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Abstract

R
untime reconfigurable systems built upon devices with partial recon-

figuration can provide reduction in overall hardware area, power ef-

ficiency, and economic cost in addition to the performance improve-

ments due to better customization. However, the users of such systems have

to be able to afford some additional costs compared to hardwired application

specific circuits. More precisely reconfigurable devices have higher power

consumption, occupy larger silicon area and operate at lower speeds. Higher

power consumption requires additional packaging cost, shortens chip life-

times, requires expensive cooling systems, decreases system reliability and

prohibits battery operation. The less efficient usage of silicon real estate is

usually compensated by the runtime hardware reconfiguration and functional

units relocation. The available configuration data paths, however, have limited

bandwidth that introduces overheads that may eclipse the dynamic reconfigu-

ration benefits. In this dissertation, we address three major problems related

to hardware resources runtime management: efficient online hardware task

scheduling and placement, power consumption reduction and reconfiguration

overhead minimization. Since hardware tasks are allocated and deallocated

dynamically at runtime, the reconfigurable fabric can suffer of fragmentation.

This can lead to the undesirable situation that tasks cannot be allocated even

if there would be sufficient free area available. As a result, the overall sys-

tem performance is degraded. Therefore, efficient hardware management of

resources is very important. To manage hardware resources efficiently, we

propose novel online hardware task scheduling and placement algorithms on

partially reconfigurable devices with higher quality and faster execution com-

pared to related proposals. To cope with the high power consumption in field

programmable devices, we propose a novel logic element with lower power

consumption compared to current approaches. To reduce runtime overhead,

we augment the FPGA configuration circuit architecture and allow faster re-

configuration and relocation compared to current reconfigurable devices.
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1
Introduction

N
owadays, digital electronic systems are used in a growing number of

real life applications. The most flexible and straight forward way to

implement such a system is to use a processor that is programmable

and can execute wide variety of applications. The hardware, a general-purpose

processor (GPP) in this case, is usually fixed/hardwired, whereas the software

ensures the computing system flexibility. Since such processors perform all

workloads using the same fixed hardware, it is too complex to make the hard-

ware design efficient for a wide range of applications. As a result, this ap-

proach cannot guarantee the best computational performance for all intended

workloads. Designing hardware devices for a particular single application, re-

ferred as Application-Specific Integrated Circuits (ASICs), provides a system

with the most efficient implementation for the given task, e.g., in terms of per-

formance but often area and/or power. Since this requires time consuming and

very costly design process along with expensive manufacturing processes, it

is typically not feasible in both: economic costs and time-to-market. This so-

lution, however, can become interesting when very high production volumes

are targeted. Another option that allows highly flexible as well as relatively

high performance computing systems is using reconfigurable devices, such as

FPGAs. This approach aims at the design space between the full custom ASIC

solution and the General-Purpose Processors. Often platforms of this type in-

tegrate reconfigurable fabric with general-purpose processors and sometimes

dedicated hardwired blocks. Since such platforms can be used to build arbi-

trary hardware by changing the hardware configuration, they provide a flexible

and at the same time relatively high performance solution by exploiting the in-

herent parallelism in hardware. Such systems where hardware can be changed

at runtime are referred as runtime reconfigurable systems. A system involving

partially reconfigurable (FPGA) device can change some parts during runtime

without interrupting the overall system operation [1, 83, 154]. For example,

1
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Video
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User2
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Figure 1.1: Running multiple applications concurrently on a partially reconfigurable

device

while user1 is watching her exciting film, user2 can use part of the unoccupied

hardware resources to enjoy listening to his favorite song without interrupting

other user tasks running (e.g., the task used by user3 to listen to her favorite

radio station) as illustrated in Figure 1.1. In this thesis, we target runtime re-

configurable systems that integrate tightly coupled general-purpose processor

and a reconfigurable device, e.g., FPGA. This chapter provides the overview

of the research presented in this dissertation. The main problems in runtime

reconfigurable systems, addressed in this dissertation, are introduced in Sec-

tion 1.1. In Section 1.2, we discuss briefly the main contributions of our work.

The overall organization of this dissertation is presented in Section 1.3.

1.1 Problem Overview

Current devices used in runtime reconfigurable systems have the ability to re-

configure parts of their hardware resources without interrupting the normal

operation of processing elements instantiated on the remaining fabric. Run

time configuration has been used in several application areas and implemen-

tations, e.g., network crossbar switches [2], image interpolation [3], video

coding [4], cryptography [5], neural network implementation [6], image pro-

cessing [7], image compression [8], filters [9], matrix multiplications [9], mo-

tion estimation [10], mechatronics [11], Viterbi decoding [12] [14], multime-

dia player [13], Department of Defense (DOD) systems [15], Reed-Solomon
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Coder/Decoder [16], among many others.

Exploiting partially reconfigurable devices for runtime reconfigurable systems

can offer reduction in hardware area [6] [3] [4] [5] [8] [9] [11] [13], power

consumption [5] [10] [12] [14] [61] [83] [84], economic cost [5], bitstream

size [15], and reconfiguration time [15] [16] [83] [154] in addition to perfor-

mance improvements [5] due to better resource customization. To make better

use of these benefits, one important problem that needs to be addressed is

hardware task scheduling and placement. Since hardware tasks are allocated

and deallocated dynamically at runtime, the reconfigurable fabric can suffer of

fragmentation. This can lead to undesirable situations where tasks cannot be

allocated even if there would be sufficient free area available. As a result, the

overall system performance will be penalized. Therefore, efficient hardware

management of resources is very important.

Hardware task scheduling and placement algorithms can be divided into two

main classes: offline and online. Offline assumes that all task properties (e.g.,

arrival times, task sizes, execution times, and reconfiguration times) are known

in advance. The offline version can then perform various optimizations before

the system is started. In general, the offline version has much longer time to

optimize system performance compared to the online version. However, the

offline approach is not applicable for systems where arriving tasks properties

are unknown beforehand. In such general-purpose systems, the online version

is the only possible alternative. In contrast to the offline approach, the online

version needs to take decisions at runtime; as a result, the algorithm execu-

tion time contributes to the overall application latency. Therefore, the goal of

the online scheduling and placement algorithms is not only to produce bet-

ter scheduling and placement quality, they also have to minimize the runtime

overhead. In this thesis, we focus on online scheduling and placement since we

strongly believe it represents a more genetic situation. The online algorithms

have to quickly find suitable hardware resources on the partially reconfigurable

device for the arriving hardware tasks. In cases when there are no available re-

sources for allocating the hardware task at its arrival time, the algorithms have

to schedule the task for future execution.

Field-Programmable Devices (FPDs) are integrated circuits that can be

(re)configured by their end users to implement various digital functions [17].

There are three FPD main categories: Simple Programmable Logic Devices

(SPLDs), Complex PLDs (CPLDs) and Field-Programmable Gate Arrays (FP-

GAs) [17]. The main difference between PLDs and FPGAs is in the avail-

able number of logic inputs and the available logic capacities. While FPGAs
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have much higher logic capacity (and flip-flop to logic ratio), CPLDs offer

more logic inputs. Advantages of using field-programmable devices (FPDs)

in runtime reconfigurable systems are instant manufacturing turnaround, re-

duced start-up costs, low financial risk, short time-to-market and easy design

changes [17]. However to get these benefits, the users need to pay additional

costs: higher power consumption (approximately 12x larger dynamic power),

larger silicon areas (40x more area required) and lower operating speeds (3.2x

slower), as compared to the ASICs [18]. Higher power consumption requires

expensive packaging [19] [20] [21], shortens chip life-times [19], asks for

costly cooling systems [19] [20] [21], decreases system reliability [21] and

prohibits battery operations [19] [20] [21]. Therefore, reducing the power con-

sumption of FPDs (CPLDs and FPGAs) is a critical issue.

An FPGA device can be used to build arbitrary hardware circuits (same as

any ASIC could implement) by reconfiguring and interconnecting its config-

urable logic elements (LEs) in different ways. Each LE contains a lookup

table (LUT) as a configurable combinational circuit and a flip-flop (FF) as a

storage element. A group of LEs forms configurable logic block (CLB). The

CLB is the basic logic element used by Xilinx FPGAs. A somehow similar

approach is used by Altera to organize LEs in clusters called logic array blocs

(LABs). The complexity of the FPGAs in terms of available CLBs or LABs

is growing very fast with the CMOS technology improvements and now al-

lows the implementation of complete systems. Modern FPGAs can be used

to implement circuits with complexity up to 474240 LUTs and 948480 FFs

as shown in Table 1.1. The FPGA device can be reconfigured by changing

the content of its configuration memory. The configuration memory content,

called bitstream (BS) can be up to 185 Mbits and has to be transported to the

FPGA internal memory using a dedicated configuration data path. Configu-

ration data paths have usually limited bandwidth, hence, the time needed to

send the configuration bits (called reconfiguration time) can be up to 58 ms for

current technology with 32-bit wide configuration data path operating at 100

MHz. High reconfiguration time overhead can eclipse the benefits of dynam-

ically reconfigurable systems. Therefore, it is very important to address this

overhead. In addition, to use the FPGA resources more effectively and to cope

with FPGA area fragmentation during runtime, one needs to easily reorganize

the positions of running tasks, hence fast relocation is also necessary.

In this thesis, we assume pre-designed hardware tasks where for each task at

least two options for execution exist: as software task on general-purpose pro-

cessor or as hardware unit on the reconfigurable fabric. In the assumed system,

each task can arrive at any time and its properties are unknown to the sys-
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Table 1.1: Virtex FPGAs

FPGAs LUTs FFs Bitstream size(Mbits) Reconfiguration time(ms)

Virtex-4 178176 178176 51 16

Virtex-5 207360 207360 83 26

Virtex-6 474240 948480 185 58

tem beforehand. This models real situations in which the time when the user

requests system resources for his/her usage is unknown. As a result, the en-

visioned system has to provide support for runtime hardware tasks placement

and scheduling since this cannot be done statically at system design time. Sim-

ilar to other work (e.g., [22]- [53]), we assume that each hardware task requires

reconfigurable area with rectangular shape and can be placed at any location on

the reconfigurable device. Our task model includes all required reconfigurable

units and interconnect resources. Each hardware task is defined by three pa-

rameters: its area (width and height in terms of atomic reconfigurable units),

reconfiguration time, and its execution time (the latter two expressed in system

clock cycles).

The software tasks that are identified for hardware acceleration are first de-

signed using a hardware description language and after that are placed and

routed by commercial FPGA synthesis CAD tools to obtain functionally equiv-

alent modules that can replace their respective software versions. At this step

of the design process we can use the synthesis results to extract the task sizes

for the used FPGA fabric. The output of the synthesis is the configuration bit-

stream that should be loaded to the device using its integrated configuration

infrastructure. Therefore, starting from the task bitstream file, we can obtain

precisely its reconfiguration time on the targeted technology. The two key in-

gredients are the configuration data size (the bitstream length in number of

bits) and the throughput of the internal FPGA configuration circuit. As an ex-

ample, the Internal Configuration Access Port (ICAP) of Virtex 4 FPGAs from

Xilinx can transport 3200 million bits/second and will load a bitstream of size

51 Mbits in 15.9ms. The last parameter, the task execution time is specified by

the time needed to process a unit of data (referred as: Execution Time Per Unit

of Data, ETPUD) and the overall data size to be processed (i.e. how much data

need to be processed). Please note that for some applications, the task execu-

tion time is also dependent on the exact data content (e.g., as in the case of

Viterbi and Context-Adaptive Binary Arithmetic Coding (CABAC)). In such

applications, even when processing the same amount of data, the elapsed time

will be different when the input data content changes. To address data depen-

dent task execution times, we envision two solutions: worst case execution
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time scenario and notification on task completion HW support.

In this thesis, we assume the worst case execution time scenario in which we

use the task execution time when processing the worst case input data content.

In such scenario, it is possible that the actual task completion can happen ear-

lier than the scheduled completion time resulting in idle times that can not be

used by the scheduler. In addition, such tasks will cause additional wasted area

that cannot be utilized immediately by other HW tasks. In such non-optimal

scenario, however, the overall computing system will operate correctly. Please

note that the chosen scenario is the worst case in respect to the proposed place-

ment and scheduling algorithms due to the introduced overheads in task exe-

cution time and wasted area. The second solution requires dedicated hardware

support for feedback signaling when the running tasks complete, however,

as mentioned earlier this can additionally improve the overall system perfor-

mance. Some existing systems already have the necessary ingredients required

to implement such support. For example, in the Molen architecture [203], the

sequencer is aware of the hardware (HW) task start and completion timing.

The only necessary extension in this case is to provide a way to pass this infor-

mation to the HW scheduler and make it aware of running tasks completion.

With this knowledge, the HW scheduler can make data content dependent tasks

scheduling more efficient. This approach is outside of the scope of this thesis

without loosing generality of our proposal. Even more the selected worst case

execution scenario is less beneficial for the scheduling and placement algo-

rithms presented in this thesis. We are strongly convinced that both types of

systems will be able to benefit from the proposed algorithms.

The assumed overall system model used in our study is depicted in Figure 1.2

consisting of two main devices: the general-purpose processor (GPP) and the

reconfigurable device (FPGA). All hardware task bitstream images are avail-

able in a repository resuming in the main memory (not explicitly shown on the

figure) and can be requested by any running application on the GPP by using a

dedicated operating system (OS) call. In response to such request, the OS will

invoke the Placer (P) to find the best location on the FPGA fabric for the re-

quested hardware task. Once appropriate location is found, the Translator will

resolve the coordinates by transforming the internal, technology independent

model representation to the corresponding low level commands specific for the

used FPGA device. The Loader reads the task configuration bitstream from the

repository and sends it to the internal configuration circuit, e.g., ICAP in case

of Xilinx, to partially reconfigure the FPGA at the specific physical location

provided by the Translator. After reconfiguring the FPGA fabric the requested

hardware task execution is started immediately to avoid idle hardware units on
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Figure 1.2: System Model (OS: operating system, P: placer, S: scheduler)

the reconfigurable fabric. For systems with combined Placer and Scheduler

(P+S), when the hardware area is fully occupied, the Scheduler (S) schedules

the task for future execution at predicted free area places at specific locations

and specific starting times. For systems with only Placer (P), in cases when no

hardware resources are available the corresponding task can be executed using

its software version with significant and often unpredictable execution time

penalty. The Loader can be implemented at either the general-purpose proces-

sor (GPP) as OS extension or in the Static Area of the FPGA. If the Loader is

implemented in the GPP, the communication between the Loader to the ICAP

is performed using the available off-chip connection. For implementations in

the FPGA, the Loader connects to the ICAP internally. Similar to [202], ded-

icated buses are used for the interconnect on chip. Those buses are located

at every row of the reconfigurable regions to allow data connections between

tasks (or tasks and I/Os) regardless of the particular task sizes.

To illustrate the above processes at different stages of the system design and

normal operation, we will use a simple example of hardware task creation as

depicted in Figure 1.3. The hardware task in our example is a simple finite im-

pulse response (FIR) filter. The task consumes input data from array A[i] and

produces output data stored in B[i], where B[i] = C0∗A[i]+C1∗A[i +1]+
C2∗A[i +2]+C3∗A[i +3]+C4∗A[i +4] and all data elements are 32 bits
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Figure 1.3: System at Design Time

wide. The task implementation described using a hardware description lan-

guage (HDL) (FIR.vhd) is synthesized by commercial CAD tools that produce

the partial bitstream file (FIR.bit) along with the additional synthesis results for

that task. The bitstream contains the configuration data that should be loaded

into the configuration memory to instantiate the task at a certain location on

the FPGA fabric. The synthesis results are used to determine the rectangle area

consumed by the task in terms of configurable logic blocks (CLBs) specified

by the width and the height of the task. In our example, the FIR task width is 33

and the task height 32 CLBs for Xilinx Virtex-4 technology. Based on the syn-

thesis output we determine the tasks reconfiguration times. Please note, that in

a realistic scenario one additional design space exploration step can be added

to steer task shapes toward an optimal point. At such stage, both, task sizes

and reconfiguration times are predicted by using high-level models as the ones

described in [54] in order to perform quick simulation of the different cases

without the need of synthesizing all of the explored task variants. For example

in Virtex-4 FPGA technology from Xilinx, there are 22 frames per column and

each frame contains 1312 bits. Therefore one column uses 22x1312 = 28864

bits. Since our FIR HW task requires 33 CLBs in 2 rows of 16 CLBs total-

ing in 32 CLBs, we obtain a bitstream with 33x2x28864 = 1905024 bits.

Virtex-4 ICAP can send 32-bit data every 100 MHz clock cycle, hence, we

can estimate the reconfiguration time as 1905024x10/32 = 595320 ns. Next,
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the FIR task is tested by the designer to determine how fast the input data can

be processed. For our example from Figure 1.3, the task needs 1415 cycles

to process 100, 32-bit input data elements at 11 ns clock period making its

ETPUD 1415x11 = 15565 ns per 100, 32-bit unit data. Based on the above

ETPUD number, we can estimate the task execution time for various input data

sizes. In our example, there are 5000, 32-bit input data elements that have to

be processed by the FIR HW task. Therefore, the expected execution time of

our FIR task is (5000/100)x15565 = 778250 ns (778ms). The configuration

data and task specific information are merged together in what we call a Task

Configuration Microcode (TCM) block as shown in the upper part of Figure

1.3. TCM is pre-stored in memory at the Bitstream (BS) Address. The first

field, the BS length represents the size of the configuration data field. This

value is used by the Loader when the task is fetched from memory. The task

parameter address (TPA) is needed to define where the task input/output pa-

rameters are located. In Figure 1.3, the task parameters are the input and output

data locations, the number of data elements to be processed and the FIR filter

coefficients (C0-C4). The input data address gives the location where the data

to be processed remains. The location where the output data should be stored

is defined by the output data address.

During runtime, when the system needs to execute the FIR hardware task on
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the FPGA, the OS invokes the Placer (P) to find a location for it (shown as

example, in Figure 1.4). From the TCM the Placer gets the task properties

information: task width, task height, reconfiguration time, and its execution

time. Based on the current state of the used area model, the Placer searches for

the best location for the task. When the location is found (in this example: r ′

and c ′), the task is placed in the area model and its state is updated as shown

on the left side of the figure. The Translator converts this location into real

physical location on the targeted FPGA. In the bitstream file (FIR.bit), there

is information about the FPGA location where the HW task was pre-designed

(in this figure: r and c). By modifying this information at runtime, the Loader

partially reconfigures the FPGA through the ICAP (by using the technology

specific commands) at the location obtained from the Translator (r ′′ and c ′′

in this example). By decoupling our area model from the fine-grain details of

the physical FPGA fabric, we propose an FPGA technology independent envi-

ronment where different FPGA vendors, e.g., Xilinx, Altera, etc, can provide

their consumers with full access to partial reconfigurable resources without ex-

posing all of the proprietary details of the underlying bitstream formats. On

the other side, reconfigurable system designers can now focus on partial re-

configuration algorithms without having to bother with all low-level details of

a particular FPGA technology.

1.2 Research Questions and Main Contributions

As discussed in Section 1.1, efficient runtime reconfigurable systems manage-

ment has to cope with the three main challenges: minimal hardware use, min-

imal power consumption, and minimal reconfiguration overhead. In respect to

the above challenges the thesis at hand will provide an answer to the following

research questions:

1. How to improve area utilization, application execution time and algo-

rithm overhead of hardware task placement and scheduling approaches?

2. How to reduce the power consumption of reconfigurable devices by im-

proving their basic logic elements?

3. Can hardware task reconfiguration overhead be reduced by revisiting

the configuration infrastructure?

This dissertation elaborates on the above three questions critical for all modern

runtime partially reconfigurable systems. The work contained in this disserta-
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tion provides evidence that the aforementioned questions can be successfully

answered. More specifically, the main contributions of this thesis are:

1. Novel online hardware task scheduling and placement algorithms on

partially reconfigurable devices with higher quality and shorter algo-

rithm execution time compared to the state of the art;

2. A novel logic element for FPDs with reduced power consumption com-

pared to the industrial FPDs;

3. Low overhead FPGA configuration circuit architectural extensions to

shorten the reconfiguration and relocation times compared to current

high-end FPGA devices.

1.3 Dissertation Organization

This dissertation consists of the following chapters:

• Chapter 2 gives an overview of the state of the art in solving problems

in runtime reconfigurable systems. It presents a survey on existing on-

line hardware task scheduling and placement algorithms, techniques to

reduce power consumption in reconfigurable devices, and techniques to

reduce reconfiguration overhead in runtime reconfigurable systems.

• Chapter 3 introduces two novel algorithms to deal with online hardware

task placement problem in runtime reconfigurable systems on partially

reconfigurable devices. The first algorithm (Intelligent Merging) deals

with reducing algorithm execution time by avoiding unnecessary opera-

tions. The algorithm run up to 3x faster than related art with 0.89 % less

placement quality. The second one (Quad-Corner) is more challenging,

the aim is to discover a faster algorithm yet with a higher quality. The al-

gorithm not only has higher placement quality (78 % less penalty and 93

% less wasted area) than related art but also has lower runtime overhead.

• Chapter 4 presents two novel online hardware task scheduling and place-

ment algorithms on partially reconfigurable devices. The first algorithm

(Intelligent Stuffing) is designed for 1D area model. The algorithm out-

performs related art in terms of reduced total wasted area up to 89.7 %,

has 1.5 % shorter schedule time and 31.3 % shorter waiting time. The
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second one (3D Compaction) is proposed for 2D area model. The al-

gorithm has up to 4.8 % shorter schedule time, 75.1 % shorter waiting

time, and 22.9 % less wasted volume compared to related art.

• Chapter 5 describes a novel low power logic element (LE) for FPDs.

FPDs using our proposal consume 6-90 % less total power and run 2-33

% faster than FPDs using conventional LEs.

• Chapter 6 shows a novel configuration circuit architecture for fast recon-

figuration and relocation. The architecture can speedup reconfiguration

and relocation by 4x and 19.8x on average, respectively.

• Chapter 7 summarizes our findings and gives some suggestions for fu-

ture research directions.
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Related Work

A
s presented in Chapter 1, this dissertation targets three major prob-

lems in current runtime partially reconfigurable systems: online

hardware task scheduling and placement, power consumption, and

runtime reconfiguration overhead. Before presenting our proposal of how to

address these problems in more detail, in this chapter, we present related work

published by other researchers in their attempts to address the same problems.

This chapter is organized as follows. In Section 2.1, we discuss existing on-

line task placement algorithms for partially reconfigurable devices. Related

art regarding online task scheduling and placement is presented in Section 2.2.

This section is short because work in this area is quite recent. In Section 2.3,

we survey existing techniques for reducing power consumption in FPDs. Re-

lated work for reducing reconfiguration overhead is addressed in Section 2.4.

Finally, we conclude this chapter in Section 2.5.

