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Abstract

Communication in all-optical networks requires

novel routing paradigms. The high bandwidth

of the optic fiber is utilized through wavelength-

division multiplexing: a single physical optical

link can carry several logical signals, provided

that they are transmitted on different wave-

lengths. We study the problem of routing a set

of requests (each of which is a pair of nodes to

be connected by a path) on sparse networks us-

ing a limited number of wavelengths, ensuring

that different paths using the same wavelength

never use the same physical link.

The constraints on the selection of paths and

wavelengths depend on the type of photonic

switches used in the network. We present efli-

cient routing techniques for the two types of

photonic switches that dominate current re-

search in all-optical networks. Our results es-
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tablish a connection between the expansion of

a network and the number of wavelengths re-

quired for routing on it.

1. Introduction

The subject of this paper is the design of al-

gorithms for an emerging generation of net-

works known as all-optical networks [12, 15,

16, 17, 23, 27]. These networks promise data

transmission rates several orders of magnitudes

higher than current networks. The key to high

speeds in these networks is to maintain the sig-

nal in optical form, thereby avoiding the pro-

hibitive overhead of conversion to and from the

electrical form. (Traditional networks use the

electrical form to switch signals along routes,

and to restore signal strength. Signals can

be modulated electronically at a maximum bit

rate of the order of 10 Gbps, while the optical

fiber bandwidth is about 10 THz [28]). The

high bandwidth of the optic fiber is utilized

through wavelength- division multiplexing two

signals connecting different source-destination

pairs may share a link, provided they are trans-

mitted on carriers having different frequencies

(i.e., wavelengths) of light.

The major applications for such networks

are in video conferencing, scientific visual-

ization and real-time medical imaging, high-

speed supercomputing and distributed comput-

ing [16, 27, 30]. The books by Green [27] and

by McAulay [21] give a comprehensive overview

of the physical theory and applications of this
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technology. What are the algorithmic issues

concerning routing in such networks? The an-

swer depends on the exact physical mechanism

used to switch signals along routes through the

network. Two types of photonic switching de-

vices dominate current research. Both appear

likely to be used in networks of the future, de-

pending on the cost, scale and applications in-

volved. Our goal is to devise algorithms for

both technologies, and to understand the diffi-

culties in devising algorithms for each.

1.1. Two Models

We model the network as an undirected graph.

A request consists of a pair of nodes, an in-

stance consists of a set of requests. For the

bulk of this paper, the requests in the instance

are specified all at once; however, in Section 4

we indicate why some of our algorithms work in

the dgnamic setting in which requests appear

and disappear.

A solution consists of a setting for the

switches in the network, and an assignment of

a wavelength to each request. A solution has to

guarantee that there is a path between the pair

of nodes in each request, and that no edge will

carry two different signals on the same wave-

length. For our algorithmic purposes, a wave-

length will be an integer in the interval [1, w]

for some positive integer w. Generally, we wish

to minimize the quantity w, since the cost of

switching and amplification devices depends on

the number of wavelengths they handle. We

will also consider variants in which the number

of available wavelengths is fixed, necessitating

communication in a sequence of rounds each of

which routes some of the requests.

Clearly, if an intermediate node could change

the wavelength on which a signal is trans-

mitted, routing an instance using the mini-

mum number of wavelength would be equiv-

alent to the problem of integer multicommod-

ity flow. Unfortunately, current (or any fore-

seeable) technologies cannot implement such a

photonic switch. This necessitates the study

of novel routing techniques that can be imple-

mented with less powerful but feasible switches.

The first type of switch we consider is the

generalized switch based on accousto-optic fil-

ters [14]. Here, signals for different requests

may travel on an edge into a node v (on dif-

ferent wavelengths, of course) and then exit

v along different edges. Thus, the photonic

switch can differentiate between several wave-

lengths coming in along an edge and direct each

of them to a different output of the switch. The

only constraint on the solution is that no two

paths sharing any edge have the same wave-

length.

