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Efficient Routing for Precedence-Constrained

Package Delivery for Heterogeneous Vehicles
Xiaoshan Bai, Ming Cao, Senior Member, IEEE, Weisheng Yan, and Shuzhi Sam Ge, Fellow, IEEE

Abstract—This paper studies the precedence-constrained
task assignment problem for a team of heterogeneous vehicles
to deliver packages to a set of dispersed customers subject to
precedence constraints that specify which customers need to
be visited before which other customers. A truck and a micro
drone with complementary capabilities are employed where
the truck is restricted to travel in a street network and the
micro drone, restricted by its loading capacity and operation
range, can fly from the truck to perform the last mile package
deliveries. The objective is to minimize the time to serve all
the customers respecting every precedence constraint. The
problem is shown to be NP-hard, and a lower bound on the
optimal time to serve all the customers is constructed by using
tools from graph theory. Then, integrating with a topological
sorting technique, several heuristic task assignment algorithms
are proposed to solve the task assignment problem. Numerical
simulations show the superior performances of the proposed
algorithms compared with popular genetic algorithms.

Note to Practitioners — This work presents several task
assignment algorithms for precedence-constrained package de-
livery for the team of a truck and a micro drone. The truck
can carry the drone moving in a street network while the drone
completes the last-mile package delivery. The paper’s practical
contributions are fourfold: First, the precedence constraints on
the ordering of the customers to be served are considered, which
enables complex logistic scheduling for customers prioritized
according to their urgency or importance. Second, the package
delivery optimization problem is shown to be NP-hard, which
clearly shows the need for creative approximation algorithms
to solve the problem. Third, the constructed lower bound on
the optimal time to serve all the customers helps to clarify for
practitioners the limiting performance of a feasible solution.
Fourth, the proposed task assignment algorithms are efficient
and can be adapted for real scenarios.

Index Terms—Task assignment, precedence constraints, het-
erogeneous vehicles, topological sorting, heuristic algorithm.

I. INTRODUCTION

This work was supported in part by the European Research Council (ERC-
CoG-771687), the Netherlands Organization for Scientific Research (NWO-
vidi-14134), and the National Natural Science Foundation of China (grant
No. 61733014). (Corresponding author : Xiaoshan Bai.)

X. Bai is with the Faculty of Science and Engineering, University of
Groningen, Groningen 9747 AG, the Netherlands, and also with the School
of Marine Science and Technology, Northwestern Polytechnical University,
127 West Youyi Road, Xi’an, 710072, China (e-mail: xiaoshan.bai@rug.nl).

M. Cao is with the Faculty of Science and Engineering, University of
Groningen, Groningen 9747 AG, the Netherlands (e-mail: m.cao@rug.nl).

W. Yan is with the School of Marine Science and Technology, Northwest-
ern Polytechnical University, 127 West Youyi Road, Xi’an, 710072, China
(e-mail: wsyan@nwpu.edu.cn).

S. S. Ge is with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117576, and also with the
Institute for Future (IFF), Qingdao University, Qingdao 266071, China (e-
mail: samge@nus.edu.sg).

THE task assignment problem for one or multiple vehi-

cles to visit a set of target locations has been extensively

investigated in the past years due to its wide applications

in logistics, terrain mapping, environmental monitoring, and

disaster rescue [1]–[6]. The problem can be taken as a variant

of the traveling salesman problem (TSP) or the vehicle

routing problem (VRP), which are both NP-hard [7], [8]. The

TSP focuses on designing one route with the minimum length

for a salesman/vehicle to visit a set of dispersed customers

while the VRP aims to employ multiple vehicles to efficiently

deliver products/packages to a set of customers. In recent

years, parcel delivery to customers is facing new challenges

as e-commerce has grown vastly [9] where the benefit of

using micro drones as additional support for package delivery

has been identified [10]. Consequently, some leading retailers

or distributors such as Amazon and DHL have planned to

employ micro drones for small package deliveries. However,

micro drones are subject to short operation range and small

payload capacity which greatly restrict their efficiency to

function in an autonomous delivery network [11]. To over-

come the limitations, some investigation has been done to

consider a heterogeneous team consisting of one carrier truck

and one micro drone with complementary capabilities [11]–

[14]. In [11], the package delivery problem for the truck and

the drone has been formulated as an optimal path planning

problem on a graph, and then the problem is reduced to

the generalized travelling salesman problem. Murray and

Chu [12] have formulated the heterogeneous parcel delivery

problem as a mixed integer linear programming problem

and further investigated two cases where one considers the

release and recovery of the drone by using the truck while

the other just uses the depot to release and recover the drone.

Considering the drone’s operation range and capacity con-

straint, Savuran and Karakaya [13] have designed a genetic

algorithm (GA) to plan the route for the drone deployed on

a mobile platform to visit a set of fixed targets. In [14],

several worst-case analysis theorems have been investigated

revealing the maximum amount of time that could be saved

as a result of using trucks and drones in combination rather

than employing trucks alone for delivering packages. In [12],

[14], the truck itself is also allowed to deliver parcels to

customers, which is different from [11].

In applications such as machine scheduling [15], [16],

vehicle routing [17]–[20], and logistic scheduling [21]–[23],

requests are often stipulated as precedence constraints. For

instance, an autonomous assembly line, or a car manufactur-

ing system, may require multiple production robots to pro-
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vide service at locations in a given sequence, thus motivating

the study for spatio-temporal requests [24]. Pezzella et al.

[16] developed a GA for the flexible job-shop scheduling

problem, in which the operations of different jobs are sub-

ject to precedence constraints (e.g. machine sequences). A

mathematical programming model and a heuristic algorithm

were presented in [17] for the combined vehicle routing

and scheduling problem with time windows and additional

temporal constraints. A topological sorting technique was

integrated with a GA to solve the TSP with precedence

constraints in [18]. The topological sorting technique guar-

antees that the planned path is feasible while the GA uses a

crossover operator, mimicking the changes of the moon, to

adjust the sequence for visiting the target locations. Later on,

an improved GA based on topological sorting techniques was

proposed in [19] to solve precedence-constrained sequencing

problems. Only one chromosome is needed by the crossover

operator to undergo the crossover evolution where each chro-

mosome constructs a feasible solution to the problem. For the

TSP where a given subset of targets is required to be visited

in some prescribed linear order, an algorithm guaranteeing

quantifiable performances was designed in [20]. Each subset

of targets with the linear visiting constraints can be treated as

one single target, thus leading to the transformation of the

TSP subject to the precedence constraints in [20] into the

standard TSP. In logistic scheduling, some customers/target

locations can have priorities over the others to be served

due to their interconnections as in the Dial-A-Ride Problem

(DARP) [21] and the pickup and delivery task assignment

problem [22], [23]. Cordeau et al. [21] conducted a review

on the DARP, where the pickup and delivery requests for

a set of customers need to respect the customers’ origins

and destinations. For the pickup and delivery problem with

time windows, Ropke and Pisinger [23] designed an efficient

large neighborhood search (LNS) heuristic, which consists

of two processes, namely the removal process and inserting

process. In the inserting process, the basic greedy heuristic

inserts each of several requests, which have previously been

removed in the removal process, into that vehicle’s route such

that the insertion causes the least increase in the value of the

objective function. A dynamic programming formulation was

developed in [25] for the precedence-constrained pickup and

delivery problem with split loads, where all origins to be

visited must be served before any destination to be visited

on each route. In these cases, the precedence constraints on

the visiting sequence of customers have to be respected, and

the positioning of one customer in the sequence is directly

affected by the customers which are required to be served

earlier. Precedence constraints have been studied earlier in

the so called sequence ordering problem [26], which is also

referred to as the sequence problem with precedence con-

straints [27]. Considering the loading constraint of unmanned

aerial vehicles and the precedence constraints on multiple

visits at one target, a GA was proposed for the multi-vehicle

task assignment [28].