2.1 Online Hardware Task Placement Algorithms

In [22], Bazargan et al. proposed two algorithms: Keeping All Maximal

Empty Rectangles (KAMER) and Keeping Non-overlapping Empty Rectan-

gles (KNER). An empty rectangle is a rectangle area that can be used to place

a task without overlapping to any running tasks on the FPGA. Such rectangle is

used to place each arriving task at runtime. The two algorithms (KAMER and

KNER) differ mainly in the way the empty rectangle is partitioned during task

placements as shown in Figure 2.1. If the rectangle cannot be expanded any-

more, the authors refer to it as a Maximal Empty Rectangle (MER); otherwise

they call it a Non-overlapping Empty Rectangle (NER). KAMER organizes

all MERs, whereas KNER manages all NERs. If there is an arriving task,

both algorithms search all empty rectangles (i.e. MERs for KAMER or NERs

13
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for KNER) to find a suitable one which can fit the arriving task based on one

of two-dimensional bin-packing heuristics: First Fit (FF), Best Fit (BF), and

Bottom-left (BL). In KNER, only the selected empty rectangle is split into two

smaller ones due to non-overlapping empty rectangles to decrease algorithm

execution time of KAMER. The splitting can be done in one of two differ-

ent ways: vertical split or horizontal split. For example, in Figure 2.1, the

KNER decides to do vertical split after placing task T1 and horizontal split af-

ter placing task T2. Every time the algorithm places the task, it performs split-

ting operation. If it just splits the empty rectangles and does not merge them,

FPGA will be partitioned into smaller and smaller of many empty rectangles.

This situation will make placement quality worse, so the algorithm needs to

do both merging and splitting operations. The split decision in KNER is made

by utilizing one of these heuristics: Shorter Segment (SSEG), Longer Seg-

ment (LSEG), Square Empty Rectangles (SQR), Large Square Empty Rect-

angles (LSQR), Large Empty Rectangles (LER), and Balanced Empty Rect-

angles (BER). Although the authors have proposed these heuristics to avoid

wrong splitting decisions, wrong decisions still cannot be totally avoided, low-

ering the placement quality of KNER. For example, in Figure 2.2, although the

FPGA has enough free area for a new incoming task, KNER rejects it due to

its incorrect splitting decision in the past.

T1 T1

T1
T2

T1
T2

a. KAMER b. KNER

MER

MER

MER

MER

MER

NER

NER

NER

NER

NER

Vertical

Split

Horizontal

Split

Figure 2.1: KAMER vs KNER

In [23] and [24], Tabero et al. proposed a Vertex-list algorithm. Vertex List Set

(VLS) data structure is used that each of the lists describes the contour of each

unoccupied area fragment in the FPGA. The authors use bottom-left or top-

right heuristic for placing arriving tasks on vertexes. The VLS structure is a
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Figure 2.2: A rejection of an arriving task due to its previous wrong splitting decision

geometrical description of the whole FPGA free area perimeter. Instead of par-

titioning free areas as KAMER and KNER, the Vertex-list algorithm focuses

on the free area perimeter for placing an arriving task. The algorithm places

a task on one of the corners of this free area perimeter based on one of two

heuristics: 2D-adjacency-based and fragmentation-based. The 2D-adjacency-

based heuristic inserts the task on the vertex position that has the highest con-

tact level in space of the task to the running tasks and the FPGA boundary,

while the fragmentation-based heuristic inserts the task on the vertex position

that has the lowest fragmentation level. To enhance placement quality of their

Vertex-list algorithm, in [25], they proposed two new heuristics: 3D-adjacency

and Look-ahead 3D. In addition to the contact level in space, the 3D-adjacency

heuristic also computes the contact level in time to pack tasks in space and

time. In Look-ahead 3D heuristic, the 3D-adjacency value is computed not

only at current time but also at the future time when the next running task is

finished. After computing all the 3D-adjacency values, the task is placed at the

position with the highest 3D-adjacency value.

In [26] and [27], Steiger et al. and Walder et al. proposed an On The-Fly

(OTF) algorithm. As mentioned earlier, the wrong split decision can lower the

placement quality of KNER. To avoid such wrong decisions, they modified

KNER by delaying the split decision until a next arrived task placed on the

FPGA. However, for this modification, they need to resize several rectangles

on a task insertion.

In [28], Morandi et al. proposed a Routing Aware Linear Placer (RALP) algo-
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rithm. The algorithm is a modified version of KNER algorithm with an addi-

tional routing cost consideration between dependent tasks. Tasks are placed on

empty rectangles that have the least Manhattan distances between dependent

tasks to minimize routing cost. The algorithm can reduce routing cost com-

pared to KNER as reported in [28]. However, it has a lower placement quality

that KNER due to the negative impact of its routing consideration.

In [29], Ahmadinia et al. proposed a Horizontal Line (HL) algorithm to man-

age free space and the Clustering Based (CB) strategy to improve the place-

ment quality of their HL approach. Instead of managing a list of empty rect-

angles like in KAMER, KNER [22], and OTF [26] [27], HL uses exactly two

horizontal lines for placing the task; one above (top horizontal line) and one be-

low (bottom horizontal line) the placed tasks. In order to store information on

these horizontal lines, HL uses two separate linked-lists. HL is implemented

in such a way that hardware tasks are placed above the currently running tasks

as long as there is free space. Once there is no empty space found above the

running tasks, the new ones start to be placed below them and so on. The basic

idea of CB is to place all tasks with similar end times in the same strip such that

a large empty space will be created at a certain location at the end time. This

new empty space hopefully will be able to accommodate future larger tasks.
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Figure 2.3: Area matrix of the staircase algorithm

In [30] and [31], Handa et al. proposed the Staircase algorithm for finding

MERs. A 2D array, referred as area matrix, for modeling the FPGA surface

with each cell in the array representing a CLB is used. For example, an FPGA

(8x6 CLBs) with two running tasks (5x2 CLBs and 3x2 CLBs) is modeled

with an area matrix in Figure 2.3. Every CLB array cell in the free area con-

tains a positive number that gives the number of continuous empty cells in the

column above including the cell itself. Every cell in the occupied area holds a

negative number that represents the remaining width of the task measured on
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Figure 2.4: A staircase

the right side from that cell. The area matrix is used for constructing staircases

and finally these staircases are utilized for finding MERs. All the empty rect-

angles having same bottom right coordinate make a staircase as illustrated in

Figure 2.4. They only check maximal staircases for extracting MERs. After a

maximal staircase is detected, all the rectangles in the staircase can be checked

to see if they are MERs.
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Figure 2.5: Area matrix of SLA

In [32], Cui et al. proposed the Scan Line Algorithm (SLA) algorithm for

finding MERs. The authors use the same area matrix as the staircase algorithm

with a different encoding to represent the FPGA area. For example, an FPGA

(9x6 CLBs) with two running tasks (4x2 CLBs and 3x4 CLBs) is modeled with

an area matrix in Figure 2.5. Every free area CLB is represented by a positive

number that gives the number of continuous empty cells on left including that

cell as shown in Figure 2.5. Every occupied CLB is represented by a zero.

In SLA, the area matrix is used for finding Maximum Key Elements (MKEs)
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and finally these MKEs are scanned for finding all MERs. A key element

is an empty cell with an occupied cell as its right hand neighbor. A column

that contains one or more key elements is called as a scan line. A scan line is

partitioned into segments by valley points. A valley point is the element within

a scan line where values in the line starting to increase. Each segment has one

MKE which is the largest key element in the corresponding segment.

In [33], Xiao et al. discovered that the SLA algorithm can find empty rectan-

gles that are not MERs. To solve this problem, they proposed ESLA algorithm

in [33]. Before the algorithm scans each MKE for finding MERs, the algo-

rithm is instrumented with an ability to know a set of valid widths for that

corresponding MKE. By doing so, the algorithm only needs to scan an MKE

for those valid widths. To avoid duplicated scanning, the algorithm records a

set of scanned positions during each MKE scanning.
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Figure 2.6: Fragmentation matrix of CF

In [34], Cui et al. proposed the Cell Fragmentation (CF) algorithm for their on-

line placement algorithm. CF uses the SLA to find MERs and a Fragmentation

Matrix (FM) to represent the area of the FPGA. For example, an FPGA (7x6

CLBs) with two running tasks (3x2 CLBs and 3x4 CLBs) is modeled with a

fragmentation matrix in Figure 2.6. For empty cells, each cell is labeled by

the number of contiguous empty cells in horizontal, in vertical direction, and a

zero. For occupied cells, each cell is labeled by the number of contiguous oc-

cupied cells in horizontal, in vertical direction, and the finish time of the task.

In order to place a task on the FPGA, CF calculates the Time-Averaged Area

Fragmentation (TAAF) for all MERs that are large enough to accommodate

the task and then places the task into one of the MERs which has the largest

TAAF. The TAAF of a MER is the degree of impact of this MER on the overall
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degree of fragmentation. A MER with large TAAF means it has more impact

on the overall degree of fragmentation, that’s why CF places the arriving task

to a MER that has the largest TAAF.

In [35] and [36], Tomono et al. proposed an online FPGA algorithm that does

not only take into consideration the degree of fragmentation, but also the speed

of I/O communication computed based on the Manhattan distances. The aim

of their algorithm is to balance the degree of fragmentation and the speed of

I/O communication. They use the same area matrix data structure as used

by the Staircase algorithm with additional I/O communication constraints, so

they increase the degree of fragmentation in order to gain the speed of I/O

communication. Because of this additional consideration, they need to check

the status of each communication channel during staircase creation.

In [37] and [38], Ahmadinia et al. proposed the Nearest Possible Position

(NPP) algorithm. They manage the occupied space rather than the free space,

because the set of empty rectangles grows much faster than the set of placed

rectangles. The impossible placement region (IPR) of an arriving task relative

to a placed task is the region near the placed task where it is impossible to place

this arriving task without overlapping the placed task. The possible placement

region (PPR) is the area where it is possible to place the arriving task without

overlapping any placed tasks. In order to find the best position on the PPR

for placing an arriving task, they compute the routing cost based on Euclidean

distances and place an arriving task at the optimal point, where routing cost is

minimum. If they cannot find the optimal point on the PPR, they will find the

Nearest Possible Position (NPP) for placing the task.

In [39], Lu et al. proposed the Multi-Objective Hardware Placement (MOHP)

algorithm. The algorithm uses the VLS data structure adopted from [23] and

[24]. Incoming tasks are classified into three groups with different treatments.

The first group is for independent tasks that need to be executed urgently due

to short remaining time to the deadline. To handle tasks in this group, the

algorithm uses the FF heuristic for fast allocation. The second group is for

independent tasks that do not need urgent treatment. For this group, the algo-

rithm adopts a vertex-list approach from [23] and [24]. The third group is for

dependent tasks. In this group, the routing between dependent tasks needs to

be shortened. For that reason, the algorithm utilizes the NPP approach adopted

from [37] and [38] for tasks in this group.

In [40], Elbidweihy and Trahan proposed an online placement algorithm that

manages both Maximal Horizontal Strips (MHS) and Maximal Vertical Strips,

called the Maximal Horizontal and Vertical Strips (MHVS) algorithm. MHSs
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are rectangles generated by partitioning free area using top and bottom bound-

aries of running tasks; whereas MVSs are rectangles that result from free area

partitioning using left and right boundaries of running tasks. In this algorithm,

the first fit rectangle is used for placing an arriving task. The algorithm can

run faster compared to KAMER as reported in [40]. However, it has a lower

placement quality than KAMER.

In [41] and [42], Ahmadinia et al. proposed the Routing-Conscious Place-

ment(RCP). In order to reduce free-space management to a single point, they

expand inserted modules and concurrently shrink the FPGA area and an arriv-

ing task by half both in width and height. To choose the position for placing

an arriving task, they choose a position, such that the weighted communication

cost computed based on the Manhattan distances is minimized.

In [43], Köster et al. proposed a task placement algorithm for heterogeneous

reconfigurable architectures, TPHRA. The basic idea of this algorithm is to

avoid placing an arriving task with many feasible positions in areas that can be

used by tasks with few feasible positions whenever possible.

In [44], Ahmadinia and Teich proposed the Least Interference Fit (LIF) algo-

rithm. In order to reduce the reconfigurable overhead due to the limitation of

currently available FPGA technology in that time (column-wise reconfigurable

capability), LIF places tasks at the position where the tasks interfere with the

currently running tasks as little as possible.
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1/2
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Figure 2.7: FAP

In [45], ElFarag et al. proposed the Fragmentation-Aware Placement (FAP)

algorithm. In this paper, they introduced a fragmentation metric that gives an

indication to the continuity of occupied (or free) space on the reconfigurable

device and not the amount of occupied (or free) space. The algorithm places

each arriving task on the location where the fragmentation metric is smallest.

All empty spaces have to be tested before it can select one that causes the

lowest fragmentation. Figure 2.7 shows how they compute the fragmentation

metric. There are three tasks (T1, T2, and T3) placed on a reconfigurable

device with size of 5x5 reconfigurable units. In the first row of reconfigurable
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device, there is one contiguous empty space that consists of five reconfigurable

units, therefore the fragmentation in this row is 1/5. Using similar way, the

total row fragmentation is ((1/5) + (1/2) + (1/2) + (1/3)), while the total

column fragmentation is ((1/1) + (1/1)+ (1/1) + (1/1)+ (1/4) + (1/4)).

2.2 Online Task Scheduling and Placement

In [46] and [47], Steiger et al. proposed the Horizon and Stuffing algorithms

both for 1D and 2D area models. The Horizon guarantees that arriving tasks

are only scheduled when they do not overlap in time or space with other sched-

uled tasks. The Stuffing schedules arriving tasks to arbitrary free areas that will

exist in the future by imitating future task terminations and starts. In these pa-

pers, the authors reported that the Stuffing algorithm outperforms the Horizon

algorithm in scheduling and placement quality.
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Figure 2.8: Stuffing vs Classified Stuffing

Discovered that the problem of the Stuffing that always places a task on the

leftmost of its free space as shown in Figure 2.8a, Chen and Hsiung in [48]

proposed their 1D Classified Stuffing. By classifying incoming tasks before

scheduling and placement, the 1D Classified Stuffing performs better than

the original 1D Stuffing. For example, because the Stuffing algorithm always

places tasks on the leftmost edge of the available area, it places tasks T1 and

T2 as shown in Figure 2.8a. These placements block task T3 to be scheduled

earlier. In this case, the Stuffing fails to place task T3 earlier. The main dif-

ference between the Classified Stuffing and the Stuffing is the classification of
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tasks. The Classified Stuffing can place a task on the leftmost or rightmost

of its free space based on the task Space Utilization Rate (SUR). SUR is the

ratio between the number of columns required by the task and its execution

time. High SUR tasks (SUR > 1) are placed starting from the leftmost avail-

able columns of the FPGA space, while low SUR tasks (SUR ≤ 1) are placed

from the rightmost available columns. For this simple example, the Classified

Stuffing can recognize the difference between tasks T1 (high SUR task) and

T2 (low SUR task), so it places successfully tasks on different sides as shown

in Figure 2.8b. Therefore the task T3 can be scheduled earlier by the Classified

Stuffing, outperforming the Stuffing as reported in [48].

In [49], Marconi et al. proposed their 1D Intelligent Stuffing to solve the prob-

lems of both the 1D Stuffing and Classified Stuffing. The main difference

between their algorithm and the previous 1D algorithms is the additional align-

ment flag of each free segment. The flag determines the placement location of

the task within the corresponding free segment. By utilizing this flag, the 1D

Intelligent Stuffing outperforms the previously mentioned 1D algorithms.

In [50], Lu et al. introduced their 1D reuse and partial reuse (RPR). The algo-

rithm reuses already placed tasks to reduce reconfiguration time. As a result,

the RPR outperforms the 1D Stuffing.

In [51], Zhou et al. proposed their 2D Window-based Stuffing to tackle the

drawback of 2D Stuffing. By using time windows instead of the time events,

the 2D Window-based Stuffing outperforms previous 2D Stuffing. The draw-

back of their 2D Window-based Stuffing is its long execution time. To reduce

this runtime cost the authors proposed the Compact Reservation (CR) in [52].

The main idea of the CR is the computation of the earliest available time (EA)

matrix for every incoming task. That contains the earliest starting times for

scheduling and placing the arriving task. The CR outperforms the original 2D

Stuffing and their previous 2D Window-based Stuffing.

2.3 Low Power Techniques for Reconfigurable Devices

Modern FPGAs contain embedded hardware blocks, such as: multipliers,

DSPs, and memories. It is reported in [18] [61] that mapping designs to these

blocks can reduce power consumption. The design that uses hard blocks re-

quires less interconnection. As a result, static and dynamic power consump-

tions are reduced.

Adding programmable delay circuits into configurable logic blocks is reported
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in [68] to reduce power consumption in FPGAs. The generation of glitches

is avoided by aligning the arrival times of signals using the proposed pro-

grammable delay circuits. As a result, the glitched are reduced for minimizing

dynamic power consumption.

To reduce dynamic power consumption in FPGAs, circuits are pipelined in

[64] [65] [66]. This technique reduces the number of levels of the circuit be-

tween registers by dividing the circuit into stages. A circuit with lower levels

tends to produce fewer glitches. Since a circuit with fewer glitches consumes

less dynamic power, the power consumption is reduced.

Reducing power consumption in FPGAs by inserting negative edge triggered

flip-flops at the outputs of selected LUTs to block glitches for propagating

further is reported in [71]. Since the technique produces a circuit with fewer

gliches, the dynamic power consumption is reduced.

Retiming can be used to reduce dynamic power consumption in FPGAs [67].

The idea is to redistribute registers along a signal path without changing the

functionality of the circuit. By doing so, the logic between registers is mini-

mized, hence reducing glitches. As a result, the dynamic power consumption

is reduced.

The bit-widths of the internal signals of circuits can be optimized to reduce

dynamic power consumption. A circuit with shorter bit-widths consumes less

power. This approach applied in FPGAs is reported in [72] [73].

Clock gating is used to reduce dynamic power consumption by selectively

blocking the circuit local clock when no state or output transition takes place

as illustrated in Figure 2.9. The clock gating controller is needed for detect-

ing the conditions of the observed circuit. Based on these conditions, the

clock gating controller can know the exact time when it can stop clock sig-

nal to be transported to the specific circuit for power saving. It is used in

FPGAs [74] [75] [76] [77] [61] [78] [79] [80] and CPLDs [81]. This tech-

nique is supported by commercial CAD tools from Xilinx as reported in [77].

In [80], an asynchronous FPGA with clock gating is proposed.

Powering FPGAs with a variable supply voltage can also be used to reduce

power consumption [82]. This method is referred as dynamic voltage scal-

ing (DVS). Since there is a quadratic relationship between supply voltage and

dynamic power, reducing the voltage will significantly reduce the dynamic

power. Moreover, a cubic relationship between supply voltage and leakage

power reduces significantly the leakage power.

Modern FPGAs have the ability to reconfigure part of their resources with-
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Figure 2.9: Clock gating

out interrupting the remaining resources at runtime. Hardware sharing can

be realized by utilizing this partial reconfiguration feature for power con-

sumption reduction. Power saving using this approach in FPGAs is reported

in [5] [10] [12] [14] [61] [83] [84].

Clock scaling is an approach to reduce power consumption by adjusting op-

erating clock frequency dynamically. Applying this approach in FPGAs is

reported in [85].

A lower threshold voltage transistor runs faster, but it consumes more power.

Multi-threshold voltage technique is to use higher threshold voltage transistors

on noncritical paths to reduce static power, and low threshold voltage transis-

tors on critical paths to maintain performance. This technique has been applied

in commercial FPGAs as reported in [61] [86].

A lower capacitive circuit consumes less dynamic power. One of the ways to

reduce capacitance is to use a low-k dielectric material. This technique is used

by commercial FPGAs as shown in [61] [86].

A simple way for static and dynamic power savings is to reduce the supply

voltage. Commercial FPGAs reported this in [61] [86].

Building circuits with bigger size lookup tables (LUTs) needs less interconnec-

tion between LUTs. As a result, interconnect power consumption is reduced.

This has triggered commercial FPGA vendors to use bigger size LUTs as re-

ported in [61] [63].

Power gating is a technique for reducing power consumption by temporarily
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turning off circuits that are not in use. It is applied in FPGAs [87] [88] [89]

[90] [91]. This technique is used in commercial products, such as: Atmel

PLDs [93], Altera CPLDs [94], Actel FPGAs [95], QuickLogic FPGAs [96],

Xilinx FPGAs [61] , Altera FPGAs [92]. In [88], an asynchronous FPGA with

autonomous fine-grain power gating is proposed. How to partition a design to

better benefit from power gating technique is reported in [91].

Conventional single-edge-triggered flip-flops respond only once per clock

pulse cycle. To reduce power consumption, a flip-flop that can respond to both

the positive and the negative edge of the clock pulse (double-edge-triggered

flip-flops) was proposed in [97]. This technique is used in Xilinx CPLDs to

reduce power consumption [98].

Since SRAM memory is volatile, SRAM-based FPGAs need to be reconfig-

ured before usage. This reconfiguration consumes power. In contrast, the

flash-based FPGAs (e.g. Actel FPGA [95]) that use non-volatile memory can

be operated directly without reconfiguration.

Powering FPGAs with two different supply voltages (dual-Vdd) can also re-

duce power consumption as reported in [20] [99] [100] [101] [102] [103].

It is to use lower supply voltages on noncritical paths to reduce power, and

higher supply voltages on critical paths to maintain performance. Algorithms

for Vdd assignment are presented in [101] [102]. [103] combines concurrently

this technique with retiming to better reduce power consumption in FPGAs.

Reordering input signals to LUTs can reduce dynamic power consumption in

FPGAs. By doing so, we can minimize the switching activity inside LUTs as

reported in [104]. Since power consumption depends linearly on the switching

activity, reducing this results in power consumption improvement.

Power consumption in FPGAs can be reduced by dividing a finite state ma-

chine (FSM) into two smaller sub-FSM using a probabilistic criterion [105].

The idea is to activate only one sub-FSM at a time, meanwhile the other is

disabled for power reduction. Choosing state encoding of FSM for power re-

duction in FPGAs is reported in [106] [107]. The idea is to minimize the bit

changes during state transitions for reducing switching activity, hence mini-

mizing the dynamic power consumption.

Using a diagonally symmetric interconnect pattern in Virtex-5 FPGAs can re-

duce the number of interconnect routing hops as reported in [108]. As a result,

the interconnect power consumption is reduced.

Since not all inputs of LUTs are used in real FPGA designs, leakage power can

be reduced by shutting off SRAM cells and transistors associated with unused
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LUT inputs as reported in [21].

Using LUTs able to operate in two different modes (high-performance and

low-power) reduces leakage power as reported in [109]. The idea is to use

some transistors for lowering supply voltage across input inverters of LUTs

during low power operation mode. Since not all LUTs need to be operated in

high-performance mode, the leakage power is reduced.

Resources used by tasks cannot be turned off after configuration, consuming

leakage power. Therefore, tasks need to be operated as soon as possible after

configuration in runtime systems using partially reconfigurable devices. This

technique for leakage power reduction in FPGAs is reported in [110].

Since leakage power in multiplexers is dependent on their input states, select-

ing polarities for logic signals (i.e. inverted or not) so that the multiplexers

are operated in low-leakage states in the majority of time can be used to re-

duce leakage power in FPGAs [111]. To reduce more leakage power, the work

in [111] is extended by [112]. In [112], not only polarity is considered to

achieve low leakage states, but also the order of input signals to LUTs is modi-

fied to have a better leakage power reduction. It is different from [104] that tar-

gets dynamic power, the work in [112] targets static power by reordering input

signals to LUTs. Since the leakage power is state dependent [113], changing

this state results leakage power reduction.

