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Abstract

Coefficient estimation in linear regression models with missing data is routinely done in the mean 

regression framework. However, the mean regression theory breaks down if the error variance is 

infinite. In addition, correct specification of the likelihood function for existing imputation 

approach is often challenging in practice, especially for skewed data. In this paper, we develop a 

novel composite quantile regression and a weighted quantile average estimation procedure for 

parameter estimation in linear regression models when some responses are missing at random. 

Instead of imputing the missing response by randomly drawing from its conditional distribution, 

we propose to impute both missing and observed responses by their estimated conditional 

quantiles given the observed data and to use the parametrically estimated propensity scores to 

weigh check functions that define a regression parameter. Both estimation procedures are resistant 

to heavy-tailed errors or outliers in the response and can achieve nice robustness and efficiency. 

Moreover, we propose adaptive penalization methods to simultaneously select significant variables 

and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully 

investigated. An efficient algorithm is developed for fast implementation of the proposed 

methodologies. We also discuss a model selection criterion, which is based on an ICQ-type 

statistic, to select the penalty parameters. The performance of the proposed methods is illustrated 

via simulated and real data sets.
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1 Introduction

Missing data have long been a common problem in various settings, including surveys, 

clinical trials, and longitudinal studies, among many others. Ignoring the missing data will 

undermine study efficiency and sometimes introduce severe bias. There has been an 

enormous literature on different estimation and inference methods for various (conditional 

mean) regression analysis with missing response and/or covariates. See, for example, 

extensive reviews in Horton & Kleinman (2007), Horton & Laird (1999), and Ibrahim et al. 

(2005), and references therein. There are three streams of inference methods for mean 

regression with missing values: imputation method (Little & Rubin, 2002), inverse 

probability weighted method (Robins et al., 1994), and likelihood-based methods (Ibrahim 

et al., 2005). These existing approaches are expected to be sensitive to outliers and their 

efficiency may be significantly improved for many commonly used non-normal errors. 

However, the corrected specification of likelihood function used for imputation approach is 

often challenging in practice, especially for skewed data. Recently, quantile regression 

inference for missing data problems has received considerable attention due to the 

robustness of its regression coefficient estimates; see, for example, Yoon (2010), Wei et al. 

(2012), and Chen et al. (2015), among others.

Quantile regression as an important modeling tool (Koenker & Bassett, 1978) is a natural 

extension of classical least squares estimation of conditional mean models to the estimation 

of models for conditional quantile functions. See, for example, Koenker (2005) for an 

extensive review on quantile regression. It offers a systematic examination on the influence 

of covariates on the entire response distribution, while it is less sensitive to outliers. 

However, standard quantile regression focuses on estimator at each quantile and may be 

inefficient for many ‘global’ parameters of interest, which vary slowly across all quantiles. 

Since quantile regression exploits the whole conditional distribution, estimation efficiency 

could be potentially improved by combining quantile regression over multiple quantiles. For 

instance, in Zou & Yuan (2008), a composite quantile regression (CQR) estimator has been 

proposed for multiple quantile regression models. Furthermore, a weighted quantile average 

estimator (WQAE) proposed by Zhao & Xiao (2014) is a linear combination of quantile 

regression estimators across different quantiles. To the best of our knowledge, little work has 

been published on the CQR and/or WQAE-based inference under imputation for missing 

data.

The aim of this paper is to develop robust and efficient parameter estimation methods for 

regression models when some responses are missing at random. To increase both estimation 

robustness and efficiency, we propose a weighted CQR estimate (WCQR) and a WQAE 

estimate by borrowing information from multiple quantiles. We consider a novel parametric 

multiple imputation approach that imputes both missing and observed responses by their 

estimated conditional quantiles given the observed data. Specifically, following Robins et al. 

(1994), we use the parametrically estimated propensity scores to weigh check functions that 

define a regression parameter estimate. Moreover, the proposed multiple imputation 

approach yields more reliable results even in high dimensional scenario. We also use the 

smoothly clipped absolute deviation (SCAD) and adaptive least absolute shrinkage and 

selection operator (LASSO) regularization (Fan & Li, 2001; Zou, 2006) and a ICQ statistic 
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(Ibrahim et al., 2008) to perform the selection of penalty parameters, variable selection, and 

estimation. We systematically investigate the asymptotic properties of the proposed 

estimators under the proposed multiple imputation approach. An efficient algorithm is 

developed for the fast implementation of the proposed methods. Unlike the existing mean 

regression procedure for missing data, our method is resistant to heavy-tailed errors or 

outliers in responses.

The rest of this paper is organized as follows. In Section 2, we describe the parametric 

imputation approaches and introduce WCQR and WQAE and their shrinkage estimators. We 

also systematically investigate the asymptotic properties of all parameter estimators. In 

Section 3, we present an efficient procedure of parameter estimation, variable selection, and 

tuning parameter selection. In Section 4, we evaluate the proposed methods in simulated 

datasets. In Section 5, we use a real data example to illustrate the strategy. In Section 6, we 

conclude the paper with some discussions. Technical proofs and additional numerical studies 

are given in the Supporting Information.

