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Abstract—Computational Science and Engineering (CSE) 

projects are typically developed by multidisciplinary teams. Despite 

being part of the same project, each team manages its own workflows, 

using specific execution environments and data processing tools. 

Analyzing the data processed by all workflows globally is a core task 

in a CSE project. However, this analysis is hard because the data 

generated by these workflows are not integrated. In addition, since 

these workflows may take a long time to execute, data analysis needs 

to be done at runtime to reduce cost and time of the CSE project. A 

typical solution in scientific data analysis is to capture and relate the 

data in a provenance database while the workflows run, thus allowing 

for data analysis at runtime. However, the main problem is that such 

data capture competes with the running workflows, adding significant 

overhead to their execution. To mitigate this problem, we introduce in 

this paper a system called ProvLake, which adopts design principles 

for providing efficient distributed data capture from the workflows. 

While capturing the data, ProvLake logically integrates and ingests 

them into a provenance database ready for analyses at runtime. We 

validated ProvLake in a real use case in the O&G industry 

encompassing four workflows that process 5 TB datasets for a deep 

learning classifier. Compared with Komadu, the closest solution that 

meets our goals, our approach enables runtime multiworkflow data 

analysis with much smaller overhead, such as 0.1%. 

I. INTRODUCTION  

Computational Science and Engineering (CSE) projects are 
typically developed by multidisciplinary teams, each managing its 

own workflows with specific execution environments and data 

transformation tools. Each workflow processes (consuming and 

generating) large amounts of complex and heterogeneous data. 

Analyzing the data transformed by all workflows globally allows for 

understanding each data transformation by monitoring, debugging, 

and inspecting input and output datasets while workflows run, i.e., at 

runtime—which is necessary to reduce cost and time of the CSE 

project. However, this analysis is hard because the data generated by 

these workflows are not related to their data transformations, which 

also impacts such relationship determinations. 
To illustrate, consider an example of a CSE project, our case 

study (Figure 1), whose goal is to deliver deep learning models 

with high quality for an application in the Oil and Gas (O&G) 

industry. These four workflows generate data that are implicitly 

related through their data transformations but analyzing them 

globally after the data have been generated is complex because 

each data store is distributed with no information on the data 

transformations or how to relate the stores. There is no point in 

moving and integrating all data in a single repository for a 

global analysis. However, a complementing data representation 

on how the data in the data stores relate to each other 

contributes to a logically integrated multiworkflow data 

analysis, while keeping the autonomy of each data store. In this 

example (Figure 1), there is also the challenge of relating data 

from heterogeneous representations.  
A typical solution in scientific data analysis is to capture and 

relate the data in a provenance database at runtime [1]–[4]. 

Provenance data representation has a W3C recommendation, 

PROV [5], which has been used as a reference model to represent 

relationships between datasets and their data transformations in 

workflows. PROV-based databases follow a uniform way of 

representing “consumed” and “generated” data relationships 

between datasets and their data transformations, and other 

workflow data relationships. However, the main problem in 

runtime data capture is that it competes with the running 

workflows, adding significant overhead to their execution.  

One exception in low overhead provenance data capture is 
DfAnalyzer [4], however this approach limits its analysis to 

isolated workflows, characterizing a single-workflow data 

capture solution. Also, its data capture is limited to raw data in 

file systems, unlike the data stores in Figure 1. In typical CSE 

projects, the execution autonomy of each single-workflow 

participating in a multiworkflow prevents data capture to be 

managed by a single-workflow data capture solution.  

Some limitations in single-workflow data capture solutions 

are caused by the lack of: (i) capturing and relating data from 

autonomous workflow executions; (ii) globally identifying data 

to establish relationships from multiworkflow data (i.e., data 
processed by a multiworkflow) in multiple stores; and (iii) 

overhead management strategies for capturing provenance data 

from one workflow while capturing data from another 

workflow potentially running in parallel.  

The closest solution to meet our goals, Komadu is a distributed 

data capture solution that integrates provenance data in a 

multiworkflow execution [6,7]. Komadu captures provenance data 

generated by workflows running on multiple data processing 

 
Fig. 1. Four workflows using five data stores. 
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systems. Users can run forward and backward provenance queries, 

integrating provenance traces generated in the multiworkflow. 

Despite its originality in addressing the limitations of single-

workflow data capture, Komadu still suffers from capture 

overhead, which is particularly significant in CSE workflows, as 
shown in our experiments. In Komadu, performance issues related 

to runtime data capture are left for future work [8], since it 

integrates the provenance graphs for queries only after all 

workflow executions end. Finally, a limitation found in all related 

work [4], [6]–[12] is the lack of query support from workflow data 

stored in heterogeneous databases. 

To mitigate these problems, we propose a system called 

ProvLake, which adopts design principles for providing 

efficient distributed domain data capture in a multiworkflow 

execution. While capturing the data, ProvLake logically 

integrates and ingests them into a provenance database, named 

ProvLake Data View (PLView), ready for analyses at runtime. 
We validated ProvLake by implementation of the real use case in 

Figure 1 with four workflows that process 5 TB datasets for a deep 

learning classifier. We evaluate runtime data analysis exploring 

heterogeneous multiworkflow data represented in our provenance 

database. We compare ProvLake and Komadu with extensive 

experiments and demonstrate ProvLake’s overhead for runtime data 

capture to be negligible. 

The main contributions of this paper are the following: 

• Design principles for efficient distributed provenance data 

capture with low overhead. 

• A provenance data representation aware of multiworkflows 
and multiple stores, following W3C PROV [5] standards. 

• Lessons learned on efficiently keeping the overhead low 

while integrating captured provenance data. 

The rest of this paper is organized as follows. Section II 

presents multiworkflow data representation as provenance data. 