Redesigning routing switches can reduce the FPGA overall power consump-

tion. Routing switches that can operate in three different modes: high-speed,

low-power or sleep is reported in [114]. Using dual-Vdd-dual-Vt routing

switches for reducing interconnect power is presented in [115]. Applying dual-

vdd and power gating techniques for routing switches is proposed in [116].

During high-level synthesis(HLS), a circuit can be implemented by combining

functional units, such as: multipliers, adders, multiplexers, etc. Each func-

tional unit can be realized using one of varied implementations. Each imple-

mentation requires a certain area and runs at a specific speed with required

power consumption. To reduce power consumption, we need to choose the

best design for a given circuit that can meet the timing requirement with mini-

mal power. HLS algorithms for minimizing power consumption in FPGAs are

reported in [117] [118].

Logic synthesis in FPGAs is a process of transforming a given design (coded

in schematic or HDL) into a gate-level circuit. Considering switching activity

during logic synthesis for FPGAs to reduce power consumption is presented

in [119]. The idea is to minimize switching activity during logic synthesis. As

a result, the power consumption is reduced.
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Technology mapping in FPGAs is a process of transforming a given circuit

into a circuit that only consists of LUTs. The way we map circuits into FPGAs

can affect the power consumption. The algorithms to perform this process for

power reduction are presented in [120] [121] [122] [123] [124]. The main idea

is to pack nodes with high switching activity inside LUTs. By doing so, we

can minimize power needed to transport signals of nodes among LUTs. To bet-

ter estimate the switching activity, glitches are considered during technology

mapping in [70].

Transformation by changing the functionalities of LUTs with rerouting [125]

and without rerouting [126] can be used to reduce power consumption in FP-

GAs. [125] performs the transformation after technology mapping by reducing

switching densities of the outputs of the LUTs, whereas [126] transforms the

design after mapping, placement, and routing by considering switching activ-

ity and capacitance at the outputs of the LUTs.

Clustering logic blocks in FPGAs can affect reduction in power consumption.

Clustering reduces the usage of interconnect resources. As a result, it reduces

interconnect power. The optimal number of logic elements per cluster for

power reduction is 12 as reported in [127]. The way we cluster a circuit into an

FPGA can affect the power consumption. The clustering algorithms to reduce

power consumption are presented in [128] [129]. The main idea in [128] is to

minimize intercluster connections for reducing interconnection power. Clus-

tering for FPGAs with dual-Vdd is shown in [129]. Assigning noncritical paths

to clusters with low power supply voltage is the key idea of [129].

Placement algorithms to reduce power consumption in FPGAs are presented in

[130] [131] [132]. The main idea is to add estimated dynamic power into cost

function of the placement algorithms. As a result, dynamic power is reduced

during placement. A placement algorithm that takes into account the cost of

using clock network resources to reduce power consumed by clock network is

reported in [132].

Routing algorithms to reduce power consumption in FPGAs are reported in

[130] [69]. Assigning nodes with high switching activity to low-capacitance

routing resources is the main idea behind the routing algorithm for reducing

interconnect power in [130]. A routing that can balance arrival times of the

inputs of the same LUTs to reduce power consumption in FPGAs is proposed

in [69]. By doing so, the glitches are reduced. As a result, the dynamic power

consumption is minimized.

Combining power-aware technology-mapping, placement, and routing algo-

rithms to reduce FPGA power consumption is reported in [133].
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To reduce power during runtime reconfiguration, configuration memory with

two different types of memories [134] or runtime configurable memory with

two different modes [135] is proposed. One type(mode) is optimized for high

speed operation; whereas the other type(mode) is optimized for low power

operation. Tasks that do not require high speed reconfiguration can be recon-

figured to the low power one for power saving during reconfiguration.

Some signals in a digital circuit do not affect an output of the circuit for certain

conditions. Stopping these signals to flow to the circuit at those conditions for

dynamic power saving in FPGAs is reported in [136] [137].

Choosing the best operating mode for each memory on FPGAs based on prior

knowledge of its dead intervals is reported in [138] to reduce leakage power

consumption. The memory can be operated in three operating modes: active,

drowsy, and sleep. The sleep mode is a condition when the power supply is

disconnected to the memory; whereas the drowsy mode is a condition when

the memory is connected to a lower supply voltage. The idea is to operate

the memory based on its dead intervals. The memory with long/medium/short

dead interval is operated on sleep/drowsy/active mode.

Constraining designs to be implemented on the specific regions within the

FPGA to minimize power consumed by clock networks is reported in [139].

The idea is to place logic closer together for minimizing the clock network

usage. As a result, the FPGA power consumption is reduced.

Using nanoelectromechanical relays for programmable routing in FPGAs is

reported in [140] to reduce power consumption due to its zero leakage and

low on-resistance characteristics. Although it is more power efficient than the

conventional FPGA, it is not suitable for runtime reconfigurable systems due

to its large mechanical switching delay.

Older generation FPGAs use dual-oxide process technology: thick oxide tran-

sistors (slow transistors) for I/Os and thin oxide transistors (fast transistors) for

core. To reduce leakage power in FPGAs, triple-oxide process technology is

used in modern FPGAs (e.g. Virtex-4) [62] [61]. In these FPGAs, another type

of transistors with medium thickness oxide is dedicated for the configuration

memory and interconnect pass gates.

The leakage power consumed by an asymmetric SRAM cell depends on its

stored data. Since 87 % of the configuration memory cells in FPGAs store

logic zero in the real FPGA design [141], using asymmetric SRAM cells with

low leakage at logic zero for FPGAs to reduce leakage power consumed by

reconfiguration memory is reported in [141]. The idea is to select polarities

for logic signals (i.e. inverted or not) that can increase the number of zeros
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stored on the configuration memory. Since the number of zeros is increased,

the number of memory cell that operates at low leakage is increased. As a

result, the leakage power consumed by the reconfiguration memory is reduced.

To reduce interconnect power, low-voltage swing interconnects are applied for

FPGAs in [142] [143]. Since the dynamic power consumption is linearly pro-

portional to the voltage swing, interconnect power is reduced by minimizing

the voltage swing on interconnects. Because this technique degrades the per-

formance, in [142], the dual-edge triggered flip-flops are used to handle this

degradation. Applying low swing interconnects only on non-critical paths is

proposed in [143] to reduce the performance degradation of this technique.

2.4 Reconfiguration Overhead Reduction Techniques

One of the ways to alleviate the reconfiguration time penalty is to widen the

FPGA configuration data path as shown in the Xilinx FPGA evolution from

Virtex-II (8-bit configuration data path [156]) to Virtex-4 (32-bit configuration

data path [56]). Since the data path is wider, more configuration data can be

sent in each clock cycle. As a result, the configuration time is reduced.

Partially reconfigurable FPGAs can also be used to shorten the reconfiguration

times [1] [83] [15] [16] [154]. In this case, we do not need to reconfigure

the whole fabric when we want to change the systems, only part of systems

that needs to be changed is required for reconfiguration. The architecture of

partially reconfigurable FPGAs is shown in Figure 2.10a. The operation of this

FPGA is illustrated in Figure 2.10b. A frame of configuration data is loaded

serially into a shift register (Configuration Register (CR)) at times t=t1 to t=t5

as illustrated in Figure 2.10b. After the entire frame is loaded into CR, it is

temporarily transferred to a Shadow Register (SR) (Figure 2.10b at t=t6) so

that the CR is free to begin receiving the next frame of data. An address line

is used to transfer the data from the shadow register via the data lines into the

selected Configuration Memory (CM) cells as illustrated in Figure 2.10b at

t=t7. The Mask Register (MR) selects which memory cells receive the specific

configuration data values and which memory cells do not, thereby defining a

partial reconfiguration zone as shown in the same figure. As a consequence,

the configuration time is shortened.

To reduce reconfiguration overhead, configuration prefetching is proposed in

[157] [158]. The idea is to overlap reconfiguration with computation. Since

the reconfiguration can be done in background during computation, the recon-

figuration overhead is reduced by that overlapping time.
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Figure 2.10: A partially reconfigurable FPGA

Changing a pipeline circuit per stage incrementally instead of a whole circuit at

once is proposed in [159] [160] to reduce reconfiguration overhead. By doing

so, the current computation, the next computation, and the reconfiguration can

be taken place concurrently in different stages. As a result, the reconfiguration

overhead is reduced.

Using multi-context FPGAs is another way to deal with long reconfiguration

times as proposed by [162] and [163]. However, n-context FPGAs need n

times more SRAM memory for saving configuration data. When one context

is being reconfigured (passive context), the other context (active context) is

used to define the FPGA fabric current operation. As a result, the FPGA keeps

working during reconfiguration. The reconfiguration overhead in this case is

just the time needed for switching between two contexts, which is very short

and usually can be done in a single clock cycle.

Creating multi-channel configuration circuits to reconfigure FPGAs can also

be used to shorten reconfiguration time [56]. Since multiple parallel configu-

rations can be transferred, the reconfiguration overhead is reduced.

Bitstream compression has also been proposed to speedup reconfiguration

when the bottleneck is in transferring data from memory to the controller to

drive the configuration circuit (e.g. [164]- [170]). The basic idea is to reduce

the bitstream size by doing data compression, thus reducing the time for trans-

ferring the bitstream to controller. However, the maximal configuration speed
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is still limited by the maximum speed of the configuration circuit [165].

Minimizing addressing overhead is another way to reduce reconfiguration time

as reported in [171]. Since the address data are included in the bitstream,

reducing this overhead results in reduced bitstream size. As a consequence,

the reconfiguration time is reduced.

Since only configuration data that are different need to be altered in partially

reconfigurable FPGAs, maximizing common configuration data between suc-

cessive configurations can be used to reduce reconfiguration overhead as re-

ported in [172], [177], [180], [185], and [186]. This technique is called as

configuration reuse. The effect of circuit placement and configuration granu-

larity on this technique is reported in [173]. Combining configuration reuse

and configuration prefetching techniques to minimize reconfiguration time is

presented in [175]. Reusing previously communication infrastructure to mini-

mize reconfiguration overhead for task communications is proposed in [176].

Minimizing the number of required reconfigurations can be used to reduce

reconfiguration overhead. Some techniques based on this idea are presented as

follows. Loop transformations to maximize configuration reuse for reducing

the number of needed reconfigurations are presented in [181]. Replacement

policy to reduce the number of required reconfigurations is proposed in [161]

and [184]. Replacing least recently used tasks is proposed in [161]. Besides,

a credit-based replacement policy is also proposed in [161]. Every time a

currently placed task is reused, its credit is set to its size. The smallest credit

task is replaced if there is no room for incoming task. Replacing longest period

tasks is proposed as a replacement policy in [184].

Reusing statements inside an FPGA mapped loop before reconfiguring it for

the next statements proposed in [182] reduces the number of reconfigurations.

Changing the execution order of hardware tasks can also be used to reduce the

number of reconfigurations as reported in [183].

Minimizing the number of frames reduces bitstream size. As a result, the re-

configuration time is reduced. Some techniques based on this idea are pre-

sented as follows. Adding unused configuration frames into the cost function

during routing to minimize the number of used frames is proposed in [174].

The LUT input orders are permuted such a way that the changing memory bits

are located into some common frames is proposed in [178]. Placing the logic

elements into as few slice columns as possible is another solution to reduce

the number of frames [179]. Since the narrow implementations lead to a high

switch box and routing resource utilization, this idea can reduce performance

and increase power consumption as studied in [187].
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Since FPGAs are fine-grained reconfigurable devices, they require a large

amount of configuration bits. To reduce this configuration bits, many re-

searchers have an idea to use coarse-grained reconfigurable devices as re-

viewed in [188] which require less configuration bits but suffer from lower

flexibility. To reduce FPGA reconfiguration overhead, a coarse-grained recon-

figurable array, called as QUKU, is implemented on an FPGA in [189]. The

functionality of each element of the reconfigurable array and its interconnec-

tion can be reconfigured at very short time because it is coarse-grained. A

different coarse-grained array can be build for optimizing the array for a spe-

cific application. Because of less flexible, circuits with QUKU run slower than

circuits without QUKU as reported in [189].

To amortize reconfiguration overhead, in [190] [191] [192], the throughput of

data transferring from memory to the configuration circuit is maximized. Since

the data can be transferred faster, the circuit can work at its top speed which re-

duces reconfiguration time. However, again the maximum configuration speed

is still bounded by the configuration circuit bandwidth [165].

Preventing larger and frequently reconfigured hardwares to be reconfigured

is reported in [193] to reduce reconfiguration overhead. They used integer

linear programming to determine which hardware tasks that will be assigned as

fixed hardware tasks from all needed hardware tasks for a specific application

targeting a given FPGA. Since these hardware tasks are fixed at runtime, the

reconfiguration overhead for that application is reduced.

Merging multiple circuits into a larger and more general purpose circuit can re-

duce circuit area. Since circuit area determines its reconfiguration time, the re-

configuration time is reduced accordingly. This technique is reported in [194].

A two-level reconfiguration is proposed in [195]. In the first level, the con-

figurable memory cells that need to be reconfigured are linked together in a

chain; whereas the other cells that do not require reconfiguration are bypassed

in the chain to speedup reconfiguration. In the second level, the configuration

data are serially transferred to the chain to partially reconfigure the device.

A balanced binary tree structure is proposed in [196] for transferring configura-

tion data to a reconfigurable device. The reconfiguration is done in two stages.

The first stage is to prepare the structure for allowing fast reconfiguration with

minimum address information. The second stage then uses the prepared struc-

ture to transfer the configuration data to the reconfiguration memory. In [196],

the tree must be a balanced binary tree, this reduces flexibility of this pro-

posal. To have more flexibility, the new structure for partial reconfiguration is

proposed in [197] to allow unbalanced tree to be built in the device.



2.5. SUMMARY 33

2.5 Summary

In this chapter, we have presented a survey on existing online hardware task

scheduling and placement algorithms, techniques to reduce power consump-

tion in reconfigurable devices, and previous work on reducing reconfiguration

overhead in runtime reconfigurable systems.

Because the running time of online algorithms is considered as an overhead for

the overall execution time of applications, therefore not only placement qual-

ity but also the speed of the algorithm should be addressed. Many algorithms

have been proposed to deal with the scheduling and placement in runtime re-

configurable systems. However, none of them has a blocking-aware ability; the

existing algorithms have a tendency to block future tasks to be scheduled ear-

lier, referred as ”blocking-effect”. As a result, wasted area (volume), schedule

time, and waiting time will increase significantly. To cope with this prob-

lem, we propose two online placement algorithms in Chapter 3 and two online

scheduling and placement algorithms in Chapter 4.

Although many techniques have been proposed for power reduction in field-

programmable devices (FPDs), they are all based on conventional logic ele-

ments (LEs). In the conventional LE, the output of the combinational logic

(e.g. the lookup table (LUT) in many FPGAs) is connected to the input of the

storage element; while the D flip-flop (DFF) is always clocked even when it

is not necessary. Such unnecessary transitions waste power. To address this

problem, we propose a novel low power LE as presented in Chapter 5.

All presented solutions for reducing reconfiguration overhead have a common

characteristic that they do not directly target the configuration circuit architec-

ture which is the major contributor to the high reconfiguration cost. The high

reconfiguration times are due to the large amount of configuration bits sent

through a constrained data path. In order to alleviate this, we propose a novel

FPGA configuration circuit architecture to speedup bitstream (re)configuration

and relocation as shown in Chapter 6.





3
Online Hardware Task Placement

Algorithms

O
nline hardware task placement algorithms are expected to find the

best location on a partially reconfigurable device for each arriving

task in the shortest time possible. This is due to the fact that the

execution time of the online placement algorithm is introducing an overhead

extending the overall execution time of the applications. As a result, execu-

tion speed and placement quality are two very important attributes of a good

online placement algorithm. Usually algorithms trade-off between placement

quality and execution speed. In general, high placement quality algorithms are

slow. On the other hand, fast algorithms have poor placement quality. Hence

discovering a high quality, fast placement strategy is challenging. To address

this challenge two novel solutions are proposed in this chapter.

First, we speedup existing algorithm while maintaining placement quality.

Bazargan’s algorithm [22] is used as a case study. Three techniques, referred

as Merging Only if Needed (MON), Partial Merging (PM) and Direct Combine

(DC) are proposed improve algorithm execution time. To preserve the place-

ment quality, one strategy, Combine Before Placing (CBP), is introduced. The

above techniques and strategy form the Intelligent Merging (IM) algorithm.

The second solution is to design a new, simpler algorithm with high placement

quality. As mentioned above an algorithm designer usually has to trade off

between placement quality and execution speed. To address this, we propose

the Quad-Corner (QC) algorithm which is a simple yet effective algorithm.

This chapter is organized as follows. Our Intelligent Merging algorithm is pro-

posed and evaluated against state of the art in Section 3.1. In Section 3.2, we

introduce our novel Quad-Corner algorithm and evaluate it. Finally, Section

3.3 ends with some conclusions.

35
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3.1 Intelligent Merging Algorithm

3.1.1 Basic Idea of the Intelligent Merging Strategy

The IM algorithm consists of three techniques (MON, PM, DC) and one strat-

egy (CBP). To reduce the algorithm execution time, IM is equipped with the

Merging Only if Needed (MON) technique that allows IM to merge blocks of

empty area only if there is no available block for the incoming task. To termi-

nate merging process earlier, IM is armed with Partial Merging (PM) technique

to give it an ability to merge only a subset of the available blocks. To further

reduce the algorithm execution time, IM can directly combine blocks using its

Direct Combine (DC) technique. To increase the placement quality, Combine

Before Placing (CBP) strategy always directly merges blocks to form a bigger

block before placing a task when possible.

3.1.2 The Merging Only if Needed Technique

Merging Only if Needed (MON) is a technique where Non-overlapping Empty

Rectangles (NERs) are merged only if there is no available NER for placing the

arriving task. By doing so we can save algorithm execution time (the original

Bazargan’s algorithm always merges NERs).

Figure 3.1 shows how our MON technique works. The top left corner of Figure

A C
B

T1

B B

T2

C

D

E

F

D

Figure 3.1: MON technique

3.1 depicts the empty FPGA model (the beginning status) that consists of a sin-
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gle NER (NER A). If there is a new task (T1), the task is placed on the bottom

left of NER A. This process produces two new NERs (B and C) as shown on

the top right of the same figure. The bottom left of Figure 3.1 shows the FPGA

area when task T1 is removed from the FPGA after completion, leaving one

new NER (NER D). In this situation, Bazargan’s algorithm works differently

as it would merge the NERs (NERs B, C, and D) into one single bigger NER

(NER A in our example). Hence Bazargan’s algorithm spends computational

time on (unnecessary) merging every time a task completes. In case of MON

when a new task (T2) arrives, it is placed on one of the available NERs (in

our example NER C) that has enough size to accommodate it. Reducing the

unnecessary merging is the key factor in our MON technique for improving

the Bazargan’s algorithm execution time.

3.1.3 The Partial Merging Technique

The Partial Merging (PM) technique allows our Intelligent Merging mecha-

nism to merge only a subset of the available NERs until there is enough free

space for the new task. We thus again save algorithm execution time by ter-

minating the merging process earlier. In Bazargan’s algorithm as mentioned

earlier all available NERs will be merged.

Figure 3.2 shows how our PM technique works. Top left of Figure 3.2 shows
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Figure 3.2: PM technique

how three tasks (tasks T1, T2, and T3) have been placed on the FPGA. Task
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T2 produces two NERs (NERs A and B), while task T3 produces another two

NERs (NERs C and D). The top right of Figure 3.2 shows the situation when

these three tasks are removed from the FPGA and three new NERs (NERs

E, F, and G) become available. Let us assume task T4 arrives and has to be

placed. At this point, there is no single NER available that can fit this new

task. In this case, IM needs to merge NERs and form a bigger NER for this

new task. In order to accommodate task T4 (bottom right of Figure 3.2), the

PM technique in our IM algorithm only needs to perform one merge operation

(NERs A, B, and E) and form a new bigger NER (NER H) (bottom left of

Figure 3.2). Again, Bazargan’s algorithm would perform additional merging.

More precisely, the merging of NERs A, B, and E, then merging C, F, and D,

and finally merging of all of them into one new bigger NER is required. In this

example, Bazargan’s algorithm needs three merging operations while our IM

needs only one. We call this technique also merge-on-demand which is the key

element of the proposed PM technique to reduce algorithm execution time.

3.1.4 Direct Combine and Combine Before Placing

The Direct Combine (DC) technique allows IM to combine NERs directly

without merging and splitting operations, thereby saving algorithm execution

time. Figure 3.3 shows how the proposed DC technique works.

A

T2

A

BB

T1 C

D

E

F

Figure 3.3: DC technique

The top left of Figure 3.3 shows the beginning situation when a task T1 is

placed on the FPGA. This leads to two NERs (NERs A and B). The top right
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of Figure 3.3 shows the FPGA after T1 has been completed. The new NER

(NER C) is produced. Let us assume that task T2 arrives. At this point, all

NERs in this location are free, so it is possible to merge the NERs (NERs A,

B, and C) to form a new bigger NER (NER D) as in the Bazargan algorithm.

To decrease algorithm execution time, instead of merging (release memory)

and splitting (allocate memory) NERs, the DC technique directly combines

the NERs (NERs A, B, and C) to create a bigger NER (NER D) (bottom left of

Figure 3.3). The resulting NER can be used to place the new task (bottom right

of Figure 3.3). To increase the placement quality, the DC technique will always

directly combine NERs into a bigger NER before placing new tasks. We call

this Combine Before Placing (CBP) strategy. For example if the size of task T2

on Figure 3.3 is smaller than NER A, the DC technique will not directly place

the task on NER A. To prevent fragmentation, our DC technique will combine

these three empty NERs (NERs A, B, and C) before placing the task on this

newly formed NER. Therefore the CBP strategy decreases the fragmentation

of empty areas and increases the placement quality.

3.1.5 Intelligent Merging Algorithm

To speedup the execution time of Bazargan’s algorithm without loosing its

good placement quality, we propose to dynamically combine the above three

techniques (MON, PM, DC) and our CBP strategy for small to medium task

sizes. If the task is too large, the possibility that the task can be placed without

merging decreases, so in this case our techniques will not work. Therefore, IM

will conditionally activate our techniques and strategy based on the task sizes

as shown in Figure 3.4.

If the task is not too large (the task width ≤ the task width threshold or the task

height ≤ the task height threshold), IM will do CBP or MON (lines 2-6). If IM

fails to find placement after doing CBP or MON, IM will do PM (lines 7-10).

If IM also fails to find placement after doing PM, IM will reject the task. If

IM can find placement using CBP (line 4), IM will place the task using DC

placement (line 5). If IM can find placement using MON, IM will place the

task using normal placement (line 6).

