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Abstract. Theory exploration is a term describing the development of
a formal (i.e. with the help of an automated proof-assistant) approach
to selected topic, usually within mathematics or computer science. This
activity however usually doesn’t reflect the view of science considered as a
whole, not as separated islands of knowledge. Merging theories essentially
has its primary aim of bridging these gaps between specific disciplines.

As we provided formal apparatus for basic notions within rough set the-
ory (as e.g. approximation operators and membership functions), we try
to reuse the knowledge which is already contained in available repos-
itories of computer-checked mathematical knowledge, or which can be
obtained in a relatively easy way. We can point out at least three top-
ics here: topological aspects of rough sets – as approximation operators
have properties of the topological interior and closure; lattice-theoretic
approach giving the algebraic viewpoint (e.g. Stone algebras); possible
connections with formal concept analysis.

In such a way we can give the formal characterization of rough sets in
terms of topologies or orders. Although fully formal, still the approach
can be revised to keep the uniformity all the time.
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1 Introduction

The era of extensive use of computers brought also an evolution of the mathe-
maticians’ work. Among new possibilities offered by computers we can point out
the better transfer of knowledge between researchers via repositories of knowl-
edge. Such computer algebra tools as Mathematica or MathCAD are very pop-
ular nowadays; researchers can also develop their own specialized software for
computing relatively easier than before. The possibility of enhancing human work
using automated proof assistants should be also underlined. We try to disscuss
some issues concerned with the latter activity, concentrating on formalizing not
only selected fields; but viewing specific disciplines from a wider perspective.

As we provided formal apparatus for basic notions within rough set theory
(as e.g. approximation operators and membership functions), we try to reuse
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the knowledge which is already contained in available repositories of computer-
checked mathematical knowledge, or which can be obtained in a relatively easy
way. We can point out at least three topics here: topological aspects of rough
sets – as approximation operators have properties of the topological interior
and closure; possible connections with formal concept analysis; lattice-theoretic
approach giving the algebraic viewpoint (e.g. Stone algebras).

Our main aim is to develop (i.e. to describe in the formal computer language
to be used within the repository of the existing mathematical knowledge) con-
crete examples of such formal knowledge reuse on the area of rough set theory.
We also discuss some issues concerned with our implementation, but as we offer
more than purely theoretical considerations (actual implementation is given),
hence the word ‘efficient’ in the paper’s title.

The structure of the paper is as follows: in the next section we present the
overall methodological background for our work while in the third we focus on
the activity of putting formal things together, called merging theories. Then
we describe briefly the formal approach to rough sets we developed and some
examples of successful, although not yet fully reused, bridging between various
fields of formal mathematics.

2 Mathematical Knowledge Management

“Computer certification” is a relatively new term describing the process of the
formalization via rewriting the text in a specific manner, usually in a rigorous
language. Now this idea, although rather old (taking Peano, Whitehead and
Russell as protagonists), gradually obtains a new life. As the tools evolved, the
new paradigm was established: computers can potentially serve as a kind of
oracle to check if the text is really correct. And then, the formalization is not
l’art pour l’art, but it extends perspectives of knowledge reusing. The problem
with computer-driven formalization is that it draws the attention of researchers
somewhere at the intersection of mathematics and computer science, and if the
complexity of the tools will be too high, only software engineers will be attracted
and all the usefulness for an ordinary mathematician will be lost. But here, at
this border, where there are the origins of MKM – Mathematical Knowledge
Management, the place of fuzzy sets can be also. To give more or less formal
definition, according to Wiedijk [26], the formalization can be seen presently as
“the translation into a formal (i.e. rigorous) language so computers check this
for correctness.”

In this era of digital information anyone is free to choose his own way; to
quote Vladimir Voevodsky, Fields Medal winner’s words: “Eventually I became
convinced that the most interesting and important directions in current mathe-
matics are the ones related to the transition into a new era which will be char-
acterized by the widespread use of automated tools for proof construction and
verification”. However he is focused as of now on the constructive Martin-Löf
type theory many ordinary mathematicians aren’t really familiar with. On the
other hand, if we take into account famous Four Colour Theorem, automated
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tools can really enable making some significant part of proofs, so hard to discuss
with this opinion.