Section III introduces the ProvLake system with its design 

principles for introducing low overhead in provenance data 

capture.  Section IV has the experimental evaluation. Section V 

discusses related work and Section VI concludes. 

II. MULTIWORKFLOW DATA PROVENANCE 

A provenance database in a multiworkflow is the main 
source of runtime data analysis. Provenance data do not 

replicate data from the data stores. Instead, they contain 

lightweight references to the physical data residing in the data 

stores; strategic data values (e.g., quantities of interest, 

performance indicators, or any other relevant value) extracted 

from the datasets in the multiple stores; and the data 

relationships among these data, providing the logical data 

integration, thus forming a data view over the multiworkflow 

data using provenance. PLView data only contain relatively 

small but relevant data that can be used for runtime analysis and 

to guide deeper analyses in the data store contents. Moreover, 

we adopt a strategy to promote the cooperation of the teams to 
decide on which data are relevant to them to set the provenance 

granularity. We present the fundamentals of the PLView and a 

methodology to select strategic data for analysis in Sections 

II.A and II.B, respectively. 

A. PLView Provenance Data Representation 

To relate distributed data from multiworkflow executions, 

including workflow data stored in heterogeneous databases, the 

PLView adopts data provenance relationships following a well 

stablished W3C standard among provenance data systems: PROV 

[5]. The PLView is represented as a provenance data directed 

graph, where vertices are instances of PROV entity, activity, or 

agent and edges are data relationships between vertices [5]. 

Despite PROV’s high level representation, it can be specialized to 

represent workflow data relationships. The PLView represents 

data related through data transformations and relationships of data 
distributed in heterogeneous databases.   

A workflow is a composition of data transformations (e.g., 

programs, services, functions) that can consume and produce 

datasets, where an output dataset produced by a data transformation 

can be consumed as an input dataset by another data transformation, 

forming a coherent flow. A dataset can be modeled as a set of data 

elements, where each element is composed of data values. Each 

value has a data attribute, which gives the name and data type (e.g., 

integer, string, array). Theses attribute names are typically specific 

for the domain and familiar to the teams. Data transformation 

executions are modeled as instances of activities and data values 
as instances of entities. The “consumption” data relationship 

between a data transformation execution and its data values is 

modeled as the used PROV relationship, whereas the 

“generation” of data values by a data transformation execution is 

modeled as the generated PROV relationship. 

To improve data analysis, the PLView adds semantics for the 

attributes of the data values. The semantics refer to the meaning that 

the data value has in a data transformation. Possible values for 

attribute semantics are: a parameter or output value of a data 

transformation; data reference to a data element of a dataset 

physically residing in a data store; or data value extracted from a 

dataset in a data store. These fundamental concepts for workflow 
provenance are precisely defined in background work  [3], which we 

base on to extend to represent data references (i.e., data values that 

have attributes with semantics of data reference) to data 

relationships in heterogeneous databases. 

To help the logical integration between data that are physically 

distributed into multiple stores, the PLView creates the referred 

to represent data relationships between data references.  PLView 

goes one step further to relate data from heterogeneous databases. 

Examples of data references are file reference, document 

reference, relational tuple reference, graph vertex reference, RDF 

triple reference, etc.  Therefore, the data reference is 
complemented via the hadStore relationship to relate it to its data 

store (also a PROV entity), that analogously can be a File System, 

Document DBMS, Relational DBMS, Graph DBMS, Triple 

Store, etc.  

In addition, the PLView adds properties to vertices to improve 

runtime data analysis. For example, properties of data 

transformation executions are information about where they were 

physically executed, start time and end time and data references 

contain meaningful information about the data being referred, 

e.g., size of files in case of file reference.  

Altogether, the PLView is represented as a multiworkflow 

provenance data graph that provides a data view over the data in 



the CSE project while the multiworkflow executes. We illustrate 

the PLView’s provenance data representation in ProvLake’s 

website [13] and a concrete example is presented in Section IV. 

B. Methodology to Select Strategic Data for Analysis 

To select strategic data for multiworkflow data analysis, we 

present a methodology that helps users decide which data are 

relevant and should be captured. This decision is made by the teams 

participating in the CSE project and is guided by the provenance 

questions that the teams want to answer at runtime. The granularity 

of captured data impacts both quality of its analysis and overhead for 

its acquisition. Considering this trade-off, we propose a 
methodology, which extends a single-workflow methodology [14], 

to drive the teams to design the data that will form the PLView. 

Using prospective provenance data representation [2], the 

methodology aims at specifying only the relevant data that should be 

captured and related as retrospective provenance data [2]. The 

methodology is analogous to modeling a relational schema, with the 

relationships between relations, in a relational DBMS.  

The methodology phases are: (i) identification of data to be 

analyzed; (ii) specification of data capture points at workflow 

codes; and (iii) specification of attributes and relationships 

between data references. The phases are followed initially for 
each single-workflow, and then for the multiworkflow, 

globally. For phase (i), users anticipate interesting questions for 

data analysis within each workflow and the multiworkflow. 

Workflow modelers and data provenance specialist collaborate 

with the application developers, who are often computational 

scientists or engineers, and domain scientists to identify such 

questions, which will drive the identification of strategic data 

to be analyzed. By strategic we mean the input and output data 

values that are of high interest and should be captured. For 

phase (ii), the developers and workflow modelers identify, in 

the workflow code, all data transformations and their strategic 

input and output data anticipated in phase (i). The result of this 
phase drives the insertion of data capture calls in the 

corresponding workflow code. Finally, for phase (iii), they 

specify the semantics of data captured in the workflows, 

particularly attributes that are data references and how they are 

related to form the relationships between data references, 

similarly to what is done when designing join attributes in a 

relational schema. 

All three phases are followed for each workflow, resulting in 

a design specification that represents the prospective 

provenance data of all data transformations for each workflow. 

