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Abstract

Polynomial texture mapping (PTM) uses simple polynomial regression to interpolate and re-light image sets taken

from a fixed camera but under different illumination directions. PTM is an extension of the classical photometric

stereo (PST), replacing the simple Lambertian model employed by the latter with a polynomial one. The advantage

and hence wide use of PTM is that it provides some effectiveness in interpolating appearance including more

complex phenomena such as interreflections, specularities and shadowing. In addition, PTM provides estimates of

surface properties, i.e., chromaticity, albedo and surface normals. The most accurate model to date utilizes multivariate

Least Median of Squares (LMS) robust regression to generate a basic matte model, followed by radial basis function

(RBF) interpolation to give accurate interpolants of appearance. However, robust multivariate modelling is slow. Here

we show that the robust regression can find acceptably accurate inlier sets using a much less burdensome 1D LMS

robust regression (or ‘mode-finder’). We also show that one can produce good quality appearance interpolants, plus

accurate surface properties using PTM before the additional RBF stage, provided one increases the dimensionality

beyond 6D and still uses robust regression. Moreover, we model luminance and chromaticity separately, with

dimensions 16 and 9 respectively. It is this separation of colour channels that allows us to maintain a relatively low

dimensionality for the modelling. Another observation we show here is that in contrast to current thinking, using the

original idea of polynomial terms in the lighting direction outperforms the use of hemispherical harmonics (HSH) for

matte appearance modelling. For the RBF stage, we use Tikhonov regularization, which makes a substantial difference

in performance. The radial functions used here are Gaussians; however, to date the Gaussian dispersion width and the

value of the Tikhonov parameter have been fixed. Here we show that one can extend a theorem from graphics that

generates a very fast error measure for an otherwise difficult leave-one-out error analysis. Using our extension of the

theorem, we can optimize on both the Gaussian width and the Tikhonov parameter.

Keywords: Polynomial texture mapping; Photometric stereo; Radial basis functions; Hemispherical harmonics;

Robust regression

1 Introduction
Polynomial texture mapping (PTM) [1] uses a single

fixed digital camera at constant exposure, with a set of

n images captured using lighting from different direc-

tions. A typical rig would consist of a hemisphere of

xenon flash lamps imaging an object, where directions to

each light is known (Figure 1a). The basic idea in PTM

is to improve on a simple Lambertian model for matte
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content, whereby the three components of the light direc-

tion are mapped to luminance, by extending the model

to include a low-order polynomial of lighting-direction

components. The strength of PTM, in comparison to a

simple Lambertian photometric stereo (PST) [2] is that

PTM can better model real radiance and to some extent

grasp intricate dependencies due to self-shadowing and

interreflections. Usually, some 40 to 80 images are cap-

tured. The better capture of details is the driving force

behind the interest in this technique evinced by many

museum professionals, with the original least squares
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(LS)-based PTMmethod already in use at major museums

in the USA, including the Smithsonian, the Museum of

Modern Art and the Fine Arts Museums of San Francisco,

and is planned for the Metropolitan and the Louvre

(M. Mudge, personal communication, Cultural Heritage

Imaging). As well, some work has involved applying PTM

in situ for such applications as imaging palaeolithic rock

art [3]. In such situations, one has to recover lighting

directions from the specular patch on a reflective sphere

[4]; such a ‘highlight’ method [5] can also be applied to

museum capture of small objects or to microscopic image

capture.

PTM generates a matte model for the surface, where

luminance (or RGB) is modelled at each pixel via a

polynomial regression from light-direction components

to luminance. Say, e.g. there are n = 50 images,

with n known normalized light-direction three-vectors

a. Then in the original embodiment, a six-term polyno-

mial model is fitted at each pixel separately, regressing

onto that pixel’s n luminance values using LS regression.

The main objectives of PTM are the ability to re-light

pixels using the regression parameters obtained, as well

as the recovery of surface properties: surface normal,

colour and albedo. For re-lighting, the idea is simply that

if the regression from the n in-sample light-directions

a to n luminance values, L is known then substituting

a new a will generate a new L, thus yielding a sim-

ple interpolation scheme for new, out-of-sample, light

directions a.

In [6], we extend PTM in three ways: First, the six-

term polynomial is changed so as to allow purely linear

terms to model purely linear luminance exactly. Sec-

ondly, the LS regression for the underlying matte model

is replaced by a robust regression, the least median of

squares (LMS) method [7]. This means that only a major-

ity of the n pixel values obtained at each pixel need be

actually matte, with specularities and shadows automati-

cally identified as outliers. With correctly identified matte

pixels in hand, surface normals, albedos and pixel chro-

maticity are more accurately recovered. Thirdly, authors

in [6] further add an additional interpolation level by

modelling the part of in-sample pixel values that is not

completely explained by the matte PTMmodel via a radial

basis function (RBF) interpolation. The RBF model does

a much better job of modelling features such as spec-

ularities that depend strongly on the lighting direction.

As well, the RBF approach can make use of any shadow

information to help model interpolated shadows, which

change abruptly with lighting direction. The interpola-

tion is still local to each pixel and, thus, does not attempt

to bridge non-specular locales as in reflectance sharing,

for example [8,9]. In reflectance sharing, a known surface

geometry is assumed, as opposed to the present paper.

Here, we rely on the idea that there is at least a small

contribution to specularity at any pixel, e.g. the sheen on

skin or paintwork, so that we need not share across neigh-

bouring pixels and can employ the RBF approach from [6].

For cast shadows, amore difficult feature tomodel, at each

pixel the RBF model will utilize whatever shadow content

is actually present across the whole set of n images from n

lights.

The current study is aimed at further refining and

improving the PTM + RBF pipeline as was employed in

[6], as well as exploring different combinations of basis

functions. The main contributions of this work are three-

fold:

1. We introduce a more efficient, ‘mode-finder’

regression method to replace the computationally

intensive multivariate LMS regression in the matte
modelling stage. Compared to the 6D LMS

regression, the mode-finder effectively reduces the
number of unknowns from 6 to 1 and thus greatly

reduces the processing time from O(n6 log n) to

O(n log n) ([7], p. 206). We found that this
simplification introduces little reduction of accuracy.

Although technically the mode-finder regression

approach can be applied to the mode of either
luminance or any colour components, we show that

the mode of luminance provides the highest accuracy.
How a robust mode-finder works is simple: from the

n luminance values at the current pixel, select one

randomly; continue and adopt as the best estimate of
the ‘mode’ that luminance which delivers the least

median of squared residuals. What makes the LMS

method powerful is that it provides strong
mathematical guarantees on the performance given

by choosing a much smaller subset than a simple
exhaustive search and it also delivers an inlier band,

automatically, thus classifying luminance values as

usable or not. The multivariate version of LMS is
similar: for 6D LMS, e.g., we randomly select six

luminances and find residuals for a polynomial

regression. Again, the number of selections is
tremendously smaller than an exhaustive search, but

nonetheless is very slow compared to a 1D search.

2. We explore different combinations of basis functions
for PTM. Firstly, we extend the classical polynomial

models from 6D to 16D. Moreover, due to another

observation we made that luminance reconstruction
has a far greater impact on the re-lighted image

quality than the reconstruction of chromaticity, we

can reduce the dimension for chromaticity modelling
with little loss of accuracy. Reducing the number of

float regression coefficients makes a difference, when
we multiply by millions of pixels. We found that 16D

for luminance + 9D for chromaticity is a good

balance between dimensionality and accuracy.
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Figure 1 A typical PTM rig and an example dataset. (a) A 40-light rig for capturing PTM datasets (courteously supplied by Cultural Heritage

Imaging). (b) A PTM dataset of 50 images (courteously supplied by Tom Malzbender, Hewlett-Packard).

