
 Open access Proceedings Article DOI:10.1109/ESCIENCE.2019.00047

Efficient Runtime Capture of Multiworkflow Data Using Provenance
— Source link

Renan Souza, Marta Mattoso, Leonardo Guerreiro Azevedo, Raphael Melo Thiago ...+6 more authors

Institutions: Federal University of Rio de Janeiro, IBM,
French Institute for Research in Computer Science and Automation

Published on: 24 Sep 2019

Topics: Automatic identification and data capture

Related papers:

 Data reduction in scientific workflows using provenance monitoring and user steering

 Online Input Data Reduction in Scientific Workflows

 Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines

 Tool Support for Distributed Workflow Management with Task Clustering

 Scheduling Architectures for Scientific Workflows in the Cloud

Share this paper:

View more about this paper here: https://typeset.io/papers/efficient-runtime-capture-of-multiworkflow-data-using-
32yh22p0mj

https://typeset.io/
https://www.doi.org/10.1109/ESCIENCE.2019.00047
https://typeset.io/papers/efficient-runtime-capture-of-multiworkflow-data-using-32yh22p0mj
https://typeset.io/authors/renan-souza-3vcq80ctks
https://typeset.io/authors/marta-mattoso-37n9jgim80
https://typeset.io/authors/leonardo-guerreiro-azevedo-3ruhlv4vs6
https://typeset.io/authors/raphael-melo-thiago-41foqs39a0
https://typeset.io/institutions/federal-university-of-rio-de-janeiro-25qv5dz5
https://typeset.io/institutions/ibm-3vfvs9ir
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/topics/automatic-identification-and-data-capture-ps2rnh79
https://typeset.io/papers/data-reduction-in-scientific-workflows-using-provenance-11670k0cjd
https://typeset.io/papers/online-input-data-reduction-in-scientific-workflows-1syuu8okmk
https://typeset.io/papers/design-implementation-and-evaluation-of-a-tight-integration-30lzw56o4o
https://typeset.io/papers/tool-support-for-distributed-workflow-management-with-task-37xzbfvegm
https://typeset.io/papers/scheduling-architectures-for-scientific-workflows-in-the-aqiezsgauh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-runtime-capture-of-multiworkflow-data-using-32yh22p0mj
https://twitter.com/intent/tweet?text=Efficient%20Runtime%20Capture%20of%20Multiworkflow%20Data%20Using%20Provenance&url=https://typeset.io/papers/efficient-runtime-capture-of-multiworkflow-data-using-32yh22p0mj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-runtime-capture-of-multiworkflow-data-using-32yh22p0mj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-runtime-capture-of-multiworkflow-data-using-32yh22p0mj
https://typeset.io/papers/efficient-runtime-capture-of-multiworkflow-data-using-32yh22p0mj

HAL Id: lirmm-02265932
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02265932

Submitted on 12 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Runtime Capture of Multiworkflow Data Using
Provenance

Renan Souza, Leonardo Azevedo, Raphael Thiago, Elton Soares, Marcelo
Nery, Marco Netto, Emilio Vital Brazil, Renato Cerqueira, Patrick Valduriez,

Marta Mattoso

To cite this version:
Renan Souza, Leonardo Azevedo, Raphael Thiago, Elton Soares, Marcelo Nery, et al.. Efficient Run-
time Capture of Multiworkflow Data Using Provenance. eScience 2019 - 15th International Conference
on eScience, Sep 2019, San Diego, United States. pp.359-368, ฀10.1109/eScience.2019.00047฀. ฀lirmm-
02265932฀

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02265932
https://hal.archives-ouvertes.fr

R. Souza et al. Efficient Runtime Capture of Multiworkflow Data Using Provenance. Author preprint of paper accepted at the

15th IEEE International Conference on e-Science, San Diego, California, USA (eScience 2019).

Efficient Runtime Capture of

Multiworkflow Data Using Provenance
Renan Souza§,°, Leonardo Azevedo§, Raphael Thiago§, Elton Soares§, Marcelo Nery§

Marco A. S. Netto§, Emilio Vital Brazil§, Renato Cerqueira§, Patrick Valduriez#, Marta Mattoso°

§IBM Research, Rio de Janeiro, Brazil
°COPPE/Federal University of Rio de Janeiro, Brazil

#Inria & LIRMM, U. Montpellier, France

Abstract—Computational Science and Engineering (CSE)

projects are typically developed by multidisciplinary teams. Despite

being part of the same project, each team manages its own workflows,

using specific execution environments and data processing tools.

Analyzing the data processed by all workflows globally is a core task

in a CSE project. However, this analysis is hard because the data

generated by these workflows are not integrated. In addition, since

these workflows may take a long time to execute, data analysis needs

to be done at runtime to reduce cost and time of the CSE project. A

typical solution in scientific data analysis is to capture and relate the

data in a provenance database while the workflows run, thus allowing

for data analysis at runtime. However, the main problem is that such

data capture competes with the running workflows, adding significant

overhead to their execution. To mitigate this problem, we introduce in

this paper a system called ProvLake, which adopts design principles

for providing efficient distributed data capture from the workflows.

While capturing the data, ProvLake logically integrates and ingests

them into a provenance database ready for analyses at runtime. We

validated ProvLake in a real use case in the O&G industry

encompassing four workflows that process 5 TB datasets for a deep

learning classifier. Compared with Komadu, the closest solution that

meets our goals, our approach enables runtime multiworkflow data

analysis with much smaller overhead, such as 0.1%.

I. INTRODUCTION

Computational Science and Engineering (CSE) projects are
typically developed by multidisciplinary teams, each managing its

own workflows with specific execution environments and data

transformation tools. Each workflow processes (consuming and

generating) large amounts of complex and heterogeneous data.

Analyzing the data transformed by all workflows globally allows for

understanding each data transformation by monitoring, debugging,

and inspecting input and output datasets while workflows run, i.e., at

runtime—which is necessary to reduce cost and time of the CSE

project. However, this analysis is hard because the data generated by

these workflows are not related to their data transformations, which

also impacts such relationship determinations.
To illustrate, consider an example of a CSE project, our case

study (Figure 1), whose goal is to deliver deep learning models

with high quality for an application in the Oil and Gas (O&G)

industry. These four workflows generate data that are implicitly

related through their data transformations but analyzing them

globally after the data have been generated is complex because

each data store is distributed with no information on the data

transformations or how to relate the stores. There is no point in

moving and integrating all data in a single repository for a

global analysis. However, a complementing data representation

on how the data in the data stores relate to each other

contributes to a logically integrated multiworkflow data

analysis, while keeping the autonomy of each data store. In this

example (Figure 1), there is also the challenge of relating data

from heterogeneous representations.
A typical solution in scientific data analysis is to capture and

relate the data in a provenance database at runtime [1]–[4].