Then, to form the multiworkflow provenance database, the 
teams collaborate, working in phases (i) and (ii), to specify 

(prospectively) the relationships between provenance data 

graphs of the single-workflows. For each pair of workflows, the 

teams decide on new attributes, the provenance data 

relationships between workflows, and data reference 

relationships between workflows for phase (iii). The result is 

the same prospective provenance specification, but with these 

added attributes and relationships. 

The notion of “strategic data” may change over time. Thus, the 

methodology is iterative, and workflows’ specifications can 

suffer adjustments during a CSE project’s timeline as new data 

become of interest. Finally, after the multiworkflow specification 

using prospective provenance data, ProvLake captures 

retrospective provenance data as the multiworkflow executes. 

III. PROVLAKE ARCHITECTURE  

This section presents ProvLake’s architecture, beginning with an 

overview and design principles, then details of each component. 

A. Overview and Design Principles 

CSE users need to analyze multiworkflow data at runtime but 

cannot afford high computational overhead on their running 

workflows. Thus, ProvLake architectural design is focused on 

attaining low runtime data capture overhead.  

ProvLake has a microservices architecture composed of three 

services (ProvCapturer, ProvManager, and PolyProvQueryEngine), 

a lightweight ProvLake library, a messaging system, and the 

PLView (Figure 2). These components capture data, transform them 

to the provenance database representation, insert them into the 
database, and help runtime data analysis through query submissions. 

We implement ProvLake following these main principles: 

 (i) Lightweight library. ProvLake provides a lightweight 

library to be imported into the workflows (clients), which adds 

little code for instrumentation; thus, avoiding significant 

pollution in the original workflows’ code. The library only 

contains simple methods to capture input and output data values, 

exactly as they are in order to take advantage of cached data 

during capture (in-situ) and leave to the server the management 

of transformation of workflow data into provenance data, 

provenance-specific relationships, semantics, parallel insertions 
in the database, and other more heavyweight operations. 

Moreover, the server runs in a different address space of the 

running workflows, following in-transit strategies [15], 

contributing to avoid contention between clients and server. 

Additionally, to increase isolation between clients and server, 

ProvLake server components are suggested to be deployed on a 

separate hardware from where the workflows run. For instance, 

in an HPC cluster machine, ProvLake server runs on a node 

whereas the workflows run on the remainder nodes. 

(ii) Asynchronicity. The communication between clients and 

server during execution of the data transformations is 

asynchronous. That is, requests are non-blocking and return 
almost instantaneously with simple “ACK” messages to clients.  

(iii) Work queues. Clients do not communicate to server at 

each data capture, but they simply enqueue capture calls, which 

is a fast and local operation. When the queue reaches a certain 

limit or time constraint (both adjustable), the capture requests are 

 
Fig. 2. Architectural components of ProvLake. 
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sent in a batch to the server. This reduces network traffic as the 

clients do fewer but larger requests. 

In addition to these design principles, which are the main ones 

for keeping low overhead added to the workflows, other strategies 

collaborate to the overall server performance. The server services 
also employ queues and parallel workers to consume them. Also, 

the services maintain auxiliary in-memory data structures to store, 

for instance, the workflows’ specifications, which data should be 

captured, and the data references to be related. Thus, ProvLake 

avoids reading data from disk, from the PLView, or any other 

external data store out of main memory during execution.  

B. ProvLake library 

 ProvLake library follows the three design principles. They 

lower the overhead and the changed workflow code remains as 

close as possible to its original code. Figure 3 illustrates a small 

excerpt of Workflow 2 of our case study (Section IV.B), written 

in Python, with added library calls. 

The library is imported (Line 1) in the code of each single-

workflow composing the multiworkflow. As a result of the 

methodology (Section II.B), prospective provenance data of each 

single-workflow are specified in a separate configuration file, 

stored externally to the workflow code. This file is loaded only 
once, at the constructor of the library, to an in-memory data 

structure (Line 2). Then, each execution of a data transformation is 

wrapped by two data capture calls, one to capture the input (Line 

9) and other for the output (Line 11) data values. These calls are 

queued, and the arguments of each data capture are often small lists 

and hash-tables, with data values in their original formats. Other 

calls or data conversions specifically related to provenance data are 

designed to remain separate from the workflow code and left to 

ProvLake server. The library also captures runtime information, 

such as start and end times of each data transformation execution, 

and information about the physical machine running the workflow. 

Figure 3 also exemplifies the library capturing a reference to data 
stored in heterogeneous data stores: the file system (by a file 

reference to a seismic data file in Line 4) and the MongoDB 

DBMS (by a reference to a document in Line 10). 

C. ProvCapturer 

ProvCapturer service has two main goals. First, to convert the 

workflow data coming from the library calls into W3C PROV data 
following PLView data representation and, second, to capture the 

data relationships. The service follows the prospective provenance 

data specification, loaded to its main memory. 

As requests arrive, they are just appended to its in-memory 

queue, so the service can immediately “ACK” the message. This 

reduces waiting time in the workflows caused by the 

communication between the library and the service.  This queue 

of requests is processed in parallel by the service. 

To convert the data values coming from the workflows to the 

PLView data representation, the service matches the workflow data 

with the prospective provenance specification. Each data 
transformation execution call carries the identifiers of the data 

transformation and of the workflow with it. With this, ProvCapturer 

looks into the prospective provenance data to find the data attributes 

corresponding to the data values coming from the workflows, and 

how they should be converted to retrospective provenance data. The 

workflow data are transformed into JSON format following the 

W3C PROV-TEMPLATE specification extending the vocabulary 

utilized in the PLView data representation. These JSON objects are 

sent to the ProvManager service. 