Motivated by the existing literature just mentioned, we

investigate the precedence-constrained heterogeneous deliv-

ery problem (PCHDP) for which one drone coordinates

with one truck to efficiently deliver packages to a set of

dispersed customers subject to precedence constraints that

specify which customers need to be visited before which

other customers. While one would ideally study the problem

with time delivery deadlines, this problem is hard and as

a result we consider a simplified version in which there

are precedence constraints on the delivery order. We first

investigate the feasible deployment patterns for the drone to

travel from one customer to another in coordination with

the truck, and then obtain the travel cost matrix specifying

the feasible minimal time for the drone to fly between

each pair of customers. Finally, integrating the topological

sorting technique [18], [19], we design several heuristic task

assignment algorithms to iteratively put the customers in an

ordered manner respecting the precedence constraints. Our

main contributions are as follows. Firstly, we construct a

lower bound on the optimal solution by using tools from

graph theory after the discussion of NP-hardness of the

precedence-constrained task assignment problem. This lower

bound can be used to approximately measure the quality of

a solution compared with the optimal. Secondly, inspired by

the two feasible deployment patterns for the drone to travel

between two customers with the coordination of the truck

in [11], we have exploited a different feasible deployment

pattern. Lastly, two heuristic algorithms designed in the paper

can obtain satisfying solutions within short computation time

even when the number of customer locations is large.

The rest of this paper is organized as follows. In Section

II, the formulation of the precedence-constrained package

delivery for heterogeneous vehicles is given. Section III

presents the problem analysis, and in Section IV several task

assignment algorithms are presented. We show the simulation

results in Section V and conclude the paper in Section VI.

II. PROBLEM FORMULATION

A. Problem setup

To rigorously formulate the problem, the definition of the

arborescence of a digraph in graph theory is first introduced.

Definition 1: (arborescence [29]) An arborescence is a

digraph with a single root from which, there is exactly one

directed path to every other vertex.

Now we are ready to define the research problem PCHDP.

A drone in coordination with a truck is deployed to deliver

packages to a set of n dispersed customers subject to

precedence constraints that specify which customers need

to be visited before which other customers. Each customer

receives one package to be delivered by the drone, and the

truck is restricted to travel between a set of stopping/street

points as vertices on a graph describing the topology of a

street network. Each customer can be visited by the drone

released from the truck from at least one stopping point

vertex to ensure that all the customers can be served. The

objective is to minimize the time when the last customer is

served while satisfying every precedence constraint, and the

constraints that the drone can carry only one package each

time and has limited operation range. One illustration on the
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Fig. 1. One illustration on the heterogeneous package deliv-

ery problem with one drone coordinating with one truck to

deliver parcels to three dispersed customers.

package delivery problem without any precedence constraint

is shown in Fig. 1.

Remark 1: The motivation for minimizing the time when

the last customer is served is that the total service time

when the drone reaches the last customer is considered more

important than the time when the truck and the drone return

to the depot to increase the customer satisfaction index.

B. Formulation as an optimization problem

Let C = {c1, . . . , cn} denote the set of indices of the

customer locations, and the indices of the stopping point

vertices are denoted by W = {w1, · · · , wm}. Let w0

denote the depot, a special stopping point vertex, where

the heterogeneous vehicle team is initially located. For each

i, k ∈ I where I = W ∪ {w0} and j ∈ C, let the binary

decision variable σijk = 1 if and only if it is planned that

the drone serves customer j by directly flying from stopping

point vertex i and then flying to stopping point vertex k, and

the binary variable yik = 1 if and only if it is planned that the

truck directly travels from stopping point vertex i to stopping

point vertex k. The position of each stopping point vertex,

i ∈ I, is denoted by p(i). Let d(i, j) denote the Euclidean

distance between vertices i and j, and the binary variable

prj = 1 if one requires customer r to be visited before

customer j, and prj = 0 if there is no such a requirement. As

shown in Fig. 2 (a), the digraph Gp = (V p, Ep) consists of a

subset of customer vertices in C and a set of directed edges

Ep showing the precedence constraints among the vertices. It

can be easily checked that the problem has feasible solutions

only if no direct cycles exist in Gp, i.e. Gp is acyclic. It is

assumed that the drone flies with a constant speed vd under

the maximum fly distance L, and the truck travels with a

constant speed vt under no travel range constraint.

The variable tj is employed to represent the time when

customer j, j ∈ C, is served, and P (t) is the truck’s position

at time t. Then, the problem is to minimize the time for

visiting all the customer locations

f = max
j∈C

tj , (1)

subject to
∑

i,k∈I

σijk = 1, ∀j ∈ C; (2)

σijk − yik = 0, ∀i, k ∈ I, ∀j ∈ C; (3)

σijk, yik ∈ {0, 1}, ∀i, k ∈ I, ∀j ∈ C; (4)

(P (tj −
d(i, j)

vd
)− p(i))σijk = 0, ∀i, k ∈ I, ∀j ∈ C; (5)

(d(i, j) + d(j, k))σijk ≤ L, ∀i, k ∈ I, ∀j ∈ C; (6)

(tr − tj)p
r
j ≤ 0, ∀r, j ∈ C. (7)

Constraint (2) ensures that each customer is served; (3)

guarantees the drone to be recharged by the truck after

serving each customer; (5) makes sure the drone’s path is

feasible through coordinating with the truck, namely given

σijk = 1 the time that the drone can be released from

the truck to serve customer j is the moment when the

truck is at the stopping point vertex i; (6) ensures the

drone’s fly distance is within its capability; (7) guarantees the

precedence constraints on visiting the customers are satisfied.

Remark 2: In the problem formulation, it is assumed that

the drone flies with a constant speed vd constrained by

the maximum fly distance L, and the truck travels with a

constant speed vt without any travel range constraint. The

practicalities of the implementation on using trucks and

drones under the assumptions for package delivery have been

discussed in detail in [11], [12], [30], [31].

After formulating the task assignment problem as a con-

strained minimization problem, we present in the following

section the analysis of the optimization problem.

