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Part 3) of our Main Theorem is obtained from the next result.

Proposition 13: If ¢" +1 < m < ¢*" 7' —¢"*' — ¢+ 1, then the

mapping
1’1:: r — A‘Xut(cm)

is an isomorphism of groups.

Proof: It is easy to prove that is a homomorphism of groups.
Now suppose that'(o) 1, thenw, = 1. Hence, the equality
o (P, )= P, holds for all places?, ;. This implies that~' (z) =z
ando~'(y) = y, hencer = 1. Thus,¥ is injective.

We show that) is surjective. Letr € Aut(C,,). From Proposition
10, we have an automorphisme I such that

m(evp(z)) = evp(o(z)) and w(evn(y)) = evn(o(y)).
This means that
w(a, b) = (o (x)(Pa,p), 7(y)(Pa,b))-

Therefore, we have = n__1, thatis,m = (¢ 1).
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Efficient Root-Finding Algorithm With Application to List
Decoding of Algebraic—Geometric Codes

Xin-Wen Wu, Member, IEEEand Paul H. SiegeFellow, IEEE

Abstract—A list decoding for an error-correcting code is a decoding al-
gorithm that generates a list of codewords within a Hamming distancet
from the received vector, wheret can be greater than the error-correction
bound. In [18], a list-decoding procedure for Reed—Solomon codes [19] was
generalized to algebraic—geometric codes. A recent work [8] gives improved
list decodings for Reed—Solomon codes and algebraic-geometric codes that
work for all rates and have many applications. However, these list-decoding
algorithms are rather complicated. In [17], Roth and Ruckenstein proposed
an efficient implementation of the list decoding of Reed—Solomon codes. In
this correspondence, extending Roth and Ruckenstein’s fast algorithm for
finding roots of univariate polynomials over polynomial rings, i.e., the Re-
construct Algorithm, we will present an efficient algorithm for finding the
roots of univariate polynomials over function fields. Based on the extended
algorithm, we give an efficient list-decoding algorithm for algebraic-geo-
metric codes.

Index Terms—Algebraic-geometric codes, list decoding, root-finding al-
gorithm.

|. INTRODUCTION

SupposeC' is an|[n, k, d] code over the finite fieldy, t < n is
a positive integer. For any received vecior= (y1, ..., y.) € Fy,
we refer to any codewordin C' satisfyingd(e, ¥) < t as at-consis-
tent codewordA decoding problem is, in fact, the problem of finding
an effective (or efficient) algorithm which can findconsistent code-

S. Kondo and H. Momiyama, “Automorphism group of Hermitian codavords, and we call such an algorithm a decoding algorithm that can

correctt errors. Theclassical decodingésometimes callednique de-
codingg of error-correcting codes consider the algorithms which can
correctr = L"%‘J or fewer errors [5], [11]. Itis clear that in any Ham-
ming sphere iF’] of radius<r, there exists at most one codeword of
an[n, k, d] code. We cali- theerror-correction bounaf the code. On

the other hand, if the number of errdrs- 7, then there may exist sev-
&Pal distinctt-consistent codewords. Hst decodingis a decoding al-
gorithm which tries to construct a list éfconsistent codewords. Thus,

a list-decoding algorithm makes it possible to recover the information
from errors beyond the traditional error-correction bound.

List decoding was introduced by Elias [4] and Wozencraft [20]. In
[19], Sudan proposed a list-decoding algorithm for Reed—Solomon
codes. Shokrollahi and Wasserman generalized Sudan’s algorithm
and derived a list-decoding scheme for algebraic-geometric codes
18]. These algorithms are effective only for codes of relatively

w rates. In a recent paper [8], Guruswami and Sudan proposed
improved algorithms for Reed—Solomon and algebraic-geometric
codes. The algorithms have better error-correction capabilities than
previous algorithms for any code rate. However, the implementations
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of the list-decoding algorithms are rather complicated, especially fahere the sum is over all closed points®f np are integers, and all
algebraic-geometric codes. As we will discuss in the next section, thet finitely manyn p’s are zero. The degree &f is

list-decoding procedures consist of two main steps. The first step is,

in fact, reduced to the problem of solving a system of homogeneous deg(D) = Z np - deg(P).

Iingar equatipns, \_/vhich_can be implemented_ with low compl_exi_tg,the support oD is sup(D) = {P |np # 0}.

using Gaussian elimination. The second step is a problem of flndlngl_et P be a closed point oft’. In the sequel, we denote hytd

root§ IN Some spaces of univariate polynomizl¢T) over p.oly- the discrete valuation associated®oWe recall that for any nonzero
nomial rings for Reed-Solomon codes and over function fields fPLiona) function, € #(.x) there are only finitely many closed points

algebraic-geqmetric codes, respectively. _ P such thabrdp(¢) # 0. If ordp(e) > 0, ¢ is said to have a zero
Shokrollahi and Wasserman [18] and Guruswami and Sudan [8] pr(ﬂ”orderordp(go) at P, if ordp(p) < 0, ¢ is said to have a pole of

posed factorization (or root-finding) algorithms to find the roots Oérder—ordp(;;) at P. For a nonzero rational function € k(.X), the
H(T), but the implementation of these algorithms is rather arduoygic oy of » is defined as

Gao and Shokrollahi [6] designed an algorithm for computing roots

of polynomials over the fields of rational functions on plane curves. (¢) = Z ordp(p)P,