To capture the data relationships between data transformations 

and workflows, which are given by the consumed and generated data 

values, the service uses unique identifiers to every data value that 

flows through it. Using unique identifiers for maintaining 

relationships of captured data is used in several provenance systems 
[8,12]. Thus, every data value receives a unique identifier in the 

PLView. If a same data value that is generated by a data 

transformation execution is consumed by another, the service 

captures this and creates the data relationships that represent the 

shared data between these data transformations. Similarly, if this 

same data value generated in a workflow is consumed in another 

workflow, the service captures this, forming the data relationships 

between the provenance data graph of these workflows. To specify 

the unique identifier, the service uses a deterministic rule, which uses 

a hash function over the data value, the attribute, and CSE project 

identifier. When a new data transformation uses an already captured 
data value, the service gives the same identifier to it, creates the 

provenance relationships, and creates the JSON objects.  

Special cases occur when the captured data values are data 

references. In those cases, the service creates the provenance 

relationship hadStore between the data reference and its physical 

data store. Information about the data store includes the data model 

and credentials for accessing the data store, if applicable. Another 

special case occurs when the data references participate in a 

relationship between data references. In this case, the service 

maintains the references in another in-memory data structure. 

When a data reference participating in a pair of data values that 
form the relationship flows into the service, the service checks if 

the other value in the pair has already been captured. If yes, it 

creates the provenance relationship referred between the data 

values. If not, it saves the value in the in-memory structure and the 

value will remain there until the other value in the pair flows into 

the service. 

Furthermore, we design the service so that it does not make 

any assumption about execution dependencies or centralization 

of the multiworkflow execution. It is the service’s responsibility 

to distinguish between the workflows sending data and to create 

the data relationships between provenance graphs of different 

workflows as the workflows execute. After processing the calls 
coming from the workflows, captured provenance data are sent 

via RESTful HTTP calls to ProvManager, also asynchronously. 

 
Fig. 3. Part of a workflow code with ProvLake library calls. 

1.  from provlake import ProvLake, DT

2.  prov = ProvLake(wf_specification_path)

3.  args = [

4.     segy_path,

5. inline_byte,

6. xline_byte,

7. geox_byte,

8. geoy_byte ]

9.  with DT(prov, "import_seismic", args) as dt:

10.     document_id = import_seismic(args)

11.     dt.output(document_id)

Workflow code



D. ProvManager 

ProvManager is responsible for inserting provenance data into the 

PLView’s DBMS and for generating queries (in the query langue of 

PLView’s DBMS) to be sent to the DBMS.  When ProvManager 

receives the provenance data, it converts the data into a data format 

that can be inserted into the DBMS. In current implementation, the 

PLView Provenance Data Representation is instantiated as an 

ontology that extends W3C PROV-O, using AllegroGraph1 as its 

Triple Store. Thus, ProvManager converts provenance data into 

RDF triples, and inserts them into AllegroGraph. ProvManager 

manages a queue of triples, to be inserted as a bulk to the DBMS, 
aiming at reducing contention at the DBMS. For queries, 

ProvManager receives calls from PolyProvQueryEngine service and 

builds the SPARQL queries to answer the calls.  

E. PolyProvQueryEngine 

To query PLView for multiworkflow data analysis through 

queries at runtime, ProvLake exposes a provenance query API 
via PolyProvQueryEngine, which implements parametrized 

predefined queries for multiworkflow provenance graph 

traversals and analytics. Users specify parameters, such as a 

source and target data attributes, to be traversed in the 

provenance graph stored in the PLView. PolyProvQueryEngine 

sends a query request to ProvManager only, which builds a 

SPARQL query to the DBMS and returns the result set. 

However, in certain cases, when data were not captured by 

ProvLake and still the user needs to query the data, with their 

provenance, PolyProvQueryEngine also sends a request to a 

Polystore and joins with the result set coming from a 
provenance query to ProvManager. Exploring the polystore 

queries aspect in depth is out of the scope of this paper. 

F. Messaging System 

 Since the communication between components in ProvLake 

is done asynchronously during the data transformations and 

only return simple “ACK” messages, keeping track of their 
status is not trivial. “ACK” is not enough to determine whether 

the requests were completely processed.  For this, we make use 

of a messaging system as a central log of status of the 

asynchronous requests. In current implementation, we use 

Apache Kafka. Each service publishes messages in its own 

channel to register the beginning and end of each processing of 

a request, and a status code and callback message (e.g., 

“success” or a specific error message). In this way, users can 

check if their requests were fully processed (i.e., sent to 

ProvCapturer, then to ProvManager, and finally inserted into 

the PLView) or an error occurred in a specific component. 

IV. EXPERIMENTAL EVALUATION 

In this section, we provide an experimental evaluation of 

ProvLake. In Section IV.A, we present the analysis of data capture 

overhead using 36 synthetic workloads. In Section IV.B, we 

present a real case study, showing multiworkflow data analysis and 

overhead analysis. In Section IV.C we discuss lessons learned. 

                                                        
1 https://franz.com/agraph/allegrograph/ 
2 https://kubernetes.io 

Hardware setup. All tests are conducted on a cluster of 12 

machines, where each has 128GB RAM, two CPU Intel Xeon 

v2 2.8GHz with 20 cores when using hyper-threading, i.e., 40 

cores per machine summing 480 cores. They share GPFS with 

24TB and are interconnected via an InfiniBand network. 
Software setup. ProvLake services (ProvCapturer, 

ProvManager, and PolyProvQueryEngine) and its PLView DBMS 

are deployed on a Kubernetes2 cluster of Docker containers on top 

of the physical cluster. The services are implemented using Python 

and deployed with uWSGI3 with C++ Cython plugin with multi-

process and multi-thread parallelism enabled. The DBMS is 

AllegroGraph 6.3. For Komadu deployment, we use the most up-

to-date version available [17]. Komadu’s services were compiled 

as indicated in its documentation. We also deploy Komadu on the 

same Kubernetes cluster. 