The elementary switch cannot direct differ-

ent frequencies coming into a node along differ-

ent outgoing edges [7, 19] 1. It is considerably

easier (than the generalized switch) to build,

is faster to switch, and it can currently carry

a larger number of different wavelengths. It is

simplest to think of each node as partitioning

its incident edges into subsets; within a subset,

all signals flowing on any edge flood all other

edges in that subset, but the signals on different

subsets remain insulated from each other. Thus

a signal may flood edges not on its planned

path, blocking the use of its wavelength on

these edges as well. Formally, a configuration

of the network is a partition of its edges into

subsets, with the following constraints: (i) each

request is assigned to one subset, and there is

a path in that subset connecting the endpoints

of that request; (ii) no more than w requests

are assigned to any subset. Thus each subset

corresponds to a region flooded by any signal

routed through that region, and constraint (ii)

above ensures that the number of wavelengths

is within the permissible bounds.

The actual process of setting up switches

and routes (as well as wavelength assignment)

in networks employing either type of switch

is done using an electronic backbone control

network. The reader may wonder at the use

of a relatively slow (electronic) network to set

up these high-speed connections. In fact, the

major applications for such networks require

connections that last for relatively long peri-

1The terms “elementary” and “generalized” are bor-

rowed from [1]; a large set of names prevails in the com-

mtications and physics literature.
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ods once set up; thus the initial overhead is

acceptable as long as sustained throughput at

high data rates is subsequently available. Con-

sequently, in this paper we will generally view

the algorithmic process as central rather than

distributed. However, where appropriate, we

will point out how our algorithms can be imple-

mented with local control and/or can deal with

dynamic request sequences (even though this

does not appear to be a primary focus of cur-

rent algorithmic research in this area). Eventu-

ally we imagine that centralized algorithms will

be implemented in an approximate, distributed

form (much as the internet implements an ap-

proximation to a shortest path algorithm, in

a distributed fashion). The following facts are

easy to verify, and may strengthen the reader’s

intuition about the two types of switches. They

tell us that generalized switches are at least as

powerful as elementary switches, and may be

far more powerful.

Fact 1: Given a routing of an instance on

a network with elementary switches, we can

route this instance on a network with the same

topology but using generalized switches using

the same number of wavelengths.

Fact 2: There is an n-node network and a per-

mutation that requires Q(Tz) wavelengths using

elementary switches, but 0(1) wavelengths suf-

fice using generalized switches.

1.2. Related Previous Work

Barry and Humblet [9, 8], Pieris and Sasaki [24,

25] and Pankaj [22] have given lower bounds

on the number of wavelengths required for per-

mutation routing in any network, independent

of topology, with a given number of general-

ized switches. Pankaj [22] went on to consider

lower and upper bounds for a few specific net-

works; for example, he gives an upper bound of

0(log2n) wavelengths for permutation routing

on the hypercube. In addition, a number of pa-

pers in the communications literature [7, 15, 28]

have formulated the routing problem for both

elementary and generalized switches as com-

binatorial optimization problems. Aggarwal,

Bar-Noy, Coppersmith, Ramaswami, Schieber

and Sudan [1] gave bounds on the number of

switches required without taking into account

the network topology, as a function of the num-

ber of wavelengths available. In addition, they

proved results on routing in non-blocking per-

mutation networks using generalized switches.

Other related work includes algorithms for in-

teger multicommodity flow [18, 20, 26] and on-

line call assignment [3, 4, 5, 6]. However, there

is substantial evidence (see Theorem 17 of [1],

for instance) that our problem is considerably

harder than integer multicommodity flow, due

to the severe additional restrictions imposed by

the path-coloring requirements.

1.3. Our Results

In this paper we address the main problem left

open by the work in [1]: that of obtaining prov-

ably good routing algorithms for arbitrary net-

works. We focus on sparse, bounded degree

networks. We measure the quality of routing

algorithms by the number of wavelengths and

rounds used for routing an arbitrary k-relation:

an instance in which each node is a source and

destination of no more than k messages.

We show that the number of wavelengths re-

quired in the worst-case is closely related to

the edge- expansion of the graph: the minimum,

over all subsets S of vertices, ISI < n/2, of the

ratio of the number of edges leaving S to the

size of S. The lower bound is given in Sec-

tion 2.1, and the upper bound for generalized

switches is in Section 2.2. We also show that

our algorithm has a natural variant that works

for elementary switches, but with an increase in

the number of rounds; to our knowledge, these

are the first provably good results for elemen-

tary switches.