Their work also includes an algorithm for finding roots®#{7") over . )

polynomial rings. In [9], Heholdt and Nielsen studied fast list decoding1€re the sum is over all closed points. Let

for Hermitian codes. They transformed the factorizatio®f¢f") over (9)o = Z ordp ()P

the Hermitian function field into a problem of factoring a univariate

polynomial over a large finite field. Their algorithm remains to be ex; ordp(9)>0

tended to general algebraic-geometric codes. In [1], Augot and Pecquet ,

proposed root-finding algorithms. Augot and Pecquet’s algorithms do (Poo = Z —ordp(p)P.
not work for the improved list decodings for Reed—Solomon and al- ordp () <0

gebraic-geometric codes in [8]. Recently, Roth and Ruckenstein [Tilen, (¢) = (¢)o — (¢). It can be shown that for any nonzero
presented a fast list-decoding scheme for Reed-Solomon codes. Tiagnal function,, the degree ofy) is zero, i.e.deg(¢) = 0.
sped up the first step of the list-decoding algorithm for Reed—Solomonif we define
codes in [19], making use of special properties of the system of ho-
mogeneous linear equations that arises. More importantly, based upon D+ D' = Z(ny +np)P
a different approach, they proposed an efficient algorithm for finding
roots of univariate polynomials over polynomial rings to accelerate tN1ereD = 3" np P’ andD' = 3~ n’p P’ are any two divisors oft',
Second step Of the ||St decoding for Reed_Solomon Codes_ then the set of divisors of forms an additive grOUDiV(){) .Adivisor

In this correspondence, extending Roth and Ruckenstein’s aldd-= >_7r P is called effective and denoted &5 > 0 if all np are
rithm, we derive an efficient root-finding algorithm for finding roots ofnonnegative. If
polynomials over function fields. As an application of the root-finding " '
algorithm we then present an efficient list-decoding procedure for D-D'=3} (np—n)P20
algebraic-geometric codes. we denoteD > D'. Define

In the next section, we will give the basic definitions and proper- -
ties of algebraic-geometric codes and a statement of the root-finding L(D)=A{f|f€k(X), f=0o0r(f)+D >0}

problem. In Section Ill, we will present an efficient root-finding algo-It can be proved thak (D) is a linear space ovr.

rithm for finding roots of polynomials over function fields and prove .- . - . .
; . . . . Now suppose€Y is a nonsingular, absolutely irreducible curve in the
the correctness of the algorithm. The efficient list-decoding algorithm

. . : : ; h . -dimensional projective spad®F';" over the finite fieldF',. Sup-
for algebraic-geometric codes will be given in Section IV. In Section A prol /e sp 1o . S P
; o2 ose{P;, P., ..., P, } is a set of rational points oft. Let D =

we present our conclusions. We will give an example and the com-

; . - . . . L + -+ + P, andG be another divisor oft’ satisfyingsup(D) N
E;?SS:;SS;BISIS for the root-finding algorithm in Appendixes A and Béup(G) — 0. An algebraic-geometric codor AG code, for short)

CrL(D, G) is defined as
Il. PRELIMINARIES Co(D, G) ={(f(P), f(P)., ..., f(Pu)| f € L(G)}.

Let &' be a nonsingular, absolutely irreducible curveRy’, the Suppose = deg G < n; then,C7(D, G) has length:, dimension
m-dimensional projective space over a figld Denote bxk(ﬁc’) the >, — g+ 1, and minimum distancen — p, whereg is the genus of
function field of X overk. We can viewY” as a curve ovek, wherek  the curve.
is the algebraic closure df. Overk there is a one-to-one correspon- |n this correspondence, we consider the AG code$D, G) with
dence between the point$ of X" and the discrete valuation ringsof p = P, + ... 4+ P, andG = pP, such that is an integer and
the function field. Wher: is not algebraically closed, we cannot seq P, ..., P,, P}isthe setof all the rational points &f. These codes
all points of X' overk; nevertheless, we can look at the discrete valuanclude Hermitian codes as special cases and are of special interest in
tion rings contained itk (X') such that the discrete valuation is trivialpractical applications.
onk. Let v be a discrete valuation d@f(X') and R, be its valuation By the definitions, we know that iD > D’ thenL(D) D L(D’).
ring with maximal idealn.,, we call the paif R.,, m.,) a closed point | et p be a nonnegative integer aiti be a point ofX'. If L(pP) #
of X'. The degreeleg(P) of P is defined agR., /m. : k] whereR.  L((p — 1)P), or equivalently there exists a rational functipnsuch

is the corresponding discrete valuation ring, which is a positive integ@fat, has a pole only aP and the order of the pole gfat P is p, i.e.,
since the fieldR. /m. is a finite extension of. A point P of X" with ordp(p) = —p, then we calp anongapof P. Let{p1, p2, p3, ...}

deg(P) = 1is called a rational point. be the set of all the nongaps Bfandp: < p2 < ps < ---, and letg
A divisor of X' is a formal linear combination be the genus of the curve. Then
D:anP 0=p1 <p2 <---<pg < pgr1=2g,

Authorized licensed use limited to: University of Ottawa. Downloaded on May 25, 2009 at 10:56 from |IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001 2581

andp; =i+ g — 1 wheni > g + 1 (see [3]). Leto1, ¢z, 3, ... be For any roota; of f5 + fo = 0. SetHo(T) = H\ (T + an X?),
a sequence of rational functions, such thahas a pole only aP and whereH(T) := H(T). By (3.1), we have
ordp(pi) = —p;. Thenitis easy to check th@p, @2, ..., pi}isa

basis ofL(p; P). Hy(fo+ £1X)=0.