If the task is too large, IM will do full merging before finding placement like

the original Bazargan’s algorithm (lines 11-15). If IM can find placement after

complete merging, IM will place the task using normal placement (line 14),

otherwise IM will reject the task (line 15).
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1. If (task width <= task width threshold) or (task height <= task height threshold)

{

2. Find placement without merging

3. If the placement is found

{

4. If CBP is possible

{

5. DC placement

}

else

{

6. Normal placement

}

}

else

{

7. Find placement with PM

8. If the placement is found

{

9. Normal placement

}

else

{

10. Reject the task

}

}

}

else

{

11. Total merging

12. Find placement

13. If the placement is found

{

14. Normal placement

}

else

{

15. Reject the task

}

}

CBP or MON

PM

Bazargan’s algorithm

Figure 3.4: Pseudocode of Intelligent Merging algorithm

3.1.6 Evaluation

Experimental Setup

We have constructed a discrete-time simulation framework in ANSI-C to eval-

uate the performance of the proposed techniques and algorithm and compare

it to related work. Our experiments have been conducted on a Pentium-IV

3.4 GHz work station. Each task is placed at its arrival time and in cases the

placement fails, it is assumed rejected. In other words, there is no-queue used

for the scheduling. Only one new task can arrive at each simulated time unit.

Furthermore, our scheduling scheme is non-preemptive – once a task is loaded
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onto the device it runs to completion.

We model an FPGA with size of 100x100 reconfigurable units and use tasks

with randomly generated sizes and life-times. To our best knowledge, there

are no standard benchmarks available to evaluate online placement algorithms.

Therefore, we generated our own synthetic benchmark sets. To closely ap-

proximate real-life scenarios, we generate randomly 13 task sets as depicted in

Table 3.1 ranging from short life-time tasks (50 time units) till long life-time

tasks (200 time units) and also from small size tasks (4 reconfigurable units) till

large size tasks (400 reconfigurable units). The last task set is a mixed task set

(MTS) of TS1 to TS12. Wmin, Wmax, Hmin, Hmax, Ltmin, and Ltmax denote

minimum task width, maximum task width, minimum task height, maximum

task height, minimum life-time and maximum life-time respectively. Our task

sets consists of 1000 tasks with uniformly distributed life-times and task sizes.

Using our simulation framework, we compared our IM algorithm to

Bazargan’s proposal [22]. In this simulation, we set the task width thresh-

old=10 and the task height threshold=10 for our algorithm. For Bazargan’s al-

gorithm, we use the First Fit (FF) heuristic for choosing NERs and the Shorter

Segment (SSEG) heuristic for splitting decision, because these heuristics pro-

vide the best performance, as mentioned in [22].

Table 3.1: Simulated task sets (W:task width, H:task height, Lt:task life-time)

Task Set Wmin Wmax Hmin Hmax Ltmin Ltmax

TS1 2 5 2 5 50 100

TS2 2 5 2 5 100 150

TS3 2 5 2 5 150 200

TS4 5 10 5 10 50 100

TS5 5 10 5 10 100 150

TS6 5 10 5 10 150 200

TS7 10 15 10 15 50 100

TS8 10 15 10 15 100 150

TS9 10 15 10 15 150 200

TS10 15 20 15 20 50 100

TS11 15 20 15 20 100 150

TS12 15 20 15 20 150 200

MTS 2 20 2 20 50 200

Our study is based on evaluation of two performance parameters: the aver-

age percentage of accepted tasks (%) and the average algorithm execution

time(µs). A task is considered accepted if the algorithm can successfully find

a place for running that task on the reconfigurable device. The percentage of

accepted tasks is the ratio between the number of accepted tasks and the total

number of tasks. The execution time was obtained using gettimeofday() func-
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tion that provides us with microseconds precision. We define the algorithm

execution time as the time used by the algorithm for a single task placement.

Good quality placement algorithms have higher percentage of accepted tasks

in general. The average percentage of accepted tasks represents the average

placement quality, while the average algorithm execution time is a metric for

the algorithm performance. The average values are obtained after 1000 algo-

rithm iterations for each task set.

To study the impact of the different techniques, we performed experiments

with five different cases:

• BFFSSEG: Bazargan’s algorithm using FF and SSEG heuristics [22];

• MON: algorithm using MON technique;

• MON+PM: algorithm using combination of MON and PM techniques;

• MON+PM+DC: combination of MON, PM, and DC techniques;

• IM: our Intelligent Merging algorithm.

Experimental Results

The average accepted tasks precentage for each task set is depicted in Figure

3.5. The effect of each technique on the number of accepted tasks is shown

in Figure 3.6. Positive values mean increase of the number of accepted tasks,

while negative values mean decrease in accepted tasks number. This figure is

obtained by comparing the results of the algorithm with and without applying

each proposed technique. The average algorithm execution time over 1000

runs for each task set is depicted in Figure 3.7. The effect of each technique

on the algorithm execution time is shown in Figure 3.8.

Effect of task size and life-time

As the task size increases, the average percentage of accepted tasks decreases

because it is more difficult to find available free space that can accommodate

the task. Longer task life-times decrease the average percentage of accepted

tasks, because the task will stay longer on the FPGA. It is thus more difficult

to find available free space that can accommodate other tasks.

Large tasks negatively influence the algorithm execution time. This is to be

expected, because when the task size is bigger, the possibility that the task

can be placed on one of the NERs or combined NERs on the FPGA without

merging decreases. A similar observation holds for the life-time of tasks where
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Figure 3.5: Average percentage of accepted tasks (%)

Figure 3.6: Effect of techniques on accepted tasks(%)

Figure 3.7: Average algorithm execution time(µs)

Figure 3.8: Effect of techniques on the algorithm execution time(%)
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the execution time is negatively influenced as tasks will stay longer on the

FPGA. Therefore the probability that subsequent tasks can be placed on one

of the NERs without merging becomes smaller.

Evaluation of algorithm using MON technique

The algorithm using the MON technique is up to 1.9 times faster than the

Bazargan’s algorithm due to intelligently avoiding full merging with similar

accepted task percentage. On average, the number of accepted tasks is reduced

by 0.95 %. However for the mixed task set, this is only 0.18 %.

Evaluation of algorithm using combination of MON and PM techniques

Among these algorithms, the algorithm using a combination of MON and PM

techniques (MON+PM) performs the best in terms of algorithm execution time

on average. The algorithm is up to 2.9 times faster than the Bazargan’s algo-

rithm with similar accepted tasks as the result of intelligently avoiding total

merging and exploiting its merge-on-demand capability. On the average, the

decrease of accepted tasks is 1.24 %. However for the mixed task set, the

decrease is only 0.36 %.

Evaluation of algorithm using combination of MON, PM, and DC techniques:

The algorithm using combination of MON, PM, and DC techniques

(MON+PM+DC) is up to 3 times faster than the Bazargan’s algorithm with

similar accepted tasks as the result of intelligently avoiding total merging and

exploiting its merge-on-demand and direct combine capability. On the aver-

age, the decreasing of accepted tasks is 0.95 %. However for mixed task set,

the decreasing is only 0.36 %.

Evaluation of IM algorithm

IM can effectively exploit the advantages of our three techniques especially

when the tasks are not too large, because the possibility that the tasks can be

placed without merging become large.

The IM algorithm is up to 3 times faster than the Bazargan’s algorithm with

similar accepted tasks by intelligently exploiting the proposed three tech-

niques. On the average, the decreasing of accepted tasks is 0.89 %. However

for the mixed task set, the decreasing is only 0.36 %.

On the basis of these results, we can state that our algorithm produces compa-

rable results as Bazargan with a slight minor difference for the worst case but

similar placement quality in the best case.

Effect of the MON technique

The MON technique can decrease the algorithm execution time for small task
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sets. When the tasks are small, the possibility that the tasks can be placed

on one of NERs without merging becomes bigger, so in this case MON can

prevent total merging effectively.

The MON technique decreases up to 47 % of the algorithm execution time

by intelligently avoiding total merging. On the average, the MON technique

decreases 0.95 % accepted tasks. However for the mixed task set, the decrease

in only 0.18 %.

Effect of the PM technique

The PM technique decreases the algorithm execution time up to 47.4 % due

to the merge-on-demand. On the average, the PM technique decreases 0.29 %

accepted tasks. However for the mixed task set, the decrease is only 0.18 %.

Effect of the DC technique

The DC technique decreases the algorithm execution time for sets with small

task sizes, as the possibility for task placement on one of the combined NERs

without merging increases. This improves the DC technique efficiency.

We see that the DC technique increases the number of accepted tasks for almost

all task sets except TS4 as the result of its CBP strategy.

The DC technique decreases up to 2.94 % algorithm execution time by intel-

ligently avoiding merging and splitting. On the average, the DC technique

decreases 0.29 % accepted tasks. However for the mixed task set, it does not

affect on accepted tasks.

3.2 Proposed Quad-Corner Algorithm

3.2.1 Basic Idea of Quad-Corner Strategy

The existing strategies tend to place arriving tasks concentrating on one corner

and (or) split free area into many small segments as shown in Figure 3.9a.

These can lead to the undesirable situation that a task cannot be allocated even

if there would be sufficient free area available. Because of these problems, task

T5 cannot be accommodated as shown in this motivating example in Figure

3.9a. As a consequence, the reconfigurable device is not well utilized (waste

of resources). Furthermore, task T5 has to wait for execution or to be executed

by the host processor due to this inefficient placement, hence the application

will be slowed down (performance degradation). To address these problems,

we spread hardware tasks close to the four corners of the devices as illustrated
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in Figure 3.9b. There are two main advantages of this strategy as shown in

Figure 3.9b: (1) it reserves a lot of free area in the middle of the device; (2) it

solves splitting free area problem. As a result, both the reconfigurable device

utilization and the system performance will be increased.

Figure 3.9: Basic idea of quad-corner strategy

3.2.2 Two-dimensional Reconfigurable Device

A two-dimensional reconfigurable device, denoted as RD(H,W), consists of

HxW homogeneous reconfigurable units arranged in a two-dimensional array

of height H and width W and an interconnect between the units. A reconfig-

urable unit in row r and column c is represented by ru(r,c), for 0≤r≤H-1 and

0≤c≤W-1, with ru(0,0) as the upper left corner.

3.2.3 Task Types

To make the free area in the middle of the device as large as possible, we

force our algorithm to spread hardware tasks close to the four corners of the

devices. To support this idea, we define four ways of placing tasks: starting

from upper left corner, upper right corner, lower right corner, and lower left

corner. We divide tasks into four different task types (Figure 3.10): upper left

task (ULT), upper right task (URT), lower right task (LRT), and lower left task

(LLT). A THxTW task in a two-dimensional reconfigurable device RD(H,W)

is a group of reconfigurable units belonging to RD(H,W), with task height TH
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and task width TW, such that 1≤TH≤H and 1≤TW≤W. The task has an origin

reconfigurable unit ORU=ru(OR,OC) and two alternative placement positions

for accommodating future tasks. The two alternative positions are a horizontal

alternative position (HAP) and a vertical alternative position (VAP) as origin

reconfigurable units for future tasks. OR and OC denote the origin row and

origin column respectively.

Figure 3.10: Examples of four task types and their alternative placement positions

3.2.4 Initial Placement Positions

To spread tasks to the corners for creating as large as possible free area in the

middle, we propose four initial placement positions for accommodating tasks

on an empty WxH two-dimensional reconfigurable device: upper left task ini-

tial ULTI=ru(0,0) (for upper left tasks), upper right task initial URTI=ru(0,W-

1) (for upper right tasks), lower right task initial LRTI=ru(H-1,W-1) (for lower

right tasks), and lower left task initial LLTI=ru(H-1,0) (for lower left tasks).
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3.2.5 Data Structures

We use a 2D matrix RD(r,c) (RD matrix) to represent the FPGA area, defined

as: RD(r,c)=0 if RD(r,c) is not occupied (free) or RD(r,c)=1 if RD(r,c) is occu-

pied (used), where 0≤r≤H-1, 0≤c≤W-1, and RD(0,0) is the element of upper

left corner.

During placement, the software implementation of the proposed algorithm

maintains four lists: an upper left task list (for storing upper left tasks), an

upper right task list (for storing upper right tasks), a lower right task list (for

storing lower right tasks), and a lower left task list (for storing lower left tasks).

3.2.6 Searching Sequences for Placement

To accommodate tasks, the algorithm needs to search four task lists as men-

tioned above. In order to pack tasks more compactly, the algorithm searches

placements in all different task lists based on the sizes of arriving tasks. There

are four different searching sequences for placement: upper left corner first

(for very large tasks), upper right corner first (for large tasks), lower right cor-

ner first (for medium size tasks), and lower left corner first (for small tasks).

The strategy tries to group tasks based on their sizes. This way, the algorithm

picks the corner which contains tasks that are similar in size as the task that

needs to be placed. For example, finding placements for very large tasks using

upper left corner first sequence are fastest. The reason for this is that the algo-

rithm finds a placement starting from the location where very large tasks were

mapped. This strategy can also increase the placement quality since we group

tasks based on their sizes for better compacting purposes. In this thesis, we

consider serial implementation of the list search. Since the four task lists can

work independently, searching task lists can be executed in parallel in a future

implementation.

3.2.7 The Algorithm

The pseudocode of the proposed Quad-Corner algorithm for allocation is

shown in Figure 3.11a. In line 1, the algorithm searches dynamically different

possible placements according to its size until it finds the appropriate place-

ment. This strategy reduces the algorithm execution time and at the same time

increases its placement quality by finding placements in the specific area and

placing tasks as close as to the specific group. If the algorithm finds the place-

ment position, it places the task starting from this position by updating the RD
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matrix (line 3) and adds the task to its corresponding task list (line 4). If the

algorithm cannot find the placement, it rejects the task (line 5).

1. Do searching sequences

for placement

2. If the placement is found

{

3. Place the task by      

updating RD matrix

4. Add the task to the

corresponding task list

}

5. Else reject the task

1. If the life-time of the 

task is zero

{

2. Delete the task 

from RD matrix

3. Delete the task from 

the corresponding 

task list

}

a. Allocation b. Deallocation

Figure 3.11: The pseudocode of QC strategy

The pseudocode of the proposed Quad-Corner algorithm for deallocation is

shown in Figure 3.11b. In line 1, the algorithm checks the life-time of the task.

If the life-time is zero (finished tasks), the algorithm deletes the task from RD

matrix (line 2) and its corresponding task list (line 3).

3.2.8 Evaluation

Experimental Setup

To evaluate the proposed algorithm, a discrete-time simulation framework was

constructed in C. The framework was compiled and run under Linux on a

Pentium-IV 3.4 GHz PC. Since the algorithms are online, the information

about new tasks is unknown until their arrival time. We assume that each task

should be placed at its arrival time and is rejected when it could not be placed.

If a task is rejected, the equivalent function should be executed in software by

the host processor and hence a penalty is incurred. We use task set REJECT to

represent tasks which are rejected from all task set TS . The volume of a task

ti that has a width wi reconfigurable units, height hi reconfigurable units and

life-time lti time units is defined as vi(ti) = wi.hi.lti . For simplicity but

without loss of generality, we assume the penalty to be linearly proportional

to the volume of the rejected task. The penalty ratio is the ratio between the

total volume of rejected tasks (
∑

∀ti∈REJECT

vi(ti)) and the total volume of all

tasks (
∑

∀ti∈TS

vi(ti)). When a task is rejected, the total free area in the recon-

figurable device is called the wasted area. The wasted area ratio is the ratio

between the wasted area and the total area of the reconfigurable device. Gen-
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erally, algorithms with a higher placement quality will exhibit lower penalty

and wasted area ratios.

We evaluated the QC algorithm using real hardware tasks on a real FPGA.

We use the benchmark set from [54] (e.g. MDCT, matrix multiplication,

hamming code, sorting, FIR, ADPCM, etc) and use the DWARV [55] C-

to-VHDL compiler to translate the benchmarks to VHDL. The benchmarks

are synthesized with the Xilinx ISE 8.2.01i PR 5 tools [198] [199] targetting

Virtex-4 XC4VLX200 device with 116 columns and 192 rows of reconfig-

urable units. From these hardware implementations, we obtain the required

resources, the reconfiguration times and the execution times of the hardware

tasks. Some examples of implemented hardware tasks are shown in Table 3.2.

For example, the area Ai for function POWER obtained after synthesis is 444

CLBs. In [56], one Virtex-4 row has a height of 16 CLBs. By choosing two

rows for implementing this function, we obtain hi = 2x16 = 32 CLBs and

wi = ⌈Ai/hi ⌉ = ⌈444/32⌉ = 14 CLBs. The function needs 37 cycles with

11.671 ns clock period (85.68 MHz). Hence, we estimate the execution time

of 100 back-to-back operations to be eti = 37x11.671x100 = 43183 ns.

There are 22 frames per column and each frame contains 1312 bits. There-

fore one column needs 22x1312 = 28864 bits. Since the function occupies 14

CLBs in 2 rows (32 CLBs), we obtain a bitstream with 14x2x28864 = 808192

bits. Since ICAP can send 32 bits per clock cycle at 100 MHz, we estimate the

reconfiguration time rti = 808192x10/32 = 252560 ns. In the simulation,

we assume that the life-time lti is the sum of reconfiguration time rti and

execution time eti . The hardware tasks are selected randomly from 37 imple-

mented hardware tasks. Every task set consists of 100 tasks, each of which has

a life-time and task size. Since we target runtime dynamic multitasking mul-

tiuser systems which hardware tasks can arrive any time, the arrival periods of

hardware tasks are randomly generated between 10 µs to 20 µs, 20 µs to 30

µs, and 30 µs to 40 µs.

Table 3.2: Some examples of implemented hardware tasks (eti for 100 operations,

rti at 100 MHz)

No. Hardware Tasks wi(CLBs) hi(CLBs) eti(ns) rti(ns)

1 functionPOWER 14 32 43183 252560

2 adpcm decode 10 32 770302 180400

3 adpcm encode 10 32 1031213 180400

4 FIR 33 32 1565980 595320

5 mdct bitreverse 32 64 449412 1136520

6 mmul 25 64 57278 892980
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Because our algorithm is a first fit (FF) heuristic algorithm that can find place-

ments for arriving tasks very fast, we compare the algorithm only with FF

heuristic algorithms which are faster than best fit (BF) heuristic algorithms.

To fairly evaluate the algorithms, we use the version of Bazargan’s algorithm

with the best placement quality, i.e. using the FF heuristic for choosing non-

overlapping empty rectangles (NERs) and the Shorter Segment (SSEG) heuris-

tic for splitting, as mentioned in [22]. In addition, we also compare the pro-

posed algorithm to Intelligent Merging (IM) algorithm (the faster modified

version of Bazargan’s algorithm).

Experimental Results

Results were obtained using the aforementioned discrete-time simulation

framework and by comparing the following algorithms: Bazargan’s (BFF-

SSEG) algorithm [22], Intelligent Merging (IM) algorithm, and Quad-Corner

(QC) algorithm as presented in Figure 3.12. Average numbers are obtained by

running the algorithms 10000 times for every task set.

A longer inter-task arrival period creates more possibilities for additional run-

ning tasks to be finished before the arrival of new tasks. As a consequence, the

penalty and wasted area are reduced as the inter-task arrival period increases.

Due to its on-demand merging, the IM algorithm runs faster than the

Bazargan’s algorithm with almost similar penalty ratio and wasted area ratio.

The Bazargan’s and IM algorithms do not perform well because of splitting

and fragmentation problems. Figure 3.12a shows that the QC reduces 78 %

penalty and 93 % wasted area of the other related approaches on average by

solving above problems.

The increase of the total number of running tasks creates more fragmentation

of the free area. As presented earlier, the algorithms that use splitting and

merging (Bazargan’s and IM algorithms) in managing free area need to merge

free area for accommodating arriving tasks. Therefore these algorithms need

more merging operations by the increase of the number of running tasks. As a

consequence, the algorithms (excluding the QC) run slower when the number

of running tasks increases. Therefore, QC is more scalable in terms of runtime

overhead than the other algorithms. By totally avoiding merging and its sim-

plicity, QC not only has better placement quality but also runs faster than the

other algorithms.

Besides comparing the performance of the algorithms using an original Virtex-

4 device (Original), we also measure the effect of doubling the width (Double
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Figure 3.12: Evaluation with real hardware tasks

Width), the height of FPGA (Double Height), and the reconfiguration speed

(Double Speed) as depicted in Figure 3.12c.

Expanding the size of the FPGA reduces the penalty and wasted area. The

reason is obvious that the larger the FPGA, the easier it is to accommodate

hardware tasks. As a consequence, the penalty and wasted area are decreased.

Speeding up the reconfiguration also reduces the wasted area and penalty ra-

tios. The reason is that the faster the reconfiguration affects on less life-time of

the tasks. As a result, the penalty and wasted area are dropped since the tasks

stay shorter on the FPGA.

The effect of doubling the width of FPGA is more beneficial than doubling
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the height. The reason is that the width of the original FPGA (Virtex-4

XC4VLX200) is smaller than its height. As a consequence, doubling the width

of the FPGA becomes more efficient.

Doubling the FPGA size improves placement performance more than doubling

the reconfiguration speed. The effect of reconfiguration speed improvement

also depends on the ratio between reconfiguration time and task execution

time. The above is in agreement with the trend observed in industry that puts

more pressure on increasing the FPGA area than on making the reconfiguration

circuit faster.

b. Wasted area ratio (%)

a. Penalty ratio (%)
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Figure 3.13: FPGA technology impact on penalty (%) and wasted area (%)

The effect of FPGA sizes (double width, double height) and reconfiguration

speeds (2x , 4x, 8x, and 16x faster) on penalty and wasted area ratios (%)

compared to the baseline FPGA is shown on Figure 3.13. All algorithms can

benefit from bigger FPGAs or improved reconfiguration speeds (in both, time

and area). Our QC algorithm is significantly better and hence can not benefit
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much from either FPGA size or configuration speed improvements for the test

task sets. In a real system this will certainly change. These figures indicate

that placement quality can be improved by using a more efficient algorithm, a

faster reconfiguration circuit or a bigger size FPGA.

From the above we determine three ways to improve runtime reconfiguration

systems performance. The first solution is to utilize more efficient algorithms

to manage the reconfigurable resources. Therefore, it is important to study

how to manage these hardware resources. The second solution is to increase

the size of targeted FPGA. This solution is simple but will increase power

consumption. Therefore, when this path is chosen power consumption has to

be addressed. This finding triggers us to study techniques to reduce power

consumption in reconfiguration devices. The third solution is to speedup the

reconfiguration process requiring further study on its overhead reduction.

3.3 Summary

We proposed and evaluated two algorithms (Intelligent Merging and Quad-

Corner) for online placement of reconfigurable hardware tasks. The main dif-

ference between the Intelligent Merging (IM) algorithm and state of the art

is its ability to do on-demand merging. IM speeds up online placement algo-

rithms by 1.72x while loosing only 0.89 % in placement quality. Our Quad-

Corner (QC) algorithm differs from and related work by the quad-corner task

distribution and its dynamic searching sequences. Spreading hardware tasks to

the four corners of the devices, finding placements in the specific places, and

grouping tasks in free area based on their sizes are the main key features of

our proposed QC algorithm. Experiments with real hardware tasks on Virtex-4

show that the QC not only has 78 % less penalty and 93 % less wasted area

than the existing algorithms on average, but also has lower runtime overhead.

Note. The content of this chapter is based on the the following papers:

T. Marconi, Y. Lu, K.L.M. Bertels, G.N. Gaydadjiev, Intelligent Merging On-

line Task Placement Algorithm for Partial Reconfigurable Systems, Pro-

ceedings of Design, Automation and Test in Europe (DATE), March 2008.