Among many available systems which serve as a proof-assistant we have cho-
sen Mizar. The Mizar system [11] consists of three parts – the formal language,
the software, and the database. The latter, called Mizar Mathematical Library
(MML for short) established in 1989 is considered one of the largest repositories
of computer checked mathematical knowledge. The basic item in the MML is
called a Mizar article. It reflects roughly a structure of an ordinary paper, being
considered at two main layers – the declarative one, where definitions and theo-
rems are stated and the other one – proofs. Naturally, although the latter is the
larger, the earlier needs some additional care.

As lattice theory (steered by Trybulec, Bia lystok, Poland) and functional
analysis (led by Shidama, Nagano, Japan) are the most developed disciplines
within the MML, further codification of rough sets, especially including their
lattice-theoretic flavour, looks very promising. As a by-product, apart of read-
ability of the Mizar language, we obtain also the presentation of the source
accessible to ordinary mathematicians: pure HTML form with clickable links to
corresponding notions and theorems.

3 Merging Theories

Theory exploration is a term describing the development of a formal (i.e. with
the help of an automated proof-assistant) approach to selected topic, usually
within mathematics or computer science. This activity however usually doesn’t
reflect the view of science considered as a whole, not as separated islands of
knowledge. Merging theories essentially has its primary aim of bridging these
gaps between specific disciplines. Of course, even digging deep in the area of
selected discipline, eventually one have to use the apparatus from another field
(usually category theory sheds some light), but this touches the informal layer,
where interpretations can be somehat flexible.

In our CS&P 2012 paper [9] we have shown our translation of Zhu’s paper
about connections between ordinary properties of binary relations and underly-
ing properties of rough approximation operators which proves some usefulness
of proof assistants within a single area of research (essentially just the field of
binary relations), but it is known that e.g., category theory gives nice inter-
pretations for various questions; the same goes for modal logics. From another
viewpoint, lattices can deliver similarly useful interpretations. Many fields can
be reused depending on the author’s preferred selected approach. Even in rough
approach one can prefer either P-sets or I-sets (equivalence classes or just pairs)
reflecting in the chosen language – either of ordinary sets (partitions) or subsets
of Cartesian product.

We can consider merging on two levels:

Structures – when we inherit the overall signature of the object (as we can
tell that groups are predecessors of rings or fields);
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Fig. 1. The net of structures for chosen theories

Adjectives – when the hierarchy of axioms is described; here the example is
that all Boolean algebras are Stone algebras.

Although from the informal point of view both given examples seem to be just
the correspondence between axiom sets, formally this issue should be considered
more deeply.

First of all, there are automatic theorem provers operating on the form of
an equational characterization (collection of identities) of the theory. Hence the
formula binding distinct items from a given signature gives more possibilities
than the axiom postulating the existence of an object (even if we don’t take into
account Birkhoff variety theorem; equationally definable classes of mathematical
structures are hereditary, admit homomorphic images and admit products –
they form a variety). Good illustrative example here is the treatment of Boolean
rings and Boolean algebras; we can see them as subvarieties of each other but
formallywe should cope somehow with different signatures both are defined on.
The same problem apears in the case of lattices viewed on the one hand as
structures with join and meet operations or posets, otherwise. One can freely
define lattices as posets with the existence of binary joins and meets; hence we
obtain the algebraic interpretation of a lattice used, e.g. in universal algebra.
Obviously both definitions are equivalent, buth they are definitely not the same
as the order-theoretic one uses the signature

〈L,≤〉

while the algebraic one takes
〈L,⊔,⊓〉
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with binary operations: join ⊔ and meet ⊓.

Taking into account the aforementioned two stages of merging – on the level
of structures both have really little in common as only the carrier L can be
identical (we can call it a kind of syntactical point of view). But the latter
viewpoint (of universal algebra) can give a path to semilattices 〈L,⊔〉 and 〈L,⊓〉
and here the second level of merging (semantical) really makes sense. Namely,
on the signature of lower semilattice we can give an axiom of ⊓-commutativity
or ⊓-associativity which can be then used on all its descendants. Both identities
can be expressed as adjectives binded with appropriate structures.

The extensive use of identities in the form of attributes is really close to
standard manipulation of axioms, so the example of the connection between
Boolean and Stone lattices is really illlustrative here: as we work on the common
signature 〈L,⊔,⊓,′ , 0, 1〉, there is no need to extend the corresponding structures
and the work really depends on the deductive power of proof assistant (and
computers do some computations which is quite natural).