Secondly, we compared the performance of the
hemiSpherical harmonics (HSH) basis against the

polynomial basis of the same order and found that,

surprisingly, the polynomial model outperforms HSH
in terms of the quality of appearance reconstruction,

especially at large incident angles.
3. We adopt a method to mathematically determine the

optimal parameters used for the RBF interpolation

stage. Previously in [6], we made use of an RBF
network consisting of Gaussian radial functions to

model the non-Lambertian contribution. The

parameters in this model, including the Gaussian
dispersion σ and Tikhonov regularization coefficient

τ , were taken heuristically and remained constant
across all pixels. In this work, we start off from a

theorem that minimizes error in a leave-one-out

analysis by optimizing the Gaussian dispersion
parameter. Such a theorem is not new, but here we

extend its use to whole images and three-channel

colour. More importantly, however, we also extend
the theorem to optimize over the Tikhonov

regularization. For the fairly large size matrices being

inverted, these optimizations matter and make a
substantial difference to results obtained.

Note that contributions 1 and 3 are direct improvements

over the methodology of the PTM + RBF pipeline: Con-

tribution 1 is aimed at increasing the efficiency of the

first stage - matte modelling; contribution 3 is devoted to

the optimization of the second stage - RBF interpolation.

On the other hand, the goal of contribution 2 is to find

an optimal set of basis functions. The discoveries made

in contribution 2 can be applied to the matte modelling

stage of PTM + RBF, as well as regular PTM with no RBF

interpolation.

This paper is organized as follows: In Section 2 we

review previous work in this area, and in Section 3 we

provide a brief recapitulation of the PTM method. In

Section 4 we introduce the notion of our contribution

1 - using a robust mode-finder instead of a full multi-

variate robust regression and explicate how we use the

mode-finder and trimmed LS to realize outlier detec-

tion and recover surface properties. In Section 5, focusing

on contribution 2, we test the appearance reconstruction

with PTM separately applied to luminance and chromatic-

ity and compare the reconstructed matte appearance for

PTM and for HSH. In Section 6 we describe our con-

tribution 3, i.e. how to use an optimized version of the

RBF framework to interpolate specularity and shadows on

reconstructed images. Finally, Section 7 presents conclud-

ing remarks.

2 Related work
Many methods for detecting outlier pixels in photomet-

ric methods have been proposed. Early examples include

a four-light PST approach in which the values yielding

significantly differing albedos are excluded [10-12]. In a

similar five-light PST method [13], the highest and the

lowest values, presumably corresponding to highlights

and shadows, are simply discarded. Another four-light

method [14] explicitly includes ambient illumination and

surface integrability and adopts an iterative strategy using
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current surface estimates to accept or reject each addi-

tional light based on a threshold indicating a shadowed

value. The problemwith thesemethods is that they rely on

throwing away only a small number of outlier pixel values,

whereas our robust methods in the current and previous

studies allow up to 50% of the pixel values discarded as

outliers.

More recently, Willems et al. [15] used an iterative

method to estimate normals. Initially, the pixel values

within a certain range (10 to 240 out of 255) were used

to estimate an initial normal map. In each of the follow-

ing iterations, error residuals in normals for all lighting

directions are computed and the normals are updated

based only on those directions with small residuals. Sun

et al. [16] showed that at least six light sources are

needed to guarantee that every location on the surface

is illuminated by at least three lights. They proposed a

decision algorithm to discard only doubtful pixels, rather

than throwing away all pixel values that lie outside a

certain range. However, the validity of their method is

based on the assumption that out of the six values for

each pixel, there is at most one highlight pixels and two

shadowed pixels. Julia et al. [17] utilized a factorization

technique to decompose the luminance matrix into sur-

face and light source matrices. The shadow and highlight

pixels are considered as missing data, with the objective

of reducing their influence on the result. Wu et al. [18]

formulated the problem of surface normal recovery as

a rank minimization problem, which can be solved via

convex optimization. Their method is able to handle spec-

ularities and shadows as well as other non-Lambertian

deviations. Compared to these methods, the algorithm

proposed here is a good deal simpler, while producing

excellent results.

A small number of recent studies utilize probability

models as a mechanism to try to incorporate handling

shadows and highlights into the PST formulation. Tang

et al. [19] model normal orientations and discontinu-

ities with two coupled Markov random fields (MRFs).

They proposed a tensorial belief propagation method to

solve the maximum a posteriori problem in the Markov

network. Chandraker et al. [20] formulate PST as a

shadow labelling problem where the labels of each pixel’s

neighbours are taken into consideration, enforcing the

smoothness of the shadowed region, and approximate the

solution via a fast iterative graph-cut method. Another

study [21] employs a maximum-likelihood (ML) imaging

model for PST. In their method, an inlier map modelled

via MRF is included in theML model. However, the initial

values of the inlier map would directly influence the final

result, whereas our methods do not depend on the choice

of any prior.

Yang et al. [22] include a dichromatic reflection model

into PST and associated method for both estimating

surface normals as well as separating the diffuse and

specular components, based on a surface chromaticity

invariant. Their method is able to reduce the specular

effect even when the specular-free observability assump-

tion (that is, each pixel is diffuse in at least one input

image) is violated. However, this method does not address

shadows and fails on surfaces that mix their own colours

into the reflected highlights, such as metallic materials.

Moreover, their method also requires knowledge of the

lighting chromaticity - they suggest a simple white-patch

estimator - whereas in our method, we have no such

requirement. Kherada et al. [23] proposed a component-

based mapping method. They decompose the captured

images into direct and global components - single bounce

of light from a surface, as opposed to illumination onto

a point that is interreflected from all other points of the

scene. They then model matte, shadow and specularity

separately within each component. Their method is stated

to provide a better appearance reconstruction than the

original PTM [1], although at the cost of a much heav-

ier computational load, but depends on a training phase

and requires accurate disambiguation of direct and global

contributions.

Aside from the polynomial basis, it is possible to use

other types of basis function in PTM, as long as they

provide a good approximation of the light-reflectance

interaction. Spherical harmonics (SH), the angular por-

tion of a set of solutions to the Laplace’s equations defined

on a sphere, appear to be a good candidate for this pur-

pose. Due to their appealing mathematical properties,

they have been extensively applied in a great variety of top-

ics in computer graphics, such as the modelling of BRDFs

[24], early work on image-based rendering and re-lighting

[25,26], BRDF shading [27], irradiance environment maps

[28], precomputed radiance transfer [29,30], distant light-

ing [31,32] and lighting-invariant object recognition [33].

However, in the context of PTM, we note that the incom-

ing and outgoing lights are defined only on the upper

hemisphere. Therefore, representation of such a hemi-

spherical function using basis functions defined over the

full spherical domain introduces discontinuities at the

boundary of the hemisphere and requires a large num-

ber of coefficients [34]. Thus, it is more natural to map

these functions to a basis set defined only over the

upper hemisphere. In [34], a HSH basis derived from SH

using shifted associated Legendre polynomials was pro-

posed. This basis has been applied in surface modelling

under distant illumination [35] and in shape descrip-

tion and reconstruction of surfaces [36]. Recent progress

on HSH includes a HSH-based Helmholtz bidirectional

reflectance basis [37] and noise-resistant Eigen hemi-

spherical harmonics. In this study, we incorporate the

HSHbasis as proposed in [34] into the framework of PTM

and compare its performance with the polynomial basis.
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PTM and other similar reflectance transformation

imaging (RTI) methods have found extensive applica-

tions in cultural heritage imaging and art conservation.