In the sequel, we call the list-decoding algorithm for AG code$hus, the leading coefficient d¥-( f1 X ) is zero. For; = 0, we get
proposed by Guruswami and Sudan in [8] the G-S Algorithm. Givenpolynomial equatiorf; + 1 = 0. We then findf; = 1. For another
a received vectogy = (y1, ..., yn), the G=S Algorithm first finds rootw; = 1, we getf; = 0.

a nontrivial polynomialH (T') with coefficients in the function field  Next, for any valuevs of f1, setHs(T) = H>(T + a2 X ). We have
of X' over F, satisfying some conditions. It can be proved that that H;(f,) = 0. So, the leading coefficient df5( f,) is zero. For
polynomial satisfying such conditions does exist. Also, in [8] the, = 1, we find f, = 0. Foras = 0, we getf, = 1.

authors proved thatif € L(pP) is such thaff (P;) = y; for at least Therefore, we find two root§ = fo + fiX + f2X%in (1, X, X?)
valuesofi € {1, 2, ..., n},thenH(f) = 0,i.e.,H(f)isidentically of H(T), namely,f = X andf = X2 + 1. O
zero as a rational function. This means thatfit/. ), ..., f(P.)) €
Cr(D, pP) is at-consistent codeword, where = n — ¢, then
H(f) = 0. So the problem of finding all the-consistent codewords
is reduced to the problem of finding all the rootslify P) of H(T').

For the precise statement of the G-S algorithm, please see
Step 1, i.e., the step of finding a polynomi@lT), can be reduced to
a problem of solving a system of homogeneous linear equations o
F,, where the unknowns are the coefficients®{T’). This can be
done by Gaussian elimination with low complexity. So, the complexity
is mainly based on Step 2, i.e., the step of finding the roots(inP) f=Ffipr+-+ fuor € L(pP)
of H(T'). The purpose of this work is to find an efficient root-finding . . .
algorithm for finding roots of polynomials over function fields, and’® & reotinL(p ) of polynomial ZZ (T). As in the example above, we
then give an efficient list-decoding algorithm, replacing Step 2 by tHf@n Viewe1, @z, ... as formal variables and (f) as a polynomial

new root-finding algorithm. Our problem can be stated as follows. N ¥1. ©2. ... The rational functionp; has a pole of ordep: at P,
andgy* -+ - ,* has a pole of ordefip1 + -« + iyp. at P. We de-

The Root-Finding Problem:Let X" be a nonsingular, absolutely ir- fine theweighted degreef the monomialp’! - - - i asiipi +--- +
reducible curve defined ovel;. Let P be a point oft', which can ;,p, . Let <wq1 be the weighted graded lexicographic order. Under
be the point at infinity. Assumé(p P) is ak-dimensional space, and the order< w,, and being reduced modulo the curve, the polynomial
©1, ..., i form abasis ofl.(p ), where everyy; has apole only at H(f ¢ + --- + frer) can be written uniquely as
P andordp(¢i) = —p;. Given a nonzero polynomial o .

Z ai1=i2=---1iu991199;2"'“P;u

HT)=ho+mT+- -+ hT? UL
wherea;, i,,..,:, are elements oF';. We call any

Roth and Ruckenstein in [17] presented an efficient algorithm for
finding the roots of univariate polynomials over polynomial rings, i.e.,
the Reconstruct Algorithm. It is easy to see that the root-finding proce-

re in this example is equivalent to Roth and Ruckenstein’s algorithm.

n fact, one can easily verify that the equations for finding the coeffi-
\%erntsfi of any root of H (T') are equal to the corresponding equations
using Roth and Ruckenstein’s algorithm.

Now consider the general case. Let

with h; € L(IP) forj =0, 1, ..., s, wherel is a nongap of°, we o o
want to find the roots ir.(pP) of H(T'). Wiy ig, i @1 P oyt Witha; iy i, #0
aterm of H(fipr + -+ + fryr) anda;, i, ..., i, the coefficient
. EFFICIENT ROOT-FINDING ALGORITHM of this term. The term with the greatest weighted degree is called

) ) ) ) o ) ) the leading term and its coefficient the leading coefficient. It is clear
In this section, we will derive an efficient algorithm for solving theyat the leading term has the smallest discrete valuatid, i.e.,
root-finding problem. We first give a simple example to illustrate thg. 7102 ... oJu is the leading term off ( f) if and only if
idea. e ! '

: ordp (1ed -l )
Example 3.1: The Reed—Solomon codes can be viewed as special

AG ches defi_ned from a projective line. The pr_ojecti\_/e _Iir_le oFer — min {OI‘dP (@31 '\,i’éz .. .Sﬁiu) Wiy, m’iu,\,ﬁil@? .. .%u
contains a point®P = [y : ] = [0 : 1], the point at infinity. The
function X = z/y is a rational function. We now try to find the roots Is a term OfH(f)} .

in th 1, X, X?) of the followi I ial: -
inthe spacgl, .X, X°) of the following polynomia FromH (fi1 + -+ + frer) = 0, we have that the coefficient of

HI) =T+ (X>+ X +1)T+ (X* + X). every term must be zero. Thus, we get a system of polynomial equations
over F, with unknownsfi, ..., fx
Suppose the roots have the fofim= fo + f1 X + f2X>. To find the ar(fi, ... 1) =0
roots, we need to determirfe, f1, f» € F4, such that
H(fo+ fiX + f2X) =0. (3.1) aulf1, i) = 0.
We introduce a method for determinirfg, f1. and fo recursi\fely. So, the roots inL(pP) of H(T') are given by finding the points over
From (3.1), we have that the leading coefficient®dtfo + f1.X +  p "of the affine variety inF,[fi, ..., fi] defined by the system of

f2-X?), which is equal to the leading coefficient Hi( fo X ?), is zero.
By simple calculation, the leading coefficient B f-X?) is f3 + f.
So

equations above. Using the idea in Example 3.1, we present a recursive
root-finding procedure in the following.