Provenance data representation has a W3C recommendation,

PROV [5], which has been used as a reference model to represent

relationships between datasets and their data transformations in

workflows. PROV-based databases follow a uniform way of

representing “consumed” and “generated” data relationships

between datasets and their data transformations, and other

workflow data relationships. However, the main problem in

runtime data capture is that it competes with the running

workflows, adding significant overhead to their execution.

One exception in low overhead provenance data capture is
DfAnalyzer [4], however this approach limits its analysis to

isolated workflows, characterizing a single-workflow data

capture solution. Also, its data capture is limited to raw data in

file systems, unlike the data stores in Figure 1. In typical CSE

projects, the execution autonomy of each single-workflow

participating in a multiworkflow prevents data capture to be

managed by a single-workflow data capture solution.

Some limitations in single-workflow data capture solutions

are caused by the lack of: (i) capturing and relating data from

autonomous workflow executions; (ii) globally identifying data

to establish relationships from multiworkflow data (i.e., data
processed by a multiworkflow) in multiple stores; and (iii)

overhead management strategies for capturing provenance data

from one workflow while capturing data from another

workflow potentially running in parallel.

The closest solution to meet our goals, Komadu is a distributed

data capture solution that integrates provenance data in a

multiworkflow execution [6,7]. Komadu captures provenance data

generated by workflows running on multiple data processing

Fig. 1. Four workflows using five data stores.

Wf2

Wf4

Wf1

Wf3

Parallel File System

R-DBMS
Doc

DBMS
Graph
DBMS

Geological raw data files

Kubernetes
Volume

Inter-workflow
Data Relationships

Multi-store Data
Relationships

Legend

Deep learning
training datasets

systems. Users can run forward and backward provenance queries,

integrating provenance traces generated in the multiworkflow.

Despite its originality in addressing the limitations of single-

workflow data capture, Komadu still suffers from capture

overhead, which is particularly significant in CSE workflows, as
shown in our experiments. In Komadu, performance issues related

to runtime data capture are left for future work [8], since it

integrates the provenance graphs for queries only after all

workflow executions end. Finally, a limitation found in all related

work [4], [6]–[12] is the lack of query support from workflow data

stored in heterogeneous databases.

To mitigate these problems, we propose a system called

ProvLake, which adopts design principles for providing

efficient distributed domain data capture in a multiworkflow

execution. While capturing the data, ProvLake logically

integrates and ingests them into a provenance database, named

ProvLake Data View (PLView), ready for analyses at runtime.
We validated ProvLake by implementation of the real use case in

Figure 1 with four workflows that process 5 TB datasets for a deep

learning classifier. We evaluate runtime data analysis exploring

heterogeneous multiworkflow data represented in our provenance

database. We compare ProvLake and Komadu with extensive

experiments and demonstrate ProvLake’s overhead for runtime data

capture to be negligible.

The main contributions of this paper are the following:

• Design principles for efficient distributed provenance data

capture with low overhead.

• A provenance data representation aware of multiworkflows
and multiple stores, following W3C PROV [5] standards.

• Lessons learned on efficiently keeping the overhead low

while integrating captured provenance data.

The rest of this paper is organized as follows. Section II

presents multiworkflow data representation as provenance data.

Section III introduces the ProvLake system with its design

principles for introducing low overhead in provenance data

capture. Section IV has the experimental evaluation. Section V

discusses related work and Section VI concludes.

II. MULTIWORKFLOW DATA PROVENANCE

A provenance database in a multiworkflow is the main
source of runtime data analysis. Provenance data do not

replicate data from the data stores. Instead, they contain

lightweight references to the physical data residing in the data

stores; strategic data values (e.g., quantities of interest,

performance indicators, or any other relevant value) extracted

from the datasets in the multiple stores; and the data

relationships among these data, providing the logical data

integration, thus forming a data view over the multiworkflow

data using provenance. PLView data only contain relatively

small but relevant data that can be used for runtime analysis and

to guide deeper analyses in the data store contents. Moreover,

we adopt a strategy to promote the cooperation of the teams to
decide on which data are relevant to them to set the provenance

granularity. We present the fundamentals of the PLView and a

methodology to select strategic data for analysis in Sections

II.A and II.B, respectively.

A. PLView Provenance Data Representation

To relate distributed data from multiworkflow executions,

including workflow data stored in heterogeneous databases, the

PLView adopts data provenance relationships following a well

stablished W3C standard among provenance data systems: PROV

[5]. The PLView is represented as a provenance data directed

graph, where vertices are instances of PROV entity, activity, or

agent and edges are data relationships between vertices [5].

Despite PROV’s high level representation, it can be specialized to

represent workflow data relationships. The PLView represents

data related through data transformations and relationships of data
distributed in heterogeneous databases.

A workflow is a composition of data transformations (e.g.,

programs, services, functions) that can consume and produce

datasets, where an output dataset produced by a data transformation

can be consumed as an input dataset by another data transformation,

forming a coherent flow. A dataset can be modeled as a set of data

elements, where each element is composed of data values. Each

value has a data attribute, which gives the name and data type (e.g.,

integer, string, array). Theses attribute names are typically specific

for the domain and familiar to the teams. Data transformation

executions are modeled as instances of activities and data values
as instances of entities. The “consumption” data relationship

between a data transformation execution and its data values is

modeled as the used PROV relationship, whereas the

“generation” of data values by a data transformation execution is

modeled as the generated PROV relationship.

To improve data analysis, the PLView adds semantics for the

attributes of the data values. The semantics refer to the meaning that

the data value has in a data transformation. Possible values for

attribute semantics are: a parameter or output value of a data

transformation; data reference to a data element of a dataset

physically residing in a data store; or data value extracted from a

dataset in a data store. These fundamental concepts for workflow
provenance are precisely defined in background work [3], which we

base on to extend to represent data references (i.e., data values that

have attributes with semantics of data reference) to data

relationships in heterogeneous databases.

To help the logical integration between data that are physically

distributed into multiple stores, the PLView creates the referred

to represent data relationships between data references. PLView

goes one step further to relate data from heterogeneous databases.

Examples of data references are file reference, document

reference, relational tuple reference, graph vertex reference, RDF

triple reference, etc. Therefore, the data reference is
complemented via the hadStore relationship to relate it to its data

store (also a PROV entity), that analogously can be a File System,

Document DBMS, Relational DBMS, Graph DBMS, Triple

Store, etc.

In addition, the PLView adds properties to vertices to improve

runtime data analysis. For example, properties of data

transformation executions are information about where they were

physically executed, start time and end time and data references

contain meaningful information about the data being referred,

e.g., size of files in case of file reference.

