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Part 3) of our Main Theorem is obtained from the next result.

Proposition 13: If qr + 1 � m � q2r+1 � qr+1 � q + 1, then the
mapping

 : �! Aut(Cm)

is an isomorphism of groups.
Proof: It is easy to prove that is a homomorphism of groups.

Now suppose that (�) = 1, then�� = 1. Hence, the equality
�(Pa; b)=Pa;b holds for all placesPa;b. This implies that��1(x)=x
and��1(y) = y, hence� = 1. Thus, is injective.

We show that is surjective. Let� 2 Aut(Cm). From Proposition
10, we have an automorphism� 2 � such that

�(evD(x)) = evD(�(x)) and �(evD(y)) = evD(�(y)):

This means that

�(a; b) = (�(x)(Pa; b); �(y)(Pa; b)):

Therefore, we have� = �� , that is,� =  (��1).
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Efficient Root-Finding Algorithm With Application to List
Decoding of Algebraic–Geometric Codes

Xin-Wen Wu, Member, IEEE,and Paul H. Siegel, Fellow, IEEE

Abstract—A list decoding for an error-correcting code is a decoding al-
gorithm that generates a list of codewords within a Hamming distance
from the received vector, where can be greater than the error-correction
bound. In [18], a list-decoding procedure for Reed–Solomon codes [19] was
generalized to algebraic–geometric codes. A recent work [8] gives improved
list decodings for Reed–Solomon codes and algebraic-geometric codes that
work for all rates and have many applications. However, these list-decoding
algorithms are rather complicated. In [17], Roth and Ruckenstein proposed
an efficient implementation of the list decoding of Reed–Solomon codes. In
this correspondence, extending Roth and Ruckenstein’s fast algorithm for
finding roots of univariate polynomials over polynomial rings, i.e., the Re-
construct Algorithm, we will present an efficient algorithm for finding the
roots of univariate polynomials over function fields. Based on the extended
algorithm, we give an efficient list-decoding algorithm for algebraic-geo-
metric codes.

Index Terms—Algebraic-geometric codes, list decoding, root-finding al-
gorithm.

I. INTRODUCTION

SupposeC is an [n; k; d] code over the finite fieldFFF q, t < n is
a positive integer. For any received vectoryyy = (y1; . . . ; yn) 2 FFF

n
q ,

we refer to any codewordccc in C satisfyingd(ccc; yyy) � t as at-consis-
tent codeword. A decoding problem is, in fact, the problem of finding
an effective (or efficient) algorithm which can findt-consistent code-
words, and we call such an algorithm a decoding algorithm that can
correctt errors. Theclassical decodings(sometimes calledunique de-
codings) of error-correcting codes consider the algorithms which can
correct� = b d�1

2
c or fewer errors [5], [11]. It is clear that in any Ham-

ming sphere inFFFn
q of radius�� , there exists at most one codeword of

an[n; k; d] code. We call� theerror-correction boundof the code. On
the other hand, if the number of errorst > � , then there may exist sev-
eral distinctt-consistent codewords. Alist decodingis a decoding al-
gorithm which tries to construct a list oft-consistent codewords. Thus,
a list-decoding algorithm makes it possible to recover the information
from errors beyond the traditional error-correction bound.

List decoding was introduced by Elias [4] and Wozencraft [20]. In
[19], Sudan proposed a list-decoding algorithm for Reed–Solomon
codes. Shokrollahi and Wasserman generalized Sudan’s algorithm
and derived a list-decoding scheme for algebraic-geometric codes
[18]. These algorithms are effective only for codes of relatively
low rates. In a recent paper [8], Guruswami and Sudan proposed
improved algorithms for Reed–Solomon and algebraic-geometric
codes. The algorithms have better error-correction capabilities than
previous algorithms for any code rate. However, the implementations
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of the list-decoding algorithms are rather complicated, especially for
algebraic-geometric codes. As we will discuss in the next section, the
list-decoding procedures consist of two main steps. The first step is,
in fact, reduced to the problem of solving a system of homogeneous
linear equations, which can be implemented with low complexity
using Gaussian elimination. The second step is a problem of finding
roots in some spaces of univariate polynomialsH(T ) over poly-
nomial rings for Reed–Solomon codes and over function fields for
algebraic-geometric codes, respectively.

Shokrollahi and Wasserman [18] and Guruswami and Sudan [8] pro-
posed factorization (or root-finding) algorithms to find the roots of
H(T ), but the implementation of these algorithms is rather arduous.
Gao and Shokrollahi [6] designed an algorithm for computing roots
of polynomials over the fields of rational functions on plane curves.
Their work also includes an algorithm for finding roots ofH(T ) over
polynomial rings. In [9], Høholdt and Nielsen studied fast list decoding
for Hermitian codes. They transformed the factorization ofH(T ) over
the Hermitian function field into a problem of factoring a univariate
polynomial over a large finite field. Their algorithm remains to be ex-
tended to general algebraic-geometric codes. In [1], Augot and Pecquet
proposed root-finding algorithms. Augot and Pecquet’s algorithms do
not work for the improved list decodings for Reed–Solomon and al-
gebraic-geometric codes in [8]. Recently, Roth and Ruckenstein [17]
presented a fast list-decoding scheme for Reed–Solomon codes. They
sped up the first step of the list-decoding algorithm for Reed–Solomon
codes in [19], making use of special properties of the system of ho-
mogeneous linear equations that arises. More importantly, based upon
a different approach, they proposed an efficient algorithm for finding
roots of univariate polynomials over polynomial rings to accelerate the
second step of the list decoding for Reed–Solomon codes.

In this correspondence, extending Roth and Ruckenstein’s algo-
rithm, we derive an efficient root-finding algorithm for finding roots of
polynomials over function fields. As an application of the root-finding
algorithm we then present an efficient list-decoding procedure for
algebraic-geometric codes.

In the next section, we will give the basic definitions and proper-
ties of algebraic-geometric codes and a statement of the root-finding
problem. In Section III, we will present an efficient root-finding algo-
rithm for finding roots of polynomials over function fields and prove
the correctness of the algorithm. The efficient list-decoding algorithm
for algebraic-geometric codes will be given in Section IV. In Section V,
we present our conclusions. We will give an example and the com-
plexity analysis for the root-finding algorithm in Appendixes A and B,
respectively.