III. PROBLEM ANALYSIS

A. Proof of NP-hardness

We can simplify the digraph Gp = (V p, Ep), specifying

the precedence constraints on visiting the customer locations,

whenever the following two conditions hold at the same time:

(i) one customer vertex ci has one edge directly pointing at

another customer vertex cj and (ii) ci has multiple directed

paths to cj . An example is shown in Fig. 2 (a), where

customer c1 has three independent directed paths to c4 as

c1 → c3 → c4, c1 → c2 → c4 and c1 → c4. Since c2
is required to be visited before c4 and c1 is required to

be visited before c2, the precedence constraint from c1 to

c4 becomes redundant. Then, after deleting some redundant

precedence constraints, the digraph shown in Fig. 2 (a) can

be simplified to Fig. 2 (b). It can be easily checked that the

problem has feasible solutions only if no direct cycles exist

in Gp. Thus, we make this standing assumption for the rest

of the paper.

Assumption 1: Gp is acyclic.

Now consider the undirected graph G = (V,E,D) con-

sisting of a vertex set V = C ∪I, an edge set E = EC ∪EI ,

and a cost matrix D that saves the weight of each edge

in E. EI is a fully connected edge set containing the edge

(wi, wk) for every pair of stopping point vertices wi, wk ∈ I .

EC contains pairs of flight edges (wi, cj) and (cj , wk) for

all cj ∈ C and wi, wk ∈ I where the drone can fly from
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Fig. 2. The digraph Gp = (V p, Ep) shows precedence

constraints on serving the customer (target) vertices (a)

Digraph in [18] and (b) Simplified digraph.

vertex wi to serve customer cj and then return to wk. These

wi are called the viable deployment vertices for customer

vertex cj from which the drone can be released to reach cj ,

and then the drone can return at lease one stopping point

vertex wk. The set Vj is employed to contain all such wi for

customer cj . Let D = (d(i, j))(m+n+1)×(m+n+1), i, j ∈ V ,

where d(i, j) specifies the distance between the two vertices

i and j associated with the edge (i, j).

In graph theory, the open TSP (OTSP) involves determin-

ing a Hamiltonian path with the minimal length connecting in

sequence each vertex exactly once in a directed or undirected

graph, and the TSP determines a Hamiltonian cycle with

the minimal length that is a cycle. Determining whether

such cycles and paths exist in graphs is the NP-complete

Hamiltonian path problem [32, 199-200]. The requirement

for the traveling salesman to return to the starting city does

not change the computational complexity of the problem. So

the OTSP is NP-hard as well [33]. Now we show that the

optimization problem PCHDP is also NP-hard.

Theorem 1: There exists a set of non-empty precedence

constraints for which the precedence-constrained task as-

signment problem PCHDP is NP-hard.

Proof 1: To prove the NP-hardness of the PCHDP, it

suffices to show that: (i) every instance of the OTSP can be

reduced to an instance of the PCHDP in polynomial time and

(ii) an optimal solution to the PCHDP leads to an optimal

OTSP solution. Let G′ = (V ′, E′, D′) be an input to the

OTSP, where V ′ = {v0, v1, . . . , vn−1} contains the n − 1
dispersed cities to be visited and the depot v0 where the

traveling salesman is initially located. To prove (i), G′ is

transformed into an input G = (V,E,D) and Gp of the

PCHDP as shown in Fig. 3, which requires polynomial time.

We construct the PCHDP where each customer ci ∈ V, i ∈
{1, . . . , n} corresponds to the vertex vi−1 in V ′, where ci
has exactly one unique viable deployment stopping point

vertex wi. A starting vertex (depot) w0, where the truck and

the drone start the delivery task, is added to V . For each

edge (vi, vj) ∈ E′ with the weight d′(vi, vj) ∈ D′, add

into E directed edges from customer vertex ci+1 to cj+1

as (ci+1, wi+1), (wi+1, wj+1) and (wj+1, cj+1) with the

weight d(wi+1, wj+1) = d′(vi, vj) while d(ci+1, wi+1) = 0
and d(wj+1, cj+1) = 0. In addition, add a bidirectional

edge from w0 to w1 with d(w0, w1) = 0. Let the truck

in the PCHDP have the same travel speed as that of the

traveling salesman in OTSP. Finally, to construct Gp, let

0w

0v

1v

2v

2w

1w

3w
3c

2c

1c
3c

2c

1c

 !a  !b  !c

Customer Street vertex Depot Predence constraint

Fig. 3. A transformation from the OTSP on graph G′

to the PCHDP on graph G and Gp where (a) G′ =
(V ′, E′, D′), (b) the G = (V,E,D) with D(wi+1, wj+1) =
D′(vi, vj), ∀vi, vj ∈ V ′, D(w0, w1) = 0, D(ci, wi) = 0 and

D(wi, ci) = 0, ∀wi ∈ V , and (c) Gp.

customer vertex c1 have precedence constraints on the other

customers as the directed edges with arrows shown in Fig. 3

(c), and there are no other precedence constraints among the

customers. Thus, the transformation from G′ to G and Gp is

constructed, and we have obtained the inputs to the PCHDP.

To prove (ii), after the transformation of G′ to G and

Gp, it is straightforward to see that an optimal solution to

PCHDP is also optimal to the OTSP based on the edge

weights of the graph G and the precedence constraints

among the customers, shown in Fig. 3 (b) and Fig. 3

(c). From Fig. 3 (b) and Fig. 3 (c), a PCHDP solution

is of the form Pd = (w0, w1, c1, w1, · · · , wn, cn, wn) and

Pt = (w0, w1, · · · , wn) where Pd is the route of the drone

and Pt is the path of the truck. The PCHDP solution can

be employed to generate an OTSP path of the form P ′ =
(v0, · · · , vn−1) by either extracting the ordered stopping

point vertices (w0, w1, · · · , wn) from Pd as the truck needs

to visit every wi to serve the corresponding ci or directly

from Pt. If EP ′ contains the optimal sequence of edges in

P ′, then EPt
= EP ′ . Since d(w0, w1) = 0, d(ci, wi) = 0

and d(wi, ci) = 0, it is straightforward to check that the

shortest time for the drone to serve all the customers satisfies
∑

e∈EPd

d(e) =
∑

e∈EP ′
d′(e). Thus, the proof is complete.

�

Remark 3: If every customer location only has one prece-

dence constraint requiring it to be visited either before or

after another customer location, the resulting problem is a

variant of the single-vehicle Dial-a-Ride Problem to design

one vehicle route to serve a set of customers at the required

destinations [21].

B. A lower bound on the optimal solution

It can be costly to solve the PCHDP optimally due to

the NP-hardness of the problem. As a consequence, it is

natural to design heuristic algorithms to find sub-optimal

solutions. Then, one issue arises on how to evaluate the

quality of a suboptimal solution as the optimal is typically

unknown. In this section, a lower bound on the minimal time

for the vehicles to serve all the customers while satisfying

every precedence constraint is constructed through obtaining

a min-cost arborescence (MCA) of a weighted digraph

Gd = (V d, Ed, Dd) by the Edmonds’ algorithm [34]. The
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Fig. 4. Three potential micro deployment patterns for the

drone to serve two customers cr and cj successively by the

usage of stopping point vertices wi and wk: (a) Pattern α,

(b) Pattern β and (c) Pattern γ.

sum of all the edge weights of the MCA is minimal among

all the arborescences of Gd. The vertex set V d = C ∪ {w0}
consists of the indices of the n customer vertices and the

depot. The edge set Ed, deduced from the digraph Gp,

contains every directed edge orienting from vertex cr to cj
for all cr, cj ∈ V d if vertex cr can be visited before vertex

cj . The matrix Dd contains the feasible minimal time for the

drone to fly from an arbitrary vertex cr to every cj , which

is obtained as follows.