T. Marconi, Y. Lu, K.L.M. Bertels, G.N. Gaydadjiev, A Novel Fast Online

Placement Algorithm on 2D Partially Reconfigurable Devices, Proceedings

of the International Conference on Field-Programmable Technology (FPT),

December 2009



4
Online Hardware Task Scheduling and

Placement Algorithms

T
he online hardware task scheduling and placement algorithms have to

find a block of hardware resources for running each arriving task on

a 2D partially reconfigurable device. When there are no available re-

sources for allocating the hardware task at its arrival time, the algorithms have

to schedule the task for future execution. Here, the algorithms need to find the

earliest starting time and free space for executing the task on the device in the

future. Since the algorithms need to take decisions at runtime; therefore, the

algorithm execution time is computed as an additional time for the overall ap-

plication time. As a result, the goal of the algorithms are not only to get better

scheduling and placement quality but also to have a low runtime overhead.

In this chapter, we propose two novel algorithms for dealing with online task

scheduling and placement. The first algorithm, Intelligent Stuffing, is pro-

posed for solving a number of shortcomings of existing algorithms for 1D area

model. The second algorithm, 3D Compaction (3DC), is designed for solv-

ing ”blocking-effect” in existing algorithms for 2D area model; the algorithms

tend to allocate tasks at positions where can block future tasks to be scheduled

earlier. A novel 3D total contiguous surface (3DTCS) heuristic is proposed for

equipping our scheduling and placement algorithm with blocking-awareness.

This chapter is organized as follows. Our Intelligent Stuffing algorithm for

online task scheduling and placement targeting 1D area model of partially re-

configurable devices is proposed and evaluated against related work in Section

4.1. In Section 4.2, we introduce our 3D Compaction algorithm targeting 2D

area model and then give its evaluation against related art. Finally, Section 4.3

ends with the conclusions.
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ALGORITHMS

4.1 Intelligent Stuffing Algorithm for 1D Area Model

4.1.1 1D Area Scheduling and Placement Problems

Given a task set representing a multitasking application with their arrival times

ai , execution times ei and widths wi , online task scheduling and placement al-

gorithms targeting the 1D area model of partially reconfigurable devices have

to determine placements and starting times for the task set such as there are

no overlaps both in space and time among all tasks. The goals of the algo-

rithms are: a) to utilize effectively the available FPGA resources (referred as

minimize wasted area); b) to run the overall application on FPGA faster (min-

imize schedule time); c) to shorten waiting time of the tasks to be executed on

the FPGA (minimize response time) and d) to keep the runtime overhead low

(minimize the algorithm execution time).
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Figure 4.1: Performance parameters and previous algorithms

We define total wasted area as the overall number of space-time units that are

not utilized as shown in Figure 4.1(a). Total schedule time is the total number

of time units for the execution of all tasks. Response time is the difference

between starting and arrival times for each task (in time units). Total response

time is the sum of response times for all tasks. The overall algorithm execution

time is the cumulative time needed to schedule and place all the tasks.



4.1. INTELLIGENT STUFFING ALGORITHM FOR 1D AREA MODEL 57

4.1.2 Intelligent Stuffing Algorithm Main Properties

In [46] [47], Steiger et al. proposed the Stuffing. It schedules tasks to arbitrary

free areas that will exist in the future, including areas that will be used later

by tasks currently in its reservation list. It always places a task on the leftmost

of its free space as shown on Figure 4.1(b). Because the Stuffing algorithm

always places tasks on the leftmost edge of the available area, it places tasks

T1 and T2 as shown on Figure 4.1(c). These placements block task T3 to be

scheduled earlier. In this case, it fails to place task T3 earlier.

In [48], Chen and Hsiung proposed the Classified Stuffing to solve the draw-

back of the Stuffing in case 1 (Figure 4.1(c)). The main difference between the

algorithm and the Stuffing is the classification of tasks. It can place a task on

the leftmost or rightmost of its free space based on the task Space Utilization

Rate (SUR). SUR is the ratio between the number of columns required by the

task and its execution time. High SUR tasks (SUR > 1) are placed starting

from the leftmost available columns of the FPGA space, while low SUR tasks

(SUR ≤ 1) are placed from the rightmost available columns as shown in the

right of Figure 4.1(b). In case 1, it can recognize the difference between tasks

T1 (high SUR task) and T2 (low SUR task), so it places successfully tasks on

different placements. This makes task T3 earlier scheduling possible. However

in case 2 (Figure 4.1(d)), it fails to solve the problem of the Stuffing. Because

it does not recognize the difference between tasks T1 and T2 (both of the tasks

are low SUR tasks), it fails to place tasks on different placements. These place-

ments block task T3 to be scheduled earlier. Therefore in case 2, both of the

previous algorithms fail to schedule task T3 earlier. Total wasted area, total

schedule time, and total response time will increase as a consequence.

The main difference between our Intelligent Stuffing algorithm and previously

proposed algorithms is the additional alignment status of the free space seg-

ments and its handling. This status guides our algorithm to make the correct

decision on task placement position in order to maximize the free space area

and allow earlier placing of further tasks. In addition, our algorithm does not

need to compute SUR, therefore it runs faster than the Classified Stuffing.

4.1.3 The Proposed Algorithm

Our algorithm maintains two linked lists: a free space list (SL) and a task list

(TL). The SL contains all free spaces FSi with their previous pointers PPi ,

dimensions (CLi and CRi ), free times FTi , alignment statuses ASi and next

pointers NPi . The free time is the time when the corresponding free space can
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be used. The alignment status is a boolean determining the placement location

of the task (leftmost or rightmost) within this free space segment. The new list

entries of SL are inserted in order of increasing free times.

The TL stores all scheduled tasks with their previous pointers PPj , start times

STj , task dimensions (CLj , CRj ), task execution times ETj and next pointers

NPj . The start time is the time that the task initiates execution on the FPGA.

The column left (CLj ) and right (CRj ) determine the FPGA area that is used

by the task. The new list entries of TL are inserted in order of increasing of

start times.

Figure 4.2(a) (top) shows an empty FPGA and a leftmost alignment status is

defined, e.g., a new free space will be allocated at the leftmost position. At this

point, the free space list SL contains only a single free space (FS1) defined by

its leftmost column (CL1), its rightmost column (CR1) and free time FT1.
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4. Check conflict
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{

6. If conflict and the free space size > task width do

{
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8. Check conflict

9. If conflict do

{

10. Toggle the free space alignment status

}

}

}

11. Search pointer = next of find pointer

}

12. Schedule and place task in the free space on location 

according to the free space alignment status

13. Update the free space size and toggle the free space

alignment status

14. Update the affected free space sizes

15. Add new free space on free space list (sorted in order of

increasing free times)

16. Add new task on task list (sorted in order of increasing 

start  times) 

(c)

Figure 4.2: Our Intelligent Stuffing algorithm

When a new task T1 arrives, the algorithm searches the free space list SL and

places it on the leftmost edge of FS1 (according to its alignment status). This

action reduces the size of FS1 as shown in the middle of Figure 4.2(a), toggles

the alignment status of FS1 from leftmost to rightmost, and creates a new free

space FS2. FS2 has (CL2, CR2) dimension and its free time is FT2 and leftmost

alignment status.
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Assume there is another task T2 simultaneously arriving with T1 the free

space list SL will be processed again. Because the alignment status of FS1
was changed to rightmost, T2 will be placed on rightmost edge of FS1. This

action reduces the FS1 size as shown in Figure 4.2(a) (bottom) and again tog-

gles the alignment status of FS1 to leftmost. The size of FS2 is also adjusted

and a new free space FS3 (CL3,CR3) is created with free time FT3 and leftmost

alignment status. By keeping tasks T1 and T2 on the edges, the largest space

possible is created, so future tasks can be scheduled earlier and we can address

the problem of previous algorithms for both case 1 and case 2 as shown in

Figure 4.2(b).

There are two operating modes: speed and quality. In the speed mode, the

algorithm execution time is more important than the quality of scheduling and

placement. While the quality mode is designed for higher utilization of the

resources. The pseudocode of our algorithm is presented in Figure 4.2(c).

When a new task arrives, our algorithm walks through the SL to find a first

fit free space avoiding conflicts with the scheduled tasks in the TL (line 1 to

11). The first fit free space has the earliest free time which enough columns of

reconfigurable units to fit the task.

If quality mode is chosen, lines 6 to 10 are executed for better quality (in

speed mode those lines are skipped to reduce the algorithm execution time). In

lines 6 to 8, a placement of the task at the opposite position to the alignment

status is attempted. This action increases the quality, but it requires additional

algorithm time. If the task still conflicts with the currently scheduled tasks in

the TL (line 9), the alignment status of the corresponding free space is set to

its initial condition (line 10).

In line 12, the first fit free space without conflicts with the TL list is found,

however this space may be wider than that the task requirements. The task

is placed on the FSi edge according to its alignment status. As mentioned

earlier, every placement changes the size and toggles the alignment status of

the used free space (line 13). This action can also affect the other free space

sizes (line 14) and adds a new free space in the SL (line 15) in addition to the

new scheduled task in the TL (line 16).
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4.1.4 Evaluation

Experimental Setup

We implemented four different algorithms (the Stuffing [46] [47] (STF), the

Classified Stuffing [48] (CTF) and our algorithm using speed mode (ISS) and

quality mode (ISQ)) in ANSI-C and run them on a Pentium-IV 3.4 GHz PC

using the same task sets. The simulated device consists of 96 columns to model

Xilinx XCV1000 (96x64 reconfigurable units). The task widths and execution

times of tasks are generated randomly in [1,96] columns of reconfigurable units

and [1,1000] time units. We generate randomly 20 tasks for each task set and

run all algorithms using 100,000 task sets. The evaluation is based on four

performance parameters: total wasted area (TWA), total schedule time (TST),

total response time (TRT), and total algorithm execution time (TAT) (µs).

Experimental Results

Table 4.1 shows that even in speed mode our algorithm utilizes the FPGA bet-

ter, decreasing the wasted area compared to the Stuffing by 64.5 %. In addition,

it makes the overall application execution 1.1 % faster and has 17.4 % shorter

waiting time. The speed mode is not only faster than the Classified Stuffing (5

% shorter algorithm execution time) but also utilizes the FPGA more effective

by decreasing the wasted area by 53 %. Furthermore the application execution

is reduced by 0.7 % with 12.8 % shorter total waiting time.

Table 4.1: Obtained results using 100,000 task sets (TWA:total wasted area, TST:total

schedule time, TRT:total response time and TAT:total algorithm execution time)

Performance parameters STF CTF ISS ISQ

TWA(space-time units) 1035449499 783069435 367934139 106709691

TST(time units) 651128773 648499814 644175488 641454400

TRT(time units) 335229077 317655028 276949454 230250447

TAT(µs) 2076694 2184614 2074848 2168651

In quality mode the wasted area is decreased by 89.7 % compared to the Stuff-

ing with only 4.2 % algorithm execution time overhead (saving the alignment

status bit and finding alternative placements). Moreover it makes the applica-

tion running 1.5 % faster with 31.3 % shorter total waiting time. In respect to

the Classified Stuffing the quality mode is not only faster by 0.7 % in terms of

algorithm execution time but also decreases the FPGA wasted area by 86.4 %.

Additionally, the overall application execution time is reduced by 1.1 % with
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27.5 % better total waiting time.

4.2 Proposed 3D Compaction Algorithm for 2D Area

Model

4.2.1 Problem of Scheduling and Placement on 2D Area Model

Given a task set representing a multitasking application with their arrival times

ai , life-times lti , widths wi and heights hi , online task scheduling and place-

ment algorithms targeting the 2D area model of partially reconfigurable de-

vices have to determine placements and starting times for the task set such that

there are no overlaps in space and time among all tasks. The goals of the al-

gorithms are: a) to utilize effectively the available FPGA resources (minimize

wasted volume); b) to accelerate the overall application on the FPGA (mini-

mize schedule time); c) to start executing arriving tasks on the FPGA earlier

(minimize waiting time) and d) to keep the runtime overhead low (minimize

the algorithm execution time).

Figure 4.3: Problem of scheduling and placement on 2D area model

We define the total wasted volume as the overall number of area-time units

that are not utilized as illustrated in Figure 4.3. Total schedule time is the total
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number of time units for the execution of all tasks. Waiting time is the dif-

ference between task starting and arrival times (in time units). The algorithm

execution time is the time needed to schedule and place the arriving task.

4.2.2 Blocking-Aware Algorithm Main Idea

Blocking-unaware algorithms do not consider whether future incoming tasks

will be blocked while deciding on the current task placement position. This

can be seen as if drivers parking their vehicles at completely random places and

hence preventing other drivers of parking their cars. Figure 4.4 (left) illustrates

the behavior of online scheduling and placement algorithms that do not have

blocking-awareness. In this simple example, task T3 is becoming an obstacle

for task T4 arriving after T3.

Figure 4.4: Basic idea of blocking-aware algorithm

To tackle this problem, we introduce an algorithm that can avoid placement

decisions that will become an obstacle for future HW tasks. By placing task

T3 to a different location as shown in Figure 4.4 (right), the proposed algorithm

can avoid task T3 to be an encumbrance for task T4 that can be started earlier

now. By this early scheduling T4 can finish its execution faster. To give the

algorithm the necessary knowledge to avoid such ”blocking-effect”, it places

tasks at locations as much as possible touching all prior tasks illustrated with

bold lines on the figure. In the next section, we will provide a more detail

explanation of this heuristic, termed 3D total contiguous surface (3DTCS).
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4.2.3 3D Total Contiguous Surface (3DTCS) Heuristic

A hardware task on a 2D partially reconfigurable device using 2D area model

can be illustrated as a 3D box. The first two dimensions are the required area

(wh) on the device for running the task. The other dimension is the time

dimension (t). To pack hardware tasks compactly during run time at the

earliest time, we propose a new heuristic, named 3D total contiguous surface

(3DTCS) heuristic.

Figure 4.5: 3D total contiguous surface (3DTCS) heuristic

The 3DTCS is the sum of all surfaces of an arriving task that is contacted with

the surfaces of other scheduled tasks as depicted in Figure 4.5. The 3DTCS

contains two components:

• the horizontal contiguous surfaces with previous scheduled tasks and

next scheduled tasks;

• the vertical contiguous surfaces with scheduled tasks and the FPGA

boundary.

In a simple example depicted in Figure 4.5, the horizontal contiguous surfaces

with a previous scheduled task (PST) A4 and with a next scheduled task (NST)

A3 in the figure give this heuristic an awareness on avoiding ”blocking-effect”;

while the other surfaces A1 and A2 (vertical contiguous surfaces) give this

heuristic to better pack tasks in time and space. As a result, the proposed

algorithm has a full 3D-view of the positions of all scheduled and placed tasks.
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Figure 4.6: Horizontal contiguous surfaces

Intuitively, a higher 3DTCS value will result in more compaction both in space

and time. This 3DTCS heuristic gives our proposed 3D compaction algorithm

with blocking-aware ability to pack tasks better as it has a more complete view

of all dimensions.

Figure 4.6(1)-(14) and Table 4.2 show all the placement positions and their

corresponding computations of horizontal contiguous surfaces. The arriving

task (AT), with width w and height h , has a bottom-left coordinate (x, y) as

shown in Figure 4.6(15). The arriving task can be contacted with the previ-

ous scheduled task (PST) and (or) the next scheduled task (NST) to produce

the horizontal contiguous surfaces. The scheduled task has a bottom-left co-

ordinate (x1, y1) and a top-right coordinate (x2, y2) as illustrated in Figure

4.6(16).

The arriving task can be contacted with scheduled tasks and (or) FPGA bound-

ary to produce the vertical contiguous surfaces. All placement positions of the

arriving task (AT) and their corresponding computations of vertical contigu-

ous surfaces with the scheduled task (ST) are shown in Figure 4.7(a) and Table

4.3. The arriving task with a life-time lt is started execution at time ts ; the

finishing time of scheduled task is denoted as tf . Computations of vertical

contiguous surfaces between the arriving task with the FPGA boundary are

illustrated in Figure 4.7(b) and formulated in Table 4.4.
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Table 4.2: Computations of horizontal contiguous surfaces for positions in Figure

4.6(1)-(14)

Positions Horizontal contiguous surfaces

(1) (x2 − x1 + 1)(y2 − y1 + 1)

(2) wh

(3) w(y + h − y1)

(4) (x + w − x1)h

(5) w(y2 − y + 1)

(6) (x2 − x + 1)h

(7) (x2 − x1 + 1)(y2 − y + 1)

(8) (x2 − x + 1)(y2 − y1 + 1)

(9) (x2 − x1 + 1)(y + h − y1)

(10) (x + w − x1)(y2 − y1 + 1)

(11) (x + w − x1)(y + h − y1)

(12) (x + w − x1)(y2 − y + 1)

(13) (x2 − x + 1)(y2 − y + 1)

(14) (x2 − x + 1)(y + h − y1)

Table 4.3: Computations of vertical contiguous surfaces with scheduled tasks for

positions in Figure 4.7(a)(1)-(16)

Positions Vertical contiguous surfaces with scheduled tasks

(1),(3) w.min(lt, (tf − ts))

(2),(4) h.min(lt, (tf − ts))

(5),(7) (x2 − x1 + 1).min(lt, (tf − ts))

(6),(8) (y2 − y1 + 1).min(lt, (tf − ts))

(9),(14) (x2 − x + 1).min(lt, (tf − ts))

(10),(13) (x + w − x1).min(lt, (tf − ts))

(11),(15) (y2 − y + 1).min(lt, (tf − ts))

(12),(16) (y + h − y1).min(lt, (tf − ts))

4.2.4 The 3D Compaction (3DC) Algorithm

Figure 4.8 shows the pseudocode for the proposed 3D Compaction (3DC).

The algorithm maintains two linked lists: the execution list and the reservation

list. The execution list saves the information of all currently running tasks

sorted in order of increasing finishing times; the reservation list contains the

information of all scheduled tasks sorted in order of increasing starting times.

The information stored in the lists are the bottom-left coordinate (x1, y1), the

top-right coordinate (x2, y2), the starting time ts , the finishing time tf , the

task name, the next pointer, and the previous pointer.

In lines 1-13, the algorithm computes the starting time matrix (STM) with

respect to the arriving task area wh on the device area WH . The algorithm

collects all possible positions that have enough space for the arriving task by
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(a)

(b)

Figure 4.7: Vertical contiguous surfaces with scheduled tasks (a) and the FPGA

boundary (b)

scanning the executing and reservation lists. The algorithm fills each element

of the STM with the arrival time of incoming task a (lines 1-3). The algorithm

updates groups of elements that are affected by all executing tasks in execution

list (lines 4-8) and by all scheduled tasks in reservation list (lines 9-13).

In line 14, the algorithm collects all the best positions (candidates) that have

the earliest starting time (the best starting time positions: the best positions in

terms of starting time) from the STM.

Since the algorithm not only wants to get the best position in terms of starting

time (time domain) but the best position in terms of space (space domain)

as well. To pack compactly tasks, we propose to use the 3DTCS heuristic as
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Table 4.4: Computations of vertical contiguous surfaces with the FPGA boundary for

positions in Figure 4.7(b)(1)-(8)

Positions Vertical contiguous surfaces with the FPGA boundary

(1)-(4) (w + h)lt

(5),(7) h.lt

(6),(8) w.lt

presented earlier. The algorithm computes the 3DTCS (line 16) using formulas

from Table 4.2 to Table 4.4 and chooses the best position from all the best

starting time positions. Hence, the algorithm does not need to compute the

3DTCS for all positions; it only computes the 3DTCS for the best positions

(candidates) (line 15). Intuitively, the highest 3DTCS value gives the best

position in terms of packing to avoid ”blocking-effect”.

Besides the 3DTCS heuristic, the algorithm also uses the sum of finishing time

difference (SFTD) heuristic for all scheduled tasks that vertically contacted

with the arriving task (referred as a VC set). The algorithm computes current

SFTD (c SFTD =
∑

∀tasks∈VC

|ts + lt − tf |) in line 17. The SFTD heuristic

gives our algorithm an ability to group tasks with similar finishing times to get

large free space during deallocations.

The algorithm chooses the position with the highest 3DTCS value and the

lowest SFTD value for allocating the arriving task (lines 18-27). Allocating the

arriving tasks at the highest 3DTCS compacts the tasks both in time and space;

while grouping tasks with similar finishing times creates more possibility to

produce larger free space during deallocations.

The algorithm allocates the incoming task when there is available space for the

task at its arrival time; otherwise, the algorithm needs to schedule the task for

future execution. If the arriving task can be allocated at its arrival time (line

28), it will be executed immediately and added in the execution list (line 29);

otherwise, it is inserted in the reservation list (line 30).

When the tasks in the reservation list are executed, they are removed from the

reservation list and added in the execution list. The finished tasks in the exe-

cution list are deleted after execution. These updating processes are executed

when the lists are not empty (lines 31-34).

The time complexity analysis of 3DC is presented in Table 4.5. In which W , H ,

NET , NRT are the FPGA width and height, the number of executing tasks in the

execution list and the number of reserved tasks in the reservation list.
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14. collect all positions from STM that have the earliest starting time

15. for all above positions

{

16. c_3DTCS=compute 3D contact surfaces

17. c_SFTD=compute sum of finishing time difference

18. if (c_3DTCS>3DTCS_max AND c_SFTD<SFTD_min)

{

19. best_position=current position

20. 3DTCS_max=c_3DTCS

21. SFTD_min=c_SFTD

}

22. else if (c_3DTCS>3DTCS_max)

{

23. best_position=current position

24. 3DTCS_max=c_3DTCS

}

25. else if (c_3DTCS=3DTCS_max AND c_SFTD<SFTD_min)

{

26. best_position=current position

27. SFTD_min=c_SFTD

}

}

28. if best_starting_time=arrival time

{

29. add task to the execution list

}

else

{

30. add task to the reservation list

}

31. if  the reservation list is not empty

{

32. update reservation list

}

33. if  the execution list is not empty

{

34. update execution list

}

1. for (y=1;y<=H-h+1;y++)

{

2. for (x=1;x<=W-w+1;x++)

{

3. STM(x,y)=a

}

}

4. for all tasks in execution list

{

5. for (y=max(1,y
1
-h+1);y<=min(y

2
,H-h+1);y++)

{

6. for (x=max(1,x
1
-w+1);x<=min(x

2
,W-w+1);x++)

{

7. if (STM(x,y) < t
f
)

{

8. STM(x,y)=t
f

}

}

}

}

9. for all tasks in reservation list

{

10. for (y=max(1,y
1
-h+1);y<=min(y

2
,H-h+1);y++)

{

11. for (x=max(1,x
1
-w+1);x<=min(x

2
,W-w+1);x++)

{

12. if ((STM(x,y) < t
f
) AND (STM(x,y)+lt>t

s
))

{

13. STM(x,y)=t
f

}

}

}

}

Figure 4.8: Pseudocode of 3D Compaction algorithm

The main difference between our algorithm and existing algorithms is the pres-

ence of the 3D compaction ability. Because of this 3D compaction ability, our

algorithm can avoid ”blocking-effect”. In contrast, the existing algorithms do

not have the blocking-awareness. Some existing algorithms only have the 2D

compaction ability; instead, our algorithm has the 3D compaction ability to

compact tasks both in time and space domains. Besides, the algorithm also

has an ability to group tasks with similar finishing times to achieve larger

free space during deallocations. In the CR, every element of their EA ma-

trix is checked to know if it falls into the coverage rectangles of execution and

scheduling tasks for updating as shown in [52]. In contrast, our algorithm up-

dates the STM matrix in groups of elements affected by all executing (lines

5-6) and scheduled tasks (lines 10-11); the algorithm does not need to check

each element for updating. As a result, our algorithm computes starting times

faster than CR. Moreover, 3DC does not need to compute boundary values for

all reconfigurable units of its free space in the periphery reducing the runtime

overhead compared to CR as will be presented later.
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Table 4.5: Time complexity analysis of 3D Compaction algorithm

Lines Time Complexity

1-3 O (W ∗ H)

4-8 O (W ∗ H ∗ NET)

9-13 O (W ∗ H ∗ NRT)

14 O (W ∗ H)

15-27 O (W ∗ H ∗ max (NET, NRT ))

28-30 O (max (NET, NRT))

31-32 O (NRT)

33-34 O (NET)

Total O (W ∗ H ∗ max (NET, NRT ))

4.2.5 Evaluation

Experimental Setup

We have built a discrete-time simulation framework in C to evaluate the pro-

posed algorithm. The framework was compiled and run under Linux operating

system on a Pentium-IV 3.4 GHz PC. To better evaluate the algorithm with

synthetic workloads, (1) we modeled realistic random hardware tasks to be ex-

ecuted on a realistic target device; (2) we evaluated the algorithm not only in

terms of scheduling and placement quality but also in terms of runtime over-

head. Since the algorithms are online, the information of arriving tasks is un-

known until their arrival times. We model a realistic FPGA with 116 columns

and 192 rows of reconfigurable units (Virtex-4 XC4VLX200).