A. Overhead Analysis 

The experiments in this section aim at evaluating the overhead 

ProvLake adds to clients, i.e., the workflows, under several 

synthetic workloads. To analyze overhead, we measure the 

execution of the workflows with and without data capturing 

enabled. Two dimensions are typically analyzed when evaluating 

scientific applications: task duration and number of tasks [18]. 
Since we are analyzing data capture overhead, we add a third 

dimension: number of captured data values per task. This 

quantity represents the amount of captured data for both input 

and output data values for each task; each data value is about 

same size. First, we present an overview of execution times and 

comparison with Komadu, then we discuss the overhead in detail. 

Experiment setup. To vary in these three dimensions, we use 

a benchmark with synthetic workloads based on existing 

workflows, including for example the workflows in our case study, 

and on past work on scientific applications  [18]. They mimic a 

prespecified number of chained data transformations, each 

processing multiple parallel tasks. There is a synchronization point 
between two chained data transformations, i.e., before a new data 

transformation begins, all tasks of the current data transformation 

finish, which is a typical behavior in scientific applications. We 

generate quantities for the three analyzed dimensions following a 

normal distribution where the mean values are according to Table 

1 and a standard deviation of 10.0. We use three chained data 

transformations in these experiments. In total, we generate 36 

3 https://uwsgi-docs.readthedocs.io/en/latest 

 

Table 1. Mean values to generate the synthetic workloads.  

Number of tasks –  30 300 3000 

Task duration (s) 0.1 1 10 100 

Data values per task – 20 100 200 

 

 
Fig 4. Synthetic workflow. The data values per transformation vary as in Table 1. 
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workloads, which corresponds to the permutation of the values in 

Table 1. An illustration of this workflow is presented in Figure 4. 

We increase the order of magnitude for each dimension to 

analyze the system under various workloads. An exception is 

number of data values because we do not know any realistic case 
that captures thousands of data values for one single task. For 

each data transformation, one of the input data values is a 

reference to a file in the file system. We use only one data store 

in this test to generate synthetic workloads that could be used 

within Komadu as well, and in ProvLake one data store is enough 

to test the overhead in the client-side. Also, for task duration, we 

use another case to investigate the system’s performance for very 

short duration tasks (e.g., each lasting for 0.1 seconds on 

average). Although tasks in scientific applications are often long-

lasting [18], we produce workloads dominated by thousands of 

short-term tasks. This is a way to stress the system, which is one 

of the objectives of this experiment. Thus, for the largest case, 
there are about 3000 tasks (1000 parallel tasks on average per 

data transformation), each with a mean duration of 1.7 min (100 

seconds), and for each task there is a mean amount of data values 

of 200 to be captured. To compare with Komadu, we implement 

an analogous version of the same workflow we use to test 

ProvLake. We add Komadu calls to capture data during 

execution of the workflow, similarly to what we do for ProvLake 

calls. We followed user guides and documentation publicly 

provided to fine tune configuration parameters, such as 

increasing queue sizes, so to better accommodate a high number 

of parallel tasks. Then, we test Komadu using the exact same 36 
workloads of the synthetic workflow we use to test ProvLake. 

Overview of execution times. Each of the 36 workloads is 

executed with the following three scenarios: (i) without any data 

capture, (ii) with ProvLake data capturers, and (iii) with Komadu 

data capturers. The total execution times to process the workloads 

are not deterministic and do not follow a normal distribution, thus 

we report the medians of a batch of repetitions. For each scenario, 

for each workload, we repeat at least 50 times and until the 95% 
confidence interval of the median is within 5% of our reported 

medians. Similarly, we do not plot error bars as they represent less 

than 5% of the medians. Results are in Figure 5. We organize the 

results using a 3x3 matrix, where each chart in the matrix is 

represented with a letter (A)—(I). The y-axis of each chart shows 

the Log Execution Time and we vary the mean task duration in the 

x-axis. In the matrix, by varying in the rows, we vary the log 

number of tasks. By varying in the columns, we vary the mean 

amount of captured data values per task. 

Finding: execution times with ProvLake data capture remain 

close to the execution times without capture, in all 36 workloads. 

When the number of parallel tasks or data values per task increases, 
ProvLake runs significantly faster than Komadu. 

Comparing with Komadu, in 10 workloads Komadu data 

capturers run at least one order of magnitude slower than with 

ProvLake’s. For small number of tasks (A—C) and long-lasting 

tasks, both systems perform similarly. For workloads with 

hundreds of tasks (D—F), Komadu performs similarly to 

ProvLake only for 100 seconds of mean task duration. For all 

other cases, the difference is significant. The greatest difference 

occurs in chart (F), i.e., hundreds of millisecond-sized tasks 

with 200 data values on average per task. While ProvLake 

executes 1.1x slower than without data capturers, Komadu 
executes 369x slower. Thus, ProvLake performs over two 

orders of magnitude faster than Komadu and in all tested cases 

ProvLake adds less overhead. We could not run the workloads 

 

 

 
Fig. 5. Execution times with ProvLake, Komadu, and with no data capture on 36 workloads. 
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with thousands of parallel tasks (G—I) using Komadu because 

despite varying several settings following its user guides, 

Komadu throws timeout errors after thousands of parallel tasks 

are launched in our deployment. 

Thus, we observe that the design principles adopted by 
ProvLake help to keep the overhead small. Komadu does not 

adopt the principle to provide a lightweight library, requiring 

the workflow code to be instrumented with W3C PROV 

activities, entities, and agents, and PROV relationships, 

embedded in the workflow code. In ProvLake, such PROV-

specific modeling remains in the server (ProvCapturer) rather 

than in its client library. At runtime, it leads to more API, 

operating system, and service calls, increasing the competition 

between Komadu data capturers and the running workflow. 