Earl et al. use PTM to capture and visually examine

a great variety of ancient artefacts, including bronze

busts, coins, paintings, ceramics and cuneiform inscrip-

tions [38-41]. Duffy [42] employed a highlighted RTI

method to record the prehistoric rock inscriptions and

carvings at the Roughting Linn rock site, UK. Pad-

field et al. [43] adopted PTM to digitally capture paint-

ings in order to monitor their physical changes during

conservation. These applications demonstrate the abil-

ity of PTM to visually enhance the captured images via

different display modes, most notably specular enhance-

ment and diffuse gain, allowing for inspection of fea-

tures such as fingerprints and erasure marks that

are otherwise much less visually prominent in regular

images.

3 Mattemodelling using PTM
3.1 Luminance

PTM models smooth dependence of images on lighting

direction via polynomial regression. Here we briefly reca-

pitulate PTM as amended by [6]: Suppose n images of a

scene are taken with a fixed-position camera and light-

ing from i = 1..n different lighting directions ai =
(ui, vi, wi)T . Let each RGB image acquired be denoted

ρi, and we also make use of luminance images, Li =∑3
k=1 ρi

k . Colour is re-inserted later, as is described in

Section 3.4. It is also possible to ‘multiplex’ illumina-

tion by combining several lights at once in order to

decrease noise [44], but here we simply use one light at a

time.

In [6] we use a 6D vector polynomial p for each normal-

ized light direction three-vector a as follows:

p(a) = (u, v,w, u2, uv, 1) , where w =
√
1 − u2 − v2

(1)

This differs from the original PTM formulation [1] in that

originally the polynomial used had been (u, v, u2, v2, uv, 1),

which unfortunately does not model a true Lambertian

(linear) surface well since it must warp a non-linear model

to suit linear data.

Then at each pixel (x, y) separately, we can seek a poly-

nomial regression six-vector of coefficients c(x, y) in a

simple model, regressing lighting directions onto lumi-

nance:

⎡
⎢⎢⎣

p(a1)

p(a2)

. . .

p(an)

⎤
⎥⎥⎦ c(x, y) =

⎡
⎢⎢⎣

L1(x, y)

L2(x, y)

. . .

Ln(x, y)

⎤
⎥⎥⎦ (2)

E.g. if n = 50, then we could write this as

P c(x, y) = L(x, y)

50×6 6×1 50×1
(3)

An example dataset (code named Barb) for PTM is

displayed in Figure 1b, which was captured with a 50-

light dome (i.e. n = 50) similar to the one shown in

Figure 1a. The dataset Barb has large specular and shad-

owed regions, which cannot be well addressed by the

classical PTM model, and such datasets have typically

been avoided. Thus, we find Barb an ideal representa-

tive dataset to test the accuracy and/or robustness of a

re-lighting method. On other such difficult datasets we

have tried, very similar results were found (see [6] for

depictions of shiny and shadowed datasets).

3.2 Robust 6D regression

In our recent version of PTM [6], we solve Equation 3

using a robust LMS regression [7]. The purpose of robust

regression is to (1) isolate the matte and specular/shadow

components and allow the latter to be more cleanly mod-

elled with an additional RBF interpolation stage and (2)

identify the non-matte outliers so that more accurate sur-

face normals as well as other reflectance properties can be

obtained with LS. The LMS algorithm as applied in [6] is

summarized as follows [7]:

While the 6D LMS regression is slow, it is guaran-

teed to omit distracting features such as specularities

and shadows. Due to the 50% breakdown point of LMS,

it requires that at least half plus 1 of the luminance

observations belong to a base matte reflectance that can

be sufficiently addressed by a polynomial model. Fortu-

nately, this requirement is satisfied for most pixels in real-

world datasets. This regressionmethod will be referred to

Method:LMS in the following text.

3.3 Re-lighting

The re-lighting of images for PTM is fairly straightfor-

ward. Given a new light direction a′ and estimated poly-

nomial coefficients c(x, y), the approximated luminance

can be expressed as:

L′(x, y) = max[ p(a′) c(x, y), 0] (10)

Note that with Method:LMS, c(x, y) was obtained from

a trimmed LS where only the matte observations are used.

Therefore, the resulting L′(x, y) is expected to showmatte-

only contents as well, and non-matte components can

be later addressed by other methods (such as the RBF

interpolation we will describe in Section 6). This con-

trasts the robust methods with Method:LS, which uses

only PTM to capture both the matte and non-matte com-

ponents (to some degree) at the same time. Also note that

in Equation 10 only luminance is recovered. Colour would
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Algorithm: LMS

1. Initialize the iteration counter q = 1.
2. Sample a random subset of d indices:

Jq ⊂ {1, 2, . . . , n} (|Jq| = d). In our 6D PTMmodel,

d = 6. Get the subset of the polynomial of lighting
directions and their corresponding luminance

observations indexed by Jq , denoted by PJq and LJq
respectively.

3. Use LS on this subset of observations/lighting

directions to estimate the polynomial coefficients cJq :

cJq = P
†
Jq
LJq (4)

4. Use the current estimation cJq to approximate the
real observation L and calculate the squared residuals

r21 , r
2
2 , . . . , r

2
n for the n observations in L, collectively

stored as R2 = (r21 , r
2
2, . . . , r

2
n):

R = L − PcJq (5)

R2 = RTR (6)

5. Get the medianMJq of the n residuals r21 , . . . , r
2
n in R2:

MJq = mediani=1,...,n r
2
i (7)

6. Let q ← q + 1 and go back to Step 2 until q > m.

Here we choosem = 1, 500 for our typical datasets
where n = 50 and d = 6.

7. Find the smallest median of squared residualsMmin

such that:

Mmin = min
q=1,...,m

MJq (8)

and keep the estimation of coefficient set cmin that

yieldsMmin.
8. Calculate the robust standard deviation σ :

σ = 1.4826

(
1 + 5

n − d

)√
Mmin (9)

9. Obtain the squared residuals r2i (i = 1, . . . , n) with
respect to cmin for each of the n observations.

Maintain a binary weight vector ω of n elements,

where ωi = 1 if r2i ≤ (2.5σ) and ωi = 0 otherwise.
10. Perform trimmed LS using only the observations Li

and polynomial of lighting vector p(ai) with ωi = 1.

be re-introduced by multiplying the chromaticity and the

albedo as in Equation 11 as discussed next.