Root-Finding Procedure:For convenience, we denofé, (T') :=
54 f2=0. H(T). From

From the equation we haye = 0 or fo = 1. Hi(fier+-+ frpr) =0 (3.2)
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we have that the leading coefficient8f ( f1¢1 + - - - + frer ), which Compute G(X; T) = H(X; o, T).

is equal to the leading coefficient &f, ( f 1), is zero. Thisisapoly- A global array g[l, ..., k] is assumed.
nomial equation oveF', with unknownf;, we denote it by The initial call is (G(X;T), ky i =1).
*/
g1(fx) = 0.
. . ) . Step 1: find a rational function ¢ such that
Solving this equation, we can finf,.
Suppose we have obtaingd ..., fr—.+1. We, therefore, will have ordp(¢) = min{ordp(é(‘j)()()) |j=0,1,..., s}
found a polynomiaf; overF, such thaff.—;+ is arootofg;. Foreach
of the distinct rootsy; of the polynomial equation Step 2: G(X;T) — iG(X: T).
Step 3: compute the nonzero polynomial G(P;T)eF,[T].
9i(frmit1) =0 Step 4: find all the roots o of G(P;T)=0.
p 5: for each of the distinct roots a of

) . . Ste
setHi+1(T) = Hi(T + aipr—i+1). From the fact that the leading
coefficient of Hi 11 (fio1 + - -+ + fr_igr_i) is zero, we get a poly- GP;T)=0 do{
nomial equation oveF'; with unknownf;_; )

Step 6: set g[i] = a.
git1(fr—i) = 0. (3.3) Step 7: if ==k, output [gx, gr—1, ..., g1]; €lse {
Step 8: set G(X;T)=G(X: T )
We then getfi_; by solving the equation. Therefore, we obtain theStez 9 set GEX- T; _ CE\" :kﬁ-)] T)

i i i : ! =N Gl
coefflc_lentsfk, fe—t1, ..., f1 of any root f in L(pP) of H(T) Step 10: Finding Roots  (G(X: T). . i +1).
recursively. O )

With respect to the complexity of the root-finding procedure }
above, we note that there are efficient algorithms for finding the O

roots of polynomials over a finite field [2]. Another factor that
affects the complexity is the size of the output set. Given a nontrivial |y can pe proved that Algorithm 3.1 and the Root-Finding Proce-

polynomial H(T’), the root-finding procedure will output a set ofyre output the same set of rational functions for a given polynomial
sequencegfi. fe-1, ..., fi] corresponding to rational functions (1) |n fact, the polynomial equatio6’;(P; T') = 0 constructed
fl‘rf”l + -+ frer in L(pP). Itcan be proved that if th€-degree of ¢, determiningfx 1 using Algorithm 3.1 is equal to the equation
H(T) is s, then everyy; is a polynomial of degree less than or equaﬁlh(fk_ﬂr] ) = 0 in the Root-Finding Procedure. We will see this fact

to s, which has at mosk roots. The root-finding procedure abovej, the example that we will give in Appendix A. Now let us prove the
suggests that the number of root extractions grows exponentiallyrectness of Algorithm 3.1.

Although the polynomial (T') has at most = deg(H (1)) roots in
L(pP), we cannot prove that the size of the output set is bounded by Theorem 3.1: SupposeH (T') is a nonzero polynomial with coef-
without sufficient information about the polynomiajs On the other ficients in L(IP) as stated in the Root-Finding Problem. Then, Algo-
hand, to prove the correctness of the root-finding procedure, we needitem 3.1 computes a set of rational functions that contains all the roots
show that the polynomialg are nontrivial so that we can gét ;.1 In L(pP?) of H(T).
by solving the equatiop; = 0. However, the root-finding procedure Proof: Letf = fip1 + - + feys be any root inL(pP) of
above does not give any explicit description for the polynomjals H(X; T'). Itis sufficient to prove that the algorithm can find the coef-
This provides the motivation for a different approach. ficients of f. By the algorithm, we have

Generalizing the efficient algorithm for finding roots of univariate
polynomials over polynomial rings proposed by Roth and Ruckenstein
in [17], we present an alternative root-finding algorithm below. In thiand
algorithm, a nonzero polynomial_ is constructed explicitly for the pur- Gi(X:T) = Gi(X; o1T)
pose of determining.—;+ . We will show the correctness of the algo-
rithm by proving that the algorithm computes a set of rational functionsrite G1 (X; T) as
which contains all the roots ih(p P) of H(T'). Also, we can prove that .
the size of the output set of the algorithm is at mast 5 ey A(5) v\

Since the coefficients off (T') are rational functions and we will G5 T) = ZGl (T,
evaluate them at the poitit, we denote the coefficients; of H(T')
by 7;(X)andH (T) by H(X; T) in the following algorithm. And we Since¢; is a rational function such that
uselai, ..., ag] to represent a rational functien 1 + - - - + ag k.