Of course, the term ‘formal’ or ‘formally’ is used in this paper in two threads:
on the one hand, ‘formal’ means the strict description of the rules governing the
theory – in common use, it is ‘rigorous’ method. But hence all mathematics
should be called formal in this sense, and this adjective should not then be
used at all. There is also another interpretation of this attribute, which stems
from Hilbert’s formalism. In the latter view, computer assistance is the recent
emerging trend which can be really controversial from the pen-and-paper math-
ematician viewpoint as the mathematics developed without machines for ages.
Many computer scientists and mathematical intuitionists really advocate this
approach, as Voevodsky who was quoted before.1

4 Rough Sets

Originally, we dealt with the more often used and methodologically simpler ap-
proach, i.e. equivalence relations-based rough sets. One of the key issues was also
the possibility of further reusing, but soon this was automatically generalized.
The concept of an information system can be also formalized as the descendant of
the approximation space in a natural way. At the first sight, the underlying Mizar
structure is RelStr, which has two fields: the carrier and the InternalRel,
that is a binary relation of the carrier. The theory of relational structures has
been developed and improved mainly during formalization of the Compendium
of Continuous Lattices (which is described in [1] in detail). While in this context
RelStr was used with attributes reflexive transitive and antisymmetric

to establish posets, we decided to reuse it in our own way. First, we defined
two new attributes: with_equivalence and with_tolerance which state that
the InternalRel of the underlying RelStr is an equivalence resp. a tolerance
relation (where a tolerance relation is a total reflexive symmetric relation, see
[20]). With such defined notions, the basic definitions are as follows:

1 Thanks go the anonymous referee for pointing out this inconsequence.
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definition

mode Approximation_Space is with_equivalence non empty RelStr;

mode Tolerance_Space is with_tolerance non empty RelStr;

end;

Formalized theories can be treated as objects (axioms, definitions, theorems)
clustered by certain relations based on information flow. The more atomic the
notions are, the more is their usefulness. Driven by this idea we tried to drop
selected properties of the equivalence relations. Our first choice was transitivity
– therefore the use of tolerance spaces – as it seemed to be less substantial than
the other two. The generalization work went rather smoothly. As we discovered
soon, similar investigations, but without any machine-motivations, were done by
Järvinen [14].

5 Formal Concept Analysis

Formal context analysis (FCA for short) has been introduced by Wille [27] as
a formal tool for the representation and analysis of data. The main idea is to
consider not only data objects, but to take into account properties (attributes)
of the objects also. This leads to the notion of a concept which is a pair of a
set of objects and a set of properties. In a concept all objects possess all the
properties of the concept and vice versa. Thus the building blocks in FCA are
given by both objects and their properties following the idea that we distinguish
sets of objects by a common set of properties.

In the framework of FCA the set of all concepts (for given sets of objects and
properties) constitutes a complete lattice. Thus based on the lattice structure
the given data – that is its concepts and concept hierarchies – can be computed,
visualized, and analyzed. In the area of software engineering FCA has been
successfully used to build intelligent search tools as well as to analyze and reor-
ganize the structure of software modules and software libraries. In the literature
a number of extensions of the original approach can be found. So, for example,
multi-valued concept analysis where the value of features is not restricted to
two values (true and false). Also more involved models have been proposed tak-
ing into account additional aspects of knowledge representation such as different
sources of data or the inclusion of rule-based knowledge in the form of ontologies.

Being basically an application of lattice theory FCA is a well-suited topic
for machine-oriented formalization. On the one hand it allows to investigate the
possibilities of reusing an already formalized lattice theory. On the other hand
it can be the starting point for the formalization of the extensions mentioned
above. In the following we briefly present the Mizar formalization of the basic
FCA notions. The starting point is a formal context giving the objects and
attributes of concern. Formally such a context consists of two sets of objects
O and attributes A, respectively. Objects and attributes are connected by an
incidence relation I ⊆ O × A. The intension is that object o ∈ O has property
a ∈ A if and only if (o, a) ∈ I. In Mizar [23] this has been modelled by the
following structure definitions.
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definition

struct 2-sorted (# Objects, Attributes -> set #);

end;

definition

struct (2-sorted) ContextStr

(# Objects, Attributes -> set,

Information -> Relation of the Objects,the Attributes #);

end;

Now a formal context is a non-empty ContextStr. To define formal concepts in
a given formal context C two derivation operators ObjectDerivation(C) and
AttributeDerivation(C) are used. For a set O of objects (A of attributes) the
derived set consists of all attributes a (objects o) such that (o, a) ∈ I for all
o ∈ O (for all a ∈ A). The Mizar definition of these operators is straightforward
and omitted here.