3.4 Colour, normals and albedo

The luminance L consists of the sum of colour compo-

nents: L = R+G+B. Luminance is given by the shading s

(e.g. this could in the simplest case be Lambertian shading,

meaning surface normal dotted into light direction) times

albedo α: i.e. L = sα. The chromaticity χ is defined as

RGB colour ρ, made independent of intensity by dividing

by the L1 norm:

ρ = Lχ , L = s α, χ ≡ {R,G,B}/(R + G + B)

(11)

Suppose our robust regression below delivers binary

weights ω, with ω = 0 for outliers. As in [6], once inliers

are identified we recover a robust estimate of chromaticity

χ as the median of inlier values, for k = 1..3:

χk = median
i∈(ω≡1)

(
ρi
k/L

i
)

(12)

In addition, an estimate of surface normal n is given by a

trimmed PST: with the collection of directions a stored in

the n × 3 matrix A, suppose ω0 is an index variable giving

the inlier subset of light directions: ω0 = (ω ≡ 1). Using

just the inlier subset, a trimmed version of PST gives an

estimate of normalized surface normal n̂ and albedo α via

ñ =
(
A(ω0)

)†
L(ω0); α = ‖ñ‖, n̂ = ñ/α (13)

where A† is the Moore-Penrose pseudoinverse. Other

weighting functions are also possible, such as the triangu-

lar function used by Method:QUANTILE which we will

briefly describe in Section 4.1.

With chromaticity χ in hand, Equation 11 gives RGB

pixel values ρ for the interpolated luminance L, and (13)

above also gives us the properties albedo α and surface

normal n̂ intrinsic to the surface.

Institutional users of the PTM approach are indeed

interested in appearance modelling for re-lighting, but

they are also separately interested in surface properties,

especially accurate surface normals, which carry much of

the shape information.

4 Robust chromaticity/luminancemodes
In this section, we present our first main contribution. As

we mentioned in Section 3.2, despite its high robustness

LMS can be very slow. Therefore, it is necessary to find

a less computationally expensive robust method. Here,

we suggest a simplified form of LMS - the mode-finder

approach.

4.1 Robust mode-finder algorithm

The basic idea of a mode-finder is first to identify a central

value of either luminance or chromaticity, termed ‘mode’

across all the observations at every pixel then perform

trimmed LS only using the observations that are with a

certain range around the mode. This is a far simpler prob-

lem than LMS. For reference, we call this new method

Method:MODE, which can be achievedwith the following

algorithm [7]:
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Algorithm: MODE

1. Initialize the iteration counter q = 1.
2. Compute the n squared residuals r2i (i = 1, . . . , n) with

respect to the scalar observation indexed by q :

r2i = (Li − Lq)
2 (14)

3. Find the medianMq of r
2
i :

Mq = mediani=1,...,n r
2
i (15)

4. Let q ← q + 1 and go back to step 2 until q > n

(n = 50 for our typical datasets).
5. Find the smallest median of squared residualsMmin

such that

Mmin = min
q=1,...,n

Mq (16)

and keep the observation of Lmin that yieldsMmin.
6. Same as steps 8 to 10 in Algorithm: LMS, except that in

mode-finder, the dimensionality d = 1 and the

residuals are calculated with respect to Lmin.

The rationale of Method:MODE is that non-matte out-

lier observations usually take extreme values in lumi-

nance (for instance, shadowed and specular pixels may

have an intensity close to 0 and 1, respectively), or

their chromaticity may deviate from other matte obser-

vations (for instance, specular observations are usu-

ally more desaturated whereas shadowed regions appear

darker).

Method:MODE may seem to be merely another exam-

ple of previous thresholdingmethods. In a typical method

of this type [45], the top 10% and the bottom 50%

of luminance observations are simply discarded. Then,

coefficient values sought are found using a triangu-

lar function to weight lighting directions in the result-

ing range. As in [6], we refer to this simple method

as Method:QUANTILE and denote the original PTM

method as Method:LS. However, Method:MODE is dif-

ferent from Method:QUANTILE in that the inlier range

is calculated based on the distribution of the observa-

tion values rather than the empirical values and heuris-

tic triangle functions previously employed. Simply put,

Method:MODE lets the data itself dictate what values are

in- and outliers.

4.2 Mode-finder versus LMS

In essence, both Method:LMS and Method:MODE

attempt to fit a mathematical model to as many data

points as possible by minimizing the median of residuals

and then identify an inlier range around the fitted model.

All observations that fall outside of this range are deemed

outliers. The only difference between the two methods is

the mathematical model used: Method:LMS fits the data

with a 6D polynomial model, whereas Method:MODE

approximates the observations with one single scalar con-

stant, i.e. a 1D mathematical model.

To see how the outlier identification works in the two

methods, we study a particular pixel in the Barb dataset

(marked by a yellow cross in Figure 2a). In Figure 2b,c,

the actual luminance observations at this pixel location

from 50 lighting conditions are represented as either

black solid dots (if they are identified as inliers) or red

crosses (for outliers) and are sorted in ascending order.

For comparison, the approximated luminance values are

shown as blue circles. An observation is classified as out-

lier if (1) its value is outside the inlier band, marked

with green shade enclosed by blue dashed lines or (2) its

approximated value (blue circle) is negative. Note that

the major difference between Method:LMS (Figure 2b)

and Method:Mode (Figure 2c) is that the 6D polyno-

mial model in LMS generates an inlier band that closely

approximates the actual data curve, whereas the 1D con-

stant model in Method:MODE creates a wider, hori-

zontal band. Despite this seemingly crucial difference,

Method:MODE as a matter of fact correctly captures

most of the outliers identified by Method:LMS. Although

Method:MODE may throw away more data points than

necessary, it would not negatively affect the accuracy of

estimated polynomial coefficients since these unnecessar-

ily excluded data points are matte anyway and a robust

method is not affected by the sum of squared residuals as

in LS.

Figure 3 shows a more detailed comparison on out-

lier estimation and surface property recovery using LMS

and mode-finder. Since there is no ground truth data for

these properties available, we simply adopt the results

obtained with the full 6D LMS method as our ‘gold

standard’ [6] and compare the relative performance of

mode-finder against it. Figure 3a displays accuracy of

outlier detection in terms of precision, recall and f-

statistic, and shows that as long as we use modes for

luminance we can achieve a very accurate set of outliers.

Results using luminance are shown using white bars. The

black bars represent the results obtained by the chro-

maticity mode, which will be covered in Section 4.3.

Figure 3b shows the results for recovered surface nor-

mal vectors using outlier detection based on the sim-

pler mode-finder, compared to Method:LMS: the median

angular error is 3.03°, which is quite small. Figure 3c

shows error in three-vector chromaticity, again measured

in terms of angle: the median error is 5.93°, which is

quite acceptable. Figure 3d shows errors in albedo -

the median is only 0.0037 (where the maximum correct

albedo is 1.5855). Such small differences are quite rea-

sonable as a tradeoff with having a much less complex

algorithm.
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Figure 2 Comparison of outlier detection with LMS and with mode-finding approach. (a) One original image; consider pixel at yellow ‘x’. (b)

Outlier detection with 6D to 1D LMS regression. Here, the pixels are displayed in ascending order sorted by luminance. The approximated values are

shown as blue circles. Inlier pixel values (at this 1 pixel, over the set of 50 lights) with estimated L̂ values that fall within the green inlier band are

displayed as black dots and outlier measured luminances, including values with negative luminance estimates that fall below the horizontal line at

L = 0, as black dots with red crosses. The blue dashed lines indicate the boundaries of the inlier band automatically identified by LMS. (c) Outlier

detection with luminance-mode finder. Here the blue solid line shows the location of the (scalar) mode, bracketed by a horizontal inlier band; inliers

also exclude negative-L̂ lights. (d) Red vs. green chromaticity, with outliers for green mode showing red circles (see Section 4.3).