2 Methodology

2.1 Preliminaries

Let {(xi, yi), i = 1, …, n} be a random sample generated from a model given by

yi = xi
T β∗ + εi,   for  i = 1, …, n, (2.1)

where yi and xi = (xi1, …, xid)T are, respectively, a univariate response variable and a d × 1 

vector of covariates which contains no intercept term for the ith individual, β* is a d × 1 

vector of regression coefficients, and εis are independent and identically distributed (i.i.d.) 

random errors that are independent of xis. Throughout the paper, we assume that yis may be 

missing, whereas xis are always fully observed. That is, the data set consists of incomplete 

observations {(xi, yi, δi) : i = 1, …, n}, which are i.i.d. realizations from (x, y, δ), where δ = 

0 if y is missing and δ = 1 otherwise. We also assume that y is missing at random, i.e., δ and 

y are conditionally independent given x. That is, we have

Pr(δ = 1|x, y) = Pr(δ = 1|x) ≕ p(x),

where p(x) is the propensity score that describes a pattern of selection bias in the 

missingness. In particular, we postulate a parametric model for the propensity score, that is, 

p(x) = p(x, γ*), and further consider logistic model logit{p(x, γ
∗)} = γ0

∗ + γ1
∗ T

x. An estimator 

γ̂ = (γ0̂, γ1̂)T is defined by maximizing the log-binomial likelihood given by

L(γ) = log  ∏
i = 1

n

p(xi, γ)
δ
i(1 − p(xi, γ))

1 − δ
i . (2.2)
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Under some regularity conditions, the maximum likelihood estimator γ̂ is a n-consistent 

estimator for γ* even though the logistic model is misspecified (White, 1982). We denote 

p̂(x) as p(x, γ̂).

By assuming that the regression coefficients are the same across different quantiles, Zou & 

Yuan (2008) proposed a CQR estimator, which minimizes a mixture of the objective 

functions from different quantiles. Let  = {τ1, …, τK} be a set of quantiles. A simple 

estimator is a complete-case (CC) composite quantile regression estimator βCC
CQR

, which can 

be obtained by solving

(b1, …, b
K

, βCC
CQR) = arg min

b1, …, b
K

, β
∑

k = 1

K

∑
i = 1

n

δ
i
ρ

τ
k
(y

i
− x

i
T

β − b
k
),

where ρτ(u) = u{τ − 1(u < 0)} is the check function, in which 1(·) is an indicator function of 

an event. Let f(·) and b
τ
k

∗  be the density function and 100τk% quantile of residual ε, 

respectively.

PROPOSITION 1—Under assumptions A1, A2 and A4 given in the Supporting 

Information, as n → ∞, we have n(βCC
CQR

− β
∗)

ℒ
�(0, ∑0 ), where Σ0 is given by

∑0 = [E{p(x)xx
T}]

−1∑
k, k′ = 1
K min(τ

k
, τ

k′){1 − max(τ
k
, τ

k′)}

{∑
k = 1
K

f (b
τ
k

∗ )}
2

.

Proposition 1 shows that under the MAR assumption, the CC analysis also produces a 

consistent estimator. However, compared with the full sample analysis, CC analysis can lead 

to larger efficiency loss with the presence of a large amount of missing data. In what 

follows, we introduce a novel multiple imputation procedure that aims to improve the 

estimation robustness and efficiency of the existing methods and the CC estimator.

2.2 Augmented check functions

Instead of imputing the missing response y by randomly drawing from its conditional 

distribution F(y | x) (Rubin, 1987), one can directly impute the missing response by its 

estimated conditional quantile given the observed data. This imputation procedure has 

advantages of being less sensitive to model misspecification and its ability to produce 

reliable estimates even under high-dimensional covariates, which have been previously 

studied in quantile regression with missing responses (Yoon, 2010) and M-regression with 

censored covariates (Wang & Feng, 2012). In this paper, we extend such imputation 

approach to the estimation of CQR models with ignorable missing response.

Define Qy(τ | x) = inf{y : F(y | x) ≥ τ} to be the τ-th conditional quantile of y given x, where 

τ ~ uniform(τL, τU) with 0 < τL < τU < 1. Under MAR assumption, we have F(y | x) = F(y | 

x, δ = 1) = F(y | x, δ = 0), which leads to Qy(τ | x) = Qy(τ | x, δ = 1) = Qy(τ | x, δ = 0). 
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Specifically, for τ ∈ [τL, τU], we assume the linear quantile regression model as 

Q
y
(τ |x) = θ0

∗(τ) + x
T

θ1
∗(τ). It should be noted here that θ0

∗(τ) = b
τ
∗ if such conditional quantile 

regression model under MAR assumption is correctly specified. Let θ∗(τ) = (θ0
∗(τ), θ1

∗(τ)T)
T

, 

which is a (d + 1) × 1 vector of unknown quantile regression coefficients. Let z = (1, xT) and 

z
i

= (1, x
i
T) for i = 1, …, n. Since we have E{δz[1(y < zT θ*(τ)) − τ]} = 0 under MAR 

assumption, an estimator θ̂(τ) of θ*(τ) can be calculated as

θ(τ) = arg min
θ

∑
i = 1

n

δiρτ(yi − zi
Tθ), (2.3)

and the τ-th conditional quantile is estimated by Q
y
(τ |x) = Q

y
i
(τ | x

i
, δ

i
= 1) = z

i
T

θ(τ) for i = 1, 

…, n. Although (2.3) assumes a linear form of the conditional quantiles of x, our empirical 

studies in Section 4 suggest that such assumption is relatively robust to potential model 

misspecification. To achieve more flexible imputation, nonparametric or semiparametric 

quantile models may be employed in (2.3).