II. PRELIMINARIES

Let X be a nonsingular, absolutely irreducible curve inPPPmk , the
m-dimensional projective space over a fieldk. Denote byk(X ) the
function field ofX overk. We can viewX as a curve overk, wherek
is the algebraic closure ofk. Overk there is a one-to-one correspon-
dence between the pointsP of X and the discrete valuation rings of
the function field. Whenk is not algebraically closed, we cannot see
all points ofX overk; nevertheless, we can look at the discrete valua-
tion rings contained ink(X ) such that the discrete valuation is trivial
on k. Let v be a discrete valuation ofk(X ) andRv be its valuation
ring with maximal idealmv , we call the pair(Rv; mv) a closed point
of X . The degreedeg(P ) of P is defined as[Rv=mv : k] whereRv
is the corresponding discrete valuation ring, which is a positive integer
since the fieldRv=mv is a finite extension ofk. A pointP of X with
deg(P ) = 1 is called a rational point.

A divisor ofX is a formal linear combination

D = nPP

where the sum is over all closed points ofX , nP are integers, and all
but finitely manynP ’s are zero. The degree ofD is

deg(D) = nP � deg(P ):

The support ofD is sup(D) = fP jnP 6= 0g.
Let P be a closed point ofX . In the sequel, we denote byordP

the discrete valuation associated toP . We recall that for any nonzero
rational function' 2 k(X ) there are only finitely many closed points
P such thatordP (') 6= 0. If ordP (') > 0, ' is said to have a zero
of orderordP (') at P , if ordP (') < 0, ' is said to have a pole of
order�ordP (') atP . For a nonzero rational function' 2 k(X ), the
divisor of' is defined as

(') = ordP (')P;

where the sum is over all closed points. Let

(')0 =
ord (')>0

ordP (')P

and

(')1 =
ord (')<0

� ordP (')P:

Then, (') = (')0 � (')1. It can be shown that for any nonzero
rational function', the degree of(') is zero, i.e.,deg(') = 0.

If we define

D +D0 = (nP + n0P )P

whereD = nPP andD0 = n0PP are any two divisors ofX ,
then the set of divisors ofX forms an additive groupDiv(X ). A divisor
D = nPP is called effective and denoted asD � 0 if all nP are
nonnegative. If

D �D0 = (nP � n0P )P � 0

we denoteD � D0. Define

L(D) = ff j f 2 k(X ); f = 0 or (f) +D � 0g:

It can be proved thatL(D) is a linear space overk.
Now supposeX is a nonsingular, absolutely irreducible curve in the

m-dimensional projective spacePFPFPFmq over the finite fieldFFF q . Sup-
posefP1; P2; . . . ; Png is a set of rational points ofX . Let D =
P1 + � � � + Pn, andG be another divisor ofX satisfyingsup(D) \
sup(G) = ;. An algebraic-geometric code(or AG code, for short)
CL(D; G) is defined as

CL(D; G) = f(f(P1); f(P2); . . . ; f(Pn)) j f 2 L(G)g:

Suppose� = deg G < n; then,CL(D; G) has lengthn, dimension
�� � g + 1, and minimum distance�n � �, whereg is the genus of
the curve.

In this correspondence, we consider the AG codesCL(D; G) with
D = P1 + � � � + Pn andG = �P , such that� is an integer and
fP1; . . . ; Pn; Pg is the set of all the rational points ofX . These codes
include Hermitian codes as special cases and are of special interest in
practical applications.

By the definitions, we know that ifD � D0 thenL(D) � L(D0).
Let � be a nonnegative integer andP be a point ofX . If L(�P ) 6=
L((� � 1)P ), or equivalently there exists a rational function', such
that' has a pole only atP and the order of the pole of' atP is �, i.e.,
ordP (') = ��, then we call� a nongapof P . Let f�1; �2; �3; . . .g
be the set of all the nongaps ofP and�1 < �2 < �3 < � � �, and letg
be the genus of the curve. Then

0 = �1 < �2 < � � � < �g < �g+1 = 2g;
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and�i = i+ g � 1 wheni � g + 1 (see [3]). Let'1; '2; '3; . . . be
a sequence of rational functions, such that'i has a pole only atP and
ordP ('i) = ��i. Then it is easy to check thatf'1; '2; . . . ; 'ig is a
basis ofL(�iP ).

In the sequel, we call the list-decoding algorithm for AG codes
proposed by Guruswami and Sudan in [8] the G–S Algorithm. Given
a received vectoryyy = (y1; . . . ; yn), the G–S Algorithm first finds
a nontrivial polynomialH(T ) with coefficients in the function field
of X over FFF q satisfying some conditions. It can be proved that a
polynomial satisfying such conditions does exist. Also, in [8] the
authors proved that iff 2 L(�P ) is such thatf(Pi) = yi for at leaste
values ofi 2 f1; 2; . . . ; ng, thenH(f) = 0, i.e.,H(f) is identically
zero as a rational function. This means that if(f(P1); . . . ; f(Pn)) 2
CL(D; �P ) is a t-consistent codeword, wheret = n � e, then
H(f) = 0. So the problem of finding all thet-consistent codewords
is reduced to the problem of finding all the roots inL(�P ) of H(T ).

For the precise statement of the G–S algorithm, please see [8].
Step 1, i.e., the step of finding a polynomialH(T ), can be reduced to
a problem of solving a system of homogeneous linear equations over
FFF q , where the unknowns are the coefficients ofH(T ). This can be
done by Gaussian elimination with low complexity. So, the complexity
is mainly based on Step 2, i.e., the step of finding the roots inL(�P )
of H(T ). The purpose of this work is to find an efficient root-finding
algorithm for finding roots of polynomials over function fields, and
then give an efficient list-decoding algorithm, replacing Step 2 by the
new root-finding algorithm. Our problem can be stated as follows.

The Root-Finding Problem:Let X be a nonsingular, absolutely ir-
reducible curve defined overFFF q. Let P be a point ofX , which can
be the point at infinity. AssumeL(�P ) is ak-dimensional space, and
'1; . . . ; 'k form a basis ofL(�P ), where every'i has a pole only at
P andordP ('i) = ��i. Given a nonzero polynomial

H(T ) = h0 + h1T + � � �+ hsT
s

with hj 2 L(lP ) for j = 0; 1; . . . ; s; wherel is a nongap ofP , we
want to find the roots inL(�P ) of H(T ).

III. EFFICIENT ROOT-FINDING ALGORITHM

In this section, we will derive an efficient algorithm for solving the
root-finding problem. We first give a simple example to illustrate the
idea.