We then turn to a number of specific topolo-

gies including trees, cycles and meshes of var-

ious dimensions, exploiting the properties of

these graphs to obtain better upper bounds in

both models. Trees, cycles and meshes arise

often in practice. Some researchers [30] have

proposed embedding a logical mesh in a physi-

cal network (a one-time, possibly computation-

ally intensive task) and then routinely perform-
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ing the routing on the logical mesh to exploit

its regularity. Meshes of various dimensions

are also used in parallel computers, where all-

optical networks have been proposed [16]. Fi-

nally, in Section 4, we indicate how our algo-

rithms for arbitrary graphs work without mod-

ification in a dynamic setting in which requests

appear and disappear over time.

a distinct constant-degree expander having B

nodes. Each node in the expander connected to

tirequests k connections to the corresponding

node in the expander connected to VB _,. It is

easy to verify now that the edge-expansion of

this graph is /3, and that the route for each of

the 0(kB2 ) requests shares an edge with the

route for every other request. ❑

2. Routing With General- 2.2. Arbitrary Bounded Degree

ized Switches Graphs

2.1. Lower Bound

We give a lower bound on the number of wave-

lengths for routing in an arbitrary graph G,

in terms of its edge-expansion P(G), and the

number of rounds. Note that this lower bound

applies a fo?’tie?’z to networks with elementary

switches.

Theorem 1: For every ~ <1 and k, there is

a graph G with edge-expansion P(G) = /3, and

a k-relation %?, such that routing 1? on a net-

work with topology G and generalized switches

requires CI( k/(f12 )) wavelengths.

Proof: The proof uses the mesh-like graph

in Figure 1, adapted from [1]. However, in

Figure 1: The gTaph foT the loweT bound.

We now give an algorithm for routing with gen-

eralized switches in arbitrary bounded-degree

graphs, and analyze its performance on an arbi-

trary k-relation. We do so in the general setting

in which the number of available wavelengths is

traded off for the number of rounds of routing.

Our solution for general graphs is based on

a random walk technique. A ?’ando?n walk on

the undirected graph G = (V, E) is a Markov

chain {Xt } ~ V associated to a particle that

moves from vertex to vertex according to the

following rule: the probability of a transition

from vertex i, of degree O!i, to vertex j is I/cZa

if {i, j} E E, and O otherwise. (For technical

reasons we assume that the particle actually re-

mains where it is with probability y 1/2 at each

step, and moves with probability y 1/2 only. This

technicality is ignored for the remainder of the

paper.) Let Q denote the transition probability

matrix of this random walk on G, and assume

that the absolute value of all the eigenvalues

of Q other than the largest one is bounded by

A. (All eigenvalues of Q are real.) The r4ation-

ary distribution of the random walk, denoted

T, (or T(G)) is given by Tv = dV/(2].El). A

trajectory W of length r is a sequence of ver-

tices [wo, Wl, . . . . W7] such that (wt, Wt+l) c E.

The Markov chain {Xt} induces a probability

distribution on trajectories in the obvious way.

Algorithm:

Input: An n-node bounded degree net-

work G = (V, E); a k-relation ‘R =

our case, the graph has B = [1 /@l rows and
{(al, Ill), . . . . (at, bl)}.

columns. Further, we augment it by connect- Output: Routing of the relation 7? on the
ing each of the Tj and t,by a single edge to network G.
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1. Le\ L = –3*.

2. For each (aa, b,) G R

(a)

(b)

(c)

(d)

Choose a node r~ c V uniformly at

random.

Choose a trajectory W“ (resp. W/’)

of length L from ai to Ti (resp. ba to

r~ ) according to the distribution on

trajectories, conditioned on the end-

points being a, and Ti (resp. bi and

r;).

Connect ai to bi by the path Pi de-

fined by W( followed by W:.

Use a wavelength that is not used

by any other transmission sharing an

edge with the path Pi.

Analysis of the Algorithm:

Theorem 2: With high probability the al-

gorithm uses O(kL2 ) wavelengths.