4.3 Luminance versus chromaticity modes

As mentioned earlier in Subsection 4.1, the mode-

finder can be applied on luminance but as well could

be applied to colour components, since non-matte

observations tend to have an altered chromaticity. For

example, in Figure 2c, we have shown the outliers iden-

tified by Method:MODE on luminance. In Figure 2d,

we apply mode-finder on green chromaticity only and

find that the observations with outlying green com-

ponents (red circles) tend to have outlying red chro-

maticities as well. In addition, the chromaticity outliers

are also expected to largely overlap with the luminance

outliers.

It is also possible to combine outliers obtained from dif-

ferent chromaticities or evenmix luminance/chromaticity

outliers in the hope of getting a more accurate outlier esti-

mation. For example, we can estimate outliers using green

chromaticity (this subset of outlier indices are denoted

cgreen) and red chromaticity (cred) at the same time, and

then take the outliers c that appear in both cgreen and cred,

i.e. c = cgreen ∩ cred. We refer to such a combined method

as ‘green & red’.

Now the question is: which combination of modalities

gives the best approximated appearance? We found [46]

that in terms of peak signal-to-noise ratio (PSNR) accu-

racy of the reconstructed appearance for Method:MODE,

we have an ordering:

Lum > (green & red & lum) > green > (green & red)

> lum (Method:QUANTILE)

where ‘>’ means better accuracy; using luminance alone

is always best, (green & red) seems to be slightly worse

than green only, and (green & red & lum) is between

green and luminance. In comparison, using luminance

with Method:QUANTILE has the worst performance.

5 Higher-dimensional LS-based PTM and
hemispherical harmonics

In this section, we present our second contribution. First,

we investigate what can be gained by increasing the
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Figure 3 Surface properties recovered with mode-finder comparedwith 6D LMS. (a) Accuracy of outlier detection of mode-finder compared

to 6D LMS. (b,c,d) The deviation in surface normal, chromaticity and albedo, respectively.

dimensionality of the classical PTMmodel above 6D with-

out including robust regression. In addition, we apply

PTM with different dimensions to model luminance and

chromaticity separately. The objective of this part of the

investigation is to show that one can, in fact, go quite

a long way towards accuracy of appearance modelling

using only high-dimensional smooth regression, without

the final step of RBF modelling, provided we separate

modelling of luminance and chrominance.

Secondly, aside from polynomials, other sets of basis

functions can be used to model lighting-surface interac-

tion. One notable example is HSH [34] - it has also been

suggested that one could replace a PTM polynomial basis

by HSH instead [47]. HSH is mathematically very similar

to SH which have already been extensively employed in

computer graphics. The key difference between HSH and

SH is that HSH is only defined for light directions that live

on an upper hemisphere, making it more appropriate for

our experimental setup.

The conclusions we reach are that (1) a higher dimen-

sion does indeed substantially improve the quality of the

reconstructed appearance; (2) if we split the problem

into modelling luminance and chrominance separately,

rather than applying PTM to each component of colour,

then we can reduce the dimensionality for chrominance,

compared to that for luminance - we find that 16D for

luminance and 9D for chrominance workwell; and (3) sur-

prisingly, PTM works better than HSH. Note that every

dataset we tried behaved this same way.

5.1 Separation of luminance and chromaticity using

LS-based PTM

Our first observation is that the quality of the recon-

structed images has a positive correlation with the dimen-

sionality of PTM. Suppose we model luminance only,

using an LS-based simple PTM. Figure 4a shows accuracy

of the approximated input image set, in terms of PSNR,

for different dimensionalities d. In order to calculate the

overall PSNR between the original and the approximated

set of images, wemake the individual images into collages,

as the one shown in Figure 1b, and compute the similar-

ity between the original and approximated collages. Here

we traverse d values 1, 4, 6, 9 and 16. We see that the

reconstructed image quality improves steadily as dimen-

sionality increases for both PTM and HSH (which will

be covered in Section 5.2), and in fact PTM produces an
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Figure 4 Quality of entire image set reconstructed with non-robust, LS-based PTM and HSH over range of dimensionalities. (a) PSNRs for

PTM (black curve) and HSH (red, dashed curve), for luminance images, over values of the basis set dimension; the horizontal blue dashed line

indicates PSNR = 30. Here the PSNR value displayed is for the entire set of input images compared to the approximated set. (b) PSNRs for PTM

(scattered circles) and HSH (surface) in RGB images versus the dimensions for luminance and chromaticity. (c,d) PSNRs for approximated images for

each of the lighting direction images, for PTM and HSH, respectively. PSNR is plotted as against the x and y components of the lighting direction.

Blue circles indicate PSNRs for individual reconstructed image in the dataset, and the coloured surface shows an interpolation surface. Here, 16D for

luminance and 9D for chromaticity are used.

acceptable (chosen to be PSNR ≥ 30 dB) reconstruction

at d = 16.

Second, we also investigate modelling the luminance

and chromaticity separately, using different dimensionali-

ties for each. (Note that only two of the components of χ

need be modelled, since
∑3

k=1 χk ≡ 1). Figure 4b shows

results for dimension of luminance versus chrominance,

for HSH (coloured surface) and PTM (black circles). We

see that while a higher dimension for luminance is impor-

tant (as in Figure 4a), the accuracy of approximation of

chrominance is only mildly dependent upon dimension.

The actual PSNR values plotted in Figure 4b are shown in

Table 1.

Due to the two observations made above, we conclude

that the quality of the reconstructed images is mainly

determined by the luminance, rather than the chromatic-

ities. Hence, in order to achieve a high PSNR with a given

dimensionality, it is reasonable to assign a higher dimen-

sionality for luminance and a relatively lower dimen-

sionality for chromaticities. Here we adopt d = 16 for

luminance and d = 9 for chromaticities, making the total

number of dimensions 16 + 9 × 2 = 34.

5.2 Comparison of higher-dimension PTM and HSH

Using the LS-based approach, we use either a polyno-

mial matrix P or an HSH equivalent, which we denote as

S. When we solve Equation 3, we also prudently include

some Tikhonov regularization [48] in solving for c. The

solution of Equation 3 is thus

c = P†L or c = S†L (17)

where † indicates forming a pseudoinverse using a

small amount of regularization, with Tikhonov parameter

(denoted τ ) of, say, τ = 10−3.

We relegate the definition of HSH to Appendix 1. There

we list explicitly the definition of the first 16 HSH basis

functions, along with the first 16 PTM polynomials.

Recall that in Figure 4a, HSH is consistently outper-

formed by PTM of the same dimension. Even at a high
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Table 1 Comparison of PTM andHSH over various dimensionalities

Chrom terms
Lum terms

1 4 6 9 16

PTM basis 1 19.66 24.19 26.15 28.40 31.15

4 19.84 24.50 26.53 28.74 31.55

6 19.82 24.48 26.55 28.79 31.73

9 19.77 24.45 26.50 28.99 32.27

16 19.75 24.37 26.45 28.96 32.59

HSH basis 1 19.66 24.02 25.03 26.27 27.16

4 19.81 24.20 25.19 26.39 27.28

6 19.79 24.19 25.24 26.45 27.38

9 19.76 24.17 25.22 26.54 27.50

16 19.75 24.14 25.21 26.54 27.57

PSNR values for least-squares matte regression over ranges of dimensionalities for luminance and chromaticity. The italicized value is obtained with the combination

of dimensionalities 16D for luminance and 9D for chromaticity.

dimension d = 16, HSH still cannot produce an accept-

able result. Similar results are shown in Figure 4b and

Table 1.