Let Ỹiν be the ν-th imputed value of the ith outcome for ν = 1, …, m, where m is the 

number of imputations. Given 0 < τL < τU < 1, generate τν from uniform(τL, τU) and set 

Y
∼

iν
= z

i
T

θ(τν), where θ̂(τν) is obtained by solving (2.3) with τ replaced. It is not difficult to 

show that Ỹiν ~ Fp̂(y | xi), where Fp̂(y | xi) is the inverse of the estimated conditional quantile 

function Q̂yi(τ
ν | xi). Let ω = (ω1, …, ωK)T be a vector of known weights, b = (b1, …, bK)T, 

and 0 < τ1 < τ2 < ⋯ < τK < 1. Define an augmented inverse probability weighted (AIPW) 

composite quantile objective function with multiple imputation (MI) as

�nω(β, b; ω, �) = ∑
k = 1

K

ωk�nm(β, bk; τk), (2.4)

where nm(β, bk; τk) is given by

∑
i = 1

n δi

p(xi)
ρτ

k
(rik) + 1 −

δi

p(xi)
m

−1 ∑
ν = 1

m

ρτ
k
(riνk) , (2.5)

in which r
ik

= y
i
− x

i
T

β − b
k
 and r

iνk
= Y

∼
iν

− x
i
T

β − b
k
. Throughout the paper, we refer to the 

proposed imputation approach in (2.5) as “AIPW-MI procedure”.

REMARK 1—Compared with many existing approaches, the proposed AIPW-MI has 

several new features. First, it follows from (2.5) that the observed yi is also imputed by its 

estimated conditional quantile given the observed data. See a similar idea used in Tang & 

Qin (2012), in which missing values were randomly drawn from a kernel estimator of the 
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conditional distribution of the missing variables given the fully observable variables. 

However, Tang & Qin’s kernel density estimation is impeded by the curse of dimensionality. 

Second, in the last term on the right hand side of (2.5), the check functions are averaged 

across multiple imputed values in order to control the variance of the imputed values.

Given p̂(x), an estimator of β*, say β̂PCQR, can be estimated as follows

(b1, …, b
K

, β
PCQR) = arg min

b, β
�

nω
(β, b; ω, �) .

We call it the parametric-CQR (PCQR) estimator of β*. Note that when δi = 1 and p̂(xi) = 1 

for all k, i, model (2.4) reduces to the weighted CQR model (see Jiang et al., 2012). When 

ωk = 1/K, δi = 1 and p̂(xi) = 1 for all k, i, model (2.4) reduces to the CQR model (see, Zou & 

Yuan, 2008).

For single quantile regression (see, Koenker, 2005), β* in model (2.1) can be estimated by 

solving

(bτ, βτ

QR
) = arg min

b, β
�nm(β, b; τ) . (2.6)

If εi follows a double-exponential distribution, the quantile regression estimator β0.5
QR

 is the 

most efficient estimator even compared with the least square estimator when there are no 

missing data. However, for other distributions, the relative efficiency of β
τ

QR
 over the least 

square estimator can be very small. By combining information based on estimators at 

different quantiles, we further define a weighted parametric quantile average estimate 

(PQAE) given by

β
PQAE = ∑

k = 1

K

ϖ
k

β
τ
k

QR,   subject to   ∑
k = 1

K

ϖ
k

= 1,

where β
τ

QR
 is defined in (2.6). The PQAE is indeed motivated by a general weighting 

function ∫ β
τ

QR
ϖ(τ)dτ (Portnoy & Koenker, 1989), where ϖ(τ) is a general weighting 

function.

2.3 Variable selection

Variable selection plays an important role in model building process. To achieve sparsity 

with high-dimensional covariates, we further develop adaptive penalization methods for 

variable selection based on the proposed AIPW-MI approach. Various penalization methods 

have been developed for variable selection for different models (Fan & Li, 2006; Tibshirani, 

1996; Zou & Li, 2008; Zou, 2006).
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We first consider the SCAD penalty (Fan & Li, 2001) with a tuning parameter λn, denoted 

by λn(·), to be selected by a data-driven method. By filling in the missing yi by 

Y
∼

iν
= z

i
T

θ(τν), the SCAD estimator for penalized PCQR with missing data solves the 

following minimization problem

arg min
b, β

�nω(β, b; ω, �) + n ∑
j = 1

d

�λ
n
( | β j | ) . (2.7)

The penalty λn(·) satisfies λn(0) = 0, and its first-order derivative is given by

�
λ
n

′ (β) = λ
n

1(β ≤ λ
n
) +

(aλ
n

− β)
+

(a − 1)λ
n

1(β > λ
n
) ,

where a = 3.7, and (s)+ = s for s > 0 and 0 otherwise.

It is very challenging to optimize (2.7) since nω(β, b; ω, ) is nonconvex and both nω(β, 

b; ω, ) and the penalty λn(|βj|) are nondifferentiable. To overcome these difficulties, we 

adopt the one-step sparse estimate scheme in Zou & Li (2008). For any given initial value 

β
(0) = (β1

(0), …, β
d
(0))

T
, we define a one-step penalized PCQR loss as

�n(b, β) = �nω(β, b; ω, �) + n ∑
j = 1

d

�λ
n

′ ( | β j
(0) | ) | β j | . (2.8)

We define (b ̂1, …, b ̂K, βP̂SCAD) = arg minb,β n(b, β) as the one-step sparse PCQR-SCAD 

estimaror. By combining estimators corresponding to different quantiles, we can derive a 

one-step sparse PAQE-SCAD estimator as

β
PSCAD = ∑

k = 1

K

ϖ
k

β
τ
k

PSCAD,   subject to   ∑
k = 1

K

ϖ
k

= 1,

where (b
τ
, β

τ

PSCAD
) = arg min

b, β
{�

nm
(β, b; τ) + n∑

j = 1
d

�
λ
n

′ ( | β
j
(0) | ) | β

j
| } with Ỹiν ~ Fp̂(y | xi) 

in nm(β, b; τ). We also use the same notation β̂PSCAD to denote the one-step sparse PAQE-

SCAD estimator for simplicity.