Altogether, the PLView is represented as a multiworkflow

provenance data graph that provides a data view over the data in

the CSE project while the multiworkflow executes. We illustrate

the PLView’s provenance data representation in ProvLake’s

website [13] and a concrete example is presented in Section IV.

B. Methodology to Select Strategic Data for Analysis

To select strategic data for multiworkflow data analysis, we

present a methodology that helps users decide which data are

relevant and should be captured. This decision is made by the teams

participating in the CSE project and is guided by the provenance

questions that the teams want to answer at runtime. The granularity

of captured data impacts both quality of its analysis and overhead for

its acquisition. Considering this trade-off, we propose a
methodology, which extends a single-workflow methodology [14],

to drive the teams to design the data that will form the PLView.

Using prospective provenance data representation [2], the

methodology aims at specifying only the relevant data that should be

captured and related as retrospective provenance data [2]. The

methodology is analogous to modeling a relational schema, with the

relationships between relations, in a relational DBMS.

The methodology phases are: (i) identification of data to be

analyzed; (ii) specification of data capture points at workflow

codes; and (iii) specification of attributes and relationships

between data references. The phases are followed initially for
each single-workflow, and then for the multiworkflow,

globally. For phase (i), users anticipate interesting questions for

data analysis within each workflow and the multiworkflow.

Workflow modelers and data provenance specialist collaborate

with the application developers, who are often computational

scientists or engineers, and domain scientists to identify such

questions, which will drive the identification of strategic data

to be analyzed. By strategic we mean the input and output data

values that are of high interest and should be captured. For

phase (ii), the developers and workflow modelers identify, in

the workflow code, all data transformations and their strategic

input and output data anticipated in phase (i). The result of this
phase drives the insertion of data capture calls in the

corresponding workflow code. Finally, for phase (iii), they

specify the semantics of data captured in the workflows,

particularly attributes that are data references and how they are

related to form the relationships between data references,

similarly to what is done when designing join attributes in a

relational schema.

All three phases are followed for each workflow, resulting in

a design specification that represents the prospective

provenance data of all data transformations for each workflow.

Then, to form the multiworkflow provenance database, the
teams collaborate, working in phases (i) and (ii), to specify

(prospectively) the relationships between provenance data

graphs of the single-workflows. For each pair of workflows, the

teams decide on new attributes, the provenance data

relationships between workflows, and data reference

relationships between workflows for phase (iii). The result is

the same prospective provenance specification, but with these

added attributes and relationships.

The notion of “strategic data” may change over time. Thus, the

methodology is iterative, and workflows’ specifications can

suffer adjustments during a CSE project’s timeline as new data

become of interest. Finally, after the multiworkflow specification

using prospective provenance data, ProvLake captures

retrospective provenance data as the multiworkflow executes.

III. PROVLAKE ARCHITECTURE

This section presents ProvLake’s architecture, beginning with an

overview and design principles, then details of each component.

A. Overview and Design Principles

CSE users need to analyze multiworkflow data at runtime but

cannot afford high computational overhead on their running

workflows. Thus, ProvLake architectural design is focused on

attaining low runtime data capture overhead.

ProvLake has a microservices architecture composed of three

services (ProvCapturer, ProvManager, and PolyProvQueryEngine),

a lightweight ProvLake library, a messaging system, and the

PLView (Figure 2). These components capture data, transform them

to the provenance database representation, insert them into the
database, and help runtime data analysis through query submissions.

We implement ProvLake following these main principles:

 (i) Lightweight library. ProvLake provides a lightweight

library to be imported into the workflows (clients), which adds

little code for instrumentation; thus, avoiding significant

pollution in the original workflows’ code. The library only

contains simple methods to capture input and output data values,

exactly as they are in order to take advantage of cached data

during capture (in-situ) and leave to the server the management

of transformation of workflow data into provenance data,

provenance-specific relationships, semantics, parallel insertions
in the database, and other more heavyweight operations.

Moreover, the server runs in a different address space of the

running workflows, following in-transit strategies [15],

contributing to avoid contention between clients and server.

Additionally, to increase isolation between clients and server,

ProvLake server components are suggested to be deployed on a

separate hardware from where the workflows run. For instance,

in an HPC cluster machine, ProvLake server runs on a node

whereas the workflows run on the remainder nodes.

(ii) Asynchronicity. The communication between clients and

server during execution of the data transformations is

asynchronous. That is, requests are non-blocking and return
almost instantaneously with simple “ACK” messages to clients.

(iii) Work queues. Clients do not communicate to server at

each data capture, but they simply enqueue capture calls, which

is a fast and local operation. When the queue reaches a certain

limit or time constraint (both adjustable), the capture requests are

Fig. 2. Architectural components of ProvLake.

Polystore

ProvLake Server

PLView

Prov

Manager

Prov

Capturer

PLView

DBMS

Poly Prov

Query Engine

Multi-

workflows

P
ro

vL
a

ke
 L

ib
ra

ry

Multiple stores

DBS1

DBS|Ψ-1|

DBS|Ψ|

…

Client

queries

Messaging

System

sent in a batch to the server. This reduces network traffic as the

clients do fewer but larger requests.

In addition to these design principles, which are the main ones

for keeping low overhead added to the workflows, other strategies

collaborate to the overall server performance. The server services
also employ queues and parallel workers to consume them. Also,

the services maintain auxiliary in-memory data structures to store,

for instance, the workflows’ specifications, which data should be

captured, and the data references to be related. Thus, ProvLake

avoids reading data from disk, from the PLView, or any other

external data store out of main memory during execution.

B. ProvLake library

 ProvLake library follows the three design principles. They

lower the overhead and the changed workflow code remains as

close as possible to its original code. Figure 3 illustrates a small

excerpt of Workflow 2 of our case study (Section IV.B), written

in Python, with added library calls.

The library is imported (Line 1) in the code of each single-

workflow composing the multiworkflow. As a result of the

methodology (Section II.B), prospective provenance data of each

single-workflow are specified in a separate configuration file,

stored externally to the workflow code. This file is loaded only
once, at the constructor of the library, to an in-memory data

structure (Line 2). Then, each execution of a data transformation is

wrapped by two data capture calls, one to capture the input (Line

9) and other for the output (Line 11) data values. These calls are

queued, and the arguments of each data capture are often small lists

and hash-tables, with data values in their original formats. Other

calls or data conversions specifically related to provenance data are

designed to remain separate from the workflow code and left to

ProvLake server. The library also captures runtime information,

such as start and end times of each data transformation execution,

and information about the physical machine running the workflow.

Figure 3 also exemplifies the library capturing a reference to data
stored in heterogeneous data stores: the file system (by a file

reference to a seismic data file in Line 4) and the MongoDB

DBMS (by a reference to a document in Line 10).