We further compare the PSNR for each individual image

in the dataset. Figure 4c,d shows PSNR for approxima-

tion of each image in the colour image set, using PTM and

HSH, respectively. Here, as described in Section 5.1, d =
16 for luminance and d = 9 for chrominance are used. We

see that as well as producing higher PSNR values, PTM

also does not lose too much accuracy for lighting direc-

tions with large incident angles (lights low to the object),

whereas HSH does very poorly at these boundary points.

In Table 2 we summarize statistics for PSNRs in

Figure 4c,d and as well include results for applying PTM

or HSH to each component of RGB separately: to be com-

parable with dimensionality of 16 for luminance and 9 for

chromaticity (for each of two components), making a total

of 34 dimensions, here we model R,G,B with 11D each.

For comparison, we also include results for the RBF

modelling in Section 6 below: the PSNR values are

not (machine-) infinite because Tikhonov regularization

moves the approximation slightly away from exactly

reproducing input images.

6 Specularities and shadows: RBFmodelling
Following [6] we adopt an RBF network approach for the

remaining luminance not explained by the matte model

Equation 3. For N-pixel images, the ‘excursion’ H is

defined as the set of (N × 3 × n) non-matte colour values

not explained by the Rmatte given by the basic PTM matte

Equation 3, now extended to functions of the colour chan-

nel as well: the approximated colour matte image is given

by

Rmatte = P C χ , (18)

where C is the collection of all luminance-regression

slopes. Since we include colour, all RBF quantities become

functions of the colour channel as well. Throughout, we

use the mode-finder efficient robust outlier finder to

determine coefficients C.

Then a set of non-matte excursion colour values H is

defined for our input set of colour images, via H =
R − Rmatte where R is the (N × 3 × n) set of input

images. We follow [6] in carrying out RBF interpolation

for interpolant light directions. But here we use the much

Table 2 Comparison of modelling luminance + chromaticity and RGB

Mean Median Mean bottom quartile Mean top quartile

Lum + Chrom (16D + 9D×2) PTM 32.60 32.80 28.58 36.37

HSH 31.80 32.86 24.67 36.51

RGB (11D×3) PTM 30.35 30.49 25.71 34.20

HSH 30.33 31.28 23.68 34.95

RBF 47.94 46.47 36.60 61.63

PSNR statistics for PTM and HSH, using LS + regularization, for dimensionalities 16 and 9 for luminance and chromaticity and similarly for modelling R,G,B separately

with 11D each. For completeness, we also show values for RBF modelling.
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faster luminance-mode approachMethod:MODE for gen-

erating matte images and also for recovering the surface

chromaticity, surface normal and albedo.

For a particular input dataset, the RBF network models

the interpolated excursion solely based on the direction to

a new light a′: an estimate is given by η̂ = RBF(a′). Thus,
one arrives at an overall interpolant

R̂ = R̂matte(a
′) + η̂(a′) (19)

Since in general we do not possess ground-truth data

for acquired image sets, we can characterize the accu-

racy of appearance-interpolation methods by a leave-one-

out analysis. In this approach, we carry out the entire

image modelling task but omit, in turn, each of the

input set images, thus yielding a modelling dimension-

ality decreased by 1. Since we know the left-out image’s

appearance, we can generate an error characteristic by

comparing the interpolated image with the actual one.

We will summarize how to use RBF interpolation

and appearance reconstruction in Sections 6.1 and 6.2,

respectively. Then in Section 6.3, we present a method to

optimize the parameters of the radial Gaussian function,

which serves as the third contribution in this work.

6.1 RBF

A brief recapitulation of the RBF calculation is in order, so

as to explain themechanism of developing a leave-one-out

error measurement below.

As in [6], we first generate a matte interpolation struc-

ture from in-sample input images and then use RBF to

model the excursion H, for the part of the input image

which cannot be explained by a matte model. So first we

model the luminance L, using either PTM or HSH. E.g. if

we decide to use a 16D polynomial p(A), then luminance

for in-sample images is modelled by Lmatte = C (p(A))†,

where C is the set of polynomial coefficients. If there are

N pixels and n lights, then Lmatte isN ×n and C isN ×16,

and the polynomial term above is 16 × n.

We obtain an N × 3 set of chromaticities as in

Equation 12 from which we can generate a matte colour

image model for in-sample images Rmatte, for each if the

i = 1..n lighting directions, via

Ri
matte = diag

(
Limatte

)
χ , i = 1..n (20)

The dimensionality of Rmatte is N × 3 × n. The set of

excursions for all the input imagesH has this same dimen-

sionality, andH = R−Rmatte. Because the RBF modelling

adopted in [6] includes a so-called polynomial term (actu-

ally, linear here), we have to extendH with a set ofN×3×4

zeros. Call this extended excursionH ′.
For interpolation, we need a set of RBF coefficients � ′,

with dimensionality N × 3 × (n + 4). We adopt Gaus-

sian RBF basis functions φ(‖a − ai‖), i = 1..n (although

of course other functions might be tried, such as multi-

quadric or inverse-multiquadric). We call the set φ(‖ai −
aj‖)matrix �. Then� is extended into an (n+4)×(n+4)

matrix �′ as in [6].

Thenwe calculate and store the RBF coefficients� ′ over
all the input lights as follows:

� ′ = H′ (�′)† (21)

where the † means the Moore-Penrose pseudoinverse,

guarding against reduced rank.

However, here we also extend the pseudoinverse to

include some Tikhonov regularization:

(�′)† =
(
�′T�′ + τ I(n+4)

)
�′T (22)

with Tikhonov parameter τ . Below, we mean to opti-

mize this parameter using a clever mathematical theorem

borrowed for this work.

6.2 Appearance reconstruction

Given a novel lighting direction a, appearance reconstruc-

tion from PTM coefficients C and RBF coefficients � ′ is
quite straightforward: we generate a matte image by mul-

tiplying PTM coefficient matrix C by its corresponding

combination of polynomial p(a) and then use recovered

chromaticity χ to form a colour matte image. Then we

form a new Gaussian function φ from new lighting direc-

tion a and simply multiply φ times the prestored RBF

excursion coefficient set � ′ to generate a single-image

excursion value η. The Gaussian radial basis function has

the explicit form φ(ai, aj, σ) = exp(−r2/σ 2), with radius r

for light-direction vectors ai and aj given by r = ‖ai−aj‖.

6.3 Optimization of dispersion σ and of Tikhonov

parameter τ

In this subsection, we describe our third contribution, i.e.

finding the best values for the Gaussian dispersion σ and

the Tikhonov coefficient τ so as to optimize the recon-

structed appearance. Since we have no ground truth for

real input image sets, we test the accuracy of appearance

modelling by simply leaving out one of the n input images

at a time and attempting to reconstruct the left-out image.

To this end, here we borrow the work in [49] in deter-

mining a best value of the Gaussian dispersion parameter

σ to minimize the leave-one-out error. However, here we

mean to apply themethod given in [49] to awhole image at

once and include colour, extend RBF modelling to include

the additional polynomial term and, finally and impor-

tantly, extend [49] to include Tihkonov regularization and

its optimization.

The work [49] defines the optimum σ as that yield-

ing the smallest error in reconstructing a leave-one-out

image, using only the information from the other images.
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E.g. if the input set consists of 50 images, then we fol-

low through matte and then RBF modelling using only 49

images and attempt to reconstruct the 50th image, and

then repeat for each of the 50 light directions.