Improving current instrumentation of the workflow code is 

planned as future work in Komadu [8]. 

Analyzing time overhead in more detail. Figure 6 shows the 
runtime data capture overhead of each of the 36 workloads. The 

percentages are obtained by measuring the relative difference 

between with and without ProvLake calls. Three charts are plotted, 

where each has a fixed number of tasks. In the x-axis, we vary the 

mean task duration and for each task duration, we plot three bars, 

each representing the amount of data values captured per task. The 

y-axis is the overhead percentage. We annotate the total execution 

time above the bars of the workloads without data capture for 200 

mean data values per task. 

Finding: the number of tasks has higher influence than the 

mean data values per task and the overhead decreases with task 
duration (i.e., total execution time). 

An exception is for the millisecond-sized tasks workloads, as 

the overhead increases as the number of data values captured 

increases. This occurs because of ProvLake’s initialization 

overhead, which is incurred for reading a workflow specification 

file from disk (prospective provenance) and populating in-

memory data structures. When the workload has only tasks that 

execute in milliseconds, the execution time is dominated by this 

initialization time. This happens because with so many fast tasks, 

ProvLake queues get overloaded. Both the ProvCapturer API in 

the client-side takes longer to send requests and the ProvCapturer 

server takes longer to process all requests. However, these small 
workloads are useful to perform stress tests against the system, 

as realistic workloads usually last for several seconds or minutes. 

For longer workloads, ProvLake’s overhead is quite low. Even 

when capturing a larger amount of data values per task, it is not 

enough to significantly increase the execution time. When tasks 

last at least 10 seconds on average per task, the overhead is 

around 1%. For the workloads dominated by long-lasting tasks, 

as of 100 seconds on average, it adds about 0.1% of overhead, 

which is negligible.  

B. Case Study and Multiworkflow Data Analysis  

This section presents the case study that motivates this work. 

We start with an overview, then we describe the workflows, and 

queries which ProvLake can answer. 

Discovery of oil reserves is paramount for the O&G industry 

and involves a broad spectrum of activities, including seismic 

image interpretation. Typically, these images cover large 

extents of the earth and by inspecting the images, geoscientists 
try to identify geological features, such as salt bodies. Trying to 

automate such activity is of high interest in both academia and 

O&G industry [19] and deep learning is a promising machine 

learning technique for this [20]. 

Managing the data lifecycle to train deep learning models is 

necessary to deliver models of high quality and this is 

particularly true in geoscience problems [21], such as 

identification of textures in seismic images [20]. It requires 

preprocessing, cleaning, and performing complex integrated 

data analysis. To deal with such complexity, the lifecycle is 

decomposed into parts, each addressed by different, 
collaborating teams of geoscientists, computational scientists, 

engineers, among others. Each team has a preferred way to 

automate tasks and store data, and a team consumes data 

generated by another. This case study focuses on activities that 

range from preprocessing large raw geological data files to the 

generation of training and validation datasets for deep learning 

models. Decomposing the problem into many workflows 

makes the problem feasible, however it creates a new problem: 

how to consume the data in an integrated way. Managing 

provenance in the data lifecycle in a well-structured manner 

becomes a major requirement as it facilitates the understanding 

of how models were generated and improves trust in the results. 
The preprocessing part of the lifecycle is composed of four 

workflows (c.f. Figure 1). Workflow 1 processes about 5 TB of 

geological raw data files (mainly seismic files in SEG-Y format and 

intersecting horizons stored in CSV format). Despite its formal 

specification [22], SEG-Y files very often do not follow it, so lots of 

preprocessing and cleaning are needed. If erroneous raw data are used 

or if the data were not cleaned correctly, the generated training and 

validation datasets for the deep learning classifier, hence its results, 

cannot be trusted. To address this, Workflow 1 parses the files in the 

file system of the HPC cluster, extracts strategic data from the files, 

and automates data cleaning. Extracted data are stored in PostgreSQL. 

 

 
Fig. 6. ProvLake overhead using 36 workloads. Execution times are annotated above the bars. 

 



Based on the outputs of Workflow 1, users inform which seismic and 

horizon files should proceed to the Workflows 2 and 3, respectively. 

These workflows generate intermediate data files and bounding boxes 

and populate a MongoDB database. Furthermore, knowledge and 

annotations about the seismic and horizons, known to geoscientists, 
are inserted in a knowledge graph database managed by the 

AllegroGraph DBMS. Finally, Workflow 4 consumes data from 

Workflows 2 and 3 to generate training and validation datasets, which 

are stored as files in a Kubernetes volume [23]. In the following steps 

of the data lifecycle, these files are used as input to train the models.  

Multiworkflow Queries. Based on this case study, we identify 

distinct queries ProvLake was made to answer. In this analysis, the 

user is a computational scientist and a machine learning 

practitioner, with deep knowledge in the domain. When reporting 

results, she requires detailed information, such as which SEG-Y 

files, intermediate files, and documents in MongoDB were used to 

generate a set of training and validation files. Thus, the typical 
queries are multiworkflow data analysis: 

Q1: What were the data references, stored in datasets 

distributed over multiple stores, consumed and generated in the 

data generation process, throughout the workflows, of a given 

pair of training and validation files? 

Q2: What are the relationships between the data references 

obtained in Q1? 

To provide detailed domain-specific information, such as which 

in-line and cross-line slices of the seismic cube, she explores the 

semantics of attributes of the data values (Section II.A) to inspect 

the inner contents of each data reference returned in Q1:  
Q3: List all data values (extracted from the files and datasets, 

parameters and output values of data transformations) to 

generate a given pair of training and validation files. 