C. ProvCapturer

ProvCapturer service has two main goals. First, to convert the

workflow data coming from the library calls into W3C PROV data
following PLView data representation and, second, to capture the

data relationships. The service follows the prospective provenance

data specification, loaded to its main memory.

As requests arrive, they are just appended to its in-memory

queue, so the service can immediately “ACK” the message. This

reduces waiting time in the workflows caused by the

communication between the library and the service. This queue

of requests is processed in parallel by the service.

To convert the data values coming from the workflows to the

PLView data representation, the service matches the workflow data

with the prospective provenance specification. Each data
transformation execution call carries the identifiers of the data

transformation and of the workflow with it. With this, ProvCapturer

looks into the prospective provenance data to find the data attributes

corresponding to the data values coming from the workflows, and

how they should be converted to retrospective provenance data. The

workflow data are transformed into JSON format following the

W3C PROV-TEMPLATE specification extending the vocabulary

utilized in the PLView data representation. These JSON objects are

sent to the ProvManager service.

To capture the data relationships between data transformations

and workflows, which are given by the consumed and generated data

values, the service uses unique identifiers to every data value that

flows through it. Using unique identifiers for maintaining

relationships of captured data is used in several provenance systems
[8,12]. Thus, every data value receives a unique identifier in the

PLView. If a same data value that is generated by a data

transformation execution is consumed by another, the service

captures this and creates the data relationships that represent the

shared data between these data transformations. Similarly, if this

same data value generated in a workflow is consumed in another

workflow, the service captures this, forming the data relationships

between the provenance data graph of these workflows. To specify

the unique identifier, the service uses a deterministic rule, which uses

a hash function over the data value, the attribute, and CSE project

identifier. When a new data transformation uses an already captured
data value, the service gives the same identifier to it, creates the

provenance relationships, and creates the JSON objects.

Special cases occur when the captured data values are data

references. In those cases, the service creates the provenance

relationship hadStore between the data reference and its physical

data store. Information about the data store includes the data model

and credentials for accessing the data store, if applicable. Another

special case occurs when the data references participate in a

relationship between data references. In this case, the service

maintains the references in another in-memory data structure.

When a data reference participating in a pair of data values that
form the relationship flows into the service, the service checks if

the other value in the pair has already been captured. If yes, it

creates the provenance relationship referred between the data

values. If not, it saves the value in the in-memory structure and the

value will remain there until the other value in the pair flows into

the service.

Furthermore, we design the service so that it does not make

any assumption about execution dependencies or centralization

of the multiworkflow execution. It is the service’s responsibility

to distinguish between the workflows sending data and to create

the data relationships between provenance graphs of different

workflows as the workflows execute. After processing the calls
coming from the workflows, captured provenance data are sent

via RESTful HTTP calls to ProvManager, also asynchronously.

Fig. 3. Part of a workflow code with ProvLake library calls.

1. from provlake import ProvLake, DT

2. prov = ProvLake(wf_specification_path)

3. args = [

4. segy_path,

5. inline_byte,

6. xline_byte,

7. geox_byte,

8. geoy_byte]

9. with DT(prov, "import_seismic", args) as dt:

10. document_id = import_seismic(args)

11. dt.output(document_id)

Workflow code

D. ProvManager

ProvManager is responsible for inserting provenance data into the

PLView’s DBMS and for generating queries (in the query langue of

PLView’s DBMS) to be sent to the DBMS. When ProvManager

receives the provenance data, it converts the data into a data format

that can be inserted into the DBMS. In current implementation, the

PLView Provenance Data Representation is instantiated as an

ontology that extends W3C PROV-O, using AllegroGraph1 as its

Triple Store. Thus, ProvManager converts provenance data into

RDF triples, and inserts them into AllegroGraph. ProvManager

manages a queue of triples, to be inserted as a bulk to the DBMS,
aiming at reducing contention at the DBMS. For queries,

ProvManager receives calls from PolyProvQueryEngine service and

builds the SPARQL queries to answer the calls.

E. PolyProvQueryEngine

To query PLView for multiworkflow data analysis through

queries at runtime, ProvLake exposes a provenance query API
via PolyProvQueryEngine, which implements parametrized

predefined queries for multiworkflow provenance graph

traversals and analytics. Users specify parameters, such as a

source and target data attributes, to be traversed in the

provenance graph stored in the PLView. PolyProvQueryEngine

sends a query request to ProvManager only, which builds a

SPARQL query to the DBMS and returns the result set.

However, in certain cases, when data were not captured by

ProvLake and still the user needs to query the data, with their

provenance, PolyProvQueryEngine also sends a request to a

Polystore and joins with the result set coming from a
provenance query to ProvManager. Exploring the polystore

queries aspect in depth is out of the scope of this paper.

F. Messaging System

 Since the communication between components in ProvLake

is done asynchronously during the data transformations and

only return simple “ACK” messages, keeping track of their
status is not trivial. “ACK” is not enough to determine whether

the requests were completely processed. For this, we make use

of a messaging system as a central log of status of the

asynchronous requests. In current implementation, we use

Apache Kafka. Each service publishes messages in its own

channel to register the beginning and end of each processing of

a request, and a status code and callback message (e.g.,

“success” or a specific error message). In this way, users can

check if their requests were fully processed (i.e., sent to

ProvCapturer, then to ProvManager, and finally inserted into

the PLView) or an error occurred in a specific component.

IV. EXPERIMENTAL EVALUATION

In this section, we provide an experimental evaluation of

ProvLake. In Section IV.A, we present the analysis of data capture

overhead using 36 synthetic workloads. In Section IV.B, we

present a real case study, showing multiworkflow data analysis and

overhead analysis. In Section IV.C we discuss lessons learned.

1 https://franz.com/agraph/allegrograph/
2 https://kubernetes.io

Hardware setup. All tests are conducted on a cluster of 12

machines, where each has 128GB RAM, two CPU Intel Xeon

v2 2.8GHz with 20 cores when using hyper-threading, i.e., 40

cores per machine summing 480 cores. They share GPFS with

24TB and are interconnected via an InfiniBand network.
Software setup. ProvLake services (ProvCapturer,

ProvManager, and PolyProvQueryEngine) and its PLView DBMS

are deployed on a Kubernetes2 cluster of Docker containers on top

of the physical cluster. The services are implemented using Python

and deployed with uWSGI3 with C++ Cython plugin with multi-

process and multi-thread parallelism enabled. The DBMS is

AllegroGraph 6.3. For Komadu deployment, we use the most up-

to-date version available [17]. Komadu’s services were compiled

as indicated in its documentation. We also deploy Komadu on the

same Kubernetes cluster.