For every customer vertex cr, let the set Vr contain the

indices of the viable deployment stopping point vertices from

which the drone is viable to be released to serve cr. Extend-

ing the two feasible deployment patterns in [11], in Fig. 4

we show three potential micro time deployment patterns for

the drone located at customer vertex cr with the remaining

fly distance Lcr to serve customers cj when the truck is

located at stopping point vertex wi. The corresponding travel

times of the drone in the three micro deployment patterns are

computed respectively as:

tα(cr, cj) = min
Lcr≥d(cr,wi),

∀wi∈W,∀wk∈Vj

{
d(cr, wi)

vd
+

d(wi, wk)

vt

+
d(wk, cj)

vd
}; (8)

tβ(cr, cj) = min
Lcr≥d(cr,wi),

∀wi∈Vj

d(cr, wi) + d(wi, cj)

vd
; (9)

tγ(cr, cj) = min
Lcr≥d(cr,wk),

∀wk∈Vj

{max{
d(cr, wk)

vd
,
d(wi, wk)

vt
}

+
d(wk, cj)

vd
}. (10)

Let Lcr = L − min∀wh∈Vr
d(wh, cr), then the shortest

time for the drone located at the customer vertex cr to serve

cj is

t⋆(cr, cj) = min{tα(cr, cj), tβ(cr, cj), tγ(cr, cj)},(11)

which is the weight Dd(cr, cj) for the directed edge

(cr, cj) ∈ Ed.

We give an example on formulating the directed Ed and

the associated Dd based on the directed Gp shown in Fig. 2

(b) and the corresponding weighted undirected G. A vertex

set Sr is used to save the indices of the customer vertices

before which cr, ∀cr ∈ C, can be served. Sr is achieved in a

backward manner. Firstly, let Sr = C\{cr}, ∀cr /∈ V p. Then,

in Fig. 2 (b), S6 is first calculated as S6 = ∪cr∈C\V pcr.

Afterwards, Sr = ∪p′r
j =1(Sj ∪ {cj}) where p′rj = 1 if

the customer vertex cr has an edge directly pointing at

customer vertex cj in the simplified Gp as c1 and c2 in Fig.

2 (b). Thus, S7 = S6 ∪ {c6}. Then, Si can be obtained

iteratively for every ci ∈ V d. Finally, an edge Ed(cr, cj)
exists connecting vertex cr and every cj ∈ Sr, and the

corresponding Dd(cr, cj) = t⋆(cr, cj) saves the shortest

feasible time for the drone to travel from cr to cj as shown

in (11); for the other cases Dd(cr, cj) = ∞. Let fa be the

sum of all the edge weights of an MCA of Gd, and fo be

the optimal for the objective function shown in (1). Now the

property of the optimal solution is investigated.

Proposition 1: It holds that fa ≤ fo.

Proof 2: According to Definition 1, an optimal path for

the drone to serve all the customers while respecting all

the precedence constraints on visiting the customers is an

arborescence of the weighted digraph Gd. As fa is the sum

of all the edge weights of an MCA of Gd, it is straightforward

to check that fa ≤ fo.

�

Having done the theoretical analysis, we construct several

heuristic algorithms in the next section.

IV. TASK ASSIGNMENT ALGORITHMS

In this section, we first introduce one topological sorting

technique, based on which we propose three task assignment

algorithms.

A. Topology sorting technique

Through topological sorting, all the feasible paths in a

directed acyclic graph can be obtained [35]. In [18], [19], the

precedence-constrained TSP is solved by employing a topo-

logical sorting technique which iteratively sorts the customer

vertices in Gp′

without any predecessor in each iteration.

Initially, let Gp′

= Gp. The customer vertices without any

predecessor are called viable customer vertices, which can

be inserted into the TSP path behind the customer vertices

that are the predecessors of them. Then, to choose which

customer vertex among the viable customers to be inserted

into the TSP path is determined by the task assignment

principles, which will de presented later in Section IV. B.

Once inserting a viable customer vertex, to update Gp′

, the

customer vertex and the precedence constraints correspond-

ing to the edges leaving the customer in the current Gp′

are

deleted. We give an example to show how to construct a

TSP path to visit all the customers from the representation

scheme by considering the precedence constraints shown in

Fig. 2 (b). In the digraph, the first customer vertex sorted

to be inserted into the TSP path is c1, since c1 is the only

customer in Gp′

without any predecessor. Then, c1 is stored

in the TSP path, and at the same time c1 and the edges

(c1, c3), (c1, c2) originating from c1 are deleted from Gp′

. In

the next iteration, c2 and c3 are viable customer vertices in

the resulting Gp′

, which can then be inserted into the path
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after c1. The process continues until all the customer vertices

in Gp are inserted.

B. Task assignment algorithms

Using the topological sorting technique in [18], [19],

the precedence-constrained package delivery task assignment

problem can be solved by first iteratively inserting a viable

customer vertex into the drone’s path based on the travel cost

matrix Dd, and then planing the path for the truck to ensure

the drone’s path is feasible. That is to say the truck needs to

release the drone at one stopping point vertex to serve each

customer, and then recharges the drone at one stopping point

vertex after the customer is served as the drone’s capacity of

carrying packages is only one.

Let Rl save the indices of the ordered customers already

inserted into the drone’s path after iteration l, and the cus-

tomer set T A
Rl

contain the indices of those customer vertices

that have no predecessor in Gp′

and have not been inserted

after iteration l. Let T j
Rl

= {cr ∈ Rl : (cr, cj) ∈ Ep} for

each cj ∈ T A
Rl

, and the set T j
a save the ordered locations

in Rl in which the customer cj is viable to be inserted

while satisfying every precedence constraint on visiting cj .

Obviously, cj can only be inserted into Rl behind all the

customer vertices in T j
Rl

. If T j
Rl

= ∅, cj is viable to be

inserted at any position of Rl. For the task assignment

algorithms, Rl is initialized as {w0} where the drone and

the truck are initially located.

1) Nearest inserting algorithm: The first heuristic algo-

rithm is the nearest inserting algorithm (NIA) which puts

the customer vertices in a sequence based on the time for the

drone to travel from the customer vertices already inserted

into the path to the one that can be inserted.

In iteration l+1, NIA finds the customer cj⋆ ∈ T A
Rl

to be

inserted and the associated inserting position q⋆ + 1 as

(q⋆, cj⋆) = argmin
q∈T j

a ,cj∈T A
Rl

t⋆(Rl(q), cj), (12)

where T j
a = {p, ..., |Rl|}; p = max

cr∈T j
Rl

find(Rl = cr)

finds the farthest position to the end of Rl after which cus-

tomer cj is viable to be inserted; and Rl(q) is the qth ordered

customer on the path Rl. The operator find(Rl = cr) finds

the location in Rl where the customer vertex cr is located.