Sketch of the proof: Let Q$~ denote the

probability that a random walk is at vertex w

at step ~ given that it started at v. It is known

that

Q:i = ~(w)+ O(J’ /-). (1)

Following [13], our analysis of the algorithm

relies heavily on the fact that the trajectories

W{ (resp. W:) have the same distribution

(up to negligible factors) as independent ran-

dom random walks of length L from ai (resp.

hi). The difference is that we pick the end-

point of the trajectory using ~ (the stationary

probability) instead of Q~~j. However, since
L ~ .3=

Io.g A Y

lQ$i - ~(w)l= 0((~n)-2),

for all v, w, and the difference is negligible.

(See [13] for a complete proof.)

Since the paths are generated by random

walks, and the starting points of the paths are

chosen by the stationary distribution (up to a

constant factor), the expected number of paths

traversing an edge is bounded by O(kL), and

the expected number of different paths sharing

an edge with the path of a given message is

bounded by 0(kL2/T). Thus, using the Cher-

noff bound we prove that with high probability

there is no path that shared edges with more

than O(kL2 ) other paths in any iteration. D

To relate the performance of the algorithm

to the lower bound in Theorem 1, we use

the relation between the edge-expansion @ of

a bounded degree graph and the value of its

second largest eigenvalue in absolute value A

[2, 29]:

1– O(p-1)< /! <1 –0(/3-2).

Applying this relation, for graphs for which

the left hand side is equality

kL2 = k(logn)2(log J)2 ~ (k~2)(logn)2,

so that the number of wavelengths used by

the algorithm is within a polylog factor of the

optimal number. For other graphs the num-

ber of wavelengths used is at most the square

of the optimum. In the next two subsections

we present better solutions for some of these

graphs.

2.3. Trees and Rings

Two important topologies in practice are trees

and rings. We study these graphs here, as well

as the related tTee of rings found widely in prac-

tice.

Theorem 3: Given any tree, there is a de-

terministic algorithm that routes any set of

requests on that tree using no more than

(3/2)woPt wavelengths, where wOPt is the min-

imum possible number of wavelengths for that

set of requests.

Comments: Note that our algorithm is prov-

ably good on trees of arbitrary degree and for

every set of requests, whether or not it a k-

relation for fixed k. For trees (as well as rings),

wOPt may be linear in n; in both cases, our re-

sults can be “slimmed down” to suit a given
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bound on w by randomly partitioning the re-

quests into (an easily computed number of)

rounds. This is nearly optimal; details are

omitted.

Proof: We only give a very brief outline

here. The idea is to reduce the problem of re-

quests on a tree to a derived set of requests on

the star graph (a tree consisting of one central
node to which each of the remaining nodes is

connected by a “spoke”).

Once we are down to the star graph, we note

that assigning wavelengths to the requests cor-

responds to edge-coloring a Multigraph, each

node of which corresponds to a spoke in the

star. This can be done with at most 3d/2

colors (and no better in general) [11], where

d is the maximum node degree in the Multi-

graph. Finally, it turns out that in the reduc-

tion to Multigraph edge-coloring, d remains a

lower bound on Wwt. •l

For rings, we invoke slightly different tech-

niques to obtain:

Theorem 4: There is a polynomial-time al-

gorithm that, for any set of requests on a ring,

uses no more than 2wwt wavelengths, where
Wwt is the minimum possible number of wave-

lengths for that set of requests.

The tree of rings is a network constructed

as follows: start from a tree, and replace each

node of the tree by a cycle. 13ach edge corre-

sponds to the corresponding cycles sharing a

node. The tree of rings is a common intercon-

nection pattern in local-area networks: there

is a main ring, with several sub-rings dangling

from it, sub-subrings from the sub-rings, and

so on. By combining the algorithms of Theo-

rems 3 and 4, we can give an algorithm that is

within a factor of 3 of the optimal number of

wavelengths on any tree of rings.

2.4. d-Dimensional Meshes

Let itfd denote an n node d dimension mesh,

i.e. the set of vertices of Md is:

{a= (a,, . . . . Ifd
fJd)[l<ai~~ , i~l, . . .. d}.

and two vertices are connected by an edge iff

their Hamming distance is one.

Theorem 5: There is a probabilistic algo-

rithm that routes any k-relation on Md and

with high probability y uses O(kdnl/d) wave-

lengths.