A. Overhead Analysis

The experiments in this section aim at evaluating the overhead

ProvLake adds to clients, i.e., the workflows, under several

synthetic workloads. To analyze overhead, we measure the

execution of the workflows with and without data capturing

enabled. Two dimensions are typically analyzed when evaluating

scientific applications: task duration and number of tasks [18].
Since we are analyzing data capture overhead, we add a third

dimension: number of captured data values per task. This

quantity represents the amount of captured data for both input

and output data values for each task; each data value is about

same size. First, we present an overview of execution times and

comparison with Komadu, then we discuss the overhead in detail.

Experiment setup. To vary in these three dimensions, we use

a benchmark with synthetic workloads based on existing

workflows, including for example the workflows in our case study,

and on past work on scientific applications [18]. They mimic a

prespecified number of chained data transformations, each

processing multiple parallel tasks. There is a synchronization point
between two chained data transformations, i.e., before a new data

transformation begins, all tasks of the current data transformation

finish, which is a typical behavior in scientific applications. We

generate quantities for the three analyzed dimensions following a

normal distribution where the mean values are according to Table

1 and a standard deviation of 10.0. We use three chained data

transformations in these experiments. In total, we generate 36

3 https://uwsgi-docs.readthedocs.io/en/latest

Table 1. Mean values to generate the synthetic workloads.

Number of tasks – 30 300 3000

Task duration (s) 0.1 1 10 100

Data values per task – 20 100 200

Fig 4. Synthetic workflow. The data values per transformation vary as in Table 1.

Data

Transformation 1

Data

Transformation 2

Data

Transformation 3

d11

d12

d1n

d21

d22

d31

d32

d41

d42

File SystemFile

File File

File

d2m d3p d4q

d data value with other attribute semantics

d data value with attribute semantics of data reference

workloads, which corresponds to the permutation of the values in

Table 1. An illustration of this workflow is presented in Figure 4.

We increase the order of magnitude for each dimension to

analyze the system under various workloads. An exception is

number of data values because we do not know any realistic case
that captures thousands of data values for one single task. For

each data transformation, one of the input data values is a

reference to a file in the file system. We use only one data store

in this test to generate synthetic workloads that could be used

within Komadu as well, and in ProvLake one data store is enough

to test the overhead in the client-side. Also, for task duration, we

use another case to investigate the system’s performance for very

short duration tasks (e.g., each lasting for 0.1 seconds on

average). Although tasks in scientific applications are often long-

lasting [18], we produce workloads dominated by thousands of

short-term tasks. This is a way to stress the system, which is one

of the objectives of this experiment. Thus, for the largest case,
there are about 3000 tasks (1000 parallel tasks on average per

data transformation), each with a mean duration of 1.7 min (100

seconds), and for each task there is a mean amount of data values

of 200 to be captured. To compare with Komadu, we implement

an analogous version of the same workflow we use to test

ProvLake. We add Komadu calls to capture data during

execution of the workflow, similarly to what we do for ProvLake

calls. We followed user guides and documentation publicly

provided to fine tune configuration parameters, such as

increasing queue sizes, so to better accommodate a high number

of parallel tasks. Then, we test Komadu using the exact same 36
workloads of the synthetic workflow we use to test ProvLake.

Overview of execution times. Each of the 36 workloads is

executed with the following three scenarios: (i) without any data

capture, (ii) with ProvLake data capturers, and (iii) with Komadu

data capturers. The total execution times to process the workloads

are not deterministic and do not follow a normal distribution, thus

we report the medians of a batch of repetitions. For each scenario,

for each workload, we repeat at least 50 times and until the 95%
confidence interval of the median is within 5% of our reported

medians. Similarly, we do not plot error bars as they represent less

than 5% of the medians. Results are in Figure 5. We organize the

results using a 3x3 matrix, where each chart in the matrix is

represented with a letter (A)—(I). The y-axis of each chart shows

the Log Execution Time and we vary the mean task duration in the

x-axis. In the matrix, by varying in the rows, we vary the log

number of tasks. By varying in the columns, we vary the mean

amount of captured data values per task.

Finding: execution times with ProvLake data capture remain

close to the execution times without capture, in all 36 workloads.

When the number of parallel tasks or data values per task increases,
ProvLake runs significantly faster than Komadu.

Comparing with Komadu, in 10 workloads Komadu data

capturers run at least one order of magnitude slower than with

ProvLake’s. For small number of tasks (A—C) and long-lasting

tasks, both systems perform similarly. For workloads with

hundreds of tasks (D—F), Komadu performs similarly to

ProvLake only for 100 seconds of mean task duration. For all

other cases, the difference is significant. The greatest difference

occurs in chart (F), i.e., hundreds of millisecond-sized tasks

with 200 data values on average per task. While ProvLake

executes 1.1x slower than without data capturers, Komadu
executes 369x slower. Thus, ProvLake performs over two

orders of magnitude faster than Komadu and in all tested cases

ProvLake adds less overhead. We could not run the workloads

Fig. 5. Execution times with ProvLake, Komadu, and with no data capture on 36 workloads.

Mean data values per task

Lo
g

 E
xe

cu
ti

o
n

 T
im

e
 (

s)

1
0

0
0

1
0

1
0

0

Lo
g

 N
u

m
b

e
r

o
f

Ta
sk

s

20 100 200

With ProvLake Data CapturingWithout Data Capturing With Komadu Data Capturing

with thousands of parallel tasks (G—I) using Komadu because

despite varying several settings following its user guides,

Komadu throws timeout errors after thousands of parallel tasks

are launched in our deployment.

Thus, we observe that the design principles adopted by
ProvLake help to keep the overhead small. Komadu does not

adopt the principle to provide a lightweight library, requiring

the workflow code to be instrumented with W3C PROV

activities, entities, and agents, and PROV relationships,

embedded in the workflow code. In ProvLake, such PROV-

specific modeling remains in the server (ProvCapturer) rather

than in its client library. At runtime, it leads to more API,

operating system, and service calls, increasing the competition

between Komadu data capturers and the running workflow.

Improving current instrumentation of the workflow code is

planned as future work in Komadu [8].

Analyzing time overhead in more detail. Figure 6 shows the
runtime data capture overhead of each of the 36 workloads. The

percentages are obtained by measuring the relative difference

between with and without ProvLake calls. Three charts are plotted,

where each has a fixed number of tasks. In the x-axis, we vary the

mean task duration and for each task duration, we plot three bars,

each representing the amount of data values captured per task. The

y-axis is the overhead percentage. We annotate the total execution

time above the bars of the workloads without data capture for 200

mean data values per task.

Finding: the number of tasks has higher influence than the

mean data values per task and the overhead decreases with task
duration (i.e., total execution time).