Then, the path Rl is updated to

Rl+1 =

{

{Rl, cj⋆}, if q⋆ = |Rl|,

{Rl(1 : q⋆), cj⋆ ,Rl(q
⋆ + 1 : |Rl|)}, otherwise,

(13)

where |Rl| is the size of Rl and Rl(1 : q⋆) saves the

ordered customer vertices located between the first and the

q⋆th positions of Rl.

After the insertion of cj⋆ , we delete all the edges implying

the precedence constraints initiating from cj⋆ and the vertex

cj⋆ to update Gp′

. Then, the topological sorting technique

is used to achieve T A
Rl+1

, which saves the indices of viable

customer vertices after iteration l + 1. The inserting proce-

dures (12) and (13) continue until all the customer vertices

in C are inserted into the drone’s path.

Now we show an example on how NIA works as fol-

lows. Assume that the current drone path for visiting the

customers subject to the precedence constraints shown in

Fig. 2 (b) is Rl = {c1, c2, c5}. Then, the viable customer

set is T A
Rl

= {c3} as c3 is the only customer without any

predecessor after deleting the customer vertices already in Rl

and the corresponding edges from Gp′

. Since c1 is the only

customer that is required to be visited before c3, c3 is viable

to be inserted at any place behind c1. Assume that Rl =
{c1, c3, c2, c5} after the insertion of c3. Then, the next viable

customer c4 can only be inserted after c5 as c5 is required

to be visited before c4, where q⋆ = 4 according to (12). One

feasible drone path is Rl = {c1, c3, c2, c5, c4, c7, c6} after

iteratively using the topological sorting technique and the

inserting procedure.

2) Minimum marginal-cost algorithm: The second task

assignment algorithm is the minimum marginal-cost algo-

rithm (MMA), which determines the next customer to be

inserted and the corresponding inserting position based on

the marginal travel time incurred by inserting the customer.

The marginal travel time incurred by inserting customer cj
at the qth position of Rl is approximated as

t(Rl ⊕q cj)−t(Rl) =











t⋆(Rl(q − 1), cj), if q = |Rl|+ 1,

t⋆(Rl(q − 1), cj) + t⋆(cj ,Rl(q))

−t⋆(Rl(q − 1),Rl(q)), otherwise,
(14)

where the operation Rl ⊕q cj inserts customer cj at the qth

position of Rl. Target cj is inserted to the end of Rl if

q = |Rl|+1, and t(Rl) denotes the total travel time for the

drone to deliver packages to all the customers in Rl. The

incurred marginal time can be approximated by the usage of

the the travel cost matrix Dd shown in (11).

MMA determines the customer cj⋆ ∈ T A
Rl

to be inserted

into the path Rl and the associated inserting position q⋆ in

iteration l + 1 as

(q⋆, cj⋆) = argmin
p+1≤q≤|Rl|+1,cj∈T A

Rl

{t(Rl ⊕q cj)− t(Rl)}, (15)

where p = max
cr∈T j

Rl

find(Rl = cr). Then, the path Rl is

updated to

Rl+1 = Rl ⊕q⋆ cj⋆ . (16)

After the insertion of cj⋆ , all the edges implying the prece-

dence constraints initiating from cj⋆ and the vertex cj⋆

are deleted to update Gp′

. The customer inserting process

continues until all the customers are inserted into the path.

Remark 4: The MMA and the basic greedy heuristic used

in the LNS [23] both insert a feasible customer/request into

the vehicle’s route with the least incurred increase in the

value of the objective where the greedy heuristic is given a

number of partial routes and a number of requests to insert.

If building the vehicle’s route from scratch (an empty tour)

and considering the precedence constraints when inserting

each customer/request, the greedy heuristic will be the same

as the MMA.
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3) Second-order minimum marginal-cost algorithm: The

customer ordering strategy (15) shows that the customers

already ordered in the iteration l directly affect the customer

to be inserted in the next iteration as well as the insert-

ing position. To accommodate the future customer to be

inserted, we propose the second-order minimum marginal-

cost algorithm (SMMA) which calculates the cost incurred

by inserting a customer both considering the current iteration

and the future iteration. For SMMA, the customer cj⋆
1

to be

inserted and its inserting position q⋆1 in iteration l+1 satisfy

cj⋆
1

= argmin
p2+1≤q2≤|Rl|+2,

cj1∈T A
Rl

,cj2∈T A
Rl

\{cj1}

{t((Rl ⊕q⋆
1
cj1)⊕q2 cj2)

−t(Rl)}, (17)

where q⋆1 = argminp1+1≤q1≤|Rl|+1{t(Rl ⊕q1 cj1) −
t(Rl)}, p1 = max

cr∈T
j1
Rl

find(Rl = cr), and p2 =

max
cr∈T

j2
Rl⊕q⋆

1
cj1

find(Rl ⊕q⋆
1
cj1 = cr). Then, in iteration

l + 1 the path Rl is updated to

Rl+1 = Rl ⊕q⋆
1
cj⋆

1
. (18)

After the insertion of cj⋆
1

, the vertex cj⋆
1

and all the edges

implying the precedence constraints initiating from cj⋆
1

are

deleted to update Gp′

. The customer inserting process con-

tinues until all the customers are inserted into the drone’s

path.

It should be noted that the stopping point vertices used

for formulating the minimal travel time for the drone to

fly between each two customers might not be feasible to

construct a truck path coordinating with the drone to serve

all the customers due to the truck’s limited travel speed.

To show more detail, let the stopping point vertex be wr

where the drone is released to serve customer cr. Then, the

feasible shortest time t(cr, cj) for the drone to successively

visit customer cj after visiting cr is obtained by equations

from (8) to (11) where the drone’s remaining fly distance

Lcr is L − d(wr, cr), thus leading to t⋆(cr, cj) ≤ t(cr, cj)
in (11) as L − d(wr, cr) ≤ L −min∀wh∈Vr

d(wh, cr). That

is because a longer remaining fly distance Lcr would enable

the drone to have more choices on choosing stopping point

vertices wi and wk to serve customers cr and cj as shown

in Fig. 4. Thus, after achieving the drone’s path for visiting

the customers based on the algorithms NIA, MMA and

SMMA, Lcr = L−d(wr, cr) is used to calculate the feasible

travel time for the drone released from stopping point vertex

wr to fly directly from customer cr to customer cj while

considering the truck movement.

