct adversaries.

Proof. Theorem 3 proves that we can simulate the protocol, if all players follow
the protocol. Adding the commitment scheme and the checks of the commit-
ments, forces a corrupt player to follow the protocol, or the other players will
detect the misbehavior. On the other hand, simulation is still possible because
we assume the discrete log between g and h is know to the simulator, and it can
therefore circumvent the binding property of the commitment scheme.

4.3 Distributed Primality Testing

The ideal functionality FRISS and the protocols of RISS and VRISS describes a
general secret sharing scheme. However, in addition to this our protocol for RSA
key generation needs a protocol implementing a distributed version of the pri-
mality test described in section 3. This extended RISS is described as an ideal
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functionality FEXT-RISS (see Fig. 2), which is an extension of FRISS. The proto-
cols implementing FEXT-RISS has additional requirements on the integers used as
input and on how these integers are shared. We call these special form integers.

Definition 2 (Special Form Integer). An integer a is a special form integer
if it has been generated as such and fulfills: 2n−1 < a < 2n and a ≡ 3 (mod 4).

A resharing of a shared integer does not preserve special form of an integer,
therefore only integers generated as special form can be on special form. This is
because in the realization of FEXT-RISS requires that the sharing of the integer
is on the following form:

Definition 3 (Special Form Integer Sharing). A special form integer shar-
ing is a sharing of a special form integer fulfilling: a1 ≡ 3 (mod 4) and a2 ≡
a3 ≡ 0 (mod 4).

Ideal functionality FEXT-RISS

FEXT-RISS is identical to FRISS except it is extended with the following:
Randomly Generate Special Form Integer Upon receiving (GenSFI, pid, i) from
all players generate a uniform random special form integer a. Store a at L(i), with a
flag specifying that L(i) holds a special form integer.
Trial Division Upon receiving (Div?, pid, B, i) from all players, if ∃� < B s.t. �|L(i)
then output (Fail) to all players, otherwise output (Success) to all players.
Probabilistic Prime Test Upon receiving (ProbPrime?, pid, i, j, N) from all players
and if L(i) is a special form integer, and N = L(i) × L(j), then let a ← L(i), choose
v ∈R ZN and calculate γ = v

a−1
2 mod a. If γ = ±1 output (ProbPrime, v) to all

players, else send {L(i),L(j), v} to the adversary and (Composite, v) to all players.

Fig. 2. Ideal functionality defining the security of Extended RISS

Randomly Generate Special Form Integer. Player 1 and 2 each pick a
random integer a(i) ∈R [2n−2, 2n−1], s.t. a(1) ≡ 3 (mod 4) and a(2) ≡ 0 (mod 4).
This ensures that a = a(1) + a(2) ∈ [2n−1, 2n] and a ≡ 3 (mod 4). Both players
share them s.t a

(1)
1 ≡ 3 (mod 4) and for all other shares: a

(i)
j ≡ 0 (mod 4). The

shares are distributed and added, which ensures that the shares fulfills the con-
gruence requirement for a special form integer sharing. The special requirement
of the congruency of the shares only leaks the value of a mod 4. The security
follows from the security of input and addition of RISS shares.

Lemma 4. Randomly Generate Special Form Integer UC-realizes this part of
FEXT-RISS with respect to all APass adversaries.

Trial Division. To do trial division up to a bound B on a shared number a,
the players test if a is divisible by a small prime � by randomly choosing an
n + κ-bit secret shared number r using PRSS as described in section 4.1. 〈ra〉R
is calculated by the multiplication protocol and all shares of 〈ra〉R are locally



194 I. Damg̊ard and G.L. Mikkelsen

reduced modulo � and afterward broadcast to open α = (ra mod �)+β�, where
0 ≤ β < 3. If α �≡ 0 (mod �) then � � |a, however, if α ≡ 0 (mod �) then either
�|a or �|r. To prevent the protocol from rejecting a when �|r the protocol is
executed a number of times with new random values r. For optimization reasons
local reductions modulo � should be done before and during the calculation of
〈ra〉R, and the trial divisions should be executed in parallel.

Lemma 5. Trial Division UC-realizes this part of FEXT-RISS with respect to all
APass adversaries.

Proof. This can be simulated by simulating the result of 〈ra〉R. The leaked value
α = (ra mod �) + β� does not leak information because it can be perfectly
simulated, by choosing r and its shares appropriately.