Second, we consider the adaptive-LASSO penalty (Zou, 2006). Specifically, the adaptive 

LASSO PCQR loss is given by �
nω

(β, b; ω, �) + λ
n

∑
j = 1
d

ω
∼

j
| β

j
|, where ω̃j = 1/|β̂j|

2 for j = 1, 

…, d, where β̂ = (β̂1, …, β̂d)T = arg minb,β nω(β, b; ω, ). By minimizing the above 

objective function with a proper penalty parameter λn, we can get a sparse estimator of β, 

denoted as βP̂LASSO, which is called the adaptive PCQR-LASSO estimator. Similarly, we 

can derive the adaptive PAQE-LASSO estimator as

Tang et al. Page 7

Scand Stat Theory Appl. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



β
PLASSO = ∑

k = 1

K

ϖ
k

β
τ
k

PLASSO,   subject to   ∑
k = 1

K

ϖ
k

= 1,

where (b
τ
, β

τ

PLASSO
) = arg min

b, β
{�

nm
(β, b; τ) + λ

n
∑

j = 1
d

ω
∼

j
| β

j
| } with Ỹiν ~ Fp̂(y | xi) in 

nm(β, b; τ).

2.4 Asymptotic properties

We define D = E{p(x)−1xxT}, (τ, τ′) = min(τ, τ′){1 − max(τ, τ′)}, ϖ = (ϖ1, …, ϖK)T, 

H = {�(τ
l
, τ

k
)/ f (b

τ
l

∗ ) f (b
τ
k

∗ )}
1 ≤ l, k ≤ K

, �1 = D∑
k, k′ = 1
K

ω
k
ω

k′�(τ
k
, τ

k′) and 2 = DϖTHϖ.

THEOREM 1—Under the assumptions A1–A6 given in the Supporting Information, as n 

→ ∞ and m → ∞, we have

n(β
PCQR − β

∗)
ℒ

�(0, ∑1(ω)),

where ∑1 (ω) = �1
−1

�1�1
−1 with �1 = ∑

k = 1
K

ω
k

f (b
τ
k

∗ )E{xx
T}.

COROLLARY 1—Under the assumptions A1–A6 given in the Supporting Information, as n 

→ ∞ and m is fixed, we obtain n(β
PCQR

− β
∗)

ℒ
�(0, ∑∼

1 (ω)), where 

∑∼
1 (ω) = �1

−1
�
∼

1�1
−1 with

�
∼

1 = E [p(x)−1 + m
−1(p(x)−1 − 1)]xx

T ∑
k, k′ = 1

K

ω
k
ω

k′�(τ
k
, τ

k′) .

Theorem 1 characterizes the asymptotic normality of βP̂CQR. For the fixed , the optimal 

ω* = arg minω Σ1(ω) can be calculated by solving

ω∗ = arg min
ω

ω
T

Wω

ω
T

ff
T

ω
  or  ω∗ = arg max

ω

ω
T

ff
T

ω

ω
T

Wω
=

W
−1

f

‖W
−1/2

f‖
,

where ‖·‖ is the Euclidean norm of a vector, W = ( (τk, τk′)), and f = ( f (b
τ1

∗ ), …, f (b
τ
K

∗ ))
T

. 

Thus, the optimal Σ1(ω*) is given by

∑1(ω∗) = (fT
W

−1
f)

−1
E{xx

T}
−1

E{p(x)−1
xx

T}E{xx
T}

−1
.

Theorem 1 also indicates that parametric estimation of propensity score has no asymptotic 

impact on the proposed parametric-CQR estimator. Moreover, from the proof of Theorem 1 

in the Supporting Information, we may write
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n(β
PCQR − β

∗) = n
−1/2 ∑

i = 1

n

Λ(x
i
, y

i
, δ

i
, β

∗) + o
p

(1),

where Λ(x, y, δ, β
∗) = − ∑

k = 1
K

ω
k
�1

−1
δp(x)−1

x(1(y < x
T

β
∗ + b

τ
k

∗ ) − τ
k
) is the influence 

function. Under assumption of missing response at random and model specification, we have 

m
τ
k
(x, β

∗, b
τ
k

∗ ) = E{x(1(y < x
T

β
∗ + b

τ
k

∗ ) − τ
k
) |x, δ = 1} = E{x(1(y < x

T
β

∗ + b
τ
k

∗ ) − τ
k
) |x} = 0

uniformly in k. This implies that Λ(x, y, δ, β*) equals

− ∑
k = 1

K

ω
k
�1

−1 δ

p(x)
x(1(y < x

T
β
∗ + b

τ
k

∗ ) − τ
k
) + 1 −

δ

p(x)
m

τ
k
(x, β

∗, b
τ
k

∗ ) ,

which is of a weighted composite AIPW form; thus, it is an efficient influence function.