C. Computational Complexity

In this section, we analyze the computational complexity

of running NIA, MMA and SMMA. The three algorithms

iteratively insert a customer vertex to the drone’s path whose

length is |Rl| = l after the lth iteration of the inserting opera-

tion. The computational complexity of NIA is determined by

(12) where finding p requires |T j
Rl

||Rl| basic operations in

the (l+1)th iteration of the assignment. Thus, to find q⋆ and
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Fig. 5. The digraph Gp contains the precedence constraints

on serving 40 customers.

cj⋆ in (12), |T j
a ||T

A
Rl

||T j
Rl

||Rl| basic operations are needed

in the (l+1)th iteration, where |T j
a | ≤ |Rl|, |T

A
Rl

| ≤ n−|Rl|,

and |T j
Rl

| ≤ |Rl|. As a consequence, at most l3(n− l) basic

operations are required in the (l+ 1)th iteration. Taking the

sum for l to change from 1 to n, we get the computational

complexity of NIA
∑l=n

l=1 l
3(n−l), resulting in O(n5). Here,

a function f(x) is said to be O(g(x)) if there are constants

c and x′ such that f(x) ≤ cg(x) for all x ≥ x′. Similar to

NIA, the computational complexity of MMA is determined

by (15) where at most 2|Rl||T
A
Rl

||T j
Rl

||Rl| basic operations

are required in the (l+1)th iteration. Thus, the computational

complexity of MMA is also O(n5).
The computational complexity of SMMA is determined by

(17) where finding p1 requires |T j1
Rl

||Rl| basic operations,

finding q⋆1 requires at most 2|Rl| basic operations, and

finding p2 requires |T j2
Rl⊕q⋆

1
cj1

||Rl ⊕q⋆
1
cj1 | basic operations

in the (l + 1)th iteration of the assignment. Thus, at most

2|Rl||T
A
Rl

|(|T A
Rl

|−1)(|T j1
Rl

||Rl|+2|Rl|+|T j2
Rl⊕q⋆

1
cj1

||Rl⊕q⋆
1

cj1 |) basic operations are required in the (l + 1)th iteration,

which is at most 2l(2l2 + 4l + 1)(n − l)2. Then, we know

the computational complexity of SMMA is
∑l=n

l=1 2l(2l
2 +

4l + 1)(n− l)2, which is O(n6).
Through integrating with the topology sorting technique,

the task assignment algorithms NIA, MMA, and SMMA can

generate feasible paths for the drone and the truck to visit all

the customers while satisfying every precedence constraint.

The NIA, MMA, and SMMA can be adjusted to solve task

assignment problems such as the TSP and the VRP, where

the position on the vehicles’ current paths used to insert a

target in each iteration can be anywhere if no precedence

constraints apply.

Now we have presented all the theoretical results of this

paper. In the following section, we carry out simulation

studies.

V. SIMULATIONS

Numerical simulations are carried out to test the proposed

algorithms in comparison with the GAs [18], [19] for the

precedence-constrained assignment problems. The genetic

parameters for the compared GAs, named GA02 and GA

to distinguish them, are set according to [18] and [19]

respectively as follows. For GA02, the maximum generation
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TABLE I. The solution quality q of the algorithms (A) for

the traveling salesman problem with precedence constraints

with 40 target locations subject to the precedence constraints

shown in Fig. 5 under different instances (I).

❍
❍
❍
❍I
A

GA02 GA NIA MMA SMMA

1 2.6761 2.4081 2.9080 2.3119 2.3119

2 3.2416 2.9354 3.0226 2.6937 2.7655

3 2.9583 2.6377 3.0937 2.4118 2.4005

4 3.1600 2.9423 3.5400 2.7504 2.6762

5 3.4219 3.0991 3.6018 3.1078 2.9766

6 3.8582 3.2057 3.5416 3.3479 3.1549

7 2.9699 2.6514 2.5874 2.7137 2.4528

8 2.8946 2.5995 2.7540 2.5036 2.4847

9 3.6385 3.2609 3.3647 2.8736 3.2579

10 3.4780 3.0181 3.5016 2.8095 2.7796

TABLE II. The corresponding computation time (s) for the

algorithms (A) to get the solution to the traveling salesman

problem with precedence constraints with 40 target locations

subject to the precedence constraints shown in Fig. 5 under

different instances (I).

❍
❍
❍
❍

I
A

GA02 GA NIA MMA SMMA

1 65.132 26.402 0.067 0.097 0.2018

2 65.174 25.570 0.055 0.056 0.2429

3 65.247 25.448 0.050 0.055 0.2611

4 64.051 26.467 0.050 0.055 0.2499

5 64.005 26.305 0.051 0.054 0.2936

6 63.895 25.980 0.050 0.053 0.2670

7 64.851 25.945 0.051 0.053 0.2112

8 64.761 25.906 0.051 0.051 0.2245

9 64.849 26.031 0.051 0.055 0.2399

10 64.508 25.885 0.050 0.054 0.2317

number is 500; the population size is 150; the crossover

rate is 0.5 and the mutation rate is 0.2 [18]. For GA, the

maximum generation number is 2000; the population size is

20; the crossover rate is 0.5 and the mutation rate is 0.05
[19]. All the experiments have been performed on an Intel

Core i5 − 4590 CPU 3.30 GHz with 8 GB RAM, and the

algorithms are compiled by Matlab under Windows 7. Apart

from evaluating the travel time f shown in (1), the solution

quality of each algorithm is also quantified by

q =
f

fa
, (19)

where fa is the sum of all the edge weights of an MCA

of the weighted directed customer-vehicle graph Gd. Since

fa ≤ fo, from Proposition 1 where fo is the maximal travel

time of an optimal solution, the value of the ratio q closer

to 1 means a better quality of the solution.

The algorithms are first tested on the traveling sales-

man problem with precedence constraints where 40 target

locations are subject to the precedence constraints shown

in Fig. 5 which is simplified from Fig. 11 in [18]. Ten

instances of the initial positions of the targets and the

vehicle are randomly generated in a square area with the

edge length 103m. For each instance, 20 trials of the GAs

are performed to eliminate their randomness. The q of the

proposed algorithms and the average q of the GAs on each

instance, and the corresponding average computation time

TABLE III. The average travel time (s) on 10 scenarios,

resulting from the algorithms (A), for the vehicles to deliver

packages to 40 customer locations subject to the precedence

constraints shown in Fig. 5 under different operation ranges

L of the drone and vd/vt = 1.

P
P

P
P
PP

A
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 15134 14628 14490 14192 14258 14243

NIA 16580 15973 15897 15793 15786 15759

MMA 14818 14207 13950 13883 13864 13862

SMMA 14596 14016 13725 13633 13619 13611

TABLE IV. The corresponding average solution quality

q of the algorithms (A) on 10 scenarios for employing the

vehicles to deliver packages to 40 customer locations subject

to the precedence constraints shown in Fig. 5 under different

operation ranges L of the drone and vd/vt = 1.

P
P

P
P
PPA

L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 2.4552 2.4462 2.4227 2.3721 2.3821 2.3795

NIA 2.6909 2.6738 2.6617 2.6442 2.6432 2.6385

MMA 2.4049 2.3726 2.3304 2.3195 2.3164 2.3160

SMMA 2.3682 2.3393 2.2911 2.2764 2.2742 2.2728
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Fig. 6. Box plots of the travel times (s) on 10 scenarios,

resulting from the algorithms, for the vehicles to deliver

packages to 40 customer locations subject to the precedence

constraints shown in Fig. 5 under different operation ranges

L of the drone and vd/vt = 1.

are shown in Table I and Table II respectively. First, GA is

better than GA02 since its q values of every instance shown

in Table I are smaller than that of GA02. Second, GA is

better than NIA as most of its q are smaller than that of

NIA, and so does MMA to NIA. Finally, SMMA is the best

algorithm among all the algorithms as it achieves the smallest

q for most of the instances in Table I. Table II shows that

the computation time of SMMA is a little bit longer than

those of MMA and NIA. However, the computation time is

relatively short compared with those of the GAs.