Proofi Let L(ti, i) denote the chain of ver-

tices in Md with all their coordinates other than

the ith coordinate equal to the coordinates of

ii, i.e.,

L(ti, i) = {(al, ....ag_l. z,ai+l, . . ..an )Il<m<n’id}.

We route a message from its origin to its des-

tination in 2d – 1 segments. The first d – 1

segments are random, the last d take the mes-

sage to its destination. The first segment

starts at the origin of the message. For i =

1 ,..., d – 11 if segment i, starts at node d, then

segment i connects node z to a random node

(a~, ...,a~-~,r,aa+~, . . . . ad), on L(d, i), where r

is chosen randomly and uniformly in the range

[1, . . . . nlld].

Let ii be the start point of segment 2d – i,

1=1 ,..., d, and assume that the d – i + 1 co-

ordinate in the destination of the message is

bi, then segment i connects node ii to node

(al, . . ..ai-~. b,, a,+~, . . ..ad) on L(a,i).

For the analysis of the number of wave-

lengths used by the algorithm we assume that

all messages that pass an edge in L(ti, i) must

use different wavelengths (although they may

use different edges of this chain).

To simplify the presentation we transform

the analysis to an acyclic directed network H

that consists of two degree nlld butterflies con-

nected back to back. The network H has 2d – 1

levels and nfd- l)ld nodes per level. Nodes at

levels i and 2d – i correspond to the chains

L(z, i) in Mm. A node in level i is connected to

the nlld nodes in level i+ 1 lying on chains that

can be reached by changing the corresponding

coordinate. Clearly the number of wavelengths

needed in the algorithm is bounded by the max-

imum number of messages that share vertices

with a given message when routed on the net-

work H.
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The routing starts with up to kn(d- lJ/~ mes-

sages per input of H. The probability that

when routing on H any message shares ver-

tices with more than 12kdnll~ other messages

is bounded by

❑

3. Routing With Elemen-

tary Switches

3.1. Arbitrary Bounded Degree

Graphs

Let G be an n node network with generalized

switches. Let G1 be a network with the same

topology as G but with elementary switches.

Clearly, given a routing of a k-relation on G in

one round using w wavelengths, one can route

the k-relation on G’ in w rounds using one

wavelength per round, simply by routing the

set of messages assigned to each wavelength in

a separate round.

When the assumption that the whole com-

munication request is known in advance is un-

realistic (see Section 4), we can use a proba-

bilistic algorithm that randomly assigns routes

to messages.

The idea is to adapt the algorithm of Sec-

tion 2.2, but to route a request in a round

with probability y l/(9kL2). As a result, the

expected number of other routes intersecting

a given route is 1/9. Consider a new graph

in which each route is represented by a node,

with an edge being present if the correspond-

ing routes intersect. An argument from random

graph theory can now be invoked to show that

every component of intersecting routes has size

O(log n) with high probability, so that O(log n)

wavelengths suilice. Details are omitted. Re-

call that J(G) is the second largest eigenvalue

in absolute value, of the network G:

Theorem 6: With high probability the al-

gorithm routes any k-relation in

0(h(logn)2(log J(G))2)

rounds, usings c log n wavelengths per round for

some constant c.

3.2. Routing on Meshes

Theorem 7: There is a probabilistic algo-

rithm that for any w < @ routes any

k-relation with high probability in 0(( & +

& )n log n rounds using O(w) wavelengths

per round.

Proof: If w < 24k we can partition the rout-

ing problem to O(k/w) sub-problems each of

routing a w-relation. Thus, it suffices to con-

sider the case w > 24k, so let ~ = ~m >

2. The algorithm has two phases. In the first

phase we match pairs of columns that have at

least f messages to route between them. In

the second phase we partition the columns into

sets of ~, and route all the remaining messages

between nodes in each of these sets. Let H be

a multi-graph on @ nodes; each node corre-

sponds to one column in the mesh. Let mij

be the number of messages from nodes in col-

umn i to nodes in column j of the mesh. Con-

nect node z to node j in H with lmj /(kf)J

edges. Since we are routing a k-relation, the

degree of a node in H is bounded by &k/k f =

@/f, and the edges of H can be colored with

(3/2) (fi/~) colors. In each round of the first

phase of the algorithm, using kf < w wave-

lengths, we route all the messages that corre-

spond to edges with a given color in H (these

form a matching). Since there are no more than

fi/2 such edges we can dedicate one row of

the mesh to all requests corresponding to one

edge of H. After (3/2) (@/j) rounds, no two

columns of the mesh have more than kf mes-

sages to route between them.