An exception is for the millisecond-sized tasks workloads, as

the overhead increases as the number of data values captured

increases. This occurs because of ProvLake’s initialization

overhead, which is incurred for reading a workflow specification

file from disk (prospective provenance) and populating in-

memory data structures. When the workload has only tasks that

execute in milliseconds, the execution time is dominated by this

initialization time. This happens because with so many fast tasks,

ProvLake queues get overloaded. Both the ProvCapturer API in

the client-side takes longer to send requests and the ProvCapturer

server takes longer to process all requests. However, these small
workloads are useful to perform stress tests against the system,

as realistic workloads usually last for several seconds or minutes.

For longer workloads, ProvLake’s overhead is quite low. Even

when capturing a larger amount of data values per task, it is not

enough to significantly increase the execution time. When tasks

last at least 10 seconds on average per task, the overhead is

around 1%. For the workloads dominated by long-lasting tasks,

as of 100 seconds on average, it adds about 0.1% of overhead,

which is negligible.

B. Case Study and Multiworkflow Data Analysis

This section presents the case study that motivates this work.

We start with an overview, then we describe the workflows, and

queries which ProvLake can answer.

Discovery of oil reserves is paramount for the O&G industry

and involves a broad spectrum of activities, including seismic

image interpretation. Typically, these images cover large

extents of the earth and by inspecting the images, geoscientists
try to identify geological features, such as salt bodies. Trying to

automate such activity is of high interest in both academia and

O&G industry [19] and deep learning is a promising machine

learning technique for this [20].

Managing the data lifecycle to train deep learning models is

necessary to deliver models of high quality and this is

particularly true in geoscience problems [21], such as

identification of textures in seismic images [20]. It requires

preprocessing, cleaning, and performing complex integrated

data analysis. To deal with such complexity, the lifecycle is

decomposed into parts, each addressed by different,
collaborating teams of geoscientists, computational scientists,

engineers, among others. Each team has a preferred way to

automate tasks and store data, and a team consumes data

generated by another. This case study focuses on activities that

range from preprocessing large raw geological data files to the

generation of training and validation datasets for deep learning

models. Decomposing the problem into many workflows

makes the problem feasible, however it creates a new problem:

how to consume the data in an integrated way. Managing

provenance in the data lifecycle in a well-structured manner

becomes a major requirement as it facilitates the understanding

of how models were generated and improves trust in the results.
The preprocessing part of the lifecycle is composed of four

workflows (c.f. Figure 1). Workflow 1 processes about 5 TB of

geological raw data files (mainly seismic files in SEG-Y format and

intersecting horizons stored in CSV format). Despite its formal

specification [22], SEG-Y files very often do not follow it, so lots of

preprocessing and cleaning are needed. If erroneous raw data are used

or if the data were not cleaned correctly, the generated training and

validation datasets for the deep learning classifier, hence its results,

cannot be trusted. To address this, Workflow 1 parses the files in the

file system of the HPC cluster, extracts strategic data from the files,

and automates data cleaning. Extracted data are stored in PostgreSQL.

Fig. 6. ProvLake overhead using 36 workloads. Execution times are annotated above the bars.

Based on the outputs of Workflow 1, users inform which seismic and

horizon files should proceed to the Workflows 2 and 3, respectively.

These workflows generate intermediate data files and bounding boxes

and populate a MongoDB database. Furthermore, knowledge and

annotations about the seismic and horizons, known to geoscientists,
are inserted in a knowledge graph database managed by the

AllegroGraph DBMS. Finally, Workflow 4 consumes data from

Workflows 2 and 3 to generate training and validation datasets, which

are stored as files in a Kubernetes volume [23]. In the following steps

of the data lifecycle, these files are used as input to train the models.

Multiworkflow Queries. Based on this case study, we identify

distinct queries ProvLake was made to answer. In this analysis, the

user is a computational scientist and a machine learning

practitioner, with deep knowledge in the domain. When reporting

results, she requires detailed information, such as which SEG-Y

files, intermediate files, and documents in MongoDB were used to

generate a set of training and validation files. Thus, the typical
queries are multiworkflow data analysis:

Q1: What were the data references, stored in datasets

distributed over multiple stores, consumed and generated in the

data generation process, throughout the workflows, of a given

pair of training and validation files?

Q2: What are the relationships between the data references

obtained in Q1?

To provide detailed domain-specific information, such as which

in-line and cross-line slices of the seismic cube, she explores the

semantics of attributes of the data values (Section II.A) to inspect

the inner contents of each data reference returned in Q1:
Q3: List all data values (extracted from the files and datasets,

parameters and output values of data transformations) to

generate a given pair of training and validation files.

In addition to comprehensive queries, she runs debugging

queries. She observes that training and validation datasets that

Workflow 4 is generating are producing models with unusual poor

accuracy. She suspects that Workflow 1, which extracts strategic

values (e.g., geographic coordinates) from SEG-Y files, did not

extract data correctly, and asks:

Q4: How the geographic coordinates were extracted from

the SEG-Y file that is being used to produce training and

4A detailed version of this figure is available online [13].

validation files? What is the spatial resolution between slices in

the seismic data?

Answering Q1—Q4. Figure 7 shows an excerpt of PLView’s

contents when the four workflows execute4 . Rectangles with

dashed strokes represent data store instances and the ones without
dashed strokes are instances of data references. Also, all data

references that are in a same data store follow the grayscale

background color of the data store instance, illustrating the

hadStore relationship (dashed arrow). The excerpt shows the data

relationships when data containing a seismic cube acquired in

Netherlands basin are processed in the four workflows. When

ProvLake captures data values (like x, y coordinates of a seismic

cube) extracted from datasets, it creates the corresponding

relationships to the data references. Similarly, parameter values

of a data transformation execution and data values that are output

of the data transformation execution are related to the data

transformation executions. These relationships of the data values
that are not data references are not shown in the figure for the

sake of its comprehension. We see the relationships between

provenance data of different workflows and the relationships

between data references in heterogeneous data stores in Figure 7.

During an execution of a data transformation in Workflow 1,

ProvLake registers that the data transformation used a seismic

file (netherlands.sgy), extracted raw data from it, and generated

a tuple in a relational table, which is stored in PostgreSQL. In

addition, ProvLake creates relationships between PostgreSQL1

and the data references, and stores the referred (solid arrow)

relationship between the seismic file and the instance in the
relational table. Similarly, as the other workflows execute,

unique identifiers to every data value provide the relationships.

Then, users send API calls to PolyProvQueryEngine.

Q1 and Q2. To illustrate, let us suppose that the user inputs of

query Q1 are the training and validation files generated by

Workflow 4 in Figure 7. In this case, the user sends an API call to

return all data references related to the generation of training and

validation TensorFlow records files, from raw seismic files to the

TensorFlow records files. To return the results,

PolyProvQueryEngine executes a query that takes training and

validation file references (represented as files stored in the

Kubernetes volume) as source nodes and traverses the data graph

Fig. 7. Excerpt of PLView contents generated during the multiworkflow execution.