Scheduling and Placement Quality using Synthetic Workloads

To model realistically the synthetic hardware tasks, we use the same realis-

tic hardware tasks from Chapter 3 to obtain the information of hardware task

size range as a reference for our random task set generator. The task widths

and heights are randomly generated in the range [7..45] reconfigurable units to

model hardware tasks between 49 and 2025 reconfigurable units to mimic the

results of synthesized hardware units. Every task set consists of 1000 tasks,

each of which has a life-time and task size. The life-times are randomly gen-

erated in [5..100] time units, while the intertask-arrival periods are randomly

chosen between one time unit and a specified maximum intertask-arrival pe-

riod. Total tasks per arrival are randomly generated in [1..15].

Our 3DC is designed for 2D area model. Therefore for fair comparison, we

only compare our algorithm with algorithms that support 2D area model. Since

the RPR [50], the Classified Stuffing [48], the Intelligent Stuffing were de-

signed only for 1D area model, we do not compare them with our 3DC.
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Since the Stuffing outperforms the Horizon as presented in [46], we do not

compare our algorithm to the Horizon. In [52], the CR outperforms the original

2D Stuffing [46] [47] and the 2D Window-based Stuffing [51]; therefore, we

only compare our algorithm to the CR.

To evaluate the 3DC, we have implemented three different algorithms: the

CR [52] using BL (Bottom-Left) scheme (CR BL), the CR [52] using BV

(Boundary Value) scheme [53] (CR BV), and our 3DC. The evaluation is based

on three performance parameters: total schedule time, waiting time, and total

wasted volume.

The CR does not have a blocking-awareness. Instead, our algorithm uses a 3D

compaction for avoiding ”blocking-effect”. As a consequence, our algorithm

has a better quality than the CR. The 3DC has up to 4.8 % shorter schedule

time, 38.4 % shorter waiting time, and 22.9 % less wasted volume compared

to the CR as shown in Figure 4.9.

The system idle time increases when the maximum inter-task arrival period

increases; as a result, the average total schedule time and the average wasted

volume increase.

The system is busier when the maximum inter-task arrival period decreases;

tasks arrive more frequently to the system. Hence, it is more difficult to sched-

ule tasks. Consequently, the average waiting time increases.

Scheduling and Placement Quality using Real Workloads

To evaluate the 3DC with real workloads, the same realistic hardware tasks

from Chapter 3 are used. In the simulation, we assume that the life-time lti is

the sum of reconfiguration time rti and execution time eti . The experimental

results with real workloads are presented in Figure 4.10.

Figure 4.10 shows that the superiority of our algorithm is not only applicable

for synthetic tasks but also for real tasks. Evaluation with real tasks shows that

our algorithm has up to 4.6 % shorter schedule time, 75.1 % shorter waiting

time, and 9.9 % less wasted volume compared to the CR.

Algorithm Execution Time Results

To complete the evaluation, we also study the algorithm execution time since

the execution time of online task scheduling and placement is considered as an

overhead for the overall execution time of the applications. To show the effect
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Figure 4.9: Evaluation with synthetic workloads
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Figure 4.10: Evaluation with real workloads
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Figure 4.11: Evaluation of algorithm execution time

of total number of scheduled and running tasks as well as FPGA area, we do

simulation by changing these parameters as presented in Figure 4.11.

Figure 4.11 shows that our 3DC runs up to 133 times faster than the CR.

The speed up will be higher for more scheduled and running tasks as well

as for larger FPGA fabrics. Since the CR uses the boundary value heuristic for

searching placement, the CR needs to compute boundary values for all recon-

figurable units of its free space in the periphery. In contrast, our 3DC computes

the 3DTCS only in one step. Moreover, the updating is done per each element

of the matrix in the CR; each element is needed to be checked with all execut-

ing tasks and scheduled tasks. In contrast, our algorithm updates the matrix

in groups of elements located by all executing tasks and scheduled tasks; the

algorithm does not need to check each element for updating. As a result, our

3DC has less runtime overhead than the CR by avoiding the CR’s long bound-

ary value computation and speeding up the starting times computation.

More FPGA area creates additional area suitable for the arriving task (more

free volume) and more total number of scheduled and running tasks forces

algorithms to check more tasks; as a result, the algorithms need more time

to compute the matrix for finding starting time (all algorithms), all boundary

values for all more candidates (CR algorithm) and all 3DTCS for all more

candidates (3DC algorithm). Because of its long boundary value and matrix

computations, the CR execution time increases faster than our 3DC.
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4.3 Summary

In this chapter, we proposed two novel online HW task scheduling and place-

ment algorithms. The Intelligent Stuffing algorithm, designed for 1D area

model, and the 3D Compaction (3DC), aiming at the 2D area model.

The main difference between our Intelligent Stuffing algorithm and related art

is the additional alignment status of the free space segments and its handling.

This status allows our algorithm to maximize the free space ares making task

placement position decisions and allow earlier placing of further tasks. More-

over, the SUR computation is not needed making it faster than the Classified

Stuffing. Experimental results show that our Intelligent Stuffing outperforms

existing algorithms in terms of reduced total wasted area up to 89.7%, has 1.5

% shorter schedule time and 31.3% faster response time.

To avoid ”blocking-effect” we proposed a new 3DTCS heuristic in a novel

blocking-aware algorithm, 3D Compaction (3DC). The 3DC can place and

schedule tasks more compactly and is able to group similar finishing time tasks

to form larger free area. Since state of the art uses the boundary value heuristic

for searching suitable placement, it needs to compute the values for all recon-

figurable units of its free space in the periphery. In contrast, our 3DC computes

the 3DTCS in a single step. In addition, the updating is done per each element

of the matrix for finding starting time in the previous algorithm; each element

is checked with all executing and scheduled tasks. Our 3DC updates the matrix

in groups of elements located by all executing and scheduled tasks. The experi-

mental results show that the 3DC not only has better scheduling and placement

quality (up to 4.8 % shorter schedule time, 75.1 % shorter waiting time, and

22.9 % less wasted volume) but also has lower runtime overhead compared to

existing algorithms.

Note. The content of this chapter is based on the following papers:

T. Marconi, Y. Lu, K.L.M. Bertels, G. N. Gaydadjiev, Online Hardware

Task Scheduling and Placement Algorithm on Partially Reconfigurable

Devices, Proceedings of International Workshop on Applied Reconfigurable

Computing (ARC), March 2008.

T. Marconi, Y. Lu, K.L.M. Bertels, G. N. Gaydadjiev, 3D Compaction: a

Novel Blocking-aware Algorithm for Online Hardware Task Scheduling

and Placement on 2D Partially Reconfigurable Devices, Proceedings of

the International Symposium on Applied Reconfigurable Computing (ARC),

March 2010.
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Low Power Logic Element for FPDs

A
lthough various techniques have been proposed for power reduction

in field-programmable devices (FPDs), they are all based on conven-

tional logic elements (LEs). In the conventional LE, the output of

the combinational logic (e.g., the lookup table (LUT) in many PLDs and FP-

GAs) is connected to the input of the storage element; while the D flip-flop

(DFF) is always clocked even when not necessary. Such unnecessary transi-

tions waste power. To address this problem, we propose a novel low power LE

with reduced number of transitions. The differences between our LE and the

conventional LE are in the flip-flops type used and the internal LE organiza-

tion. Instead of using DFFs, we use T flip-flops with the T input permanently

connected to logic value one. Instead of connecting the output of the combi-

national logic to the FF input, we use it as the FF clock. The proposed LE is

evaluated using transistor-level circuit simulation in terms of power consump-

tion, performance, and area using the MCNC benchmark circuits. Besides, we

also evaluate our proposal using a real CAD tool and a real FPGA by forcing

the existing tool to implement circuits behaving like our proposed LE.

This chapter is organized as follows. The problem of FPD high power con-

sumption for runtime reconfigurable systems and our proposal are emphasized

in Section 5.1. In Section 5.2, we propose our low power LE to reduce power

consumption. Our proposal is evaluated against state of the art in Section 5.3.

Finally, Section 5.5 ends with the conclusions.

5.1 Introduction

Many techniques have been proposed for power reduction in FPDs. However,

all existing power reduction techniques target what we call a ”conventional

logic element”. This conventional logic element (LE) has been used by re-

75
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searchers of FPDs since it was patented by Birkaner and Chua in 1978 [57].

Although FPDs have been improved significantly since the original proposal,

they still make use of a proposal dated 1978 that may need to be reconsid-

ered. The conventional LE contains the combinational logic (e.g., the lookup

table LUT in FPGAs) and the storage element (D flip-flop). The output of the

combinational logic is connected to the input of the storage element; the clock

input of D flip-flop (DFF) is connected to the clock signal. Since the DFF clock

input is connected directly to the clock signal, the DFF is always clocked even

when this is not needed. For example, when D = Q , the DFF does not need

to be clocked. Such unnecessary transitions waste power in FPDs using the

conventional LEs. This is related to the fact that even low-power flip-flops

consume power during logic transition from zero-to-zero and from one-to-one

as shown in [201].

To solve this problem, we propose a novel LE for reduced FPDs power con-

sumption. The proposed LE can be used in any kinds of FPDs: Simple PLDs

(SPLDs), Complex PLDs (CPLDs) as well as Field-Programmable Gate Ar-

rays (FPGAs). The differences between our LE and the conventional pro-

posal are in the flip-flops type and the LE internal organization. Instead of

using D flip-flops, we use T flip-flops with T input permanently at logic one

(T=1). This is related to the fact that designing sequential circuits using TFFs

is more power efficient than DFFs as reported in [200]. The output of the

combinational logic in our case is connected to the clock input of the FF. As

a result, our LE is able to block unnecessary clock transitions without using

additional clock gating logic. Since unnecessary clock transitions are avoided,

the clock power is reduced. By avoiding unnecessary clock transitions, the

overall switching activity inside the LEs is also reduced. As a result, FPDs us-

ing the proposed LEs consume also less logic power (total power inside LEs)

compared to FPDs using conventional LEs. Because of the reduced activity,

the interconnect activity among LEs is also reduced. Our approach does not

require additional controller for gating clock activity and will potentially also

save power and area in respect to this.

In conventional LEs, the FF is clocked when the D input has a stable logic

value provided by the combinational logic and determined by the FF setup

time. In our LEs, since the T input of the FF is always in logic one, the FF

is always ready to be clocked. As a consequence, logic circuits implemented

using our LEs can be clocked faster than conventional LEs.

The Microelectronic Center of North Carolina (MCNC) benchmark circuits

[58] are used to evaluate both FPD types in 45 nm BSIM4 CMOS technology
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[60]. We use LTSPICE tools [59] for transistor-level circuit simulations with

nominal supply voltage VDD of 1.2 V. The evaluation is performed in terms

of total power, logic power, clock power, interconnect power, dynamic power,

static power, speed, and LE area.

5.2 The Proposed Logic Element

The purpose of LEs in FPDs is to provide the basic programmable combina-

tional logic and storage elements used in digital systems. An LE contains a

combinational logic circuit generator (CLCG) and a storage element as shown

in Figure 5.1. The CLCG is used for the combinational function, while the

storage element is used for storing temporary results.

Combinational Logic 

Circuit Generator

(CLCG)

D Q

Clock

OutputInputs
.

.

.

Combinational Logic 

Circuit Generator

(CLCG)

T Q

Clock

Output

Inputs
.

.

.

1

(a) Conventional logic element

(b) Our logic element

DFF

TFF

Figure 5.1: Logic elements

In conventional LEs, the output of CLCG is connected to the input of the stor-

age element as illustrated in Figure 5.1(a). The storage element in the conven-

tional LE is a D Flip-flop (DFF). Since the clock input of DFF is connected to
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TFF
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(c) Our logic element (no unnecessary clock)

Figure 5.2: Basic operations of logic elements

the clock signal, the DFF is always clocked. When the D input of DFF has a

different value compared to its output Q (D 6= Q ), the DFF needs to be clocked

in order to update its state as presented in Figure 5.2(a). Otherwise, when

D = Q , the DFF does not need to be clocked. Such unnecessary transitions will

waste power in the conventional LEs.

To stop unnecessary clock transitions in conventional LEs, clock gating was

introduced in previous work [74], [75], and [76]. In clock gating, the clock

input of DFF is not anymore connected directly to the clock signal, but it is

controlled by the clock gating controller as shown in Figure 5.2(b). The clock

gating controller blocks the clock signal for reaching DFFs clock inputs when

the DFFs should not be clocked (D = Q ). As a result, the unnecessary clock

transitions can be avoided for power saving. The drawback of clock gating is

the need of additional controllers that consume additional area and power. To

reduce this overhead, the controller usually does not control an individual FF,

but it controls a group of FFs together. As a result, the clock gating cannot

block all of the unnecessary clock transitions.

To solve the above issues of conventional LEs, we propose a novel low power

LE depicted in Figure 5.1(b). The differences between our LE and the con-

ventional LE are in the type of FFs and the LE organization. Instead of using
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DFFs, we use T flip-flops (TFFs) with the T input kept at logic one. The output

of the CLCG is connected to the FF clock input. No clock signal is directly

connected to the TFF; the clock signal is connected to the TFF through the

CLCG when required. In FPGAs, CLCGs are implemented using LUTs. In

the case that one of the inputs of the LUT is used for feeding the clock signal,

the LUT capacity is effectively decreased. This will not be a problem, since

not all inputs of LUTs are used in real FPGA designs as reported in [21], we

can use these unused inputs for free to feed the clock signal.

The benefits of our LE are avoiding unnecessary clock transitions while omit-

ting the additional clock gating controller as shown in Figure 5.2(c). The

CLCG avoids clock transitions to be propagated to an individual FF when the

state of the FF will not change. As a result, the unnecessary clock transitions

are totally avoided at the level of individual FFs and hence dynamic power is

reduced. Additional power and area are also saved in comparison to the clock

gating approach, since the additional controller is not present.

Although not shown for simplicity in Figure 5.2, the present state and inputs

are used to generate the next state function in the conventional LE; while in our

circuit, the present state, inputs and clock signal are used to generate function

to control TFFs clocks. An a result, the way we design logic circuit will be

different compared to the conventional approach. In conventional circuits, the

data path, the control path, and the clock are separated. In our circuits, all these

paths are combined together into a single unified path.

Allowing faster clock rates than the conventional LEs is one additional advan-

tage of our proposal. The FF can be clocked properly if its input is stable at

least before its setup time. In conventional LE, the input value of the DFF

is not constant; it depends on the output of the connected CLCG. In our LE,

since the T input of the TFF is constant (T = 1), the TFF is always ready to be

clocked. As a consequence, logic circuits implemented using our LEs can be

clocked faster than logic circuits using conventional LEs.

The shortest possible clock timing diagrams for circuits using our LEs com-

pared to the conventional LEs are presented in Figure 5.3. Please note that

this experiment is used to investigate the differences in maximal clock rates

and is in disadvantage for our proposal since the longest propagation delay

of the first level DFF in Figure 5.3(a) is tpdq(DFF) (the Data-to-Q propa-

gation delay). The CLCG (Our) in Figure 5.3(b) has the clock as an addi-

tional input. This, however, does not impact the first-to-second stage short-

est possible clock timing due to the tpcq(TFF) delay that has to be satis-

fied. Please also note that the clock signal of the first level TFF (A) is pro-
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Figure 5.3: Shortest clock timing of conventional (a) and our (b) logic elements



5.2. THE PROPOSED LOGIC ELEMENT 81

duced by the previous level CLCG (Our) not shown on the figure for sim-

plicity. In the figure, tpcq(DFF) is the clock-to-Q propagation delay of

DFF; tpd(CLCG(Conv)) is the propagation delay of conventional CLCG;

tpd(CLCG(Our)) is the propagation delay of our CLCG; tsetup(DFF) is the

setup time of DFF; tpcq(TFF) is the clock-to-Q propagation delay of TFF.

From this figure, we can obtain the clock period of the circuit using conven-

tional LEs as Tc(Conv) ≥tpcq(DFF)+tpd(CLCG(Conv))+tsetup(DFF) (1)

and the clock period of the circuit using our LEs as Tc(Our) ≥tpcq(TFF) +
tpd(CLCG(Our)) (2). From (1) and (2), we can obtain the speedup

as SPEEDUP = Tc(Conv)
Tc(Our)

=
tpcq(DFF)+tpd (CLCG(Conv))+tsetup(DFF)

tpcq (TFF)+tpd(CLCG(Our))
(3). If

tpcq(DFF) = tpcq(TFF) and tpd(CLCG(Conv)) = tpd(CLCG(Our)), the

speedup becomes SPEEDUP = 1 +
tsetup(DFF)

tpcq(TFF)+tpd(CLCG)
(4).

If the input of circuit changes during clock at logic one, the possibility exists

that this input will generate glitches that can alternate the next stage TFF value.

To address this problem, we used pulsed clock signal. The width of the pulsed

clock signal is set to be the minimum pulsed clock width of correctly operating

TFF. In our experiments the pulse width was 0.1 ns. Since the pulsed clock

signal is narrow, the possibility that inputs change during clock at logic one is

reduced. In case this very low possibility happens, the width of pulses caused

by inputs during clock signal at logic one is always less than the width of the

original pulsed clock signal and will not change the state of the TFFs. As

a result, the circuit will keep working properly. Another way to handle this

clocking issue is to register/synchronize the input with clock signal before it

goes to the actual circuit. Since inputs are synchronized, the changing of input

during clock at logic one will be ignored by the circuit. However, this requires

additional logic area, latency and power overhead. For that reason, we choose

to use a narrow size pulsed clock approach in our proposal.

For exemplifying our proposal, we show here an example of how conventional

circuits are converted into circuits implemented according to our proposal. Let

us assume that we have a conventional circuit as illustrated in Figure 5.4(a)

and we want to convert this circuit to our circuit as shown in Figure 5.4(b). In

general, we use a simple formula when converting conventional circuits:

clocki(our) =

{

clocki(conv) if Qi(conv) 6= Di(conv)

0 if Qi(conv) = Di(conv)

where:

clocki(our): clock input of flip-flop i in our circuit;

clocki(conv): clock input of flip-flop i in conventional circuit;
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Figure 5.4: Simple circuit examples

Qi(conv): Q output of flip-flop i in conventional circuit;

Di(conv): D input of flip-flop i in conventional circuit.

Let us assume that CLCG1(conv) has the true table as shown in Table 5.1. To

convert CLCG1(conv) to CLCG1(our), we can capture that clock1(conv) =

clock , D1(conv) = n n10, Q1(conv) = n n21, and clock1(our) =

clock n n21. By applying the above formula for computing clocki(our),

we can obtain the true table of CLCG1(our) for the logic function of

clock n n21 as shown in Table 5.2.

Table 5.1: The true table of CLCG1(conv)

In 0 In 1 n n21 n n22 n n10

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

Table 5.2: The true table of CLCG1(our)

In 0 In 1 n n21 n n22 clock n n21

0 0 0 0 0

0 0 0 1 clock

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 clock

0 1 1 1 clock

1 0 0 0 clock

1 0 0 1 clock

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 clock

1 1 1 1 clock
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5.3 Transistor-level Circuit Evaluation

5.3.1 Experimental Setup

To evaluate the proposed logic element (LE), transistor-level circuit simula-

tions were performed using LTSPICE tools [59] and 45 nm BSIM4 CMOS

device models [60] with nominal VDD of 1.2 V. Because we use transistor-

level simulation, all internal glitches are implicitly considered. The MCNC

benchmark circuits [58] were used for our study. Since our proposal is new, no

CAD tools (high level synthesis, technology mapping, place and route tools)

are available for targeting FPDs using the proposed LE. For that reason, we

performed all design transformations by hand. This is also why we did not

evaluate our proposal with all MCNC benchmark circuits; we only evaluated

the proposal with the circuits that were not too complex for manual LUT de-

sign as shown in Table 5.3. Since our proposal saves power for circuits with

storage elements, we selected the representative MCNC benchmark circuits.

Table 5.3: The MCNC benchmark circuits

Names Inputs Outputs States State transitions(STs) STs to same state

bbtas 2 2 6 24 10

dk27 1 2 7 14 0

lion 2 1 4 11 5

mc 3 5 4 10 5

shiftreg 1 1 8 16 2

tav 4 4 4 49 0

train4 2 1 4 14 7

Due to the fact that SRAM cell values remain constant after configuration (no

additional dynamic power) and there is no difference in the number of SRAM

cells for FPDs using the conventional and our LEs (same static power), we do

not model SRAM in our experiments. We connect the internal signals directly

to VDD or ground depending on the intended SRAM content. The simulated

nMOS and pMOS transistor dimensions were: Length (Ln = 45nm ) / Width

(Wn = 90nm ) and Lp = 45nm / Wn = 270nm respectively. The selected ra-

tio between the nMOS and pMOS transistor widths (
Wp

Wn
= 3) is to model the

worst case scenario in respect to our proposal when leakage power is consid-

ered. To accurately model LUTs, multiplexers, and routing circuits, we se-

lected transmission-gate based implementation as used by Xilinx commercial

FPGAs patented in [146]. In this experiment, we assume that unused resources

can be turned off to model power gating both for the conventional FPDs and

for our proposal.
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First, we created experimental circuits representing both for the conventional

and the proposed LEs. The experimental LEs are shown in Figure 5.5. In

this experiment, an additional AND gate for feeding clock signal was used to

make manual implementation of the MCNC circuits easier. An experimental

conventional LE consists of a 4-Input LUT, a DFF, and an output multiplexer

as illustrated in Figure 5.5(a); while our proposal is represented by a 4-Input

LUT, a TFF, an output multiplexer, and an AND gate as shown in Figure 5.5(b).