Modelling on the theorem given in [49] in Appendix 2,

we generalize the theorem, which is aimed at optimiz-

ing RBF over the dispersion parameter σ , to also optimize

over Tikhonov parameter τ . The resulting calculation

from this theorem is so fast that it is simple to run any

unconstrained non-linear optimizer such as the subspace

trust-region method [50].

We find that an approximate colour image reconstruc-

tion, for the kth leave-one-out image, is simply as follows:

E = � ′/v

R̂ = R − E

(23)

where the error image E is simply formed from the RBF

coefficients � ′, and a vector v generated as the solution to

the following simple equation in terms of the (n + 4) ×
(n + 4) identity matrix I:

�′ v = I (24)

This theoremmeans that one can very rapidly assess the

error generated in a leave-one-out analysis of RBF mod-

elling. Figure 5a shows the PSNR between the actual input

image set and the result of matte plus RBF modelling, for

an optimal choice of σ and τ . Unsurprisingly, we see that

RBF interpolation does best in the center of the cluster

of lighting directions and worse when there is less sup-

porting information, near the boundary of the cluster of

light directions.We take as the optimum dispersion σ and

Tihkonov parameter value τ as those which deliver the

highest leave-one-out median PSNR over the set overall.

Table 3 shows PSNR statistics for this leave-out-out RBF

test. In comparison, we show in Figure 5b and also in the

second line of Table 3 the results of a leave-one-out test

using PTM matte modelling alone for dimensions 16 and

9 for luminance and chrominance, with no RBF stage. We

notice that in a challenging leave-one-out test for inter-

polation, PTM does reasonably well. To put these plots in

perspective, in Figure 5c, we also show the results for PTM

+ RBF in a leave-all-in setting: of course, the PSNR for

PTM + RBF for leave-all-in is by far the best accuracy. In

Figure 5d we show the in-sample correct image closest to

the mean value of PSNR values for all leave-one-out RBF

Figure 5 Leave-one-out test. (a) PSNRs for PTM + RBF. (b) PSNRs for PTM. (c) PSNRs for PTM + RBF, non-leave-one-out test, for comparison. (d)

Correct interpolant for lighting direction (e) PTM + RBF interpolant, PSNR = 30.803 (note camera flare from other images in the set). (f) PTM

interpolant: the PSNR = 30.763, which is acceptable, but not using RBF results in poor modelling of specular content and wrong shadows.
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Table 3 PSNR statistics for leave-one-out test, using PTM+

RBF, and using only PTM

Mean Median Mean bottom Mean top

quartile quartile

PTM + RBF 30.18 31.24 22.77 35.68

PTM 29.15 29.54 22.23 34.16

modelling, and in Figure 5e,f, we show the interpolants

from using PTM + RBF and from using just PTM, respec-

tively. Clearly, RBF provides a substantial boost in visual

appearance, although PTM itself (with no RBF stage), with

the higher dimensions we have specified, does produce a

reasonable image. Nevertheless, qualitatively, using RBF

does much better in that, without RBF, specularities are

not well modelled and the shadows are wrong.

7 Conclusions
In this paper, we have set out tests and conclusions that

improve PTMmodelling for appearance interpolation and

surface property recovery. We found that increasing PTM

dimensionality has a substantial effect on accuracy, more

for the luminance channel than for colour. We found that

a dimension of 16 for luminance and 9 for chromaticity,

modelling luminance and chromaticity separately, deliv-

ered good performance. We found that for determining

outliers, we could have almost as good accuracy using a

much less burdensome robust 1D ‘location finder’ as in a

more accurate but slower robust multivariate processing.

A second stage of modelling using RBF interpolation

provides a large boost in accuracy of appearance mod-

elling. Here we showed that Tikhonov regularization in

calculating RBF coefficients was important, since we are

inverting large matrices; and moreover we incorporated

optimizing the Tikhonov parameter into an optimization

theorem that had been initially aimed at only generating

a best choice of Gaussian dispersion parameter for radial

basis function networks.

Future work will include developing a real-time viewer

including the new insights gained here.

Appendix 1: hemispherical harmonics
HSH are derived from spherical harmonics (SH) as an

alternative set of basis functions on the unit sphere that

are particularly aimed at non-negative function values.

The familiar SH are defined as [51]

Ym
l (θ , φ) = Km

l eimφP
|m|
l cos(θ), l ∈ N ,−l ≤ m ≤ l

(25)

where θ ∈[ 0,π ] is the altitude angle, and φ ∈[ 0, 2π ]
the azimuth angle. Pm

l
are the associated Legendre

polynomials, orthogonal polynomial basis functions over

[−1,+1], and Km
l are the normalization factors for these.

Pml (x) = (−1)m

2ll!

√
(1 − x2)m d(l+m)

dx(l+m) (x
2 − 1)l

Km
l =

√
(2l+1)(l−|m|)!
4π(l+|m|)!

(26)

In the context of computer graphics, real-valued functions

as follows are often preferred:

Ym
l =

⎧
⎨
⎩

√
2Km

l cos(mφ)Pml (cos θ), m > 0√
2Km

l
sin(−mφ)P−m

l
(cos θ), m < 0

K0
l P

0
l (cos θ), m = 0

(27)

However, since in graphics the incident and reflected

lights are all distributed on an upper hemisphere, it

requires a large number of coefficients to handle the dis-

continuities at the boundary of the hemisphere when the

mapping is represented with basis defined on a full sphere

[34]. Thus, it is more natural to use an HSH basis instead.

In this study, we used the HSHmodel proposed in [34]n:

Hm
l =

⎧
⎨
⎩

√
2K̃m

l
cos(mφ)P̃m

l
(cos θ) m > 0√

2K̃m
l
sin(−mφ)P̃−m

l
(cos θ) m < 0

K̃0
l P̃

0
l (cos θ) m = 0

(28)

where P̃m
l

and K̃m
l

are the ‘shifted’ associated Legendre

polynomials and the hemispherical normalization factors,

respectively, defined as follows:

P̃ml (x) = Pml (2x − 1)

Km
l =

√
(2l+1)(l−|m|)!
2π(l+|m|)!

(29)

Now the hemispherical functions are defined only over

the upper hemisphere, θ ∈[ 0,π/2] , φ ∈[ 0, 2π ].
Figure 6 shows the first three ‘bands’ of the HSH, i.e.

l = 0..2, and the first 16 functions are stated explicitly in

Equation 31.