Probabilistic Primality Test. Here we present a distributed version of the
primality test described in section 3.
ProbPrime The players holds special form integer shares of the value being
tested 〈a〉R. The value 〈b〉R is secret shared among the players, and N = ab is
publicly known. We assume a, b ∈ [2n−1, 2n] and N ∈ [22n−2, 22n].

1. Distributed generate a public known value v ∈R ZN .
2. The players locally calculates γai s.t.:

γa1 = v(a1−1)/2 mod N and
γa2 = v(a2)/2 mod N
γa3 = v(a3)/2 mod N

3. The players share the values γai and calculate 〈γa〉R =
∏

γai ≡ v(a−1)/2

(mod N)
4. Distributed check if ±1 ≡ 〈γa〉R (mod 〈a〉R), if so output Probably prime,

otherwise output Composite.

Generating v can efficiently be done if all players uses the same key for the PRF.
To check if ±1 ≡ γa (mod a) we use a technique based on the ACS protocols
[1]. However, due to a different setting, where we assume N = ab is publicly
known, we can improve the protocols from O(log(n)) rounds to O(1) rounds, n
being the bit length of a. First note that (γa mod a) = γa −

⌊
γa

a

⌋
a. If we assume

the following 2n−1 < a, b < 2n, 2n−2 < N = ab < 22n and γa < 22n+2 we can
approximate γa

a in the following way 2:

Ñ =
⌈

25n+2

N

⌋
⇒

∣∣∣∣∣ 1
N

− Ñ

25n+2

∣∣∣∣∣ < 2−3n+2 and Ñ < 23n+4 (1)

ã = b × Ñ ⇒
∣∣∣∣1a − ã

25n+2

∣∣∣∣ < 2−2n+2 and ã < 24n+4 (2)

⇒
∣∣∣∣γa

a
− γaã

25n+2

∣∣∣∣ < 1 and γaã < 26n+6 (3)

⇒ γa −
⌊
γaã2−5n+2⌋ a = (γa mod a) + δa, −1 ≤ δ ≤ 1 (4)

2 
x� meaning rounding x to nearest integer (
x� =
⌊
x + 1

2

⌋
).
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In the above equations Ñ is calculated locally by each player, 〈ã〉R is calcu-
lated by the distributed constant multiplication protocol. The value 〈γaã〉R is
calculated by the multiplication protocol. Calculating

⌊
γaã2−5n+2

⌋
is done by

each player locally dividing the shares of γaã by 25n+2 and rounding the result
downwards: �c ≈ c′ = �c1 + �c2 + �c3 , |c′− c| ≤ 3. Therefore we can calculate
y = γa −

⌊
γaã2−5n+2

⌋
= (γa mod a) + δa s.t. −4 ≤ δ ≤ 4 and y < 22n+3.

The last step in the protocol to test if ±1 ≡ γa (mod a) is to calculate:

z =

(
4∏

i=−4

((y + ia) + 1 mod Q)

) (
4∏

i=−4

((y + ia) − 1 mod Q)

)
mod Q (5)

The number Q is a publicly known prime s.t. Q > 22n+3 > (y + ia) + 1, |i| ≤ 4.
The multiplications in (5) are done modulo Q to limit the size of the numbers we
are calculating on to 2n+3 bit numbers. Multiplications modulo Q can be done
by doing local modulo reduction on the shares before and after the multiplication
protocol. Now the players opens z and if z = 0 they output success, otherwise
they output failure. The last step of the protocol is correct because if ±1 ≡ γa

mod a then ((y + ia)±1) is zero when i = δ, and since the numbers we calculate
on are less than Q, and thereby relatively prime to Q, then z �= 0 is always the
case if ±1 �≡ γa mod a.

Lemma 6. Assuming the existence of PRF’s, then on well formed input (spe-
cial form integer sharing) ProbPrime UC-realizes this part of FEXT-RISS with
respect to all APass adversaries.

Proof. We assume the existence of PRF’s, therefore the value v in the ideal
and real world cannot be distinguished efficiently. If γ �= ±1 in FEXT-RISS the
simulator gets knowledge of all private input and can therefore easily simulate
the protocol. If γ = ±1 the protocol can be simulated as follows. Step two only
contains local calculations and does therefore not leak any information. Step
three can be simulated, see lemma 3. The last step can in the same way be
simulated to output z = 0, because of lemma 3 (it is easy to see that the lemma
still holds modulo Q).