Example 3.1: The Reed–Solomon codes can be viewed as special
AG codes defined from a projective line. The projective line overFFF 4

contains a pointP = [y : x] = [0 : 1], the point at infinity. The
functionX = x=y is a rational function. We now try to find the roots
in the spaceh1; X; X2i of the following polynomial:

H(T ) = T 2 + X2 +X + 1 T + X3 +X :

Suppose the roots have the formf = f0 + f1X + f2X
2. To find the

roots, we need to determinef0; f1; f2 2 FFF 4, such that

H f0 + f1X + f2X
2 = 0: (3.1)

We introduce a method for determiningf2; f1; andf0 recursively.
From (3.1), we have that the leading coefficient ofH(f0 + f1X +
f2X

2), which is equal to the leading coefficient ofH(f2X
2), is zero.

By simple calculation, the leading coefficient ofH(f2X
2) is f22 + f2.

So

f22 + f2 = 0:

From the equation we havef2 = 0 or f2 = 1.

For any root�1 of f22 + f2 = 0. SetH2(T ) = H1(T + �1X
2),

whereH1(T ) := H(T ). By (3.1), we have

H2(f0 + f1X) = 0:

Thus, the leading coefficient ofH2(f1X) is zero. For�1 = 0, we get
a polynomial equationf1 + 1 = 0. We then findf1 = 1. For another
root�1 = 1, we getf1 = 0.

Next, for any value�2 of f1, setH3(T ) = H2(T +�2X). We have
thatH3(f0) = 0. So, the leading coefficient ofH3(f0) is zero. For
�2 = 1, we findf0 = 0. For�2 = 0, we getf0 = 1.

Therefore, we find two rootsf = f0+ f1X+ f2X
2 in h1; X; X2i

of H(T ), namely,f = X andf = X2 + 1.

Roth and Ruckenstein in [17] presented an efficient algorithm for
finding the roots of univariate polynomials over polynomial rings, i.e.,
the Reconstruct Algorithm. It is easy to see that the root-finding proce-
dure in this example is equivalent to Roth and Ruckenstein’s algorithm.
In fact, one can easily verify that the equations for finding the coeffi-
cientsfi of any root ofH(T ) are equal to the corresponding equations
using Roth and Ruckenstein’s algorithm.

Now consider the general case. Let

f = f1'1 + � � �+ fk'k 2 L(�P )

be a root inL(�P ) of polynomialH(T ). As in the example above, we
can view'1; '2; . . . as formal variables andH(f) as a polynomial
in '1; '2; . . .. The rational function'i has a pole of order�i at P ,
and'i

1
� � �'i

u has a pole of orderi1�1 + � � � + iu�u at P . We de-
fine theweighted degreeof the monomial'i

1
� � �'i

u asi1�1 + � � �+
iu�u. Let <WGL be the weighted graded lexicographic order. Under
the order<WGL, and being reduced modulo the curve, the polynomial
H(f1'1 + � � � + fk'k) can be written uniquely as

i ; i ; ...; i

ai ; i ; ...; i 'i
1
'i
2
� � �'i

u

whereai ; i ; ...; i are elements ofFFF q. We call any

ai ; i ; ...; i 'i
1
'i
2
� � �'i

u with ai ; i ; ...; i 6= 0

a term ofH(f1'1 + � � � + fk'k) and ai ; i ; ...; i the coefficient
of this term. The term with the greatest weighted degree is called
the leading term and its coefficient the leading coefficient. It is clear
that the leading term has the smallest discrete valuationordP , i.e.,
aj ; j ; ...; j 'j

1
'j
2
� � �'j

u is the leading term ofH(f) if and only if

ordP 'j
1
'j
2
� � �'j

u

= min ordP 'i
1
'i
2
� � �'i

u ai ; i ; ...; i 'i
1
'i
2
� � �'i

u

is a term ofH(f) :

FromH(f1'1 + � � � + fk'k) = 0, we have that the coefficient of
every term must be zero. Thus, we get a system of polynomial equations
overFFF q with unknownsf1; . . . ; fk

a1(f1; . . . ; fk) = 0
...

av(f1; . . . ; fk) = 0:

So, the roots inL(�P ) of H(T ) are given by finding the points over
FFF q of the affine variety inFFF q[f1; . . . ; fk] defined by the system of
equations above. Using the idea in Example 3.1, we present a recursive
root-finding procedure in the following.

Root-Finding Procedure:For convenience, we denoteH1(T ) :=
H(T ). From

H1(f1'1 + � � �+ fk'k) = 0 (3.2)
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we have that the leading coefficient ofH1(f1'1+ � � �+fk'k), which
is equal to the leading coefficient ofH1(fk'k), is zero. This is a poly-
nomial equation overFFF q with unknownfk, we denote it by

g1(fk) = 0:

Solving this equation, we can findfk.
Suppose we have obtainedfk; . . . ; fk�i+1. We, therefore, will have

found a polynomialgi overFFF q such thatfk�i+1 is a root ofgi. For each
of the distinct roots�i of the polynomial equation

gi(fk�i+1) = 0

setHi+1(T ) = Hi(T + �i'k�i+1). From the fact that the leading
coefficient ofHi+1(f1'1 + � � � + fk�i'k�i) is zero, we get a poly-
nomial equation overFFF q with unknownfk�i

gi+1(fk�i) = 0: (3.3)

We then getfk�i by solving the equation. Therefore, we obtain the
coefficients fk; fk�1; . . . ; f1 of any root f in L(�P ) of H(T )
recursively.

With respect to the complexity of the root-finding procedure
above, we note that there are efficient algorithms for finding the
roots of polynomials over a finite field [2]. Another factor that
affects the complexity is the size of the output set. Given a nontrivial
polynomial H(T ), the root-finding procedure will output a set of
sequences[fk; fk�1; . . . ; f1] corresponding to rational functions
f1'1 + � � � + fk'k in L(�P ). It can be proved that if theT -degree of
H(T ) is s, then everygi is a polynomial of degree less than or equal
to s, which has at mosts roots. The root-finding procedure above
suggests that the number of root extractions grows exponentially.
Although the polynomialH(T ) has at mosts = deg(H(T )) roots in
L(�P ), we cannot prove that the size of the output set is bounded bys

without sufficient information about the polynomialsgi. On the other
hand, to prove the correctness of the root-finding procedure, we need to
show that the polynomialsgi are nontrivial so that we can getfk�i+1
by solving the equationgi = 0. However, the root-finding procedure
above does not give any explicit description for the polynomialsgi.
This provides the motivation for a different approach.