These two LE circuits were used for creating experimental FPD circuits. The

flip-flop circuits used for the simulation of the conventional LE and our LE are

shown in Figure 5.6 and Figure 5.7. For fair comparison, the only difference

between the flip-flop representing our proposal and the conventional flip-flop

is the feedback line from the inverted output to the D input. This feedback

line forces the flip-flop to behave as a T flip-flop with T input permanently

connected to a logic one value.

4-Input

LUT
D Q

Clock

Output

Inputs

T Q

Output

Clock

Inputs

1

(a) Conventional logic element

(b) Our logic element

DFF

TFF

4-Input

LUT

Figure 5.5: Logic elements used in our experiments

Next, the LE circuits were combined with interconnection components to cre-

ate complete FPD circuits. The interconnection circuits (fixed wires and pro-



5.3. TRANSISTOR-LEVEL CIRCUIT EVALUATION 85

Figure 5.6: A flip-flop circuit used in conventional LE experiments

Figure 5.7: A flip-flop circuit used in the proposed LE experiments
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grammable switches) were used for connecting needed LE circuits which will

be used for creating benchmark circuits.

Finally, we implemented each MCNC benchmark circuit onto the FPDs us-

ing conventional LEs and our LEs. MCNC circuits described using Berkeley

Logic Interchange Format (BLIF) mapped for 4-input-LUT-based FPDs were

used for implementing circuits onto the FPD based on conventional LEs. We

manually implemented each MCNC benchmark circuit onto our FPD circuit.

In this step, we computed all of the functions needed for the LUTs in the

new LEs which are totally different from the functions of the conventional ap-

proach. Next, we placed the computed functions in LUTs of the FPD using the

proposed LEs and created the required interconnections for each MCNC cir-

cuit. The reconfigurations were done by modifying the contents of the 4-Input

LUTs, the output multiplexes, and the interconnect control signals.

Before we measured the needed performance parameters, all circuits have been

verified to make sure that our circuits perform the same function as the conven-

tional ones by using the same test vectors and the same simulation length. We

compared the simulation results of the two implementations. After adopting

the pulsed clock in our case, all circuits using our LEs worked properly. The

test vectors representing all possible input values combinations were used.

The benchmark circuits were simulated to obtain the needed performance pa-

rameters: power, speed, and area for each benchmark circuit. Area is in terms

of number of transistors required to implement the benchmark circuit using

FPD circuits. The breakdowns of total power which consists of logic power

(total power inside LEs), clock power, and interconnect power were also ob-

tained. To make our power study complete, we also analyzed the static and

dynamic power. The evaluation was conducted using 500 MHz clock speed

representative for the CMOS technology node assumed in our experiments.

5.3.2 Experimental Results

The experimental results in terms of power consumption for FPDs using both

conventional and proposed LEs are depicted in Table 5.4 and Table 5.5. The

power reduction results presented in Figure 5.8 were computed based on the

results from Table 5.4 and Table 5.5. Besides power evaluation, we also inves-

tigated the area overhead and the performance improvements of the FPD using

the proposed LEs as shown in Figure 5.9.
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Table 5.4: Experimental results of Logic, Clock, and Interconnect Power (µW)

Logic Power Clock Power Interconnect Power

Benchmarks Conv Our Conv Our Conv Our

bbtas 11357 9925 2320 811 2394 1002

dk27 39105 37642 2320 891 4188 2649

lion 5943 4460 1515 540 1507 627

mc 28204 25913 1515 559 2282 1374

shiftreg 3361 2975 2317 804 2171 777

tav 40505 39480 1522 641 3886 2970

train4 5576 4287 1514 538 1475 586

Table 5.5: Experimental results of Dynamic, Static, and Total Power (µW)

Dynamic Power Static Power Total Power

Benchmarks Conv Our Conv Our Conv Our

bbtas 14461 9650 1610 2088 16071 11738

dk27 44166 39257 1447 1925 45613 41182

lion 8047 4390 918 1237 8965 5627

mc 30444 25970 1557 1876 32001 27846

shiftreg 6720 2948 1129 1608 7849 4556

tav 44034 40893 1879 2198 45913 43091

train4 7647 4174 918 1237 8565 5411
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Figure 5.8: Power Reduction (%)

Since the FPD using the proposed LEs avoids unnecessary clock transitions,

it consumes up to 65 % less clock power compared to the FPD using conven-

tional LEs as shown in Figure 5.8. By avoiding unnecessary clock transitions,

the activity inside the proposed LE is also reduced. As a result, the FPD using

proposed LEs has up to 25 % less logic power compared to the FPD using
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conventional LEs. Our approach also reduces the interconnect activity among

LEs resulting in up to 64 % lower interconnect power compared to the FPD

using conventional LEs.

The FPD using our proposal reduces up to 56 % dynamic power compared

to the FPD using conventional LEs by avoiding unnecessary activities: clock,

logic, and interconnect as presented in Figure 5.8. Since the proposed experi-

mental LE has an additional AND gate, the FPD has up to 42 % higher static

power as shown in Figure 5.8 and up to 7 % bigger area compared to the FPD

using conventional LEs as presented in Figure 5.9. Since not all inputs of LUTs

are used in real designs as reported in [21], we can use these unused inputs to

feed the clock signal. In this case, we can avoid the additional logic level (the

AND gate) for feeding the clock signal.
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Although the FPD using our LEs consumes more static power than the FPD

using conventional elements, the overall power consumption of the FPD using

our proposal is lower than the conventional one as shown in Figure 5.8. Since

the impact of increasing in static power is lower than the impact of reducing

the clock, logic, and interconnect powers, the FPD using our proposed LEs still

can reduce up to 42 % total power compared to the FPD using conventional

LEs as shown in Figure 5.8.

Circuits that do not change their internal state very often will avoid many clock

transitions and will be able to achieve more dynamic power reduction com-

pared to circuits that frequently change their states. As shown in Table 5.3,

the state of the storage elements in the dk27 and tav benchmark circuits never
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remains the same. As a result, the total power reduction achieved for these

benchmark circuits is smaller compared to other benchmark circuits.

In the conventional LE, the DFF can be clocked by clock signal if only if the

D input is ready before the needed setup time for the FF to work properly. In

contrast, the TFF in our LE is always ready to receive clock signal since the

T input of its TFF is always ready at logic one. As a result, the FPD using

proposed LEs runs up to 33 % faster than the FPD using conventional LEs as

shown in Figure 5.9.

5.4 Evaluation using a Real CAD Tool on a Real FPGA

5.4.1 Experimental Setup

In this experiment, we force a CAD tool to implement each flip flop with a TFF

by proposing a new HDL coding style. To discuss the basic idea of the pro-

posed HDL coding style, an example of MCNC benchmark circuit in Berkeley

Logic Interchange Format (BLIF) [147] is presented on the left side of Figure

5.10. This simple example circuit (lion.blif) has two flip-flops (lines 4 and 5)

and three combinational logic functions (lines 6-8). Line 6 is the output func-

tion; while lines 7 and 8 are the next state functions. In conventional coding

style, each flip-flop is coded into one process as shown in the right side of

Figure 5.10. This process will generate a D flip-flop (DFF) with the D input

from the output of corresponding next state function (NSF) as shown in Figure

5.11(a). In this circuit, the output of each NSF is connected to the D input of

DFF. When the D input of DFF (in this figure, for example: n n10 and n n11)

has a different value compared to its Q output (D 6= Q ), the DFF needs to be

clocked for updating the storage data (in this figure, for example: n n21 and

n n22). Otherwise, when the D input has the same logic value as the Q output

(D = Q ), the DFF does not need to be clocked. However, since the clock input

of DFF is directly connected to the clock signal, the DFF is always clocked.

This unnecessary logic transition in this circuit wastes power.

To solve this issue, we propose a new coding style as shown in the right side of

Figure 5.12. Contrary to conventional coding style, in our approach, each flip-

flop is represented into two processes. The first process is used to implement

a T flip-flop (TFF) with T at logic one; while the second process is used to

create a function for feeding the clock input of the TFF. We call this function a

clock function (CF) as shown in the example of implemented circuit in Figure

5.11(b). The TFF is clocked when it is needed to update storage data (in this
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Figure 5.10: blif to conventional VHDL conversion (lion.blif to lion conv.vhd)

Output 

function

(line 28)

In_0

In_1

n_n21

n_n22

lion_out

The first 

next state 

Function

(NSF1)

(line 29)

In_0

In_1

n_n21

n_n22

DFF

(lines 12-19)

D Q

n_n21

clock

The second 

next state 

Function

(NSF2)

(line 30)

In_0

In_1

n_n21

n_n22

n_n22

clock

n_n10

n_n11

The second 

clock function

(CF2)

(lines 36-42, 45)

In_0

In_1

n_n21

n_n22

clock

�1� n_n22

clock_n_n22

The first 

clock function

(CF1)

(lines 19-26, 44)

In_0

In_1

n_n21

n_n22

clock

�1�
n_n21

clock_n_n21

Output 

function

(line 43)

In_0

In_1

n_n21

n_n22

lion_out

DFF

(lines 20-27)

D Q

TFF

(lines 27-34)

T Q

TFF

(lines 11-18)

T Q

a) b)

Figure 5.11: lion benchmark example implemented using both coding styles
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Figure 5.12: blif to our VHDL file conversion (lion.blif to lion our.vhd)

simple example: n n21 and n n22); otherwise, it will not. In this simple circuit,

for example if present state of n n21 is different from next state of n n21, the

TFF will be clocked by clock n n21; otherwise, it will not to save power.

The experimental setup is shown in Figure 5.13. Each MCNC benchmark cir-

cuit [58] is converted into two VHDL files (conventional and our VHDL files)

to represent the two VHDL coding styles (conventional and our coding styles).

An example of blif file to conventional VHDL file conversion is presented in

Figure 5.10; while an example of blif file to our VHDL file conversion is pre-

sented in Figure 5.12.

Each VHDL file is compiled for Stratix EP1S10F484C5 using Compiler Tool

from Quartus II. In theVHDL conventional style the D flip-flops are directly

connected to the clock signal while in the proposed style the T flip-flops are

not. The area needed for implementing each circuit in terms of number of logic

elements (LEs) is reported by the Altera Compiler Tool. In the lion benchmark

example, both circuits (conventional and our) occupy 7 LEs. The TFF is im-

plemented using the LE with its registered output connected to its input data.

The waveform Editor from Quartus II is used to generate test vectors for each
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Figure 5.13: Experimental setup

benchmark circuit. Those vectors are applied to the implemented circuit using

Simulation Tool from Quartus II. Each circuit is verified by comparing the sim-

ulation results between the conventional and our circuits. This step is needed

to ensure that these two VHDL styles generate functionally correct circuits.

Besides generating simulation results, the Simulation Tool also generates the

signal activity file (SAF). To evaluate power consumption, the SAF file and the

implemented circuit from the previous step are fed into the Quartus II Power-

Play Power Analyzer Tool to obtain total, dynamic, and static power results.

To compare performance of the implemented circuits, the Timing Analyzer

from Quartus II is used. Our study focused on the maximum clock frequency.

5.4.2 Experimental Results

The experimental results of power consumption using a 50 MHz clock are

presented in Table 5.6. This table shows that our VHDL style can lead to

reduction in dynamic power and total power, but will not reduce static power.

Since our VHDL style can avoid unnecessary transitions by clocking flip-flops

only when needed, our VHDL style can lead to reduction in dynamic power

consumption (75 % on average) compared to conventional VHDL style. The

degree of power reduction depends on the nature of the circuit, circuits with

many unnecessary transitions can take more advantages of our style in terms of

power consumption. This 75 % dynamic power reduction results in only 15 %
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average total power consumption reduction at 50 MHz since the static power

is dominating. The static power reported by the tools for all of the investigated

circuits and both design styles was 187.5 mW.

Table 5.6: Experimental results of power consumption at 50 MHz

Circuits Dynamic power (mW) Total power (mW)

conv our reduction(%) conv our reduction(%)

lion 39.87 4.75 88.09 227.37 192.25 15.45

bbara 36.2 0.78 97.85 223.7 188.28 15.83

bbsse 39.58 6.43 83.75 227.08 193.93 14.6

s298 45.81 10.54 76.99 233.31 198.04 15.12

dk16 51.82 16.93 67.33 239.32 204.43 14.58

dk14 55.58 16.32 70.64 243.08 203.82 16.15

tbk 40.47 4.3 89.37 227.97 191.8 15.87

beecount 44.92 9.56 78.72 232.42 197.06 15.21

cse 41.96 6.48 84.56 229.46 193.98 15.46

s1494 71.73 27.17 62.12 259.23 214.67 17.19

ex1 48.71 16.81 65.49 236.21 204.31 13.5

keyb 41.09 5.21 87.32 228.59 192.71 15.7

planet 42.33 5.88 86.11 229.83 193.38 15.86

pma 89.47 53.51 40.19 276.97 241.01 12.98

s1 52.95 21.23 59.91 240.45 208.73 13.19

styr 66.53 31.55 52.58 254.03 219.05 13.77

s1488 63.96 30.37 52.52 251.46 217.87 13.36

sand 36.14 0.49 98.64 223.64 187.99 15.94

The experiment results of area and performance are presented in Table 5.7.

This table shows that our style can also increase the performance of the circuits

by 7.6 % on average. This can be explained as following. Since we force CAD

tools to implement each flip-flop using a T flip-flop with the T input at logic

one in our VHDL style, the flip-flop is always ready to be clocked; it does not

need to respect the flip-flop setup time before it can be clocked. Since the setup

time is becoming far less significant compared to total longest path for circuits

with more logic level, the performance improvement is minimal.

The clock signal needs to be fed to LUTs before it reaches the flip-flops, our

style consumes on average 11 % more area compared to the conventional one

as shown in this table. If the clock signal can be fed to LUTs using unused

inputs, our style does not need additional LUTs for this purpose. As a result,

it will produce lower area overhead or even no area overhead as shown in

Table 5.7. In our experiment, we had considered this area overhead when we

evaluated power consumption and performance.

To investigate all implemented circuits further, we run them using different

clock frequencies: 100 MHz, 150 MHz, and 200 MHz. The results of this

experiment are presented in Table 5.8. Please note that some of the benchmarks
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Table 5.7: Experimental results of area and maximum clock frequency

Circuits Area (#LEs) Maximum clock frequency(MHz)

conv our overhead(%) conv our improvement(%)

lion 7 7 0 437.06 467.07 6.87

bbara 25 29 16 305.44 340.02 11.32

bbsse 45 49 8.89 264.27 274.73 3.96

s298 740 903 22.03 93.82 95.27 1.55

dk16 85 86 1.18 219.97 226.3 2.88

dk14 28 37 32.14 276.78 331.79 19.87

tbk 69 78 13.04 139.14 153.82 10.55

beecount 11 16 45.45 367.92 390.63 6.17

cse 73 80 9.59 216.08 232.34 7.52

s1494 249 261 4.82 190.99 208.9 9.38

ex1 110 118 7.27 242.19 256.41 5.87

keyb 90 96 6.67 190.19 214.5 12.78

planet 215 231 7.44 188.82 210.7 11.59

pma 76 83 9.21 210.39 224.77 6.83

s1 140 146 4.29 117.04 120.44 2.9

styr 202 210 3.96 298.78 310.95 4.07

s1488 243 255 4.94 194.89 197.71 1.45

sand 205 213 3.9 180.08 199.48 10.77

Table 5.8: Power reduction at 100, 150, and 200 MHz

Circuits Dynamic power reduction (%) Total power reduction (%)

100 150 200 100 150 200

lion 88.09 88.09 88.09 26.28 34.31 40.49

bbara 97.85 97.85 97.85 27.26 35.89 42.64

bbsse 83.75 83.75 83.75 24.86 32.47 38.34

dk16 67.33 67.33 67.33 23.97 30.52 35.35

dk14 70.64 70.64 70.64 26.29 33.25 38.32

tbk 89.37 - - 26.95 - -

beecount 78.72 78.72 78.72 25.5 32.92 38.52

cse 84.56 84.56 84.56 26.14 33.97 39.94

s1494 62.12 62.12 - 26.93 33.2 -

ex1 65.49 65.49 65.49 22.39 28.68 33.37

keyb 87.32 87.32 - 26.61 34.64 -

planet 86.11 86.11 - 26.79 34.77 -

pma 40.19 40.19 40.19 19.63 23.66 26.37

s1 59.91 - - 21.62 - -

styr 52.58 52.58 52.58 21.82 27.11 30.85

s1488 52.52 52.52 - 21.3 26.56 -

sand 98.64 98.64 - 27.45 36.14 -



5.4. EVALUATION USING A REAL CAD TOOL ON A REAL FPGA 95

did not synthesized at this frequency for both design styles (shown with a dash

sign in the table). Since static power, area, and performance are not affected by

changing the clock frequency, these tables only show dynamic power and total

power consumption results. From these tables, we can observe that dynamic

power consumption is linearly proportional to clock frequency. These tables

also show that our coding style can reduce total power consumption by 25

%, 32 %, and 36 % on average compared to conventional style at 100 MHz,

150 Mhz and 200 MHz respectively. Since dynamic power is higher when the

clock frequency is increased, the reduction of total power is also increased for

higher clock frequencies.
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Figure 5.14: Overall power (%) reduction versus number of circuits (#Circuits)

To study the effect of the number of circuits (#Circuits) at different clock fre-

quencies on total power reduction (%), we implement multiple circuits into

the FPGA and investigated the effect on overall power reduction as depicted in

Figure 5.14. More working circuits means additional dynamic power; the dy-

namic power becomes more dominant compared to static power. As a result,

our coding style reduces more total power when the number of circuits si-

multaneously implemented on the FPGA increases. This figure indicates that

our coding style can reduce total power by 16-65 % at 50 MHz. Total power

is significantly reduced at higher frequency, up to 90 % at 300 MHz. Total

power reduction saturates as shown in Figure 5.14. This effect is caused by the

constant static power contribution that will start dominating the total power

number when the number of implemented circuits increases.



96 CHAPTER 5. LOW POWER LOGIC ELEMENT FOR FPDS

5.5 Summary

In this chapter, we have proposed a novel low power logic element (LE) to

replace the conventional structures in PLDs and FPGAs. Since unnecessary

clock transitions are avoided, the clock power is reduced. By avoiding unnec-

essary clock transitions, the activity inside the proposed LEs is also reduced.

As a result, the FPD using the proposed LEs consumes less logic power com-

pared to the FPD using conventional LEs. Because of activity reduction, the

LEs interconnect power is also reduced compared to the FPD using conven-

tional LEs. Moreover, since we do not need an additional controller to hold

clock activity, power and area are reduced in comparison to clock gating.

In our LE, since the T input of the FF is always in logic one, the FF is always

ready to be clocked. As a consequence, the FPD using our proposed LEs

not only consumes less total power by avoiding unnecessary activities: clock,

logic, and interconnect, but also runs faster compared to conventional LEs

because of its ”always ready” flip-flops.

We also evaluated the proposal using Altera Stratix EP1S10F484C5 and the

Quartus II Compiler Tool. To force the tool in implementing circuits according

to the proposed LE we used a dedicated coding style. We investigated the

gains in power consumption, circuit area and clock frequency. Our approach

reduces dynamic power by 75 % at 50MHz but only 15 % in average total

power consumption due to the significant contribution of static power.

Table 5.9: Comparison to clock gating solutions

Evaluation Our coding style solution Clock Gating solutions

[74] [75] [76]

Total power reduction 6 - 90 % 5 - 33 % 6.2 - 7.7 % 1.8 - 27.9 %

Performance 2-33 % faster Not available 0 - 2 % slower 1.1 % faster

Table 5.9 shows the comparison between our solution and clock gating solu-

tions [74] [75] [76]. Clock gating results are obtained from the original pa-

pers: [74], [75], and [76]. Unlike clock gating, our proposal does not need an

additional controller to stop clock propagation. As a consequence, the FPD us-

ing our proposed LEs not only consumes 6 - 90 % less total power by avoiding

unnecessary activities: clock, logic, and interconnect, but also it runs 5-33 %

faster than traditional clock gating designs. We could not directly compare the

area overhead since this information is not reported in the clock gating papers

considered. In our case the area overhead varies between 0 and 45 %.

Note. The content of this chapter is based on the the following papers:
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6
Improved Configuration Circuit

Architecture for FPGAs

L
ong reconfiguration times form a major bottleneck in dynamic recon-

figurable systems. Many approaches have been proposed to address

this problem. However, improvements in the configuration circuit that

introduces this overhead are usually not considered. The high reconfigura-

tion times are due to the large amount of configuration bits sent through a

constrained data path. In order to alleviate this, we propose a novel FPGA

configuration circuit architecture to speedup bitstream (re)configuration and

relocation. Transporting only the data required for the configuration in flight

and avoiding external communication while relocating are two main ideas of

our proposal. By utilizing the MCNC benchmark set, the proposal is evaluated

against the state of the art approaches in terms of reconfiguration time, reloca-

tion time, and bitstream sizes. Moreover, the introduced hardware overhead to

support our proposed architecture is also studied.

This chapter is organized as follows. Problem of high reconfiguration overhead

in runtime reconfigurable systems is identified in Section 6.1. In Section 6.2,

we propose our idea to cope with this high reconfiguration overhead. The

proposal is evaluated against related art in Section 6.3. Finally, Section 6.4

ends with the conclusions.

6.1 Introduction

Modern FPGA devices support partial reconfiguration that allows runtime

changes of the system functionality. Various benefits can be achieved by ex-

ploiting this property, e.g., reduced power consumption, minimized hardware

cost, improved system performance, and more [83]. However, there is a prob-

99
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lem related to the reconfiguration time penalties that one has to address in

order to fully benefit from the above. This problem is even more restrictive

for systems where reconfigurations occurs frequently. This high reconfigura-

tion time overheads can eclipse the overall benefits of FPGA based systems.

The major bottleneck is introduced by the configuration circuit since it needs

to transport large amounts of configuration data (bitstreams) using a limited

configuration data path. FPGAs being fine-grained reconfigurable devices, in

general require a large amount of configuration bits. In addition, the overall

FPGA sizes are also increasing very fast. As a result, the bitstream sizes are

growing. Furthermore, to cope with FPGA area fragmentation during runtime,

it is needed to efficiently reorganize the positions of the active hardware cores.

Such reorganizing process requires fast bitstream relocations.

To solve the above problems, in this chapter we propose a novel FPGA con-

figuration circuit architecture to speedup bitstream reconfiguration and relo-

cation. The proposal is evaluated using the Microelectronic Center of North

Carolina (MCNC) benchmark circuits [58]. Each benchmark circuit is trans-

lated to an equivalent VHDL code before synthesis, mapping, place, and route

onto a Xilinx Virtex-4 FPGA. We targeted XC4VLX200-10FF1513 device us-

ing Xilinx ISE 8.2.01i PR 5 tools. Based on the MCNC circuits, our proposal

is evaluated against the conventional Virtex-4 reconfiguration process. In terms

of relocation times, we compare against a system that modifies the reconfigura-

tion data before sending it to the FPGA configuration circuit during relocation

as proposed in [148]- [152]. We also investigate the bitstream size reduction

and the hardware overhead of our proposal. The required hardware to im-

plement our architecture is described in VHDL and verified using ModelSim

simulation. The verified hardware is synthesized in ASIC with 90 nm CMOS

technology using Cadence Encounter tools to obtain the hardware overhead

numbers. Considering the fact that no data is available about the exact size of

the Xilinx configuration circuit, we compare our proposal against the overall

Virtex-4 die size obtained from [153].