Gi(X;T)=H(X;T)

=1

ordp(¢1) = min {Ordp (c?:g.ﬂ(X))\j -0, 1,..., q}
Algorithm 3.1 Root-Finding Algorithm for Polynomials

over Function Fields

Procedure  Finding Roots  (G(X; T), fixed integer k,
integer )

/% Input the nonzero polynomial

and

N 1 -
Gi(X:T) = é—1G1 (X:T)

for the coefficientss'” (X)) of G4 (X; T) we have tha@\”’ (P) € F,

HX;T)=ho(X)+ M(X)T+ -+ ho (X)T? and
where h,(X) € L(iP). (é§°>(P)., GO, ..., 6:25)(13)) £0.
Input a basis {¢1, ..., ¢r} of L(G) = L(pP), and set a R
global array ] I R I S P e This means thaf?; (P; T') is a nonzero polynomial i, [7].
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FromH(X; f(X)) = 0, we have

G <X; ’;((i)) =0

N

which implies

5 f(X) )
& | X; =0. 3.4
(0 I G4
On the other hand;rdp(:—i) =pr—p; >0,forj=1,...,k—1.
Therefore,::—i(P) = 0, and
L Py= £ 2L (P4t oy (P 4 = S
P Yk
By (3.4), we have
Gr(ps s =G (s L)
Ok
5 (. F(X) )
=G [ X = P)=0. 3.5
(i) @ 39
Therefore,f; is a root of G, (P; T) =
Suppose that we have determined coeffici¢ats. . ., fi—i+1. We
therefore will have found a polynomial
GAX; T) = GV(X) + GXOT + -+ G (X)T?
such that
N ) f(i)(X) )
Gi|X; ————== =0 3.6
< " kit (X) (3.6)

wheref(’:)(X) =fipi 4+ F fr—it1Pk—it1- MOVeOVerGi,(P§ T)
is a nonzero polynomial i, [T] such thatf_;+: is a solution of
G,(P; T) = 0. By the algorithm, we have

Gi(X;T)=Gi(X; T+ fo—it1)
and
l+1(1‘§ T) Tl+1 <‘Y; ﬁlﬂ) .
Pl—it+1
Suppose
Gin (X;T) = ZCEil(X)Tj-

7=0

Sinceg; 1 is a rational function with

ordp(d;41) = min {Ol‘dp (G‘Eiﬂ()&'))‘; =0,1,..., s}

and
G (X: T) =3 G ()T
7=0
with
GO (X) = — GY (X)), (3.7)
i+1 @1+1 i+1

Gi11(P; T) is a nonzero polynomial idf',[T].
Let

FX) = frimipr—ipi(X)
=fier( X))+ + fomigr—i(X).

F(x) =

2583
We have
- : f“*”(X)) < - SO )
G X; —— | =G X, ———=
+1 < kPk—z(AX) +1 ) §9k7i+1()()
N f(i)(X) )
=Gy X, —————— =0.
< " r—ip1 (X)
Thus,
G X ) 3.8
i ; - =0. ’
i < Pr—i(X) ) ¢9)
Since%(P) = fr—:, we have
Giy1(P; fri) =0. (3.9)

Therefore, fi.—; is a solution of the nonzero polynomial equation
Gi+1(P; T) = 0. By induction, the algorithm can find the coefficients
fry f—1, ..., f1 of therootf of H(T). O

Lemma 3.2: Suppose is a solution of multiplicityd of the nonzero
polynomial equatiorts; (P; T') = 0, andG;1 (P; T) = 0 is the cor-
responding nonzero polynomial equation. Thi,, Gyt (P; T) < d
andG,1(P; T) = 0 has at most roots.

Proof: Let

G(X:T)=GX)+ GV (X)T+ -+ G (xX)T.

SinceG;(P; T) € F,[T] is a nonzero polynomial, we have
(&), GV p), ... GO(P)) € By - (o).
Now

7L+1(Y' T)
=G (X) + G X + -
_C(O)(¥)+G(1) X)(T +a) +

+ GEle (X)T*
S+ GO(XNT + o).
Thus,Gi41(P; T) is a polynomial inF',[T]. Sincea is a root of

G:(P; T) = 0 of multiplicity d, T = 0 is a root of G (P; T) = 0
of multiplicity d. So

G Py =6 ()= =G5Y(P)
but G, (P) # 0.
Let
éi+1(X§ T):GE?&( C)+ +Cgi)1( )T +"'+GE-S|-)1 (X)TS-

By Algorithm 3.1

er—i(X) )’
Plcfi#»l()() ’

(P) e F, — {0}, and

G20 = G
Becauses?

z+1

ordp <L) = Pr—i+1 — Pk—i > 0
Ph—it1

we have

*Pk 1(X)

ordp <G5d) (X) A=l
+ “rfk L+1(Y)

) =d(pr—it1 — pr—i) >0
and

I (X
ordp (G, (x) =t
Ph—it1 (X)

> J(pr—ivr — pr—i) > d(pr—iv1 — Pr—i)s j>d+1.
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Therefore, and designed distande= n — k — g + 1. Then Algorithm 4.1 corrects
. { d (GU) )‘ 0.1 } uptoe < n—+/n(n — d) errors. The execution of the algorithm needs
min § ordap H J=0U 1 ..., 5 o . . .
i ()(l“;.s:J + ks(n® + 2 +logzs~loglogs-logq))

— . A(5) .
- mm{mdp (GZ“)‘J < d} operations ovetF, and O(nl*> + ks®) operations over, where
< d(pr—it1 — pr—i)- 5= L%J,l = O(max{%g t}),andt > \/n(n — d).