A formal concept FC is a pair (O,A) where O and A respect the derivation
operators: the derivation of O contains exactly the attributes of A, and vice
versa. O is called the extent of FC, A the intent of FC. In Mizar this gives
rise to a structure introducing the extent and the intent and an attribute
concept-like.

definition let C be 2-sorted;

struct ConceptStr over C

(# Extent -> Subset of the Objects of C,

Intent -> Subset of the Attributes of C #);

end;

definition let C be FormalContext;

let CP be ConceptStr over C;

attr CP is concept-like means :: CONLAT_1:def 13

(ObjectDerivation(C)).(the Extent of CP) = the Intent of CP &

(AttributeDerivation(C)).(the Intent of CP) = the Extent of CP;

end;

definition let C be FormalContext;

mode FormalConcept of C is concept-like non empty ConceptStr over C;

end;

Formal concepts over a given formal context can be easily ordered: a formal
concept FC1 is more specialized (and less general) than a formal concept FC2

iff the extent of FC1 is included in the extent of FC2 (or equivalently iff the
intent of FC2 is included in the intent of FC1). With respect to this order the
set of all concepts over a given formal context C forms a complete lattice, the
concept lattice of C.

theorem

for C being FormalContext holds ConceptLattice(C) is complete Lattice;
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This theorem, among others, has been proven in [23]. The formalization of FCA
in Mizar went rather smoothly, the main reason being that lattice theory has
already been well developed. Given objects, attributes and an incidence relation
between them, this data can now be analyzed by inspecting the structure of the
(concept) lattice; see [27, 7] for more details and techniques of formal concept
analysis.

6 Rough Concept Analysis

In this section we present issues concerning the merging of concrete theories
in the Mizar system. We will illustrate them by living examples from Rough
Concept Analysis done in Mizar and skipping most technical details (this part
is an extension of [12]). For details of used type system, see [11, 2]. We like
to mention that in the course of FCA formalization the formal apparatus yet
existing in the Mizar Mathematical Library also had to be improved and cleaned
up.

A basic structure for the merged theory should inherit fields from its an-
cestors, which would be hard to implement if structures were implemented as
ordered tuples (multiple copies of the same selector, inadequate ordering of fields
in the result). The more feasible realization is by partial functions rather, and
that is the way Mizar structures work.

definition

struct (ContextStr, RelStr) RoughContextStr

(# carrier, carrier2 -> set,

Information -> Relation of the carrier, the carrier2,

InternalRel -> Relation of the carrier #);

end;

As it often happens, an extension of the theory to another need not be
unique. There are at least three different methods of adding roughness to formal
concepts [15, 22]. The question which approach to choose depends on the author.
The notion of a free structure in a class of descendant type conservative with
respect to the original object is very useful.

definition let C be ContextStr;

mode RoughExtension of C -> RoughContextStr means

the ContextStr of it = the ContextStr of C;

end;

Now, if C is a given context, we can introduce roughness in many different
ways by adjectives.

Up to now, we described only mechanisms of independent inheritance of no-
tions. Within the merged theory it is necessary to define connections between its
source ingredients. Here the attributes describing mutual interferences between
selectors from originally disjoint theories proved their enormous value. They may
determine the set of properties of a free extension.
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definition let C be RoughFormalContext;

attr C is naturally_ordered means

for x, y being Element of C holds

[x,y] in the InternalRel of C iff

(ObjectDerivation C).{x} = (ObjectDerivation C).{y};

end;

Since the relation from the definiens above is an equivalence relation on the
objects of C and hence determines a partition of the set of objects of C into the
so-called elementary sets, it is a constructor of an approximation space induced
by given formal context.