THEOREM 2—Under the assumptions A1–A6 given in the Supporting Information, as n 

→ ∞ and m → ∞, we have

n(β
PQAE − β

∗)
ℒ

�(0, ∑2(ϖ)),

where ∑2 (ϖ) = �2
−1

�2�2
−1 with 2 = E{xxT}.

Theorem 2 characterizes the asymptotic normality of β̂PQAE. For the fixed , the optimal 

ϖ* = arg minϖ Σ2(ϖ) can be calculated by solving

ϖ∗ = arg min 
ϖ

ϖ
THϖ subject to 1

K
T

ϖ = 1,

where 1K = (1, …, 1)T is a K × 1 vector of ones. It is easy to show that the optimal Σ2(ϖ*) is 

given by

∑2(ϖ∗) = (1
k
TH−1

1
K

)
−1

E{xx
T}

−1
E{p(x)−1

xx
T}E{xx

T}
−1

.

Using similar arguments as in Theorem 1, we can also show that the proposed weighted 

parametric quantile average estimator is efficient. From Theorems 1 and 2, we find that as n 

→ ∞ and m → ∞, multiple imputation in (2.5) does not have asymptotic impact on the 

resultant estimators, and thus β̂PCQR and β̂PAQE are invariant to the model of the conditional 

quantile model of y given x and δ = 1.

Since f is the density function of residual ε, the Fisher information of f is given by
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ℐ
f

=

ℝ

∂log  f (u)
∂u

2
f (u)du =

0

1
∂ f (b

τ
∗)

∂τ

2

dτ .

For equally spaced {τ
k
}

k = 1
K , the following proposition shows that the optimal PQAE is 

asymptotically more efficient than the optimal PCQR. Only when the log density function 

log f(u) of ε is concave, the optimal PCQR is asymptotically equivalent to the optimal 

PQAE, and both are nearly efficient as the oracle maximum likelihood estimator for various 

error distributions, a great advantage of the proposed methodology.

PROPOSITION 2—(Zhao & Xiao, 2014) Let τk = k/(K + 1) for k = 1, …, K, suppose that 

assumptions A1 and A2 given in the Supporting Information holds, we have the following 

results.

a. In general, (1
K
T H−1

1
K

)
−1

≤ min
ω

{ω
T

Wω/ωT
ff

T
ω}, with equality at optimal 

ω = ω∗ = {[2 f (b
τ
k

∗ ) − f (b
τ
k − 1

∗ ) − f (b
τ
k + 1
∗ )]/[ f (b

τ1

∗ ) + f (b
τ
K

∗ )]}
k = 1

K
 under the 

assumption that the log density function log f(τ) of ε is concave. Here, it is 

assumed that f (b
τ0

∗ ) = f (b
τ
K + 1

∗ ) = 0.

b. If limτ→0[g2(τ) + g2(1 − τ)]/τ = 0 and lim
τ 0τ

2∫
τ
1 − τ |g″(t)|2dt = 0, where 

g(τ) = f (b
τ
∗) and g″(t) = ∂2g(t)/∂t2, then lim

K ∞1
K
T H−1

1
K

= ℐ
f
.

However, compared with the optimal PCQR, the optimal PQAE has the disadvantage of 

being more sensitive to either near-zero or extreme values of the estimated propensity score 

because the proposed AIPW-MI procedure is independently repeated K times in PQAE.

In order to better understand the optimality of variable selection and parameter estimation, 

Fan & Li (2001) considered the oracle property under the true, but “unknown” subset , 

where  = {j : βj ≠ 0}. The oracle estimate would need to estimate β
�

∗  and set β
�

c
∗ = 0. For 

any square matrix , denote  as the sub-matrix of  with row and column indices in 

. According to Theorems 1 and 2, we have

n(β(oracle)
�

E − β
�

∗ )
ℒ

�(0, ∑oracle
),

where ∑
oracle

= �
ι��

−1
�

ι��
�

ι��

−1  for ι = 1 and 2, and E denotes for PSCAD and PLASSO.

THEOREM 3—(Oracle properties) Suppose that assumptions A1–A6 given in the 

Supporting Information hold, as n → ∞ and m → ∞, we have the following results:

i. If nλ
n

∞ and λn → 0, then β
PSCAD

= (β1
PSCAD, …, β

d
PSCAD)

T
 satisfies:
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a. Consistent selection: Pr({ j: β
j
PSCAD ≠ 0} = �) 1;

b. Efficient estimation: n(β
�

PSCAD
− β

�

∗ )
ℒ

�(0, ∑
oracle

).

ii. If λ
n

/ n 0 and λn → ∞, then β
PLASSO

= (β1
PLASSO, …, β

d
PLASSO)

T
 satisfies:

a. Consistent selection: Pr({ j: β
j
PLASSO ≠ 0} = �) 1;

b. Efficient estimation: n(β
�

PLASSO
− β

�

∗ )
ℒ

�(0, ∑
oracle

).

3 Computational issues

3.1 Estimation of the optimal weight

To calculate the optimal estimators, we need to compute the optimal weights ω* and ϖ*. It 

suffices to estimate f(bτ) for the proposed AIPW-MI procedure. We can use some 

nonparametric density estimation methods based on estimated residuals εî to obtain a 

consistent estimator of f(·). For the sake of space, we focus on the calculation of the optimal 

weights ω*, whereas extension to other cases is trivial.