4.4 Active Security Distributed Primality Testing

For active security we need to ensure that the players follow the protocol. This
means player 1 and 2 have to prove that there random input during generation of
a special form integer sharing is well formed. The correct congruence modulo 4
can easily be tested, because each share will be send to two players, and therefore
at least one honest. To prove that a(1) or a(2) is in the correct range we use a
technique, from [6], we note that the solution described here is less efficient than
[6], however, it is conceptually simpler. Proving that a number a ∈ [2n−1, 2n]
can be done by proving that a − 2n−1 ≥ 0 and that 2n − a ≥ 0. Proving that
x ≥ 0 is done by writing x as a sum of squares. Any positive number can be
written as the sum of four squares which efficiently can be calculated [17].
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A protocol for player i to prove a ∈ [2n−1, 2n] is: Player i calculates α1, . . . , α4
and β1, . . .β4 s.t.

∑
α2

i = a − 2n−1 and
∑

β2
i = 2n − a. Player i shares the

numbers using VRISS and the three players calculates α̃ = (a − 2n−1) −
∏

α2
i

and β̃ = (2n−a)−
∏

β2
i . The values α̃ and β̃ is opened and if they are opened to

zero then a ∈ [2n−1, 2n] is true, otherwise player i is deviating from the protocol.
The protocols also includes local computations on the shares, these do not leak

information, and is therefore passively secure. They can be made active secure
with one broadcast message pr. player: The players use the PRF to generate
three random and replicated values. Now the players uses these random values
to commit to the result of the local computation such that each share of the
result is committed with the same randomness by the two players calculating
the same share. The commitments are broadcast, and if the two commitments
of the same value are not equal, one of the players misbehaves.

Theorem 5. Assuming the strong RSA assumption and existence of PRF, then
the above protocols UC-realizes FEXT-RISS with respect to all AAct adversaries.

Proof. This follows from theorem 4, lemma 4 - 6, and the above description.

5 Distributed RSA Moduli Generation

The security of our RSA moduli generating protocol is given by the ideal func-
tionality FKeyGen (Fig. 3). The intuition is that if the players follow the protocol
then the factorization of N is secret, however, if misbehavior is detected by all
players then N should not be used, and it is secure to reveal p and q.

Ideal functionality FKeyGen

Key Generation: Upon receiving (KeyGen, sid, n) from all players; generate two
n-bit primes p and q, s.t. p ≡ q ≡ 3 mod 4 and let N = pq.
Send N to the adversary. When the adversary replies with (Deliver) then send N
to all players and halt.
Detected Misbehavior: Upon receiving (Misbehavior) from the adversary, at any
point in the protocol. Then send p and q to the adversary, output (Misbehavior) to
all players and halt

Fig. 3. Ideal functionality for generating an RSA modulus

The protocol ΠKeyGen implementing FKeyGen is described in Fig. 4. The pro-
tocol is based on the BF protocol [4], with an other probabilistic primality test.
We start by describing a passive secure protocol, and afterward we extend it to
active security. ΠKeyGen assume an MPC scheme realizing FEXT-RISS.

Picking candidates: By the protocol for randomly generating special form inte-
gers, the players jointly generates two prime candidates a and b s.t 2n−1 < a, b <
2n and a ≡ b ≡ 3 (mod 4)
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RSA Moduli Generation Protocol: ΠKeyGen

1. Pick candidates: Secretly pick random numbers a and b s.t. a ≡ b ≡ 3 mod 4.
2. Trial division: Distributed trial divide a and b up to a bound B.

Repeat step 1 and 2 until two candidates a and b passes the trial division.
3. Compute N : The players calculate and publish N = ab.
4. Primality test: Run primality test to check a. If a is accepted, b is tested.

If either a or b was rejected, the protocol is restarted, otherwise output N .
5. Proof honest behavior The players prove that they in the earlier steps of the

protocol followed the protocol honestly.

Fig. 4. Protocol for distributed generation of RSA moduli

Trial Division: Trial division up to a bound B is performed on a and b. Instead
of trial division distributed sieving, which is more efficient, can be utilized, see
section 6.

Computing N : To compute N the parties use the multiplication protocol and
make the result N public. When N is public the players might do more local
trial division before continuing.

Primality Test: To test whether a and b, both having survived trial division, are
indeed primes, or at least with overwhelming probability are primes, ProbPrime
is used to test a and b one or a few times. If a or b is rejected the protocol is
restarted, otherwise in the passive case N is output as the RSA modulus. In the
active secure case the players need to prove honest behavior before N is output.