Similarly, we can also consider the polynomial basis in

Equation 1 as a set of functions defined on the hemi-

sphere by representing the lighting direction (u, v,w)

with spherical polar coordinates: u = sin θ cosφ , v =
sin θ sinφ , w = cos θ , so e.g. the PTM basis functions in

Equation 1 are given by

(sin θ cosφ, sin θ sinφ, cos θ , sin2 θ cos2 φ, sin2 θ cosφ sinφ, 1)

(30)

For comparison, a selection of nine polynomial terms are

visualized as surface plots in Figure 7, and the first 16

polynomial terms are listed in Equation 32
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Hi = Hm
l
; i = ((l + 1)l − m) + 1; Order = (l + 1) :

Order 1:

H1(θ , φ) = 1/
√

(2π)

Order 2:

H2(θ , φ) =
√

(6/π)(cos(φ)
√

( cos(θ) − cos(θ)2))

H3(θ , φ) =
√

(3/(2π))(−1 + 2 cos(θ))

H4(θ , φ) =
√

(6/π)(sin(φ)
√

( cos(θ) − cos(θ)2))

Order 3:

H5(θ , φ) =
√

(30/π)(cos(2φ)(− cos(θ) + cos(θ)2))

H6(θ , φ) =
√

(30/π)(cos(φ)(−1 + 2 cos(θ))√
( cos(θ) − cos(θ)2))

H7(θ , φ) =
√

(5/(2π))(1 − 6 cos(θ) + 6 cos(θ)2)

H8(θ , φ) =
√

(30/π)(sin(φ)(−1 + 2 cos(θ))√
( cos(θ) − cos(θ)2))

H9(θ , φ) =
√

(30/π)((− cos(θ) + cos(θ)2) sin(2φ))

(31)

Order 4:

H10(θ , φ) = 2
√

(35/π) cos(3φ)(cos(θ) − cos(θ)2)3/2

H11(θ , φ) =
√

(210/π) cos(2φ)

(−1 + 2 cos(θ))(− cos(θ) + cos(θ)2)

H12(θ , φ) = 2
√

(21/π) cos(φ)
√

( cos(θ) − cos(θ)2)

(1 − 5 cos(θ) + 5 cos(θ)2)

H13(θ , φ) =
√

(7/(2π))(−1 + 12 cos(θ) − 30

cos(θ)2 + 20 cos(θ)3)

H14(θ , φ) = 2
√

(21/π) sin(φ)
√

( cos(θ) − cos(θ)2)

(1 − 5 cos(θ) + 5 cos(θ)2)

H15(θ , φ) =
√

(210/π)(−1 + 2 cos(θ))(− cos(θ)+
cos(θ)2) sin(2φ)

H16(θ , φ) = 2
√

(35/π) sin(3φ)(cos(θ) − cos(θ)2)3/2

Constant term:

P1 = 1

Linear terms:

P2 = u = sin(θ) cos(φ)

P3 = v = sin(θ) sin(φ)

P4 = w = cos(φ)

Quadratic terms:

P5 = u2 = sin2(θ) cos2(φ)

P6 = uw = sin(θ) cos2(φ)

P7 = uv = sin2(θ) cos(φ) sin(φ)

P8 = vw = sin(θ) cos(φ) sin(φ)

P9 = v2 = cos2(φ)

(32)

Cubic terms:

P10 = u3 = sin3(θ) cos3(φ)

P11 = u2v = sin3(θ) cos2(φ) sin(φ)

P12 = u2w = sin2(θ) cos3(φ)

P13 = uvw = sin2(θ) cos2(φ) sin(φ)

P14 = v2u = sin3(θ) sin2(φ) cos(φ)

P15 = v2w = sin2(θ) sin2(φ) cos(φ)

P16 = v3 = sin3(θ) sin3(φ)

Appendix 2: leave-one-out optimization in RBF
It is useful to state explicitly how the optimization

theorem in [49] goes over to the situation when Tikhonov

regularization comes into play.

Firstly, we utilize three-band colour image data, rather

than scalar data, and process whole images at once using

vectorized programming in Matlab. However for clarity,

below we state matters as they pertain to a single pixel and

in one colour band.

Suppose there are n lights and n input values at a pixel,

e.g. for our exemplar dataset n = 50. Then we make

(n + 4) × (n + 4) matrix �(σ ), where here we are explic-

itly including dependence on a variable dispersion value σ .

For the (n + 4) vector of excursion values H (extended by

four zeros to include the ‘polynomial’ RBF part), we begin

by solving for the (n+ 4) vector set of RBF coefficients ψ ,

which is the vector solution for the modelling equation

H = �ψ

However, instead of simply using a matrix inverse in order

to guard against numerical instability, we make use of the

Tikhonov regularized inverse from Equation 22:

ψ = �(σ , τ)† H

so that in fact we generate only approximate, not exact,

approximations Ĥ for in-sample lighting directions:

Ĥ = �ψ = ��† H

Then the main task is interpolation to any new light a′ via

η′ =
(n+4)∑

j=1

ψT
j φ(aj − a′)

where η′ is the scalar value of interpolated excursion (for

this pixel and colour channel).

Now we mean to consider the leave-one-out problem,

meaning that all the matrices and vectors have extent

(n + 3) because the kth input-image case has been omit-

ted. Suppose we denote this case using superscript (k).

That is, we aim for a solution ψ (k) of

H(k) = �(k) ψ (k) (33)

Firstly, consider the following Lemma: if vector v has

vk = 0, then

if Av = b, then A(k)v(k) = b(k)
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(a) H
0
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(b) H
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1 (c) H
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1 (d) H

1
1

(e) H
-2
2 (f) H

-1
2 (g) H

0
2

(h) H
1
2 (i) H

2
2

Figure 6 Visualization of the first three bands of hemispherical harmonics. (a) H0
0 . (b) H

−1
1 . (c) H01 . (d) H

1
1 . (e) H

−2
2 . (f) H−1

2 . (g) H02 . (h) H
1
2 . (i) H

2
2 .

The distance r from the origin to any point (θ ,φ, r) on the plot surface is proportional to the value of Hm
l at direction (θ ,φ), with cyan indicating

positive values and purple negative. Red, green and blue indicate x, y and z axes, respectively.

That is, if we know the not-reduced-dimension equation

holds, then for the special situation in which vk = 0, we

can simply omit whatever value bk may take on, for the

reduced-dimension problem indicated by (k).

Now consider an auxiliary full-dimension vector v

defined such that

v = �+ ek

where ek is the kth column of the unit matrix.

Now define a new vector

β = ψ − (ψk/vk)v

Notice that the kth component of β is zero.

Now evaluate �β :

�β = �ψ − (ψk/vk)�v = η̂ − (ψk/vk)ek



Zhang and Drew EURASIP Journal on Image and Video Processing 2014, 2014:25 Page 17 of 19

http://jivp.eurasipjournals.com/content/2014/1/25

(a) 1

(b) (c) (d)

(e) (f) 2 (g)

(h) 2 (i) 3

Figure 7 Visualization of selected polynomial basis functions. (a) 1, (b) u, (c) v, (d)w, (e) uv, (f) u2, (g) uvw, (h) u2, (i) u3 . The distance r from the

origin to any point (θ ,φ, r) on the plot surface is proportional to the value of the polynomial term P at direction (θ ,φ), with cyan indicating positive

values and purple negative. Red, green, blue indicate x, y, z axes, respectively.

Hence, by our lemma, β is the sought solution for the

leave-one-out set of coefficients ψ (k); however, this state-

ment is approximate and not exact because η̂ is only

approximately (but very close to being equal to) η.

So in order to optimize on σ and τ , we need only to

generate the error estimate Ek for the kth case,

Ek = − (ψk/vk)

for each of the k = 1..n left-out lights, and apply some

appropriate error measure such as median (Ek) for choos-

ing the least-error solution:

min
{σ ,τ }

n

median
k=1

Ek(σ , τ) (34)

In practise, we found that utilizing this leave-one-out cal-

culation is very fast and generates smaller interpolation

errors when the resulting solution pair {σ , τ } is used for



Zhang and Drew EURASIP Journal on Image and Video Processing 2014, 2014:25 Page 18 of 19

http://jivp.eurasipjournals.com/content/2014/1/25

general interpolation for the dataset being optimized for

by this leave-one-out procedure.
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