Let ¢;,11 be a rational function with
. () ) V. CONCLUSION
ordp(¢i41) = min < ordp (GiZH) j=0,1,....s ] o o
In this correspondence, we have presented an efficient root-finding

< d(pr—it1 — pr—i). algorithm for polynomials over function fields, extending Roth
and Ruckenstein’RReconstruct Algorithnj17] for finding roots of

We have S . e )
-(0) A(1) < (a) unlvgrlate polynomlaI520ve2 polyn20m|al rings. The executlop of the
Gior(X:T) = % i % Ty Gl T algorithm needé)(lf:s(n + s .—l—log s-loglogs~lpg q).) operations
’ ’ dit1  Oit1 Git1 over F, and O(ks?) operations over the function fielél. Based
and on the root-finding algorithm, we gave an efficient list-decoding

O algorithm for AG codes.
G
ordp <é—“> >0, forj>d+1

it APPENDIX A
AN EXAMPLE
b9
ie., Z?—*II(P) = 0forj > d + 1. Therefore, In this appendix, we give an example of finding the roots of a poly-
" o ; nomial over the function field of the Klein quartic ovEk.
degy Gip (P T) < d. o The Klein quartic overFs is defined by the following projective

equation:

Corollary 3.3: SupposeH (T) is a polynomial of degree as in \ ‘ \
Theorem 3.1. Then, the number of output rational functions generated XY +Y’zZ+2°X =0.
by Algorithm 3.1 is at most.

Proof: Supposef?l(P; T) = 0 hase roots, and their multiplic-
ites aredy, 1, ..., di, -, respectively. Clearlyf, 1 +---+di,» < s.

The genus of this curve ig = 3. The Klein quartic has 24 rational
points. Three point§) = (0 : 1 : 0), P, = (1:0: 0),andP, =
(0:0: 1) are defined oveF-, the other rational point&s, ..., P
gre defined oveF's. Consider the linear spadem@) with m > 3.
Lettingz = 2 andy = %, it can be proved thak (mQ) has a basis

Wheni = 2, we haver equations?z (P; T) = 0 corresponding to the
roots of G4 (P; T') = 0, and by Lemma 3.2, the degrees of these equ

tions are at most,, 1, ..., di, -, respectively. So the number of roots , h
of all the equationg?>(P; T) = Oisat mostds, 1 + -+ d1,» < s. {e1, s @m—2}, where
Fori =1, ..., k, leto; andw; denote the number of the roots and the 1 =1 w2 =y w3 = 1Y

sum of the degrees of all the equatic(Eis(P; T) = 0, respectively.
By induction, we can prove; < w; < s. In particular, the number of )
output rational functions is; < s. o andforj >3

2 e — — 2
1=y s =a"y  pe =y

. _ A — 2 01 e — 7
£3;-2 =Y P3j—1 =2 Y P3; = TY .

IV. EFFICIENT LIST DECODING OFAG CODES The rational functiorr has a pole of ordet at(, andy has a pole of

Replacing Step 2 in G=S Algorithm by Algorithm 3.1, we get a@rder3 atQ, i.e.,

efficient list-decoding algorithm for AG codes. ordg(z) = —2, and ordg(y) = —3.

Let p; = —ordo(p,). The sequence of nongaps@tis p: 0,

p2=3,p3=05,p1=06,ps =T,ps =8,p7 =9,ps =10,....

Algorithm 4.1 Efficient List-Decoding Algorithm

Implicit I?ara.meters: same as in Q—S Algorithm. Let ¢ be a primitive element of's, satisfying(3 +(4+1=0.
As_surnptfons' Same as in Q_S Algor'thmj Consider the following polynomial over the function field of the Klein
Initialization: Same as in G-S Algorithm. quartic:
Step 1: Same as in G-S Algorithm. ' s ) - -
Step 2: Using Algorithm 3.1, find all roots HT)=T"+4 (Cx"y+Cy +Caoy+y+¢)T
2 4 2 4 2 2 2 3 2
FeL(k+qg—1)P) = L(pP) + (Cx v L 44—2}1“ v +Cy +3€-ry
. ) ) + Gty +Cy ey +1)T
of the polynomial H(T). For each such  f, check if 6 3 44 5 3 4 4 3 —
f(P) =y, for at least e values of i€ {1,...,n}, and + (2" + Gy +‘r?/ +Cay +CTU
if so, include f in the output list. + 'ty + Caty? + O+ Py 4 Gy’
= + P+ Cay’ + 2y + P+ Cay+y+ O T?
+ (iUGy3 + C;L’4y4 + <2$5y3 + C4:1’4y3 + C5w2y4
Using [8, Proposition 22 and Theorem 27] and Theorem B.2 that we O 4 Caty? + Cayt + P2ty + (2

will give in Appendix B, it is easy to determine the complexity of the

3 292 2 22 6
list-decoding algorithm above. + Gyt + Ty ey +Cay+ Cay) T

T 5.5 , 6 4 45 4 5 3 5
Theorem 4.1: Let X' be a nonsingular, absolutely irreducible curve + ey 4+4<f y ;"L f +4< ;l i’ +§ j i/
over F, of genusg, denote bykK the function field of X’ over F,. +(2y +Cy Ty Ty
Suppos&'. (D, pP) is an AG code oveR’ of lengthn, dimensionk, + oyt + a2ty
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We will find the roots of H(T') in L(7Q) = {(¢1, ©2, ©3, Pa, ©5). From f3 = 0, we have
Letthe rootsf have the forny = fio1+ faa + fas+ fapa+ fs s, Gi(X:;T)=Gs(X; T)
We will use Algorithm 3.1 to find these roots. and
By Algorithm 3.1, we have ClX:T) =G x Jos)T) = Ga(X+ (1/2)T)
. 74 (X = G4 (X5 (po/p3)T) = Ga(X; (1 /)’
Gi(X:T) = H(X: osT) = H(X; 2yT). We then get v
Thus, ~ 2
R Gs(Q: T)=T*+T.
Gi(X; T) = (") T° 3(@:T)
+ (" + Y+ "y a2ty + ) T SolvingG4(Q; T) = 0, we getfy = 1 or fo = 0.