Active Security. Extending the protocol to active security, can be done using
VRISS instead of RISS. However, a more efficient solution exists. When the play-
ers choose the input they commit and broadcasts the commitments. The rest of
the protocol is run using the RISS protocol for distributed calculations. If either
a or b at some point is rejected as primes the players opens the commitments
of a and b publicly and each player can locally test if a or b should have been
rejected or if a player is misbehaving. When a modulus N is accepted the play-
ers calculates and broadcasts all the proofs of well formed input and of having
executed the protocol correctly. If a player cannot broadcast correct proofs, the
other players reports that misbehavior is detected.

Lemma 7. The probability of generating a modulus N which is not the product
of two primes is the same as in the generic RSA key generation using the Miller-
Rabin test to generate Blum integers.

Proof. In the last round of the protocol, where both a and b passes the test the
value a has been chosen completely independent of b and vice versa. Because we
choose a and b at the same time there are rounds before the last one where b is
rejected and we have to sample a new a. However, since we sample independent
in each round these rounds can just be seen as a delay of randomly chosen time
inserted in the protocol.
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Theorem 6. Assuming the Extended Riemann Hypothesis, existence of Pseudo
Random Functions and the Strong RSA assumption, then ΠKeyGen UC-realizes
FKeyGen with respect to all AAct adversaries.

Proof. From lemma 7 it follows that the output of the protocol and the ideal func-
tionality is indistinguishable. We also need simulate the transcript of the protocol
given N from FKeyGen. First we assume that the adversary follows the protocol as
described. In that case simulating the number of rounds of ΠKeyGen where candi-
dates are rejected either by trial division or by the primality test can be done as:
The simulator run the real protocols on input a and b not being two primes, such
that they are rejected, with the same distribution as in the real world.

The last round, where N is accepted and output from ΠKeyGen, can be sim-
ulated in the following way: The simulator can simulate trial division and the
primality test without knowing the input, this means it can simulate acceptance
of the two protocols, without knowing the factorization of N .

If the corrupted player does not follow the protocol there are the following
two cases: In one of the rounds where a and b should be rejected, but are not,
the adversary cannot present proofs of following the protocol. Therefore in the
real world the honest players will detect misbehavior and in the ideal world the
simulator will report misbehavior. In the last round where N is supposed to
be output, but is rejected, then in the real world the honest players will detect
misbehavior when the adversary cannot present shares of a and b making the
test fail. In the ideal world the simulator reports misbehavior and is given the
factorization of N and can therefor show shares of a = p, b = q to the adversary
such that the test should have passed.

6 Optimizations

Parallelization. If the bottleneck of the protocol is network latency, then test-
ing many candidates in parallel will decrease effect of the latency.

Distributed Sieving. Instead of first pick candidates to be primes, and there-
after perform trial division. It is possible to do distributed sieving for candidates
relatively prime to all small primes less that some bound B. This technique is
due to Malkin et al. [18], and in their implementation distributed sieving gave a
10 fold speedup when generating 1024 bit keys. Distributed sieving is done by
letting M =

∏B
�∈PRIMES(�) and let the players pick random values ai ∈ Z∗

M and
letting the candidate a = (

∏
ai) + rM for a random value r in an appropriate

interval. This makes a relatively prime to M and thereby relatively prime to
all small primes less than B. After converting a into additive shares the players
must initiate a protocol that ensures the additive shares has the right properties
(congruence modulo four), this applies [4] and to our protocol, however, not to
[18] due to their simpler (only heuristically secure) primality test.

Using Multi Prime RSA Modulus. As mentioned in [4] it is possible to avoid
the quadratic slowdown of testing two candidates at the same time instead of
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testing two candidates independently as done in [1] and when generating RSA
keys locally by [19]. The trick is to use a modulus which is a product of three
primes, known as multi prime RSA. N = p1p2(a1 + a2) where p1 is a prime
known to player 1 and p2 is a prime known to player 2 and a = a1 + a2 is
a candidate for a third prime. Unlike [3] that need a special tri-primality test
like [5] our protocol can easily be extended to test multi prime moduli due to
primality test. It should be noted that the latest PKCS #1 version (v2.1) [16]
includes the use of multi prime RSA, although the motivation there is improved
speedup when utilizing the Chinese remainder theorem technique.

7 Conclusion and Acknowledgment

We have presented a novel approach to do distributed generation of RSA moduli,
with an active secure constant round primality test with a good bound on the
average error probability. By using parallelization the complete generation of
RSA moduli can made constant round, even when guarantying active security.
An second contribution is a novel way to do multi party computations with
replicated integer secret sharing. An open question remains, whether a better
average case analysis of the Boneh and Franklins biprimality test is possible.

We thank Arjen Lenstra for some useful pointers.
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