In addition to comprehensive queries, she runs debugging 

queries. She observes that training and validation datasets that 

Workflow 4 is generating are producing models with unusual poor 

accuracy. She suspects that Workflow 1, which extracts strategic 

values (e.g., geographic coordinates) from SEG-Y files, did not 

extract data correctly, and asks: 

Q4: How the geographic coordinates were extracted from 

the SEG-Y file that is being used to produce training and 

                                                        
4A detailed version of this figure is available online [13]. 

validation files? What is the spatial resolution between slices in 

the seismic data? 

Answering Q1—Q4. Figure 7 shows an excerpt of PLView’s 

contents when the four workflows execute4 . Rectangles with 

dashed strokes represent data store instances and the ones without 
dashed strokes are instances of data references. Also, all data 

references that are in a same data store follow the grayscale 

background color of the data store instance, illustrating the 

hadStore relationship (dashed arrow). The excerpt shows the data 

relationships when data containing a seismic cube acquired in 

Netherlands basin are processed in the four workflows. When 

ProvLake captures data values (like x, y coordinates of a seismic 

cube) extracted from datasets, it creates the corresponding 

relationships to the data references. Similarly, parameter values 

of a data transformation execution and data values that are output 

of the data transformation execution are related to the data 

transformation executions. These relationships of the data values 
that are not data references are not shown in the figure for the 

sake of its comprehension. We see the relationships between 

provenance data of different workflows and the relationships 

between data references in heterogeneous data stores in Figure 7. 

During an execution of a data transformation in Workflow 1, 

ProvLake registers that the data transformation used a seismic 

file (netherlands.sgy), extracted raw data from it, and generated 

a tuple in a relational table, which is stored in PostgreSQL. In 

addition, ProvLake creates relationships between PostgreSQL1 

and the data references, and stores the referred (solid arrow) 

relationship between the seismic file and the instance in the 
relational table. Similarly, as the other workflows execute, 

unique identifiers to every data value provide the relationships. 

Then, users send API calls to PolyProvQueryEngine.  

Q1 and Q2. To illustrate, let us suppose that the user inputs of 

query Q1 are the training and validation files generated by 

Workflow 4 in Figure 7. In this case, the user sends an API call to 

return all data references related to the generation of training and 

validation TensorFlow records files, from raw seismic files to the 

TensorFlow records files. To return the results, 

PolyProvQueryEngine executes a query that takes training and 

validation file references (represented as files stored in the 

Kubernetes volume) as source nodes and traverses the data graph 

 

 
Fig. 7. Excerpt of PLView contents generated during the multiworkflow execution. 
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backwards until the farthest data reference attribute values, which 

are seismic (netherlands.sgy) and horizon files (seabottom.xyz and 

top.xyz) and return the related references, via referred. Because the 

query is to answer all data references in the provenance data path, 

PolyProvQueryEngine uses SPARQL features (e.g., property 
paths) to traverse the graph. The result set returns all data 

references displayed in Figure 7. For Q2, the result set is similar, 

but it shows the data references in Figure 7 and the edges of the 

graph between references. 

Q3 and Q4. For Q3, the result shows the data references 

consumed and generated in all data transformations for all 

workflows and data values with other attribute semantics. The 

result of Q3 has the data needed by the user to compose a report 

on how the training and validation datasets for the deep learning 

classifier were generated from raw data, passing through all 

workflows. For Q4, the user specifies to show the values for 

data attributes used by the data transformation “SEG-Y data 
extraction” (i.e., parameters of the transformation) and the x, y 

coordinates generated by it (i.e., the extracted data from the 

SEG-Y data), and specifies to display the spatial resolution, 

which is a data attribute stored in MongoDB.  

Then, the result is the geographic coordinates (coordx, coordy), 

extracted from the seismic file netherlands.sgy and stored in 

PostgreSQL in Workflow 1, along with parameters that were used 

to execute that data transformation that extracted the data. The 

parameters of this data transformation provide information about 

how the data extraction was run. Spatial resolution of seismic slices 

is stored in the document reference (generated in Workflow 2) which 
is related (referred) to the seismic file.  

Overhead analysis. Most real workloads are composed of 

mixed tasks (short/long duration, few/many tasks and data 

values). This is the case of our real case study, where the 

characteristic of each task, hence the whole workload, can be 

mapped to the nearest workload tested in the previous 

experiments. For example, tasks in Workflow 1 last for up to 

few minutes and generate over 100 data values, depending on 

the size of the seismic file the task is processing.  Some tasks in 

Workflows 2 and 3 are short (taking few seconds), whereas 

most of them last from few minutes to hours, depending on the 

seismic and horizon files being processed by a task. Each task 
in these workflows generates less than 30 data values. Tasks in 

Workflow 4 last several minutes, depending on the size of the 

region of the seismic cube being processed. Each task generates 

about 50 data values to be captured. Thus, the majority of tasks 

of the workloads are mapped to long duration tasks with dozens 

to hundreds of data values. Few tasks are mapped to short 

duration tasks and very few last for less than one second. 

Considering space overhead, Workflow 1 produces about 5.3 

million provenance tuples in the PLView’s DBMS, Workflows 

2 and 3 together produce about 400,000 tuples, and Workflow 

4 produces about 100,000 tuples. In total, the DBMS storage 
used about 4.5 GB, whereas the workflows processed over 5 

TB of geological data files. Therefore, for the real workflows, 

ProvLake adds about 0.1% of time overhead to each workflow 

individually and generates about 5.8 M tuples and 4.5 GB in 

the PLView’s DBMS. 

In addition to the experiments presented, we also 

investigated other aspects of ProvLake, such as different work 

queue sizes observed that when sizes are set to one, PLView 

has high frequent data insertions, which increases overhead, but 

provides near real time data available for runtime queries. Due 
to space limitations, we provide examples and further 

implementation details in ProvLake’s website [13].  