From f> = 1, we have
Gs(X;T)=Gy(X: T+1)

+ (C‘Zwloyf)+$7y7+w8y5+<2l'6y6+<J;1y5

+ 2yt 4+t Ty ey ) T

+ (;l'loys+§;178y6+;L’9y5+§41?8y5+<54156y6
-3 8 4 4 6 5

+ T+ Caty a2y

and
Gs(X; T) = Gs(X; (91 /92)T) = G5 (X5 (1/9)T).
We then getGs(Q: T) = T + ¢°. SolvingGs(Q; T) = 0, we get

+C3elf5y5+C2:L'4y5+C3£L’5y4+:1’5y3 fl _ CG.
+ Cw4y4+(6465y3—|—.’1’4y3+§6:v4y2) T2 From f; = 0, we have
+ (g G Ty Gs(X: 1) = Ga(X: 1)
+ P’ Pyt P and
+ CP + Catyt R GS(Xj T) = Gs(X; (&?1/892)?) = Gs(X; (1/y9)T).
+ Pyt Gt P Gt ) T We then getis(Q; T') = T'. SolvingG5(Q; T) = 0, we getf; = 0.

T4 .55, 64, .45 4,535 So, we obtain two rational functionswith form
+ ('Y 2y a2y Oy Oy , ,
+ C4$4y4+g"1;v5y3+C4'L’3y4+§3;v’1' 3 f=fier+ fapa + faps + fapa + fres.

They are
+ C3$3y3+(2.’83y2) )
6 (D 3%, 3,’,,_
Again by Algorithm 3.1, we can take, = »'°y°. S0,G1(X; T) = CHeztCes and Cos.
Gi(X; T)/(«'"y"), and They are roots irL.(7Q) of H(T).
G (Q:T)=T° +¢T* + (CZ +1) A Similarly, for f5 = ¢, we can obtain another robt¢ o3+ a+(es.
’ P _Let us consider the case ¢f = 0. By Algorithm 3.1, we get
=(T+C)TH(T+Q). G2(Q; T) = T”. We then getf, = 0 by solvingG2(Q; T) = 0.
Solving G (Q; T) = 0, we getfs = ¢*,0r fs = 0, 0r f5 = (. From f, = 0, we haveG3(Q; T) = T’ So, we havefs = 0. Then
Now, from f5s = ¢*, using Algorithm 3.1 we have from f; = 0, we getG4(Q; T) = T?. SolvingG4(Q; T) = 0, we

havef. = 0. Finally, from f; = 0, we getég(Q; T) = 1. The equa-

v . e . 3
G(X; ) =G (X T+ ) tion G5(Q; T) = 0 has no solution.

and Therefore, we have found all the three rootsifi7@)) of H(T).
Go(X; T) = Go(X: (pa/0s)T) = Ga(X; (y/a*)T). We can graphically represent the root-finding procedure as shown at
We then get the bottom of the page. There are three “effective” paths in this graph,
which start fromH (f) = 0 and terminate af, = ¢, fi = 0 and
G2(Q: T) = T°. f1 = 1, respectively. Each of them corresponds to a rod? ¢1").
As a polynomial over the function field of the Klein quarti&,(T")
Solving G2 (Q; T) = 0, we getfy = 0. can be factorized as
From £, = 0, we have H(T) = (T+Cos + o2+ )T+ Cos)
G3(X;T)=G2(X; T) . (T +¢ps + Cpa + Cos + 1) (TZ + T+ 993) .
and The last path of the graph at the bottom of the page corresponds to the
Gs(X: T) = Gs(X: (ps/0a)T) = Gs(X; (x/y)T) factorT? + T + 3. The fact thatis (Q; T') = 0 has no solution shows
We then get thatT? 4+ T + 3 is irreducible over the function field.
Also, we can use the Root-Finding Procedure in Section lll to find
éa(Q; T) =T~ the roots off (T'). In fact, for each roofi 1+ foip2+ faps+ fapa+
fs@s5, the polynomialy; that we used to gefs—; by the Root-Finding
Solvingég(Q; T) = 0, we getfs = 0. Procedure is equal t6/;((); T),t = 1,..., 5. When we use the
fo=1— fi=¢"

f=¢ — fi=0 — f3=0 <

fo=0— f1=0
/!

H(f)=0 — fi=¢( — fi=¢ — fi=( — fr=0—fi=1
N

=0 — fu=0 — f3=0 — fo =0 — No solution
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Root-Finding Procedure, we need some operations that reu¢e  is upper-bounded b ((slog? s) - (loglog s) - log ¢). By induction,
modulo the curve. For example, consider the coefficientd ). In ~ for every:, the execution of Step 4 requires
the coefficient ofT®, the terms(z*y* andzy® have the same pole O((slog” s) - (loglog s) - log )

order atQ). By the affine equation of the Klein quartic operations. Therefore, Step 4 in the algorithm can be completed in

Py+yP+a=0 O((kslog® s) - (loglog s) - log ¢) operations oveF,.

Finally, we consider the complexity associated with the execution of
Steps 1 and 3. In these steps, we need to evaluate rational functions at
P. To getG; (P; T), we need to comput@ (P) forj =0,

It is known that there is an open neighborhdédvith P € U g ,1,
andNY, DY) e F [X1, ..., X,u41], such that o/

we havery® =2*y?+2%y. So, we have?ty> 4y =P aty? 422y,
wherez*y? and=?y have different pole orders . So, we can replace
Caty? 4 xy” by (®x'y? + 22y to get the unique leading term of the
coefficient of 3.