Theory merging makes no sense, if proving the same theorem would be nec-
essary within both source and target theory. Since a new Mizar type called
RoughFormalContext is defined analogously to the notion of FormalContext,
as non quasi-empty RoughContextStr, the following Fundamental Theorem
of RCA is justified only by the Fundamental Theorem of FCA. Even more, clus-
ters providing automatic acceptance of the original theorems do it analogously
within target theory. That is also a workplace for clusters rough and exact from
the core rough set theory.

for C being RoughFormalContext holds

ConceptLattice(C) is complete Lattice by CONLAT_1:48;

7 Topological Spaces and Partitions

Of course, there are cases we shouldn’t even change the language when switch-
ing between various fields of mathematics. An illustrative example here is again
the notion of rough sets in its primal setting. When we see at the approxima-
tion space given by an equivalence relation, it is quite natural to consider just
classes of abstractions forgetting about original relation. Hence, the lattice of
such objects can be defined:

definition

let X be set;

func EqRelLatt X -> strict Lattice means

:: MSUALG_5:def 2

the carrier of it = { x where x is Relation of X,X :

x is Equivalence_Relation of X } &

for x,y being Equivalence_Relation of X holds

(the L_meet of it).(x,y) = x /\ y &

(the L_join of it).(x,y) = x "\/" y;

end;

Among many interesting properties which were proven about this structure
we can quote its completeness, for example:
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registration

let A be set;

cluster EqRelLATT A -> complete;

end;

The natural definition of the topological space is that we have a family of
open sets called the topology, τ . Then a topological space can be considered as
a pair consisting of the universe X and the topology τ defined on the subsets
of X if τ satisfies the axioms of topology. As they are widely known, informally,
we quote below only a formal counterpart of it:

definition

struct (1-sorted) TopStruct

(# carrier -> set,

topology -> Subset-Family of the carrier

#);

end;

reflecting the bare 〈X, τ〉 tuple and

definition

let IT be TopStruct;

attr IT is TopSpace-like means

:: PRE_TOPC:def 1

the carrier of IT in the topology of IT &

(for a being Subset-Family of IT st a c= the topology of IT holds

union a in the topology of IT) &

for a,b being Subset of IT st

a in the topology of IT & b in the topology of IT holds

a /\ b in the topology of IT;

end;

as axiomatic description of τ.
Then a topological space is just the structure TopStruct to which the ad-

jective TopSpace-like can be added. As usual, with every such object we can
associate the closure and the interior operators, with axioms in Kuratowski style
and then the existing apparatus of topological spaces (Cl and Int for the closure
and interior, respectively) can be reused.

8 Conclusions

Even if we are aware that this paper is really an emerging work and most tech-
nicalities were really skipped (but they can of course tracked in corresponding
Mizar source files freely available from the project homepage), there are some its
clear advantages – considering the repository of formalized mathematical knowl-
edge as a whole extends our knowledge. Some of the ideas contained in this paper
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are dated back to 2004 and our paper [12] presented at the International Con-
ference in Mathematical Knowledge Management where some of the problems
were only identified, but until now many new tools were developed and many
interesting new topics were formalized.

Quoting Pawlak’s own words about the role of computers (or mathematical
machines as they were called):

“One can formulate a risky opinion that almost all contemporary math-
ematical theories in their current state cannot be automatically treated.
Reformulating them is not an easy task. So, the question arises, to which
extent the amount of work done can be justified by the importance of ob-
tained results. (...) Automated discovery of new important results seems
to us rather unlikely.”

Even if Pawlak’s doubts about finding new theorems were clearly expressed,
he was convinced that computers can help in a bit different way:

“(...) the view for theories which are already known, but from another
viewpoint can shed some new light for the structure of mathematical the-
ories and improve human creativity.”
([18], p. 142, translation ours).

We try to argue that the formalization (still having in mind the discussion on
the (over)use of the word ‘formal’ from the end of the third section) of knowledge
in the way accessible by computers is not the question of the sense; it is the
question of time. Real efficiency of this activity will be shown by much more
examples, much more work, and definitely by much more automation many
proof assistants offer. We implemented in Mizar already three paths of rough set
theory merging: with topology, formal concepts and lattices (including interval
sets, which is formalized in [10]). Hence preliminary steps were already done and
as this work makes no sense in the island of isolated knowledge, anyone is invited
to contribute.
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