The second phase of the algorithm consists of

3@ilog n/ f = @log n/@i rounds. In each

round we randomly partition the 6 columns

into @/t sets of j columns each, dedicate to
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each set a row, and try route all the messages

between nodes in one set. Ifa set has no more

than w messages between nodes in its columns

then all messages are delivered, else we assume

tliat no message in that set has been delivered.

We say that a set is good at a given round if it

has fewer than w messages between the nodes

in its columns, so that successful transmission

ensues.

Assume that at round T columns i and j are

in the same set A. What is the probability

that this set is good at this round? Consider

the other f – 2 columns in that set. They were

chosen at random from among all sets of j – 2

columns that do not include columns i and j.

The expected number of messages in a random

set of (~ – 2) columns that do not include z and

j is bounded by k($ – 2)@~ < 2k(f –

2)2. Thus, with probability at least 1/2 the ~ –

2 other columns in A do not contribute more

than 4k($ – 2)2 messages, and the total number

of messages in A is bounded by 4k(f – 2)2 +

2k~(~ – 2) + kf < 6k~2 = w. Thus, with

probability at least 1/2 the set is good.

To show that all the messages are delivered

in O(A log n/f) rounds we need to show that

each pair of columns appears at least once in a

good set. The probability that two columns do

not share a good set in 3filog n/ f rounds in

bounded by

(@’(l - *)’fiW”/f = ~-i-xl).

Thus, with high probability all messages are

transmitted. ❑

Using a more complicated version of the

above technique we can obtain similar results

for meshes of higher dimensions. Details are

omitted.

4. Extensions

An important practical consideration is that of

routing when the requests are dynamic: there

is a sequence of time steps at each of which

we either have a new request or are told that

an existing request ceases to exist. Even in

the case of non-optical networks, algorithmic

work on this problem has been relatively re-

cent [3, 4, 5, 6], and haa taken the direction

of extending known work on ‘offline” multi-

commodity flow; however, there is substantial

evidence that adding wavelength constraints

makes the problem much harder than online

mult icommodit y flow.

Our offline algorithms for arbitrary graphs

in both switch models (Sections 2.2 and 3.1)

are randomized oblivious algorithms: a request

chooses its route independently of other re-

quests, and with high probability we do not use

too many wavelengths. We pause to observe a

very useful property of such algorithms: an ad-

versary may specify (before the execution of the

algorithm) a sequence of insertions and dele-

tions of requests, subject to the set of requests
being a k-relation at every point in time. Then,

the bound on wavelengths remains valid for

each step regardless of the adversary’s choices;

summing probabilities, we can tolerate this for

a request sequence of length polynomial in n.
All we require is that the adversary be obliv-

ious [10]: the sequence is prescribed without

knowledge of the actual random choices made

by the algorithm. We omit a detailed proof of

the following theorem.

Theorem 8: Let S be a sequence of re-

quest insertions and deletions of length nO(lJ,

such that the requests valid at any time

are a k-relation. Then, the number of

wavelengths used with generalized switches is

O(k(log n log A)2), where A is the second largest

eigenvalue (in absolute value) of the adjacency

matrix of the network.

An analogous result (building on Theclrem 6)

can be shown for elementary switches. The

main difference here is that even though the

number of wavelengths required at any time

remains O(log n), an inserted request may re-

quire “recoloring” currently established paths.

This happens when the path created for a

newly inserted request joins two components of

paths, both of which use the same wavelength.

Using the backwards analysis trick common in
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computational geometry, we can show that the

expected number of existing paths recolored at

an insertion is a (small) constant, and with high

probability is O(log n).

The major problem left open by our work is

to tighten the gap between the upper and lower

bounds for arbitrary graphs, particularly those

of poor expansion. This would be especially

interesting for elementary switches, for which

our current algorithmic tools (as well as lower

bounds) appear to be weak.
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