I. For any yi, draw τν from uniform(τL, τU) with 0 < τL < τU < 1, and substitute yi 

by Y
∼

iν
= z

i
T

θ(τν) with z
i

= (1, x
i
T) for i = 1, …, n. We can simply set τL = 0 and τU 

= 1. Repeating this imputation procedure m times yields the augmented data set 

{δ
i
p(x

i
)−1

y
i
+ [1 − δ

i
p(x

i
)−1]Y

∼
iν

, x
i
: i = 1, …, n}

ν = 1

m
. Here p̂(xi) is the estimated 

propensity score.

II. Compute preliminary estimators β̂ and b̂k based on the augmented data set and 

the uniform weight ω = (K−1, …, K−1)T. Then the estimated “residuals” εî can 

be obtained as follows:

1
mK

∑
ν = 1

m

∑
k = 1

K δ
i
y
i

p(x
i
)

+ 1 −
δ
i

p(x
i
)

Y
∼

iν
− x

i
T

β − b
k

.

III. Calculate f (υ) = (nb)−1∑
i = 1
n

�{(υ − ε
i
)/b}, where (·) is a univariate 

probability density function. Following Silverman (1986), we choose an optimal 

bandwidth b given by

b = 0.9n
−1/5min  SD(ε1, …, εn),

IQR(ε1, …, εn)

1.34
, (3.1)

where “SD” and “IQR” represent the sample standard deviation and interquartile 

range.

IV. Estimate f(bτ) by f̂(b̂τ), where b̂τ is the sample 100τ% quantile of ε̂1, …, εn̂.
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V. Substituting f(̂b̂τ) into ω* = W−1f/‖W−1/2f‖ to obtain an estimated optimal 

weight, denoted by ω̂
*.

3.2 Majorize-Minimize algorithm

We develop an efficient computational procedure based on the Majorize-Minimize (MM) 

algorithm (Hunter & Lange, 2000) to optimize (2.8). Since extension to other cases is trivial, 

we omit them for the sake of space. It is difficult to minimize n(b, β) because this function 

may possess multiple minima and ρτk (·) and |βj| are not differentiable. The key idea of the 

MM algorithm is to approximate a complex optimization problem by a sequence of simple 

optimization problems, while the solutions of the new optimization problems converge to a 

solution of the original optimization problem. Here, we define η = (b, β), r
ik

= y
i
− x

i
T

β − b
k

and r
iνk

= Y
∼

iν
− x

i
T

β − b
k
. At the sth iteration, instead of directly minimizing n(b, β), we 

minimize another objective function given by

Qλ
n
(η |η(s)) = Qε(η |η(s)) + n ∑

j = 1

d

�λ
n

′ ( | β j
(0) | ) | β j | , (3.2)

where η(s) denotes estimate of η at the sth iteration and Qε(η | η(s)) is the surrogate function 

that majorizes n(b, β) at η(s). Let c1 and c2 be two constants. For any ε > 0, Qε(η | η(s)) can 

be written as the sum of Q1ε(η | η(s)) and Q2ε(η | η(s)), where

Q1ε
(η |η(s)) =

1
4 ∑

k = 1

K

∑
i = 1

n ω
k
δ
i

p(x
i
)

r
ik
2

ε + |r
ik
(s)|

+ (4τ
k

− 2)r
ik

+ c1 ,

Q2ε
(η |η(s)) =

1
4 ∑

k = 1

K

∑
i = 1

n

1 −
δ
i

p(x
i
)

ω
k

m
∑

ν = 1

m r
iνk
2

ε + |r
iνk
(s) |

+ (4τ
k

− 2)r
iνk

+ c2 .

Then, we calculate η(s+1) = arg minη Qε(η | η(s)). This process is repeated until the absolute 

difference between η(s) and η(s+1) is smaller than a prespecified small constant.

In our computational procedure, we also consider a quadratic approximation of Qε(η | η(s)) 

in order to speed up the computation in (3.2). Specifically, we calculate the first-order and 

second-order derivatives of Qε(η | η(s)) and denote them as G = ∂ηQε(η | η(s)) and Hessian 

matrix ℋ = ∂
η
2
Q

ε
(η |η(s)), respectively. By following the Gauss-Newton approach (see, 

Kennedy & Gentle, 1980), we approximate Qε(η | η(s)) ≈ 0.5(  −  η)T (  −  η), where 
T  is the Cholesky decomposition of ℋ and  = ( T)−1(ℋη − G) is a pseudo response 

vector. By using the second-order Taylor expansion, at each iteration, we then minimize an 

objective function given by
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1
2

(  − °η)T(  − °η) + n ∑
j = 1

d

�λ
n

′ ( | β j
(0) | ) | β j | . (3.3)

Since (3.3) is a simple penalized least square problem, it can be easily minimized by using 

many existing optimization algorithms. This algorithm leads to exact zeros for regression 

coefficients and converges quickly based on our empirical experience.

3.3 Penalty parameter selection procedure

To ensure good properties of η̂λn, the penalty parameter λn has to be appropriately selected. 

Various techniques have been proposed in previous studies, such as the generalized cross-

validation and BIC selectors. These criteria cannot be easily computed in the presence of 

missing data since n(b, β) involves intractable multiple imputations. Instead, we develop an 

ICQ-type criterion (Ibrahim et al., 2008; Garcia et al., 2010) to select the penalty parameter. 