6.2 Configuration Circuit Architecture

In [154], Young et al. patented an architecture for FPGA partially reconfigura-

tion referred as the conventional FPGA/architecture in this chapter. The main

difference between our proposal (Figure 6.1(b)) and the conventional architec-

ture (Figure 6.1(a)) is the Barrel Shifter (BS). This additional component is

the key idea of our architecture that allows us to overcome the limitation of the



6.2. CONFIGURATION CIRCUIT ARCHITECTURE 101

Configuration Memory (CM)

C
o

n
fi
g

u
ra

ti
o

n

R
e

g
is

te
r 

(C
R

)

S
h

a
d

o
w

 R
e

g
is

te
r 

(S
R

)

M
a

s
k
 R

e
g

is
te

r 
(M

R
)

Configuration data

Configuration Memory (CM)

C
o

n
fi
g

u
ra

ti
o

n

R
e

g
is

te
r 

(C
R

)

S
h

a
d

o
w

 R
e

g
is

te
r 

(S
R

)

M
a

s
k
 R

e
g

is
te

r 
(M

R
)

Configuration data

B
a

rr
e

l 
S

h
if
te

r 
(B

S
)

(a) Conventional FPGA

(b) Our proposed FPGA

Figure 6.1: Architecture of the conventional FPGA versus our proposed FPGA

conventional architecture by avoiding shifting and transferring of unnecessary

configuration bits.

In the conventional FPGA as presented in [154], a frame of configuration data

is loaded serially into a shift register (Configuration Register (CR)) at times

t=t1 to t=t5 as illustrated in Figure 6.2(a). After the entire frame is loaded into

CR, it is temporarily transferred to a Shadow Register (SR) (Figure 6.2(a) at

t=t6) so that the CR is free to begin receiving the next frame of data. An address

line is used to transfer the data from the shadow register via the data lines

into the selected Configuration Memory (CM) cells as illustrated in Figure

6.2(a) at t=t7. The Mask Register (MR) selects which memory cells receive

the specific configuration data values and which do not. This defins a partial

reconfiguration zone as shown in the same figure. In this simple example,

we can see that although the reconfiguration circuit of the conventional FPGA

can partially reconfigure the selected FPGA area, the needed reconfiguration

time is still high. This reconfiguration time overhead is due to the shifting of

unneeded configuration data (dummy data) along with the needed one.

To overcome the above limitation of conventional FPGAs, we propose to em-

ploy a Barrel Shifter (BS) that can prevent of shifting and transferring unneces-

sary configuration data to CR as illustrated in Figure 6.1(b) and Figure 6.2(b).

BS is used to facilitate in transferring the needed configuration data from CR
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t=t1 t=t2 t=t3 t=t4 t=t5

t=t6 t=t7

t=t1 t=t2 t=t3 t=t4

(a) Conventional FPGA

(b) Our proposed FPGA

Figure 6.2: Reconfiguration steps of the conventional FPGA versus our proposed

FPGA

to a specific position in SR. In the proposed FPGA, only the needed configu-

ration data are loaded into CR as shown in Figure 6.2(b) at t=t1 to t2. After a

part of the entire frame (the needed configuration data) is shifted into CR, the

configuration data are temporarily transferred to SR through BS (Figure 6.2(b)

at t=t3). Finally, this configuration data are transferred to selected partial re-

configuration zone defined by MR as illustrated in Figure 6.2(b) at t=t4. Based

on this simple example, we can see that our proposed architecture only needs

4 steps instead of 7 steps present in the conventional FPGA in reconfiguring

the same partial reconfiguration area.

To support the mechanism of our proposed architecture in shifting configura-

tion data partially from CR register to a specific position in SR register through

Barrel Shifter (Figure 6.3), the proposed architecture needs the additional hard-

ware enclosed between the dashed lines in Figure 6.4. The hardware needs to

know how much configuration data should be shifted (Frame Height (FH)) and

how far the configuration data must be shifted (Frame Height Displacement

(FHD)). In order to control FH, we add Frame Height Counter (FHC), Frame

Height Register (FHR) and Comparator. This simple structure can control the

frame height by writing a specific FH value to FHR during the execution of a

set frame height command (FHR initialization). The value of FHC is increased
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every time the configuration data are shifted into the CR register. When the

FHC reaches the same value as FHR, the stop signal from this circuit prevents

CR shifting configuration data further. The frame height displacement is con-

trolled by setting the Frame Height Displacement Register (FHDR) using a set

height displacement command. This way, we can place the configuration data

to the right position into SR in order to partially reconfigure the FPGA with

minimal configuration time overhead.

Frame Height (FH)

CR BS SR

Frame Height Displacement 

(FHD)

Figure 6.3: Mechanism of our proposed architecture

Instead of including unnecessary dummy data in conventional bitstream for

reconfiguration (Figure 6.5(a)), our proposed architecture only includes the

required reconfiguration data in the bitstream (Figure 6.5(b)). This feature

reduces the configuration bitstream size, consequently it decreases the required

memory/hardware for storing the bitstream. In addition to setting the number

of frames and the start frame address, before we can write configuration data,

we have to set two additional parameters: frame height displacement and frame

height using the corresponding set height displacement (to initialize FHDR)

and set frame height (to initialize FHR) commands.

Although our proposal can be generally used for any partially reconfigurable

FPGAs, we use Virtex-4 [56] as our case study. There are 22 frames per Virtex-

4 CLB column and each frame contains 41 words = 41x32 = 1312 bits. There-

fore one column CLB needs 22x1312 = 28864 bits. Since one CLB column of

Virtex-4 FPGA consists of 16 CLBs, one CLB contains 28864/16 = 1804
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Figure 6.4: Hardware overhead for supporting fast reconfiguration

bits. Based on these information and Figure 6.5, the reconfiguration bit-

stream size in number of bits for the conventional FPGA can be estimated

as RCBSSconv = (3 × 32) + (28864 × ⌈h/16⌉ × w). The factor (3x32) is

for set number of frames (32 bits), set start frame address (32 bits), and write

frame command (32 bits) as shown in Figure 6.5(a). Since the atomic re-

configuration unit in Virtex-4 is a frame, the ⌈h/16⌉ is used in this equation.

The h and w are the core height and width in number of CLBs. Since the

atomic reconfiguration unit in our proposal is a single CLB, reconfiguration

bitstream size in number of bits for our proposed architecture is estimated as

RCBSSour = (5×32)+(1804×h×w). The factor (5x32) is for set number of

frames (32 bits), set start frame address (32 bits), set height displacement (32

bits), set frame height (32 bits), and write frame command (32 bits) as shown in

Figure 6.5(b). Since Virtex-4 has 32-bit configuration data path, it can transfer

32 bits of data per clock cycle. As a result, the reconfiguration time in number

of clock cycles for the conventional architecture is RCTconv = RCBSSconv/32.

Using the same assumptions, the reconfiguration time in number of clock cy-

cles for our architecture is RCTour = RCBSSour/32.

In this chapter, we also propose a new specialized configuration command to

support core relocations. Instead of modifying target address and resending the

modified reconfiguration data in order to do relocation as proposed by several

authors (e.g. [148]- [152]) using the conventional FPGA (Figure 6.6(a)), using
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Figure 6.5: Bitstream for reconfiguration

the proposed relocation command provides with the opportunity to perform

relocation without resending the reconfiguration data since the reconfiguration

data are already in configuration memory (Figure 6.6(b)). To do relocation

efficiently, our proposed relocation command copies the relocatable core from

configuration memory to the shadow register and then directly writes it back

to the target location per frame basis as illustrated in Figure 6.6(b). This new

mechanism of relocation makes core relocation faster since we do not need to

resend configuration data outside of the FPGA device. This will significantly

reduce the configuration path utilization during relocation. Three additional

registers are needed to support fast relocation: source start frame address reg-

ister (SSFAR), target height displacement register (THDR), and source height

displacement register (SHDR). To facilitate fast relocation, we need to set ad-

ditional parameters:

• source start frame address by set source start frame address command;

• target height displacement by set target height displacement command;

• source height displacement by set source height displacement cmd; and

• frame height using a set frame height command.

Since the read back capability is already supported by the Virtex-4 devices, no

extra hardware is needed to read back configuration memory.
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Figure 6.6: Core relocation

Based on Virtex-4 FPGA information and Figure 6.7, the relocation bit-

stream size in number of bits for the conventional FPGA can be estimated

as RLBSSconv = (3 × 32) + (28864 × ⌈h/16⌉ × w) due to the need to re-

sending configuration bitstream. The factor (3x32) is for set number of frames

(32 bits), set target start frame address (32 bits), and write frame command

(32 bits) as shown in Figure 6.7(a). Since our architecture does not need to re-

send configuration bitstream during relocation, the relocation bitstream size in

number of bits for the our FPGA is constant (RLBSSour = 7× 32). The factor

(7x32) is for set six parameters (number of frames, target start frame address,

source start frame address, target height displacement, source height displace-

ment, frame height), and also for the relocation command as shown in Figure

6.7(b). Using 32-bit configuration data path, the relocation time in number

of clock cycles for the conventional architecture is RLTconv = RLBSSconv/32.

Since our proposed relocation command needs to read configuration memory

(assume one clock cycle) and write configuration memory (assume another

clock cycle) per frame for relocation and each CLB column has 22 frames,

the reconfiguration time in number of clock cycles for our architecture is

RLTour = (RLBSSour/32) + (2× 22× ⌈h/16⌉ × w).
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6.3 Evaluation

To evaluate our proposed architecture, we used the Microelectronic Center

of North Carolina (MCNC) benchmark set from [58]. Each benchmark cir-

cuit was translated to an equivalent VHDL code before it was synthesized,

mapped, placed, and routed onto a Xilinx Virtex-4 FPGA with part number

XC4VLX200-10FF1513 using Xilinx ISE 8.2.01i PR 5 tools. Using these

FPGA-implemented MCNC circuits, the proposal was evaluated against the

conventional one (Virtex-4 in this case study) in terms of reconfiguration and

relocation times and the bitstream sizes.

We assume that the frame utilization (the ratio between number of required bits

in a frame and total number of bits in a frame) is equal to the logic utilization. It

is well-known that the wire utilization is much lower than the logic utilization.

Therefore we consider that the assumption is conservative in that actual frame

utilization is significantly lower than the logic utilization. Since square shape

circuit performs the best in terms of area and speed as shown in [155], each

benchmark circuit was implemented in a free square-shaped-area of the FPGA.

Table 6.1 shows the speedup (times) and bitstream size (BSS) reductions (in

%) of the proposed architecture compared to the conventional Xilinx architec-

ture in terms of both, reconfiguration and relocation times. From this table,

we can see that the proposed architecture has on average 4 times shorter re-

configuration times. The reconfiguration time reduction (state as speedup S
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Table 6.1: Speedup (S) (times) and bitstream size (BSS) reduction (R) (%) compared

to the conventional FPGA (h and w are in number of occupied CLBs)

Circuit h w RCT BSS RLT

Conv Our S Conv Our R(%) Conv Our S

s27 1 1 905 62 14.6 28960 1964 93.22 905 51 17.75

mult16b 2 2 1807 231 7.82 57824 7376 87.24 1807 95 19.02

s208.1

s344, s349 3 3 2709 513 5.28 86688 16396 81.09 2709 139 19.49

s526, s526n

s382, s386

s400, s420.1

s444, mm4a

s641

mult16a, s713 4 4 3611 907 3.98 115552 29024 74.88 3611 183 19.73

s510, s828.1

s820, mm9a 5 5 4513 1415 3.19 144416 45260 68.66 4513 227 19.88

s832

s1196, mm9b 6 6 5415 2035 2.66 173280 65104 62.43 5415 271 19.98

mult32a

s1488, s1494

sbc, s1423 7 7 6317 2768 2.28 202144 88556 56.19 6317 315 20.05

mm30a

s9234.1

s5378 9 9 8121 4572 1.78 259872 146284 43.71 8121 403 20.15

s298 10 10 9023 5643 1.6 288736 180560 37.47 9023 447 20.19

dsip 11 11 9925 6827 1.45 317600 218444 31.22 9925 491 20.21

bigkey 14 14 12631 11055 1.14 404192 353744 12.48 12631 623 20.27

clma 20 20 36083 22555 1.6 1154656 721760 37.49 36083 1767 20.42

s38584.1 24 24 43299 32477 1.33 1385568 1039264 24.99 43299 2119 20.43

s38417 25 25 45103 35240 1.28 1443296 1127660 21.87 45103 2207 20.44

in the table) can improve up to 14.6 times for small circuits (s27) since the

amount of dummy data increases when the circuit size is smaller. In this case,

the conventional architecture is very slow in reconfiguring the FPGA fabric,

while our proposal becomes very efficient since we do not need to transport

unneeded data. Moreover, the reconfiguration bitstream size is reduced by up

to 93.22 % compared to the conventional FPGA since we do not include any

dummy data in our bitstream file. Please note that s820 and s832 results are

almost similar although they represent two completely different designs. This

is due to their similar sizes when mapped to Xilinx FPGA and measured in

terms of used CLBs, which is the atomic measurement unit for our study.

Table 6.1 also shows that our proposal relocates cores faster than the conven-

tional architecture. On average, our proposal can do relocation 19.8 times

faster than the conventional FPGA by avoiding resending configuration data

during relocation using the proposed specialized relocation command.

Besides, the hardware overhead of our proposal was also evaluated as de-

picted in Table 6.2. The required hardwares to build our proposed architec-

ture was coded in VHDL and verified using ModelSim simulation. Since the

compared FPGA (Virtex-4) was implemented using 90 nm technology, to be

fair in comparison, the verified hardware was also implemented in ASIC with

90 nm CMOS technology using Cadence Encounter tools to obtain our hard-
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Table 6.2: Area overhead

Modules Area(µm 2)

Barrel Shifter (BS) 61881

Comparator 450

Frame Height Displacement Register(FHDR) 1092

Frame Height Counter (FHC) 1650

Frame Height Register (FHR) 1092

Source Start Frame Address Register (SSFAR) 1092

Target Height Displacement Register (THDR) 1092

Source Height Displacement Register (SHDR) 1092

Total Area Overhead 69441

ware overhead. To compare our proposal against Virtex-4 in terms of area, the

estimated die size of Virtex-4 FPGA was obtained from [153]. Considering

the area(=735mm2) of the targeted Virtex-4 FPGA device (Estimated die size

from [153]), the area overhead of the architecture is very small. The total area

overhead is only 0.009 % of the Virtex-4 area.

6.4 Summary

In this chapter, we have introduced a novel configuration circuit architecture

for partially reconfigurable FPGAs, that supports faster bitstream reconfigu-

ration and relocation. More precisely, our proposal is 4x faster during recon-

figuration of the MCNC benchmark circuits compared to Xilinx Virtex-4. In

addition, the area overhead of the proposed architecture is only 0.009 % of the

overall Virtex-4 area. For fast 2D relocation, we proposed a new specialized

command in the configuration protocol. With this new command, hardware

core relocation is facilitated without resending configuration data externally.

Our experimental results show that our architecture is 19.8x faster during relo-

cation compared to the current state the art (Virtex-4). Moreover, the bitstream

sizes of the investigated MCNC benchmarks are reduced by 65 % on average

when our approach is applied.

Note. The content of this chapter is based on the the following paper:

T. Marconi, J.Y. Hur, K.L.M. Bertels, G. N. Gaydadjiev, A Novel Configu-

ration Circuit Architecture to Speedup Reconfiguration and Relocation

for Partially Reconfigurable Devices, Proceedings of IEEE Symposium on

Application Specific Processors (SASP), June 2010.





7
Conclusions and Future Work

I
n this dissertation, novel proposals for dealing with the main problems in

runtime reconfigurable systems have been presented. More specific, ef-

ficient online hardware task scheduling and placement, power consump-

tion reduction and runtime reconfiguration overhead reduction have been ad-

dressed. The proposals have been evaluated against existing state of the art

solutions. The main contributions of the thesis are summarized in Section 7.1

and future directions are presented in Section 7.2.

7.1 Main Contributions

In the context of runtime reconfigurable systems on partially reconfigurable

devices, the main contributions of this dissertation can be summarized as fol-

lows.

1. Two novel algorithms, called Intelligent Merging(IM) and Quad-

Corner(QC), for online placement of reconfigurable hardware tasks on

partially reconfigurable devices have been presented. Because of its on-

demand merging capability, the IM can speedup online placement algo-

rithms by 1.72x while loosing only 0.89 % placement quality on average.

Experiments with real hardware tasks on Virtex-4 show that the QC not

only has 78 % less penalty and 93 % lower wasted area than the existing

algorithms on average due to its quad-corner spreading capability but

also has 86 % lower runtime overhead due to its simplicity.

2. Two novel online hardware task scheduling and placement algorithms

have been proposed. The first algorithm, Intelligent Stuffing(IS), is de-

signed for 1D area model, whereas the second one, 3D Compaction

(3DC), is proposed for 2D area model. Because of having the additional
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alignment status, the IS outperforms the existing algorithms in terms

of reduced total wasted area up to 89.7%, has 1.5 % shorter schedule

time and 31.3% faster response time. Due to the blocking-awareness,

the 3DC not only has better scheduling and placement quality (up to 4.8

% shorter schedule time, 75.1 % lower waiting time, and 22.9 % less

wasted volume) but also has 97 % lower runtime overhead compared to

existing algorithms reported in the literature.

3. A novel low power logic element (LE) for FPDs to replace the conven-

tional LE has been proposed and carefully evaluated. The FPDs using

our proposal have 6-90 % lower total power due to the avoidance of

unnecessary activities. Devices using our LE run 2-33 % faster than

conventional systems due to our ”always ready” LE flip-flops.

4. A novel configuration circuit architecture for partially reconfigurable

FPGAs has been proposed. The proposal reconfigures FPGAs 4x faster

by avoiding sending unnecessary data and relocates hardware cores

19.8x faster due to its specialized command compared to Xilinx Virtex-4

with only 0.009 % area overhead. Moreover, the bitstream sizes of the

investigated MCNC benchmarks are reduced by 65 % on average when

our approach is applied.

7.2 Open Issues

The following open issues can be considered for future work on the topic.

1. Dynamic power is linearly proportional to the clock frequency. Running

hardware tasks at lower clock speeds can reduce power consumption. In

many cases, some tasks can be operated at lower speeds without affect-

ing on the overall system performance. Hence, online task scheduling

and placement algorithms that can run hardware tasks at different clock

speeds to reduce power consumption without sacrificing performance

can be considered as a future work.

2. A simple way to reduce both static and dynamic power consumptions is

to scale down the supply voltage. Online task scheduling and placement

algorithms that can run hardware task at different supply voltages should

be investigated for power reduction.

3. FPGAs with built-in online scheduling and placement hardware can be

studied for future general purpose computing systems.
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4. When the chip technology is scaled down, it is becoming almost im-

possible to create chips without any defects. Defect-aware online task

scheduling and placement algorithms that can intelligently manage the

defected chips are worthy to be investigated.

5. To reduce reconfiguration overhead further, utilizing placed hardware

tasks by reusing them for serial executions or copying them for paral-

lel executions can be integrated in our framework for future study. This

technique is supported by fast relocation of our reconfiguration infras-

tructure in Chapter 6.

6. Designing circuits targeting FPDs based on our proposed low power LEs

was performed by hand in this dissertation. To make this design process

automatically, CAD tools development for FPDs targeting our proposed

LEs is needed to be investigated further.

7. Benefits of replacing FFs with latches are increased performance, area

reduction, and minimized power consumption as have been investigated

in ASIC designs. An interesting research direction is to study of replac-

ing FFs with latches in FPDs targeting our proposed LEs.

8. Hardware tasks can be placed more efficient if we can have more flex-

ibility in rotating the tasks during reconfiguration. FPGAs with recon-

figuration circuit that supports this flexibility is a challenge for future

research. This requires homogeneity of the reconfigurable fabric.

9. If the homogeneity presents in FPGAs as required in previous future

direction, it is interesting to investigate in what extend this homogeneity

will affect the overall system performance. There will be a trade-off

between flexibility and performance. ”Can this flexibility cope with its

performance degradation?” is another future question that need to be

studied further.
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Samenvatting

H
et aanwenden van partial reconfigurable devices voor runtime recon-

figurable systems kan een vermindering bewerkstelligen van hard-

ware area, energieverbruik, economische kosten, bitstream grootte

en herconfiguratie tijd in aanvulling op performance verbeteringen, die te

danken zijn aan beter maatwerk. Maar om deze voordelen te verkrijgen, dienen

de gebruikers bijkomende kosten te betalen: hoger stroomverbruik, meer sil-

icon area en lagere verwerkingssnelheden in vergelijking met ASIC’s. Hoger

stroomverbruik vereist hogere verpakkingskosten, verkort de chip-levensduur,

vereist dure koelsystemen, vermindert de betrouwbaarheid van het systeem

en belet het gebruik van een batterij. Om de minder efficiënte gebruik van

de ruimte op de FPGA tegen te gaan, moet men runtime reconfigureren en

de posities van draaiende taken herorganiseren. Aangezien de beschikbare

configuratie-datapaden gebruikelijk een gelimiteerde bandbreedte hebben, kan

de hoge overhead van de herconfiguratie de voordelen van een dynamisch sys-

teem te niet doen. In dit proefschrift richten we ons op drie belangrijke prob-

lemen om deze voordelen meer toe te passen. Om precies te zijn, zijn dat:

de online inroostering en plaatsing van hardware taken, vermindering van het

stroomverbruik, het terugschroeven van de runtime reconfiguration overhead.

Aangezien hardware taken dynamisch worden toegewezen en vrijgegeven tij-

dens de executie van het systeem, kan de reconfigurable fabric lijden aan frag-

mentatie. Dit kan leiden tot de ongewenste situatie dat de taken niet kunnen

worden toegewezen, zelfs als er voldoende vrije ruimte beschikbaar zou zijn.

Als gevolg worden de algehele prestaties van het systeem aangetast. Dus ef-

ficiënt beheer van de resources in hardware is erg belangrijk. Om hardware

resources efficiënt te beheren, stellen we vernieuwende online hardware taak

inroosterings- en plaatsingsalgoritmen voor op partial reconfigurable devices.

Deze algoritmen zijn zowel sneller als van hogere kwaliteit dan bestaande aan-

pakken. Met het oog op het reduceren van hoog stroomverbruik in FPD’s

stellen we een nieuw Logic Element (LE) voor met een lager stroomverbruik

dan huidige FPD’s. Om runtime overhead te reduceren stellen we een nieuwe

FPGA configuratie-circuit architectuur voor met snellere herconfiguratie en

herplaatsing in vergelijking met huidige FPGA’s.
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