Ar(5)
APPENDIX B a9 (x) = \’ (X1, ooy Xong1)
COMPLEXITY ANALYSIS ' DE’)(X1, ceey Xont1)
We evaluate in this appendix the complexity of the root-finding alhere N and DY are homogeneous polynomials arfdl”
gorithm we proposed in Section IlI, Algorithm 3.1. is nowhere zero oU. As a function, X} = X; over F,, so

every term ofV(j) and D(]) has degree at mosgin + 1 (q —1).

Therefore, we reqwre{)(q"’“) operations to comput€ (P)

Since¢™™ = O(n?), O(n?) operations are needed to compute
Theorem B.2: Let X’ be a nonsingular, absolutely irreducible curveevery G(])(P) By Lemma 3.2, if the root ofd;_1 (P; T) that we

in m-dimensional projective spad@F?" over the finite fieldF';, and Used to construaty; (P; T) has muItlpI|C|tyd whered < s, then

K be the function field ofY’ over F,. Suppose the curve satisfiesGY)(P) = 0 for j > d + 1. SoO(dn?) operations ovelF, are

¢ = O(n?), wheren is the number of rational points. Given aneeded to gef; (P; T). It follows that the execution of Step 3 needs

nonzero polynomiaH (T') in K|T] of degrees returned in Step 1 of the O(ksn?) operations oveF,. We know thabxdp(C‘(])(X)) > 0 for

LemmaB.1[2]: The roots inF’, of a polynomial of degree can be
found in expected time complexity((slog® s) - (loglog s) - log ¢).

list-decoding algorithm, the execution of the root-finding algorithmj =0, 1, ..., s. Referrlng again to Lemma 3.2
Al_gorithm 3.1, needé)(k_‘)s(nz + 32_ +log® s "10!—’; log s -log ¢)) oper- min{ordp(é'g‘j)) l7=0,1,...,s} = Inin{ordp(ég‘j)) |7 < d}.
ations over’; andO(ks”) operations ovek.. Now, for everyj < d, divide GEO)(X), Ggl)(X% ng) (X) by

Proof: From the proof of Corollary 3.3, we see that for evéry G (X, If
the number of polynomial&’; (X; T') that arise is less than or equal to ™ * 1(0) A (1) A (d)
ai—1, the number of roots of all the equatios_,(P; T) = 0. This G, (P), G, (P, ..., G,:_ (P) F™' _ {0}
number is less than or equal ¢ the upper bound on thE-degree C‘(” G(” i GE") ' !
of every polynomlat} (X; T). So, for everyi, the execution of Step then we can take; — GU)()&) So, for every(y; (X; T), we need
2 need9)(s*) operations ovek . Therefore, the contribution of Step O(d?) operations ovek’ andO(dn?) operations oveF, to determine
2 to the overall complexity i€)(ks?) operations ovekl. Similarly, &;. Thus, the execution of Step 1 needgks2) operations ovek and
the contribution of Step 9 to the overall complexity is al8¢ks?) O(ksn?) operations oveF',.

operations oyeKI. . In summary, the execution of Algorithm 3.1 needs
Now consider the complexity of Step 8. Fro64(X; T) 5 5 9
O(ks(n” 4+ s~ +1og” s-loglogs-logq))

Gi(X; T + a), we have
. i+1 » operations oveF', andO(ks”) operations ovek_. O
L =e o0+ (T )ac )

G ) . )
We remark that the assumptiong@® ! = O(»?) in Theorem B.2is

P2\ 5 ariio reasonable. In fact, a large class of curves, including many well-known
+(’ 26U (x) : : ;
( curves, has this property. For examples, the Klein quartB Ry has
B o n = 24 rational points, the plane Hermitian curveRFf hasn = ¢*
+- <é _ ) @' T GE(X). affine rational points [3], the Garcia—Stichtenoth curve [7PiA": has
) ) ) J ‘ . atleastq®—1)¢™ "' rational points. On the other hand, itis easy to see
Thus, we requir€)(s”) operations ovef’; to get eacti+1(X: T).  that there exist curves that do not satisfy this assumption. This means

Foreveryi + 1,i = 1,...,k — 1, the number of polynomials that the complexity estimate in Theorem B.2 is not applicable for those
Git (/\ T)'sis at mosts. Therefore, the execution of Step 8 requiregrves. However, Algorithm 3.1 works for any nonsingular, absolutely
O(ks®) operations oveF. irreducible curve defined ovdf, and, for a fixed curve, we are always

Next we count the number of operations that will be used to execlygje to get a similar estimate Of complexity.
Step 4. Fori = 1, we need to solve a nonzero polynomial equation
over F, of degrees. By Lemma B.1, we need

O((slog” 5) - (loglog s) - logf’) The authors wish to thank T. Hgholdt for his interest in this work and
operations oveF', to accomplish this. Supposé (P; T) = 0 hase  for sending the papers [1], [9], [13] and [15]. They also wish to thank
roots, and the multiplicities of the roots afe 1, ..., di, -, respec- M. K. Cheng, R. Roth, M. Shokrollahi, and M. Sudan for useful dis-
tively. It is clear that everyly ; < s anddi,1 + -+ + di,» < s. cussions. Finally, they are indebted to the anonymous referees whose
Wheni = 2, we need to solve equations, whose degrees are at moshoughtful criticisms and valuable suggestions helped to improve the
di,1, ..., di, -, respectively. So, we need quality of this correspondence.

O((dy,1log* d1 1) - (loglogdy 1) - loggq) + - - -
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