Generalizing the efficient algorithm for finding roots of univariate
polynomials over polynomial rings proposed by Roth and Ruckenstein
in [17], we present an alternative root-finding algorithm below. In this
algorithm, a nonzero polynomial is constructed explicitly for the pur-
pose of determiningfk�i+1. We will show the correctness of the algo-
rithm by proving that the algorithm computes a set of rational functions
which contains all the roots inL(�P ) ofH(T ). Also, we can prove that
the size of the output set of the algorithm is at mosts.

Since the coefficients ofH(T ) are rational functions and we will
evaluate them at the pointP , we denote the coefficientshj of H(T )
byhj(X) andH(T ) byH(X; T ) in the following algorithm. And we
use[a1; . . . ; ak] to represent a rational functiona1'1 + � � � + ak'k.

Algorithm 3.1 Root-Finding Algorithm for Polynomials

over Function Fields

Procedure Finding Roots (Ĝ(X; T ), fixed integer k,

integer i)

/ � Input the nonzero polynomial

H(X; T ) = h0(X) + h1(X)T + � � � + hs(X)T s

where h (X) 2 L(lP ).

Input a basis f' ; . . . ; ' g of L(G) = L(�P ), and set a

global array '[1; . . . ; k] = [' ; . . . ; ' ].

Compute Ĝ(X; T ) = H(X; ' T ).

A global array g[1; . . . ; k] is assumed.

The initial call is (Ĝ(X; T ); k; i = 1).

�/

Step 1: find a rational function � such that

ordP (�) = minfordP (Ĝ
(j)(X)) j j = 0; 1; . . . ; sg:

Step 2: ~G(X; T )  Ĝ(X; T ).

Step 3: compute the nonzero polynomial ~G(P ;T )2FFF [T ].

Step 4: find all the roots � of ~G(P ; T ) = 0.

Step 5: for each of the distinct roots � of

~G(P ; T ) = 0 do f

Step 6: set g[i] = �.

Step 7: if i = k, output [g ; g ; . . . ; g ]; else f

Step 8: set G(X; T ) = ~G(X; T + �).

Step 9: set Ĝ(X; T ) = G(X; T ).

Step 10: Finding Roots (Ĝ(X; T ); k; i+ 1).

g

g

It can be proved that Algorithm 3.1 and the Root-Finding Proce-
dure output the same set of rational functions for a given polynomial
H(T ). In fact, the polynomial equation~Gi(P ; T ) = 0 constructed
for determiningfk�i+1 using Algorithm 3.1 is equal to the equation
gi(fk�i+1) = 0 in the Root-Finding Procedure. We will see this fact
in the example that we will give in Appendix A. Now let us prove the
correctness of Algorithm 3.1.

Theorem 3.1: SupposeH(T ) is a nonzero polynomial with coef-
ficients inL(lP ) as stated in the Root-Finding Problem. Then, Algo-
rithm 3.1 computes a set of rational functions that contains all the roots
in L(�P ) of H(T ).

Proof: Let f = f1'1 + � � � + fk'k be any root inL(�P ) of
H(X; T ). It is sufficient to prove that the algorithm can find the coef-
ficients off . By the algorithm, we have

G1(X; T ) = H(X; T )

and

Ĝ1(X; T ) = G1(X; 'kT )

Write Ĝ1(X; T ) as

Ĝ1(X; T ) =

s

j=1

Ĝ
(j)
1 (X)T j

:

Since�1 is a rational function such that

ordP (�1) = min ordP Ĝ
(j)
1 (X) j = 0; 1; . . . ; s

and

~G1(X; T ) =
1

�1
Ĝ1(X; T )

for the coefficients~G(j)
1 (X) of ~G1(X; T )we have that~G(j)

1 (P ) 2 FFF q

and

~G
(0)
1 (P ); ~G

(1)
1 (P ); . . . ; ~G

(s)
1 (P ) 6= 0:

This means that~G1(P ; T ) is a nonzero polynomial inFFF q[T ].

Authorized licensed use limited to: University of Ottawa. Downloaded on May 25, 2009 at 10:56 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001 2583

FromH(X; f(X)) = 0, we have

Ĝ1 X;
f(X)

'k(X)
= 0

which implies

~G1 X;
f(X)

'k(X)
= 0: (3.4)

On the other hand,ordP (
'

'
) = �k � �j > 0, for j = 1; . . . ; k � 1.

Therefore,'
'

(P ) = 0, and

f

'k
(P ) = f1

'1

'k
(P ) + � � �+ fk�1

'k�1

'k
(P ) + fk = fk:

By (3.4), we have

~G1(P ; fk) = ~G1 P ;
f

'k
(P )

= ~G1 X;
f(X)

'k(X)
(P ) = 0: (3.5)

Therefore,fk is a root of ~G1(P ; T ) = 0.
Suppose that we have determined coefficientsfk; . . . ; fk�i+1. We

therefore will have found a polynomial

~Gi(X; T ) = ~G
(0)
i (X) + ~G

(1)
i (X)T + � � �+ ~G

(s)
i (X)T s

such that

~Gi X;
f (i)(X)

'k�i+1(X)
= 0 (3.6)

wheref (i)(X) = f1'1+ � � �+ fk�i+1'k�i+1. Moreover,~Gi(P ; T )
is a nonzero polynomial inFFF q[T ] such thatfk�i+1 is a solution of
~Gi(P ; T ) = 0. By the algorithm, we have

Gi+1(X; T ) = ~Gi(X; T + fk�i+1)

and

Ĝi+1(X; T ) = Gi+1 X;
'k�i

'k�i+1
T :

Suppose

Ĝi+1(X; T ) =

s

j=0

Ĝ
(j)
i+1(X)T j

:

Since�i+1 is a rational function with

ordP (�i+1) = min ordP Ĝ
(j)
i+1(X) j = 0; 1; . . . ; s

and

~Gi+1(X; T ) =

s

j=0

~G
(j)
i+1(X)T j

with

~G
(j)
i+1(X) =

1

�i+1
Ĝ
(j)
i+1(X); (3.7)

~Gi+1(P ; T ) is a nonzero polynomial inFFF q[T ].
Let

f
(i+1)(X) = f

(i)(X)� fk�i+1'k�i+1(X)

= f1'1(X) + � � �+ fk�i'k�i(X):

We have

Ĝi+1 X;
f (i+1)(X)

'k�i(X)
=Gi+1 X;

f (i+1)(X)

'k�i+1(X)

= ~Gi X;
f (i)(X)

'k�i+1(X)
= 0:

Thus,

~Gi+1 X;
f (i+1)(X)

'k�i(X)
= 0: (3.8)

Since f

'
(P ) = fk�i, we have

~Gi+1(P ; fk�i) = 0: (3.9)

Therefore,fk�i is a solution of the nonzero polynomial equation
~Gi+1(P ; T ) = 0. By induction, the algorithm can find the coefficients
fk; fk�1; . . . ; f1 of the rootf of H(T ).