/data/
netherlands.sgy

netherlands-doc

netherlands-
relational

netherlands-rdf

/data/
seabottom.xyz

/data/
top.xyz

seatop-doc

seabottom-doc

/tfdata/o1/
train1.tfrecords

Filesystem1

PostgreSQL1

Kubernetes-
volume1

AllegroGraph1 hadStore

Database
Reference Value

Data Store

Legend

Workflow1 Workflow 2 Workflow 4

referred

Workflow 3

MongoDB1

backwards until the farthest data reference attribute values, which

are seismic (netherlands.sgy) and horizon files (seabottom.xyz and

top.xyz) and return the related references, via referred. Because the

query is to answer all data references in the provenance data path,

PolyProvQueryEngine uses SPARQL features (e.g., property
paths) to traverse the graph. The result set returns all data

references displayed in Figure 7. For Q2, the result set is similar,

but it shows the data references in Figure 7 and the edges of the

graph between references.

Q3 and Q4. For Q3, the result shows the data references

consumed and generated in all data transformations for all

workflows and data values with other attribute semantics. The

result of Q3 has the data needed by the user to compose a report

on how the training and validation datasets for the deep learning

classifier were generated from raw data, passing through all

workflows. For Q4, the user specifies to show the values for

data attributes used by the data transformation “SEG-Y data
extraction” (i.e., parameters of the transformation) and the x, y

coordinates generated by it (i.e., the extracted data from the

SEG-Y data), and specifies to display the spatial resolution,

which is a data attribute stored in MongoDB.

Then, the result is the geographic coordinates (coordx, coordy),

extracted from the seismic file netherlands.sgy and stored in

PostgreSQL in Workflow 1, along with parameters that were used

to execute that data transformation that extracted the data. The

parameters of this data transformation provide information about

how the data extraction was run. Spatial resolution of seismic slices

is stored in the document reference (generated in Workflow 2) which
is related (referred) to the seismic file.

Overhead analysis. Most real workloads are composed of

mixed tasks (short/long duration, few/many tasks and data

values). This is the case of our real case study, where the

characteristic of each task, hence the whole workload, can be

mapped to the nearest workload tested in the previous

experiments. For example, tasks in Workflow 1 last for up to

few minutes and generate over 100 data values, depending on

the size of the seismic file the task is processing. Some tasks in

Workflows 2 and 3 are short (taking few seconds), whereas

most of them last from few minutes to hours, depending on the

seismic and horizon files being processed by a task. Each task
in these workflows generates less than 30 data values. Tasks in

Workflow 4 last several minutes, depending on the size of the

region of the seismic cube being processed. Each task generates

about 50 data values to be captured. Thus, the majority of tasks

of the workloads are mapped to long duration tasks with dozens

to hundreds of data values. Few tasks are mapped to short

duration tasks and very few last for less than one second.

Considering space overhead, Workflow 1 produces about 5.3

million provenance tuples in the PLView’s DBMS, Workflows

2 and 3 together produce about 400,000 tuples, and Workflow

4 produces about 100,000 tuples. In total, the DBMS storage
used about 4.5 GB, whereas the workflows processed over 5

TB of geological data files. Therefore, for the real workflows,

ProvLake adds about 0.1% of time overhead to each workflow

individually and generates about 5.8 M tuples and 4.5 GB in

the PLView’s DBMS.

In addition to the experiments presented, we also

investigated other aspects of ProvLake, such as different work

queue sizes observed that when sizes are set to one, PLView

has high frequent data insertions, which increases overhead, but

provides near real time data available for runtime queries. Due
to space limitations, we provide examples and further

implementation details in ProvLake’s website [13].

C. Lessons Learned

For runtime data capture, in all presented workloads,

ProvLake has shown a predictable behavior and managed to

maintain low data capture overhead. Particularly, when
workloads are dominated by tasks that last for 10 seconds or

more, ProvLake’s overhead is negligible, even for a large

number of parallel tasks and captured data values. Since CSE

workloads are typically dominated by long-lasting tasks that

last more than a minute each [18], ProvLake is a good solution

for this class of applications. When comparing with Komadu,

we see that when the amount of parallel tasks and amount of

data values per task are small, both systems perform similarly.

Nevertheless, when the workload scale grows, as is the case

with CSE workflows, the design principles adopted by

ProvLake keep the overhead low. A major difference in both
systems’ design is that providing a lightweight library is a

design principle in ProvLake. Aligning this with asynchronous

calls and work queues with parallel processing were critical

design decisions that contributed to achieving the results. As a

result, the design principles adopted by ProvLake allowed for

having an overhead two orders of magnitude lower than

Komadu in CSE workflows.

For the runtime analytical queries, the methodology to

design the data in the PLView promoted cooperation among the

multidisciplinary teams so they could specify relationships, and

which data should be captured at runtime, driving success to

answer the multiworkflow queries. ProvLake’s ontology, with
its adherence to W3C PROV [5], also contributed to the queries.

V. RELATED WORK

We organize the related work according to addressed issues: (i)

runtime data analysis with low workflow overhead and (ii) capturing

data relationships from multiworkflow data. We group related work

as: runtime single-workflow data capture; multiworkflow

orchestration systems; integration of heterogeneous provenance

databases; and runtime multiworkflow provenance data capture.

Runtime single-workflow data capture. Solutions in this

group capture data of workflows at runtime and store as

provenance data [4], [9]. For instance, DfAnalyzer [4] captures
implicit relationships between data files, associating them to data

extracted from files. This raw data extraction is convenient for

analyzing related domain data directly from its provenance

database. DfAnalyzer has low data capture overhead in large-

scale CSE workflows and influenced ProvLake’s design

principles. However, solutions in this group are limited to data

analysis of single isolated workflows. They do not address the

issue that workflows run autonomously but implicitly sharing

data. Captured data are specific to a single workflow, without

explicit interconnections between workflows. Also, these

solutions disregard that multiworkflow data analysis often

requires data integration of data in multiple stores.

Runtime multiworkflow provenance data capture.

Komadu [8,12] is the only solution we found in this group.

Different from the previous groups, Komadu aims at generating
integrated provenance data as a multiworkflow runs. Users add

data capturers to existing workflows to collect and relate data

that flow in the workflows. Then, Komadu allows for forward

and backward provenance queries, and joining provenance

traces in the multiworkflow. It can integrate provenance of data

generated in data lakes and by workflow orchestration systems,

like Spark or WMSs. However, its data representation, hence

data capturing capabilities, disregard that data are often

processed in multiple stores, jeopardizing the multiworkflow

analysis. Additionally, regarding the overhead, the authors

report significant overhead added to the running workflows. In

the experimental evaluation of this paper, we show that
ProvLake outperforms Komadu in a wide variety of workloads.