The ICQ criterion selects the optimal λn by minimizing

ICQ(λ
n
) = 2Q

ε
(η

λ
n

|η0) + c
n
(η

λ
n
),

where η̂
0 = arg minb,β nω (β, b, ω, ) with Ỹiν ~ Fp̂(y | xi) and cn(η) is a function of the 

data and the fitted model. For instance, if cn = 2d′, where d′ is the total number of 

parameters in the model, then we obtain an AIC-type criterion. Alternatively, we obtain a 

BIC-type criterion when cn(η) = log(n)dfλn/n, where dfλn is the number of nonzero 

coefficients in the fitted model. Moreover, in the absence of missing data, ICQ(λn) reduces 

to the usual AIC and BIC criteria. In our framework, we choose cn(η̂λn) = df(λn) 

log(nK)/nK, where df(λn) is the number of zero residuals based on the proposed AIPW-MI.

4 Simulations

We conducted a set of simulations to examine the finite sample performance of the proposed 

estimators when responses are missing at random. The simulation data was simulated from 

model (2.1), in which we set β* = (1, 1.5, 0.5)T and generated xi = (xi1, xi2, xi3)T from (0, 

Σx) with Σx = (0.5|i−j|) for 1 ≤ i, j ≤ 3. The missing yis’ were simulated according to the 

following four scenarios: M1. p(xi) = 0.6; M2. logit{p(x
i
)} = γ0 + γ1sin(x

i1) + γ2x
i2
2 + γ3x

i1x
i3

with (γ0, γ1, γ2, γ3) = (0.5, 0.50, 0.20, 0.25); M3. logit{p(xi)} = γ0 + γ1xi1 + γ2xi2 + γ3xi3 

with (γ0, γ1, γ2, γ3) = (1.5, 0.50, 0.50, 0.05); and M4. p(xi) = 0.5 + 0.5{0.1(xi1 − 1)2 

+ 0.1(xi2 − 1)2 + |xi1 − 1|} if 0.1(xi1 − 1)2 + 0.1(xi2 − 1)2 + |xi1 − 1| < 1, and 0.5 elsewhere. 

The average proportions of missing data corresponding to M1–M4 are about 40%, 32.49%, 

21.34%, and 39.41%, respectively. We set the working model of the missing data mechanism 

as logit{p(x
i
)} = γ0

∗ + γ1
∗ T

x
i
. In this case, models M1 and M3 are correctly specified, whereas 

M2 and M4 are misspecified. We use M2 and M4 to investigate the robustness of our PCQR 

and PAQE estimators. Moreover, we consider four different error distributions included C1. 

(0, 3); C2. t(3); C3. standard Cauchy distribution; and C4. ε = (1 + z)w, in which z ~ 

Bernoulli(0.5) and w ~ (0, 1).
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For each case, we simulated 500 incomplete data sets with n = 200. For each simulated data 

set, we used the reweighted least squares iterative algorithm to compute p̂(xi) and compared 

five estimators of β* as follows. The first one, denoted as S0, is the least square estimator 

using regression imputation as the solution to 

∑
i = 1
n

x
i
{δ

i
p(x

i
)−1

y
i
+ [1 − δ

i
p(x

i
)−1]x

i
T

β
cc

ls
− x

i
T

β} = 0, where β
cc

ls
 is the least square estimator 

of β* using the complete-case analysis. The second one, denoted as S1, is the proposed 

PCQR estimator. The third one, denoted as S2, is the proposed PQAE estimator. The fourth 

one, denoted as S3, is based on Wang & Feng’s (2012) approach, given by 

β
MI

= m
−1∑

ν = 1
m

β
ν

MI
, where

β
ν
MI = arg min

b1, …b
K

, β
∑

k = 1

K

∑
i = 1

n

δ
i
ρ

τ
k
(r

ik
) + (1 − δ

i
)ρ

τ
k
(r

iνk
) ,

in which r
ik

= y
i
− x

i
T

β − b
k
, r

iνk
= Y

∼
iν

− x
i
T

β − b
k
, and Ỹiν is the imputed value for missing Yi 

in the ν-th imputation for ν = 1, …, m. Although Wang & Feng’s multiple imputation is 

developed for M-regression models with censored covariates, it can be extended to the 

analysis of linear models with missing response at random. The fifth one, denoted as S4, is 

the CQR estimator based on complete-case analysis.

For the estimation of the optimal weights for S1 and S2, we selected the optimal bandwidth 

b according to (3.1). Following Bradic et al. (2011), we set the number of quantiles to be K 

= 9 and the quantile vector  = (0.1, 0.2, …, 0.9). To implement our proposed two 

approaches, and Wang & Feng’s approach, we imputed y from the parametrically estimated 

conditional quantile of y given x, and set m = 20. Specifically, in the νth imputation for ν = 

1, …, m, for missing scenarios M1 and M2, we used conditional quantile 

Q
y
(τν |x) = θ0

∗(τν) + x
T

θ1
∗(τν) to impute the missing or observed yi by using 

Y
∼

iν
= θ0(τν) + x

i
T

θ1(τν); for M3 and M4, we used conditional quantile 

Q
y
(τν |x) = θ0

∗(τν) + exp(xT
θ1

∗(τν)) to impute the missing or observed yi by using 

Y
∼

iν
= θ0(τν) + exp(xT

θ1(τν)) in order to investigate the robustness of our proposed method 

under the violation of linearity assumption in the parametric multiple imputation. In the ν-th 

imputation procedure, τν was randomly generated from the uniform distribution on (0, 1) 

and estimators θ̂0(τν) and θ̂1(τν) for both conditional quantile regression models are 

computed by using Majorize-Minimize algorithm for single quantile regression.