C. Lessons Learned 

For runtime data capture, in all presented workloads, 

ProvLake has shown a predictable behavior and managed to 

maintain low data capture overhead. Particularly, when 
workloads are dominated by tasks that last for 10 seconds or 

more, ProvLake’s overhead is negligible, even for a large 

number of parallel tasks and captured data values. Since CSE 

workloads are typically dominated by long-lasting tasks that 

last more than a minute each [18], ProvLake is a good solution 

for this class of applications. When comparing with Komadu, 

we see that when the amount of parallel tasks and amount of 

data values per task are small, both systems perform similarly. 

Nevertheless, when the workload scale grows, as is the case 

with CSE workflows, the design principles adopted by 

ProvLake keep the overhead low. A major difference in both 
systems’ design is that providing a lightweight library is a 

design principle in ProvLake. Aligning this with asynchronous 

calls and work queues with parallel processing were critical 

design decisions that contributed to achieving the results. As a 

result, the design principles adopted by ProvLake allowed for 

having an overhead two orders of magnitude lower than 

Komadu in CSE workflows. 

For the runtime analytical queries, the methodology to 

design the data in the PLView promoted cooperation among the 

multidisciplinary teams so they could specify relationships, and 

which data should be captured at runtime, driving success to 

answer the multiworkflow queries. ProvLake’s ontology, with 
its adherence to W3C PROV [5], also contributed to the queries.  

V. RELATED WORK 

We organize the related work according to addressed issues: (i) 

runtime data analysis with low workflow overhead and (ii) capturing 

data relationships from multiworkflow data. We group related work 

as: runtime single-workflow data capture; multiworkflow 

orchestration systems; integration of heterogeneous provenance 

databases; and runtime multiworkflow provenance data capture. 

Runtime single-workflow data capture. Solutions in this 

group capture data of workflows at runtime and store as 

provenance data [4], [9]. For instance, DfAnalyzer [4] captures 
implicit relationships between data files, associating them to data 

extracted from files. This raw data extraction is convenient for 

analyzing related domain data directly from its provenance 

database. DfAnalyzer has low data capture overhead in large-

scale CSE workflows and influenced ProvLake’s design 

principles. However, solutions in this group are limited to data 

analysis of single isolated workflows. They do not address the 

issue that workflows run autonomously but implicitly sharing 

data. Captured data are specific to a single workflow, without 

explicit interconnections between workflows. Also, these 



solutions disregard that multiworkflow data analysis often 

requires data integration of data in multiple stores.  

Runtime multiworkflow provenance data capture. 

Komadu [8,12] is the only solution we found in this group. 

Different from the previous groups, Komadu aims at generating 
integrated provenance data as a multiworkflow runs. Users add 

data capturers to existing workflows to collect and relate data 

that flow in the workflows. Then, Komadu allows for forward 

and backward provenance queries, and joining provenance 

traces in the multiworkflow. It can integrate provenance of data 

generated in data lakes and by workflow orchestration systems, 

like Spark or WMSs. However, its data representation, hence 

data capturing capabilities, disregard that data are often 

processed in multiple stores, jeopardizing the multiworkflow 

analysis. Additionally, regarding the overhead, the authors 

report significant overhead added to the running workflows. In 

the experimental evaluation of this paper, we show that 
ProvLake outperforms Komadu in a wide variety of workloads. 

Multiworkflow orchestration systems. QoX [10] and PAW 

[11] aim at optimizing the execution of multiworkflows that 

process data in a variety of parallel execution engines (e.g., 

Hadoop MapReduce and Spark) and use multiple stores (e.g., 

HDFS, NoSQL, and relational DBMSs). SHIWA [24] provides 

efficient execution management in a multiworkflow environment, 

focusing on scalable mechanisms for orchestrating workflows in 

single Workflow Management Systems (WMSs). However, 

WMSs and parallel execution engines are often not adopted by 

CSE users, who frequently adopt libraries with their own parallel 
execution control, which conflicts with a workflow scheduling 

engine [14]. In addition, none of these solutions provide an 

integrated view over the multiworkflow. 

Integration of heterogeneous provenance databases. 

Solutions in this group [6,7] aim at interoperability in 

heterogeneous provenance databases. This is useful in 

multiworkflow environments where each workflow engine 

generates provenance data using its own specific format. 

However, the drawbacks of these solutions are that they also 

provide provenance data integration offline. 

To summarize, we did not find any solution that copes with 

the two issues addressed by our solution and combining 
existing approaches into one is hard. It requires new concepts 

for multiworkflow provenance data, a practical methodology 

for multiworkflow data design, and design principles for 

runtime multiworkflow data capture with low overhead. 

VI. CONCLUSION 

In this paper, we introduced ProvLake, a system that addresses 

the challenge of efficient multiworkflow provenance data capture 

with low overhead. By capturing strategic data values and their 

data relationships, ProvLake maintains the PLView to provide a 

logical integration of multiworkflow data at runtime. 

We proposed a specialization of a provenance data 
representation, which stem from relationships between data 

references stored in distributed and heterogeneous data stores 

and provenance graphs of different workflows. We followed 

W3C PROV to design an ontological data representation for the 

PLView. To enable the instantiation of the PLView to 

multiworkflows, we organized a set of phases in a methodology 

to specify which data values should be captured driven by the 

relevant queries. Finally, we proposed design principles that 

contributed to providing the runtime analysis, as evidenced in 

our real case study, while keeping the overhead as low as 0.1%. 
Compared with Komadu [8,24], the closest solution that meets 

our goals, our approach enabled runtime multiworkflow data 

analysis with much smaller overhead. 
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