The designed algorithms are then tested on the task
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Fig. 7. Box plots of the corresponding solution quality q of

the algorithms on 10 scenarios for employing the vehicles

to deliver packages to 40 customer locations subject to

the precedence constraints shown in Fig. 5 under different

operation ranges L of the drone and vd/vt = 1.

assignment problem PCHDP where 40 customer vertices are

subject to the constraints shown in Fig. 5. Due to the better

performance of GA over GA02, GA is used to compare the

performance of the proposed algorithms. Ten scenarios of

the initial positions of the customers are randomly generated

in a square area with length L0 = 103m, and there are 121
stopping point vertices evenly distributed in the area. The

drone and the truck initially located at the origin are first

assumed to travel with the unit speed. For each scenario,

we test the algorithms’ performances when increasing the

drone’s maximum fly distance L. The average travel time to

deliver packages to all the customers and the corresponding

average q of the algorithms on the scenarios are shown

in Table III and Table IV respectively. For the drone to

deliver packages to all the customers while satisfying the

precedence constraints, Table III first shows that the average

travel time resulting from each algorithm decreases with the

increase of the drone’s operation range L. It is reasonable

as the drone generally has more viable deployment stopping

point vertices for serving each customer when increasing its

operation range, which leads to more efficient paths for the

drone to travel between two customers with the cooperation

of the truck. The average q of the algorithms shown in Table

IV always has the same changing trend as the average travel

time when increasing the drone’s maximum fly distance.

This might be due to the smaller difference between the real

travel time t(cr, cj) and the t⋆(cr, cj) shown in (11) when

increasing the drone’s operation range. For every instance

shown in Table IV, GA has the smaller q compared with

NIA, but it has the largest q compared with MMA and

SMMA, which verifies the satisfying performance of MMA

and SMMA. Table IV also shows that SMMA has the better

performance than MMA. That is because SMMA employs

TABLE V. The average travel time (s) on 10 scenarios,

resulting from the algorithms (A), for the vehicles to deliver

packages to 120 customer locations under different operation

ranges L of the drone and vd/vt = 1, where every customer

has only one precedence constraint requiring it to be served

either before or after another customer.

P
P

P
P
PP

A
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 48059 46052 46074 45089 44822 45048

NIA 22733 20644 20778 20730 20732 20724

MMA 18665 17373 17320 17308 17307 17304

SMMA 18188 17182 17104 17095 17099 17097

TABLE VI. The corresponding average solution quality

q of the algorithms (A) on 10 scenarios for employing the

vehicles to deliver packages to 120 customer locations under

different operation ranges L of the drone and vd/vt = 1,

where every customer has only one precedence constraint

requiring it to be served either before or after another

customer.

P
P

P
P
PPA

L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 4.1413 3.9769 3.9763 3.8930 3.8714 3.8883

NIA 1.9590 1.7815 1.7938 1.7897 1.7899 1.7893

MMA 1.6068 1.4989 1.4944 1.4934 1.4933 1.4931

SMMA 1.5675 1.4834 1.4767 1.4760 1.4764 1.4762

the predictive strategy shown in (17) to determine the serving

sequence of each customer. The box plots of the travel times

for the vehicles to deliver packages to the 40 customers

and the box plots of the q of the algorithms on the ten

scenarios are shown in Fig. 6 and Fig. 7, respectively. First,

the box plots denoting the performance of GA and NIA

shown in Fig. 6 and Fig. 7 are comparatively taller than

that of MMA and SMMA where SMMA has the lowest

box plots, which shows the better performance of MMA and

SMMA as those illustrated in Table III and Table IV. Second,

when the drone’s operation range L increases, the box plots

of the travel times resulting from the algorithms shown in

Fig. 6 generally downgrade, which shows that the travel time

resulting from each algorithm generally decreases with the

increase of the drone’s operation range L. Third, Fig. 7 shows

that the box plots of the corresponding solution quality q of

MMA and SMMA do not vary much, and are comparatively

shorter compared with those of the other algorithms, which

suggests that MMA and SMMA are more robust than the

other algorithms.

To further test the performance of the algorithms, simula-

tion experiments on the problem with 120 customers where

every customer has only one precedence constraint requiring

it to be served either before or after another customer as

in the Dial-a-Ride Problem [21]. For the simulation, 10
scenarios of the customers’ initial locations and destinations

are randomly generated in the same square area with the

same number of stopping point vertices. The drone and the

truck are also assumed to travel with the unit speed. For

each scenario, we test the algorithms’ performances when

increasing the drone’s operation range L. The average time

to serve all the customers and the corresponding average q
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Fig. 8. Box plots of the travel times (s) on 10 scenarios,

resulting from the algorithms, for the vehicles to deliver

packages to 120 customer locations under different operation

ranges L of the drone and vd/vt = 1.0, where every

customer has only one precedence constraint requiring it to

be served either before or after another customer.

of the algorithms on the scenarios are shown in Table V

and Table VI respectively. For every algorithm, Table V first

shows that the average travel time for the drone to deliver

packages to all the customers generally decreases when

increasing the drone’s operation range, which is the same

compared with Table III. Table V also shows that the three

proposed algorithms have a better performance compared

with the GA where their average q values are within twice

of the optimal as shown in Table VI. That again verifies the

satisfying performance of MMA and SMMA. The box plots

of the travel times for the vehicles to deliver packages to the

120 customers and the box plots of the q of the algorithms on

the ten scenarios are shown in Fig. 8 and Fig. 9, respectively.

First, the box plots denoting the performance of GA shown

in Fig. 8 and Fig. 9 are comparatively taller than that of

NIA, MMA and SMMA where SMMA has the lowest box

plots, which shows the better performance of NIA, MMA

and SMMA as those illustrated in Table V and Table VI.

Second, when the drone’s operation range L increases, the

box plots of the travel times resulting from the algorithms

shown in Fig. 8 generally downgrade, which is the same

as shown in Fig. 6. Third, Fig. 9 shows that the box plots

of the corresponding solution quality q of NIA, MMA and

SMMA do not vary much, and are comparatively shorter

compared with those of GA, which suggests that NIA, MMA

and SMMA are more robust than GA for these experiments

with a large problem size.

Finally, for the same environment setup for the 120
customers, we investigate the algorithms’ performances when

increasing both the drone’s fly speed vd and maximum fly

distance L. The truck is assumed to travel with the unit speed

as vt = 1 while the drone’s speed is increase to vd/vt = 1.4.
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Fig. 9. Box plots of the corresponding solution quality q of

the algorithms on 10 scenarios for employing the vehicles to

deliver packages to 120 customer locations under different

operation ranges L of the drone and vd/vt = 1.0, where

every customer has only one precedence constraint requiring

it to be served either before or after another customer.