Lemma 3.2: Suppose� is a solution of multiplicityd of the nonzero
polynomial equation~Gi(P ; T ) = 0, and ~Gi+1(P ; T ) = 0 is the cor-
responding nonzero polynomial equation. Then,degT

~Gi+1(P ;T )�d

and ~Gi+1(P ; T ) = 0 has at mostd roots.
Proof: Let

~Gi(X; T ) = ~G
(0)
i (X) + ~G

(1)
i (X)T + � � �+ ~G

(s)
i (X)T s

:

Since ~Gi(P ; T ) 2 FFF q[T ] is a nonzero polynomial, we have

~G
(0)
i (P ); ~G

(1)
i (P ); . . . ; ~G

(s)
i (P ) 2 FFF

s+1
q � f0g:

Now

Gi+1(X; T )

= G
(0)
i+1(X) +G

(1)
i+1(X)T + � � �+G

(s)
i+1(X)T s

= ~G
(0)
i (X) + ~G

(1)
i (X)(T + �) + � � �+ ~G

(s)
i (X)(T + �)s:

Thus,Gi+1(P ; T ) is a polynomial inFFF q[T ]. Since� is a root of
~Gi(P ; T ) = 0 of multiplicity d, T = 0 is a root ofGi+1(P ; T ) = 0
of multiplicity d. So

G
(0)
i+1(P ) = G

(1)
i+1(P ) = � � � = G

(d�1)
i+1 (P )

butG(d)
i+1(P ) 6= 0.

Let

Ĝi+1(X; T )=Ĝ
(0)
i+1(X)+ � � �+Ĝ

(d)
i+1(X)T d+ � � �+Ĝ

(s)
i+1(X)T s

:

By Algorithm 3.1

Ĝ
(j)
i+1(X) = G

(j)
i+1(X)

'k�i(X)

'k�i+1(X)

j

; j = 0; 1; . . . ; s:

BecauseG(d)
i+1(P ) 2 FFF q � f0g, and

ordP
'k�1

'k�i+1
= �k�i+1 � �k�i > 0

we have

ordP G
(d)
i+1(X)

'dk�1(X)

'dk�i+1(X)
= d(�k�i+1 � �k�i) > 0

and

ordP G
(j)
i+1(X)

'
j

k�1(X)

'
j

k�i+1(X)

� j(�k�i+1 � �k�i) > d(�k�i+1 � �k�i); j � d+ 1:
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Therefore,

min ordP Ĝ
(j)
i+1 j = 0; 1; . . . ; s

= min ordP Ĝ
(j)
i+1 j � d

� d(�k�i+1 � �k�i):

Let �i+1 be a rational function with

ordP (�i+1) = min ordP Ĝ
(j)
i+1 j = 0; 1; . . . ; s

� d(�k�i+1 � �k�i):

We have

~Gi+1(X; T ) =
Ĝ
(0)
i+1

�i+1
+

Ĝ
(1)
i+1

�i+1
T + � � �+

Ĝ
(s)
i+1

�i+1
T
s

and

ordP
Ĝ
(j)
i+1

�i+1
> 0; for j � d+ 1

i.e.,
Ĝ

�
(P ) = 0 for j � d + 1. Therefore,

degT
~Gi+1(P ; T ) � d:

Corollary 3.3: SupposeH(T ) is a polynomial of degrees as in
Theorem 3.1. Then, the number of output rational functions generated
by Algorithm 3.1 is at mosts.

Proof: Suppose~G1(P ; T ) = 0 has� roots, and their multiplic-
ities ared1; 1; . . . ; d1; � , respectively. Clearly,d1; 1+ � � �+ d1; � � s.
Wheni = 2, we have� equations~G2(P ; T ) = 0 corresponding to the
roots of ~G1(P ; T ) = 0, and by Lemma 3.2, the degrees of these equa-
tions are at mostd1; 1; . . . ; d1; � , respectively. So the number of roots
of all the equations~G2(P ; T ) = 0 is at mostd1; 1 + � � � + d1; � � s.
For i = 1; . . . ; k, let�i and!i denote the number of the roots and the
sum of the degrees of all the equations~Gi(P ; T ) = 0, respectively.
By induction, we can prove�i � !i � s. In particular, the number of
output rational functions is�k � s.

IV. EFFICIENT LIST DECODING OFAG CODES

Replacing Step 2 in G–S Algorithm by Algorithm 3.1, we get an
efficient list-decoding algorithm for AG codes.

Algorithm 4.1 Efficient List-Decoding Algorithm

Implicit Parameters: Same as in G–S Algorithm.

Assumptions: Same as in G–S Algorithm.

Initialization: Same as in G–S Algorithm.

Step 1: Same as in G–S Algorithm.

Step 2: Using Algorithm 3.1, find all roots

f 2 L((k+ g � 1)P ) = L(�P )

of the polynomial H(T ). For each such f , check if

f(P ) = y for at least e values of i 2 f1; . . . ; ng, and

if so, include f in the output list.

Using [8, Proposition 22 and Theorem 27] and Theorem B.2 that we
will give in Appendix B, it is easy to determine the complexity of the
list-decoding algorithm above.

Theorem 4.1:LetX be a nonsingular, absolutely irreducible curve
overFFF q of genusg, denote byK the function field ofX overFFF q.
SupposeCL(D; �P ) is an AG code overX of lengthn, dimensionk,

and designed distanced = n�k�g+1. Then Algorithm 4.1 corrects
up toe < n� n(n� d) errors. The execution of the algorithm needs

O(l3s3 + ks(n2 + s
2 + log2 s � log log s � log q))

operations overFFF q and O(nl2 + ks2) operations overK, where
s = b l�g

n�d
c, l = O(maxf gt+n(n�d)

t �n(n�d)
; tg), andt > n(n� d).