Multiworkflow orchestration systems. QoX [10] and PAW

[11] aim at optimizing the execution of multiworkflows that

process data in a variety of parallel execution engines (e.g.,

Hadoop MapReduce and Spark) and use multiple stores (e.g.,

HDFS, NoSQL, and relational DBMSs). SHIWA [24] provides

efficient execution management in a multiworkflow environment,

focusing on scalable mechanisms for orchestrating workflows in

single Workflow Management Systems (WMSs). However,

WMSs and parallel execution engines are often not adopted by

CSE users, who frequently adopt libraries with their own parallel
execution control, which conflicts with a workflow scheduling

engine [14]. In addition, none of these solutions provide an

integrated view over the multiworkflow.

Integration of heterogeneous provenance databases.

Solutions in this group [6,7] aim at interoperability in

heterogeneous provenance databases. This is useful in

multiworkflow environments where each workflow engine

generates provenance data using its own specific format.

However, the drawbacks of these solutions are that they also

provide provenance data integration offline.

To summarize, we did not find any solution that copes with

the two issues addressed by our solution and combining
existing approaches into one is hard. It requires new concepts

for multiworkflow provenance data, a practical methodology

for multiworkflow data design, and design principles for

runtime multiworkflow data capture with low overhead.

VI. CONCLUSION

In this paper, we introduced ProvLake, a system that addresses

the challenge of efficient multiworkflow provenance data capture

with low overhead. By capturing strategic data values and their

data relationships, ProvLake maintains the PLView to provide a

logical integration of multiworkflow data at runtime.

We proposed a specialization of a provenance data
representation, which stem from relationships between data

references stored in distributed and heterogeneous data stores

and provenance graphs of different workflows. We followed

W3C PROV to design an ontological data representation for the

PLView. To enable the instantiation of the PLView to

multiworkflows, we organized a set of phases in a methodology

to specify which data values should be captured driven by the

relevant queries. Finally, we proposed design principles that

contributed to providing the runtime analysis, as evidenced in

our real case study, while keeping the overhead as low as 0.1%.
Compared with Komadu [8,24], the closest solution that meets

our goals, our approach enabled runtime multiworkflow data

analysis with much smaller overhead.

VII. ACKNOWLEDGMENTS

The authors would like to thank Marcelo Costalonga, Lucas Villa Real, Rodrigo

Ferreira, Daniel Salles, Daniela Szwarcman, Maximilien de Bayser, Viviane

Torres, and Marcio Moreno from IBM Research for their help during the

development of this work. This work was partially funded by CNPq, FAPERJ,

and Inria Associated Team SciDISC.

VIII. REFERENCES

[1] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, “Scientific
workflows: past, present and future,” FGCS, vol. 75, pp. 216–227, 2017.

[2] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on
provenance: What for? What form? What from?,” VLDB J., vol. 26, no.

6, pp. 881–906, 2017.
[3] R. Souza, V. Silva, J. J. Camata, A. L. G. A. Coutinho, P. Valduriez, and

M. Mattoso, “Keeping track of user steering actions in dynamic
workflows,” FGCS, vol. 99, pp. 624–643, 2019.

[4] V. Silva, D. de Oliveira, P. Valduriez, and M. Mattoso, “DfAnalyzer:
runtime dataflow analysis of scientific applications using provenance,”

PVLDB, vol. 11, no. 12, pp. 2082–2085, 2018.
[5] P. Groth and L. Moreau, “W3C PROV: an overview of the PROV family

of documents,” 2013. https://www.w3.org/TR/prov-overview/.
[6] A. Gaignard, K. Belhajjame, and H. Skaf-Molli, “SHARP: harmonizing

and bridging cross-workflow provenance,” in The Semantic Web: ESWC
2017 Satellite Events, 2017, pp. 219–234.

[7] P. Missier et al., “Linking multiple workflow provenance traces for
interoperable collaborative science,” in WORKS, 2010.

[8] I. Suriarachchi and B. Plale, “Crossing analytics systems: a case for
integrated provenance in data lakes,” IEEE eScience, pp. 349–354, 2016.

[9] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “noWorkflow: a
tool for collecting, analyzing, and managing provenance from Python

scripts,” PVLDB, vol. 10, no. 12, pp. 1841–1844, 2017.
[10] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal, “Optimizing

analytic data flows for multiple execution engines,” in SIGMOD, 2012.
[11] K. Doka et al., “Optimizing, planning and executing analytics workflows

over multiple engines,” in EDBT/ICDT Workshops, 2016.
[12] I. Suriarachchi, S. Withana, and B. Plale, “Big provenance stream

processing for data intensive computations,” in IEEE eScience, 2018.
[13] “ProvLake website,” 2019. https://ibm.biz/provlake.

[14] V. Silva, R. Souza, J. Camata, A. L. G. A. Coutinho, P. Valduriez, and M.
Mattoso, “Capturing provenance for runtime data analysis in

computational science and engineering applications,” in IPAW, 2018, pp.
183–187.

[15] A. C. Bauer et al., “In situ methods, infrastructures, and applications on
high performance computing platforms,” Computer Graphics Forum, vol.

35, no. 3, pp. 577–597, 2016.
[16] L. Bavoil et al., “VisTrails: enabling interactive multiple-view

visualizations,” in IEEE Visualization, 2005, pp. 135–142.
[17] “Komadu website,” https://pti.iu.edu/impact/data-sets/komadu.html.

[18] I. Raicu, I. T. Foster, and Y. Zhao, “Many-Task Computing for Grids and
Supercomputers,” in MTAGS, 2008.

[19] T. Randen et al., “Three-dimensional texture attributes for seismic data
analysis,” in SEG Technical Program Expanded Abstracts, 2000.

[20] D. S. Chevitarese, D. Szwarcman, E. V. Brazil, and B. Zadrozny,
“Efficient classification of seismic textures,” in IJCNN, 2018.

[21] Y. Gil et al., “Intelligent systems for geosciences: an essential research
agenda,” CACM, vol. 62, no. 1, pp. 76–84, 2018.

[22] K. Barry, D. Cavers, and C. Kneale, “Recommended standards for digital
tape formats,” Geophysics, vol. 40, no. 2, pp. 344–352, 1975.

[23] “Kubernetes Volumes,” 2019. https://kubernetes.io/docs/concepts/storage/volumes.
[24] D. Rogers et al., “Bundle and Pool Architecture for Multi-Language,

Robust, Scalable Workflow Executions,” J. Grid Comp., 2013.