TABLE VII. The average travel time (s) on 10 scenarios,

resulting from the algorithms (A), for the vehicles to deliver

packages to 120 customer locations under different operation

ranges L of the drone and vd/vt = 1.4, where every

customer has only one precedence constraint requiring it to

be served either before or after another customer.

P
P

P
P
PP

A
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 47335 41759 38672 36115 35315 34946

NIA 21017 17678 17199 16999 16946 16863

MMA 16497 14763 14464 14381 14359 14344

SMMA 16400 14495 14116 14065 14066 14053

The average time to deliver packages to all the customers

and the corresponding average q of the algorithms on the 10
scenarios are shown in Table VII and Table VIII respectively.

For each algorithm, the average travel time shown in Table

VII also decreases with the increase of the drone’s operation

range L. Table VII also shows that NIA, MMA and SMMA

have better performance compared with GA, and Table VIII

shows that the average q values of MMA and SMMA are

still within twice of the optimal, which verifies the superior

performance of MMA and SMMA.

Table V and Table VII show that the drone’s average travel

time to serve all the customers decreases more rapidly when

increasing the drone’s speed in comparison with increasing

its maximum fly distance. That is because the time for

the drone to travel between two customers decreases when

increasing its speed, which directly leads to the decrease of

the total time to serve all the customers. However, the drone’s

speed cannot be increased too much to ensure safety when

delivering the parcels in the city. Meanwhile, increasing the

drone’s operation range might not necessarily decrease its
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TABLE VIII. The corresponding average solution quality

q of the algorithms (A) on 10 scenarios for employing the

vehicles to deliver packages to 120 customer locations under

different operation ranges L of the drone and vd/vt = 1.4,

where every customer has only one precedence constraint

requiring it to be served either before or after another

customer.

P
P
P

P
PPA

L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 5.5826 4.9611 4.6161 4.3278 4.2482 4.2150

NIA 2.4792 2.0988 2.0518 2.0346 2.0360 2.0320

MMA 1.9444 1.7527 1.7256 1.7210 1.7251 1.7285

SMMA 1.9314 1.7207 1.6840 1.6832 1.6858 1.6934

TABLE IX. The corresponding average computation time

(s) for the algorithms to plan the paths for the vehicles to

deliver packages to 120 customer locations under different

operation ranges L of the drone and vd/vt = 1.4, where

every customer has only one precedence constraint requiring

it to be served either before or after another customer.

P
P

P
P
PPA

L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 128.88 128.85 128.81 128.50 130.62 131.75

NIA 0.27 0.31 0.31 0.30 0.31 0.32

MMA 0.85 0.84 0.85 0.86 0.87 0.85

SMMA 37.63 37.55 37.36 37.63 37.42 37.60

total travel time as the drone needs to return to the truck to be

recharged with parcel after serving each customer. In Table

IX, we also show the corresponding average computation

time for the algorithms to achieve the solutions shown in

Table VII. Table IX shows that the average computation

time of GA are far larger than those of NIA, MMA and

SMMA where the SMMA is most time-consuming among

the proposed algorithms as indicated in Section IV-C. Con-

cluding from the above analysis, MMA and SMMA are more

efficient than NIA and GA in every instance while SMMA

performs better than MMA. However, SMMA needs more

computation time than MMA. Then, it is suggested to use

MMA for planning the routes for the vehicles online as it can

achieve the satisfying solution under short computation time

while to use SMMA if more computation time is allowed as

it offers a better solution. The box plots of the travel times

for the vehicles to deliver packages to the 120 customers and

the box plots of the q of the algorithms on the ten scenarios

are shown in Fig. 10 and Fig. 11, which show the same

changing trend as illustrated in Fig. 8 and Fig. 9.

Fig. 12 and Fig. 13 present a realistic package delivery

scenario on a Google street map of a residential neigh-

bourhood in Groningen, The Netherlands. The neighborhood

considered is a residential area outside the busy city center,

but not too far away from the city’s high-speed ring road.

So it is an ideal test area for the possible coordination

between the truck and drone. For each of the drone’s landing

on a delivery/customer point or each of its loading of one

package on the truck, we assume a landing time of 30s is

needed. We assume the speeds of the drone and the truck

are vd = 30 km/hr and vt = 40 km/hr, respectively. Fig.

12 shows the paths for the truck and the drone to visit 20
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Fig. 10. Box plots of the travel times (s) on 10 scenarios,

resulting from the algorithms, for the vehicles to deliver

packages to 120 customer locations under different operation

ranges L of the drone and vd/vt = 1.4, where every

customer has only one precedence constraint requiring it to

be served either before or after another customer.
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Fig. 11. Box plots of the corresponding solution quality q of

the algorithms on 10 scenarios for employing the vehicles to

deliver packages to 120 customer locations under different

operation ranges L of the drone and vd/vt = 1.4, where

every customer has only one precedence constraint requiring

it to be served either before or after another customer.

delivery points where the visiting of the target locations

respects the precedence constraints shown in Fig. 5, and

L = 250m. The total time for the drone and the truck to visit

all the delivery points is 1849.6s, which is approximately a

reduction of 10% in the time to serve all the customers by

using a single delivery truck. Fig. 13 shows the paths for the

truck and the drone to visit the 20 delivery points where the

drone’s maximum flight range is increased to L = 300m.
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Fig. 12. The paths resulting from SMMA for the truck and

the drone to deliver packages to 20 customers subject to the

precedence constraints shown in Fig. 5 where L = 250m

and vd = 30 km/hr and vt = 40 km/hr. The total travel time

of the drone is 1849.6s.

 

Fig. 13. The paths resulting from SMMA for the truck and

the drone to deliver packages to 20 customers subject to the

precedence constraints shown in Fig. 5 where L = 300m

and vd = 30 km/hr and vt = 40 km/hr. The total travel time

of the drone is 1775.9s.

The total time for the drone and the truck to visit all the

delivery points is 1775.9s. It is worth mentioning that the

time to deliver packages to the 20 customers decreases in

the two scenarios even though the sequences for serving the

customers are the same, which is due to the increase of the

drone’s operation range.

VI. CONCLUSION

In this paper, we have investigated the precedence-

constrained package delivery problem where one drone co-

ordinates with one truck to efficiently deliver parcels to a set

of customers while satisfying the precedence constraints on

visiting the customers. The problem has been shown to be

NP-hard and a lower bound on the minimum time to serve all

the customers has been found. Integrated with a topological

sorting technique, we have designed several heuristic task

assignment algorithms. Numerical experiments have shown

that the proposed algorithms can quickly obtain satisfy-

ing solutions to the precedence-constrained task assignment

problem compared with the existing genetic algorithm. The

proposed algorithms will be extended to the precedence-

constrained package delivery with one truck coordinating

with multiple drones. Another research direction is to in-

vestigate the precedence-constrained package delivery with

one truck coordinating with one drone where the drone can

deliver multiple packages in one run.
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