V. CONCLUSION

In this correspondence, we have presented an efficient root-finding
algorithm for polynomials over function fields, extending Roth
and Ruckenstein’sReconstruct Algorithm[17] for finding roots of
univariate polynomials over polynomial rings. The execution of the
algorithm needsO(ks(n2+ s2+ log2 s � log log s � log q)) operations
over FFF q and O(ks2) operations over the function fieldK. Based
on the root-finding algorithm, we gave an efficient list-decoding
algorithm for AG codes.

APPENDIX A
AN EXAMPLE

In this appendix, we give an example of finding the roots of a poly-
nomial over the function field of the Klein quartic overFFF 8.

The Klein quartic overFFF 8 is defined by the following projective
equation:

X
3
Y + Y

3
Z + Z

3
X = 0:

The genus of this curve isg = 3. The Klein quartic has 24 rational
points. Three pointsQ = (0 : 1 : 0), P1 = (1 : 0 : 0), andP2 =
(0 : 0 : 1) are defined overFFF 2, the other rational pointsP3; . . . ; P23
are defined overFFF 8. Consider the linear spaceL(mQ) with m > 3.
Lettingx = X

Z
andy = Y

Z
, it can be proved thatL(mQ) has a basis

f'1; . . . ; 'm�2g, where

'1 =1 '2 = y '3 = xy

'4 = y
2

'5 = x
2
y '6 = xy

2

and forj � 3

'3j�2 = y
j

'3j�1 = x
2
y
j�1

'3j = xy
j
:

The rational functionx has a pole of order2 atQ, andy has a pole of
order3 atQ, i.e.,

ordQ(x) = �2; and ordQ(y) = �3:

Let �j = �ordQ('j). The sequence of nongaps atQ is �1 = 0,
�2 = 3, �3 = 5, �4 = 6, �5 = 7, �6 = 8, �7 = 9, �8 = 10, . . . .

Let � be a primitive element ofFFF 8, satisfying�3 + � + 1 = 0.
Consider the following polynomial over the function field of the Klein
quartic:

H(T ) =T
5 + �x

2
y + �

2
y
2 + �xy + y + �

6
T
4

+ �
2
x
4
y
2 + xy

4 + x
2
y
2 + �

2
y
3 + �xy

2

+ �
4
x
2
y + �

4
y
2 + �xy + 1 T

3

+ x
6
y
3 + �x

4
y
4 + x

5
y
3 + �

4
x
4
y
3 + �

5
x
2
y
4

+ �
4
x
3
y
3 + �

3
x
4
y
2 + �

4
x
2
y
3 + x

3
y
2 + �

3
xy

3

+ �
2
y
3 + �

3
xy

2 + x
2
y + �y

2 + �
6
xy + y + �

6
T
2

+ x
6
y
3 + �x

4
y
4 + �

2
x
5
y
3 + �

4
x
4
y
3 + �

5
x
2
y
4

+ �
5
x
3
y
3 + �

4
x
4
y
2 + �

2
xy

4 + �
2
x
2
y
3 + �

4
x
3
y
2

+ �xy
3 + �x

2
y
2 + xy

2 + �
2
x
2
y + �

6
xy T

+ x
7
y
4 + �x

5
y
5 + x

6
y
4 + �

4
x
5
y
4 + �

5
x
3
y
5

+ �
4
x
4
y
4 + �

4
x
5
y
3 + �

4
x
3
y
4 + �

3
x
4
y
3

+ �
3
x
3
y
3 + �

2
x
3
y
2
:
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We will find the roots ofH(T ) in L(7Q) = h'1; '2; '3; '4; '5i.
Let the rootsf have the formf = f1'1+f2'2+f3'3+f4'4+f5'5.
We will use Algorithm 3.1 to find these roots.

By Algorithm 3.1, we have

Ĝ1(X; T ) = H(X; '5T ) = H(X; x2yT ):

Thus,

Ĝ1(X; T ) = (x10y5)T 5

+ �x10y5+�2x8y6+�x9y5+x8y5+�6 T 4

+ �2x10y5+x7y7+x8y5+�2x6y6+�x7y5

+ �4x8y4+�4x6y5+�x7y4+x6y3 T 3

+ x10y5+�x8y6+x9y5+�4x8y5+�5x6y6

+ �4x7y5+�3x8y4+�4x6y5+x7y4

+ �3x5y5+�2x4y5+�3x5y4+x5y3

+ �x4y4+�6x5y3+x4y3+�6x4y2 T 2

+ x8y4+�x6y5+�2x7y4+�4x6y4

+ �5x4y5+�5x5y4+�4x6y3

+ �2x3y5+�2x4y4+�4x5y3

+ �x3y4+�x4y3+x3y3+�2x4y2+�6x3y2 T

+ x7y4+�x5y5+x6y4+�4x5y4+�5x3y5

+ �4x4y4+�4x5y3+�4x3y4+�3x4y3

+ �3x3y3+�2x3y2 :

Again by Algorithm 3.1, we can take�1 = x10y5. So, ~G1(X; T ) =
Ĝ1(X; T )=(x10y5), and

~G1(Q; T ) =T 5 + �T 4 + �2 + 1 T 3 + T 2

= T + �3
2

T 2(T + �):

Solving ~G1(Q; T ) = 0, we getf5 = �3, or f5 = 0, or f5 = �.
Now, fromf5 = �3, using Algorithm 3.1 we have

G2(X; T ) = ~G1(X; T + �3)

and

Ĝ2(X; T ) = G2(X; ('4='5)T ) = G2(X; (y=x2)T ):

We then get

~G2(Q; T ) = T 2:

Solving ~G2(Q; T ) = 0, we getf4 = 0.
Fromf4 = 0, we have

G3(X; T ) = ~G2(X; T )

and

Ĝ3(X; T ) = G3(X; ('3='4)T ) = G3(X; (x=y)T )

We then get

~G3(Q; T ) = T 2:

Solving ~G3(Q; T ) = 0, we getf3 = 0.

Fromf3 = 0, we have

G4(X; T ) = ~G3(X; T )

and

Ĝ4(X; T ) = G4(X; ('2='3)T ) = G4(X; (1=x)T )

We then get

~G3(Q; T ) = T 2 + T:

Solving ~G4(Q; T ) = 0, we getf2 = 1 or f2 = 0.
Fromf2 = 1, we have

G5(X; T ) = ~G4(X; T + 1)

and

Ĝ5(X; T ) = G5(X; ('1='2)T ) = G5(X; (1=y)T ):

We then get~G3(Q; T ) = T + �6. Solving ~G5(Q; T ) = 0, we get
f1 = �6.