Tables 1 and 2 report the bias, the root mean square (RMS) and the standard deviation 

estimate (SD) of the five estimators S0–S4 under different scenarios. We have the following 

observations. (i) Under the correctly specified model for imputation, Wang & Feng’s method 

outperforms all other estimation methods in terms of RMS and SD. However, under model 

misspecification for imputation, estimator computed by Wang & Feng’s method suffers from 

severe bias resulting in much larger RMS and SD compared with other estimation methods. 

(ii) Under all scenarios, our PCQR and PAQE estimators are quite close to the true values, 

and the RMS is close to its corresponding SD. Therefore, our proposed methods are not only 
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efficient, but also robust to the misspecified linearity assumption and missing mechanism. 

Such robustness may be due to the use of the parametrically estimated propensity scores. 

(iii) The proposed PCQR and PAQE estimates outperform the least square estimate for all 

error distributions and such efficiency gain can be substantial in most cases. As expected, 

under the Cauchy distribution, the least square estimator based on the regression imputation 

suffers from severe bias. It is also noteworthy that least square method has the worst 

performance among all methods even under normal error. This phenomena can be ascribed 

to the sensitivity of a mean regression procedure to either near-zero or extreme values of the 

estimated propensity score.

5 AIDS Clinical Trials Group 175 study

To illustrate our proposed methods, we consider a data set taken from 2139 patients from the 

AIDS Clinical Trials Group (ACTG) protocol 175 (Hammer et al., 1996), a study that 

randomized patients to four antiretroviral regimes in equal proportions: zidovudine (ZDV) 

monotherapy, ZDV +didanosine (ddI), ZDV+zalcitabine, and ddI monotherapy. Let y be the 

CD4 count at 96 ± 5 weeks and let x = (x1, …, x6)T be the six baseline characteristics: Age, 

Weight, CD4 counts at baseline (CD40), CD4 counts at 20 ± 5 weeks (CD420), CD8 counts 

at baseline (CD80) and CD8 counts at 20 ± 5 weeks (CD820). Since death and dropout, data 

on y have been missing, but x were fully observed. The response rate of y is about 62.74%. 

We are interested in understanding whether the CD4 count at 96 ± 5 weeks (y) depends on 

the possible influential factors (x). To do this, we fit the linear regression model y = xTβ* + 

ε, where ε is random error with an unknown distribution function. Following Hu et al. 

(2010), it may be reasonable to assume that y is missing at random in that the baseline 

characteristics can faithfully predict the missingness in y. All of the covariates are 

standardized. In addition, we consider the following model for missing data mechanism: 

logit{p(x)} = γ0 + γ1
T

x. The response model is estimated by using the reweighted least squares 

iterative algorithm.

Similar to the simulation studies, we also analyzed the real data by using the five estimation 

methods S0–S4. We used the same number of quantiles K and quantiles τ as those used in 

simulation study. For all imputation procedures, we imputed y from the estimated linear 

conditional quantiles of y given all covariates, and set imputation time m = 10. We also 

applied the variable selection method based on the SCAD and adaptive LASSO 

regularization to the five estimation methods. The proposed ICQ criterion was used to select 

the penalty parameter λn for all methods except that the penalized least square estimation 

was based on the cross validation.

Table 3 presents the estimation results. For the unpenalized estimates, their standard errors 

(SE) were computed by using the bootstrap method. The parameter estimates of each 

parameter are quite close to each other for all estimation methods, but our PCQR and PAQE 

methods yield smaller standard errors compared with the least square method and Wang & 

Feng’s (2012) method. All estimators indicate that the CD8 counts at 20 ± 5 weeks have 

negative effects on the CD4 count at 96 ± 5 weeks. Adaptive LASSO and SCAD penalties 

perform similarly in variable selection. The penalized least square method yields the 
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smallest models, and our proposed penalized PCQR and penalized PAQE methods yield 

sparser models than Wang & Feng’s method. All proposed penalized estimators identify 

CD4 counts at baseline (CD40) and CD4 counts at 20 ± 5 weeks (CD420) as significant 

predictors.

6 Conclusions

In this paper, we have proposed to impute both missing and observed responses by using 

their estimated conditional quantiles given the observed data. The augmented inverse 

probability weighted approach is used to reconstruct the check function that defines a 

regression parameter. Efficient and robust parametric estimation for the regression 

coefficients is based on the weighted composite quantile regression estimation and weighted 

quantile average estimation procedures. Although we assume a linear form of the 

conditional quantiles of x in the imputation step, our empirical studies suggest that the 

proposed estimators are less sensitive to potential model misspecification than those 

obtained from misspecified parametric likelihood. For more flexible imputation, 

nonparametric or semiparametric quantile models can also be employed.

In this paper, we propose using complete-case estimator obtained from (2.3) to impute the 

missing response. Such imputation procedure is valid because we assume that only 

theresponse is missing at random. When some covariates are missing at random and the 

propensity depends on the response, our methods do not work any more because the 

proposed complete-case estimator will be biased and inconsistent. In this case, to mitigate 

the effects of missing covariates data and improve the the performance of the proposed 

methods, we can develop a conditional quantiles imputation procedure based on inverse 

probability weighted and/or AIPW approaches. Extension of the method to missing 

covariates is interesting and challenging, which is a topic of our future research. The 

proposed imputation procedure also has some important implications. It can be easily 

extended to more complicated models, such as partial linear models, single index models, 

varying-coefficient models and even survival data analysis, among others. An important 

extension is to consider the estimating equation with missing data. Further study is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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