Fromf2 = 0, we have

G5(X; T ) = ~G4(X; T )

and

Ĝ5(X; T ) = G5(X; ('1='2)T ) = G5(X; (1=y)T ):

We then get~G3(Q; T ) = T . Solving ~G5(Q; T ) = 0, we getf1 = 0.
So, we obtain two rational functionsf with form

f = f1'1 + f2'2 + f3'3 + f4'4 + f5'5:

They are

�6 + '2 + �3'5 and �3'5:

They are roots inL(7Q) of H(T ).
Similarly, forf5=�, we can obtain another root1+�'3+�

2'4+�'5.
Let us consider the case off5 = 0. By Algorithm 3.1, we get

~G2(Q; T ) = T 2. We then getf4 = 0 by solving ~G2(Q; T ) = 0.
Fromf4 = 0, we have~G3(Q; T ) = T 2. So, we havef3 = 0. Then
from f3 = 0, we get ~G4(Q; T ) = T 2. Solving ~G4(Q; T ) = 0, we
havef2 = 0. Finally, fromf2 = 0, we get ~G5(Q; T ) = 1. The equa-
tion ~G5(Q; T ) = 0 has no solution.

Therefore, we have found all the three roots inL(7Q) of H(T ).
We can graphically represent the root-finding procedure as shown at
the bottom of the page. There are three “effective” paths in this graph,
which start fromH(f) = 0 and terminate atf1 = �6, f1 = 0 and
f1 = 1, respectively. Each of them corresponds to a root ofH(T ).

As a polynomial over the function field of the Klein quartic,H(T )
can be factorized as

H(T ) = T + �3'5 + '2 + �6 T + �3'5

� T + �'5 + �2'4 + �'3 + 1 T 2 + T + '3 :

The last path of the graph at the bottom of the page corresponds to the
factorT 2+T+'3. The fact that~G5(Q; T ) = 0 has no solution shows
thatT 2 + T + '3 is irreducible over the function field.

Also, we can use the Root-Finding Procedure in Section III to find
the roots ofH(T ). In fact, for each rootf1'1+f2'2+f3'3+f4'4+
f5'5, the polynomialgi that we used to getf6�i by the Root-Finding
Procedure is equal to~Gi(Q; T ), i = 1; . . . ; 5. When we use the

f5 = �3 �! f4 = 0 �! f3 = 0

f2 = 1 �! f1 = �6

%

&

f2 = 0 �! f1 = 0
%

H(f) = 0 �! f5 = � �! f4 = �2 �! f3 = � �! f2 = 0 �! f1 = 1

&

f5 = 0 �! f4 = 0 �! f3 = 0 �! f2 = 0 �! No solution
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Root-Finding Procedure, we need some operations that reduceH(f)
modulo the curve. For example, consider the coefficients ofH(T ). In
the coefficient ofT 3, the terms�2x4y2 andxy4 have the same pole
order atQ. By the affine equation of the Klein quartic

x
3
y + y

3 + x = 0

we havexy4=x4y2+x2y. So, we have�2x4y2+xy4=�6x4y2+x2y,
wherex4y2 andx2y have different pole orders atQ. So, we can replace
�2x4y2 + xy4 by �6x4y2 + x2y to get the unique leading term of the
coefficient ofT 3.

APPENDIX B
COMPLEXITY ANALYSIS

We evaluate in this appendix the complexity of the root-finding al-
gorithm we proposed in Section III, Algorithm 3.1.

Lemma B.1 [2]: The roots inFFF q of a polynomial of degrees can be
found in expected time complexityO((s log2 s) � (log log s) � log q).

Theorem B.2:LetX be a nonsingular, absolutely irreducible curve
in m-dimensional projective spacePPPFFFm

q over the finite fieldFFF q , and
K be the function field ofX over FFF q. Suppose the curve satisfies
qm+1 = O(n2), wheren is the number of rational points. Given a
nonzero polynomialH(T ) inK[T ] of degrees returned in Step 1 of the
list-decoding algorithm, the execution of the root-finding algorithm,
Algorithm 3.1, needsO(ks(n2 + s2 + log2 s � log log s � log q)) oper-
ations overFFF q andO(ks2) operations overK.

Proof: From the proof of Corollary 3.3, we see that for everyi,
the number of polynomialŝGi(X; T ) that arise is less than or equal to
�i�1, the number of roots of all the equations~Gi�1(P ; T ) = 0. This
number is less than or equal tos, the upper bound on theT -degree
of every polynomialĜi(X; T ). So, for everyi, the execution of Step
2 needsO(s2) operations overK. Therefore, the contribution of Step
2 to the overall complexity isO(ks2) operations overK. Similarly,
the contribution of Step 9 to the overall complexity is alsoO(ks2)
operations overK.

Now consider the complexity of Step 8. FromGi+1(X; T ) =
~Gi(X; T + �), we have

G
(j)
i+1(X) = ~G

(j)
i (X) +

j + 1

1
� ~G

(j+1)
i (X)

+
j + 2

2
�
2 ~G

(j+2)
i (X)

+ � � �+
s

s� j
�
s�j ~G

(s)
i (X):

Thus, we requireO(s2) operations overFFF q to get eachGi+1(X; T ).
For everyi + 1, i = 1; . . . ; k � 1, the number of polynomials
Gi+1(X; T )’s is at mosts. Therefore, the execution of Step 8 requires
O(ks3) operations overFFF q.

Next we count the number of operations that will be used to execute
Step 4. Fori = 1, we need to solve a nonzero polynomial equation
overFFF q of degrees. By Lemma B.1, we need

O((s log2 s) � (log log s) � log q)

operations overFFF q to accomplish this. Suppose~G1(P ; T ) = 0 has�
roots, and the multiplicities of the roots ared1; 1; . . . ; d1; �; respec-
tively. It is clear that everyd1; j � s andd1; 1 + � � � + d1; � � s.
Wheni = 2, we need to solve� equations, whose degrees are at most
d1; 1; . . . ; d1; �; respectively. So, we need

O((d1;1 log
2
d1; 1) � (log log d1; 1) � log q) + � � �

+O((d1;� log2 d1; �) � (log log d1; �) � log q)

operations. Sincelog2 d1; j � log2 s, log log d1; j � log log s, and
d1; 1+� � �+d1; � � s, we know that the number of operations fori = 2

is upper-bounded byO((s log2 s) � (log log s) � log q). By induction,
for everyi, the execution of Step 4 requires

O((s log2 s) � (log log s) � log q)

operations. Therefore, Step 4 in the algorithm can be completed in
O((ks log2 s) � (log log s) � log q) operations overFFF q .

Finally, we consider the complexity associated with the execution of
Steps 1 and 3. In these steps, we need to evaluate rational functions at
P . To get ~Gi(P ; T ), we need to compute~G(j)

i (P ) for j = 0; . . . ; s.
It is known that there is an open neighborhoodU with P 2 U � X ,
andN (j)

i , D(j)
i 2 FFF q[X1; . . . ; Xm+1], such that onU

~G
(j)
i (X) =

N
(j)
i (X1; . . . ; Xm+1)

D
(j)
i (X1; . . . ; Xm+1)

where N
(j)
i and D

(j)
i are homogeneous polynomials andD(j)

i

is nowhere zero onU . As a function,Xq
j = Xj over FFF q, so

every term ofN (j)
i andD(j)

i has degree at most(m + 1)(q � 1).
Therefore, we requireO(qm+1) operations to compute~G(j)

i (P ).
Since qm+1 = O(n2), O(n2) operations are needed to compute
every ~G

(j)
i (P ). By Lemma 3.2, if the root of~Gi�1(P ; T ) that we

used to construct~Gi(P ; T ) has multiplicityd, whered � s, then
~G
(j)
i (P ) = 0 for j � d + 1. SoO(dn2) operations overFFF q are

needed to get~Gi(P ; T ). It follows that the execution of Step 3 needs
O(ksn2) operations overFFF q. We know thatordP (Ĝ

(j)
i (X)) � 0 for

j = 0; 1; . . . ; s. Referring again to Lemma 3.2

minfordP (Ĝ
(j)
i ) j j = 0; 1; . . . ; sg = minfordP (Ĝ

(j)
i ) j j � dg:

Now, for everyj � d, divide Ĝ(0)
i (X); Ĝ

(1)
i (X); . . . ; Ĝ

(d)
i (X) by

Ĝ
(j)
i (X). If

Ĝ
(0)
i

Ĝ
(j)
i

(P );
Ĝ
(1)
i

Ĝ
(j)
i

(P ); . . . ;
Ĝ
(d)
i

Ĝ
(j)
i

(P ) 2 FFF
d+1
q � f0g

then we can take�i = Ĝ
(j)
i (X). So, for everyĜi(X; T ), we need

O(d2) operations overK andO(dn2) operations overFFF q to determine
�i. Thus, the execution of Step 1 needsO(ks2) operations overK and
O(ksn2) operations overFFF q.

In summary, the execution of Algorithm 3.1 needs

O(ks(n2 + s
2 + log2 s � log log s � log q))

operations overFFF q andO(ks2) operations overK.

We remark that the assumption ofqm+1 = O(n2) in Theorem B.2 is
reasonable. In fact, a large class of curves, including many well-known
curves, has this property. For examples, the Klein quartic inPFPFPF

2
8 has

n = 24 rational points, the plane Hermitian curve inPFPFPF 2
q hasn = q3

affine rational points [3], the Garcia–Stichtenoth curve [7] inPPPF
m
q has

at least(q2�1)qm�1 rational points. On the other hand, it is easy to see
that there exist curves that do not satisfy this assumption. This means
that the complexity estimate in Theorem B.2 is not applicable for those
curves. However, Algorithm 3.1 works for any nonsingular, absolutely
irreducible curve defined overFFF q and, for a fixed curve, we are always
able to get a similar estimate of complexity.
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Single-Track Circuit Codes

Alain P. Hiltgen and Kenneth G. Paterson, Member, IEEE

Abstract—Single-track circuit codes (STTCs) are circuit codes with
codewords of length such that all the tracks which correspond to
the distinct coordinates of the codewords are cyclic shifts of the first
track. These codes simultaneously generalize single-track Gray codes
and ordinary circuit codes. They are useful in angular quantization
applications in which error detecting and/or correcting capabilities are
needed. A parameter , called the spread of the code, measures the
strength of this error control capability. We consider the existence of
STCCs for small lengths 17 and spreads 6, constructing some
optimal and many good examples. We then give a general construction
method for STCCs which makes use of ordinary circuit codes. We use this
construction to construct examples of codes with 360 and 1000 codewords
which are of practical importance. We also use the construction to prove a
general result on the existence of STCCs for general spreads.

Index Terms—Absolute angle measurement, circuit code, digital
encoding, error correction, Gray code, quantization, single track,
snake-in-the-box code.

I. INTRODUCTION

A length-n Gray code is simply a cyclic list of distinct binaryn-tu-
ples, called the codewords, with the property that any two adjacent
codewords differ in exactly one component. A common use of Gray
codes is in reducing quantization errors in various types of analog-to-
digital conversion systems [11], [12]. They have also found applica-
tions in many other areas of coding and computing science—see the
introduction to [18] for a list of references.

Spread-k circuit codes are a generalization of Gray codes: they can
be thought of as being Gray codes having additional error-detecting
capability. Fork � 1, a spread-k code is defined to be a Gray code in
which two words of the code either lie at mostk � 1 positions apart
in the list of codewords or differ in at leastk components. Thus, a
spread-1 code is just a Gray code. Spread–2 codes are more commonly
known as snake-in-the-box codes. Circuit codes have a long history
(see [1] and the references cited there), and many optimal codes and
general constructions for families of codes are known: these results are
summarized in Section III below.

As an example of the use of circuit codes in analog-to-digital con-
version, a length-n, spread-k circuit codeC can be used to record the
absolute angular positions of a rotating wheel by encoding (e.g., op-
tically) the codewords ofC in sectors onn concentrically arranged
tracks. Thenn reading heads, mounted radially across the tracks suf-
fice to recover the codewords. The number of codewords inC deter-
mines the accuracy with which angles can be resolved. Quantization
errors are minimized by using a Gray encoding while errors resulting
from equipment malfunction can be dealt with using the spread capa-
bility of the code: any error of weightr < k either results in an angle
preciselyr sectors away from the correct sector or leads to a wordW

that does not lie inC (so that the error is detectable). In the latter case,
if 2r < k, then the wordW 0 in C that is closest toW in Hamming
distance is, in turn, at most distancer from the correct codeword. The
resulting angular error is at mostr sectors. In this way, errors of weight
up tob k�1

2
c can be “partially corrected.”
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