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Efficient Sampling for Non-Intrusive Polynomial Chaos

Applications with Multiple Uncertain Input Variables

Serhat Hosder∗, Robert W. Walters† and Michael Balch ‡

Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA

The accuracy and the computational efficiency of a Point-Collocation Non-Intrusive
Polynomial Chaos (NIPC) method applied to stochastic problems with multiple uncertain
input variables has been investigated. Two stochastic model problems with multiple uni-
form random variables were studied to determine the effect of different sampling methods
(Random, Latin Hypercube, and Hammersley) for the selection of the collocation points.
The effect of the number of collocation points on the accuracy of polynomial chaos expan-
sions were also investigated. The results of the stochastic model problems show that all
three sampling methods exhibit a similar performance in terms of the the accuracy and
the computational efficiency of the chaos expansions. It has been observed that using a
number of collocation points that is twice more than the minimum number required gives a
better approximation to the statistics at each polynomial degree. This improvement can be
related to the increase of the accuracy of the polynomial coefficients due to the use of more
information in their calculation. The results of the stochastic model problems also indicate
that for problems with multiple random variables, improving the accuracy of polynomial
chaos coefficients in NIPC approaches may reduce the computational expense by achieving
the same accuracy level with a lower order polynomial expansion. To demonstrate the
application of Point-Collocation NIPC to an aerospace problem with multiple uncertain
input variables, a stochastic computational aerodynamics problem which includes the nu-
merical simulation of steady, inviscid, transonic flow over a three-dimensional wing with an
uncertain free-stream Mach number and angle of attack has been studied. For this study,
a 5

th degree Point-Collocation NIPC expansion obtained with Hammersley sampling was
capable of estimating the statistics at an accuracy level of 1000 Latin Hypercube Monte
Carlo simulations with a significantly lower computational cost.

I. Introduction

In the stochastic modeling of most large scale aerospace problems with multiple uncertain input variables
and parameters, computational efficiency becomes an important factor in the selection of the method to be
used due to the expensive nature of computational simulations. In addition to the efficiency, a certain level
of accuracy (confidence) is also desired in the solution of the stochastic problems. This paper will address
both efficiency and the accuracy of a Point-Collocation Non-Intrusive Polynomial Chaos (NIPC) approach
applied to stochastic problems with multiple uncertain variables. The effect of the number of collocation
points and different sampling techniques for the selection of collocation points will be investigated in terms
of the accuracy of the polynomial chaos expansions and the computational efficiency.

Polynomial Chaos (PC) method is among several methods to model and propagate uncertainty in stochas-
tic computational simulations. Several researchers have studied and implemented the PC approach for a
wide range of problems. Ghanem and Spanos1 (1990) and Ghanem2,3 (1999) applied the PC method to
several problems of interest to the structures community. Mathelin et al.4 studied uncertainty propagation
for a turbulent, compressible nozzle flow by this technique. Xiu and Karniadakis5 analyzed the flow past a
circular cylinder and incompressible channel flow by the PC method and extended the method beyond the
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original formulation of Wiener6 to include a variety of basis functions. In 2003, Walters7 applied the PC
method to a two-dimensional steady-state heat conduction problem for representing geometric uncertainty.

The Polynomial chaos (PC) method for the propagation of uncertainty in computational simulations
involves the substitution of uncertain variables and parameters in the governing equations with the poly-
nomial expansions. In general, an intrusive approach will calculate the unknown polynomial coefficients by
projecting the resulting equations onto basis functions (orthogonal polynomials) for different modes. As its
name suggests, the intrusive approach requires the modification of the deterministic code and this may be
difficult, expensive, and time consuming for many complex computational problems such as the full Navier-
Stokes simulation of 3-D, viscous, turbulent flows around realistic aerospace vehicles, chemically reacting
flows, numerical modeling of planetary atmospheres, or multi-system level simulations which include the
interaction of many different codes from different disciplines. To overcome such inconveniences associated
with the intrusive approach, non-intrusive polynomial chaos formulations (NIPC) have been developed for
uncertainty propagation. Most of the NIPC approaches in the literature are based on sampling (Debuss-
chere et al.,8 Reagan et. al.,9 and Isukapalli10) or quadrature methods (Debusschere et al.8 and Mathelin
et al.11) to determine the projected polynomial coefficients. Recently, Hosder and Walters12 applied a
Point-Collocation NIPC to selected stochastic Computational Fluid Dynamics (CFD) problems and Loeven
et al13 introduced a non-intrusive Probabilistic Collocation approach for efficient propagation of arbitrarily
distributed parametric uncertainties.

In the following section, a description of the non-intrusive polynomial chaos approaches including the
Point-Collocation NIPC method is given. The sampling techniques investigated for the selection of collocation
points are outlined in Section III. Section IV includes the results obtained from the investigation of two
stochastic model problems with multiple uniform random variables. The results of a stochastic computational
aerodynamics problem which includes the numerical simulation of steady, inviscid, transonic flow over a three-
dimensional wing with an uncertain free-stream Mach number and angle of attack will also be presented in
Section IV to demonstrate the application of the Point-Collocation NIPC to a stochastic aerospace problem
with multiple uncertain input variables. The conclusions will be given in Section V.

II. Non-Intrusive Polynomial Chaos Approaches

The polynomial chaos is a stochastic method, which is based on the spectral representation of the uncer-
tainty. An important aspect of spectral representation of uncertainty is that one may decompose a random
function (or variable) into separable deterministic and stochastic components. For example, for any random
variable (i.e.,α ! ) such as velocity, density or pressure in a stochastic fluid dynamics problem, we can write,

α ! ("x,"ξ) =
P

∑

i=0

αi("x)Ψi("ξ) (1)

where αi("x) is the deterministic component andΨ i("ξ) is the random basis function corresponding to the
ith mode. Here we assume α ! to be a function of deterministic independent variable vector "x and the n-
dimensional random variable vector "ξ = (ξ1, ...,ξ n) which has a specific probability distribution. The discrete
sum is taken over the number of output modes ,

P + 1 =
(n + p)!

n!p!
(2)

which is a function of the order of polynomial chaos (p) and the number of random dimensions (n). The
basis function ideally takes the form of multi-dimensional Hermite Polynomial to span the n-dimensional
random space when the input uncertainty is Gaussian (unbounded), which was first used by Wiener6,14 in his
original work of polynomial chaos. Legendre (Jacobi) and Laguerre polynomials are optimal basis functions
for bounded (uniform) and semi-bounded (exponential) input uncertainty distributions respectively in terms
of the convergence of the statistics. Different basis functions can be used with different input uncertainty
distributions (See Xiu and Karniadakis5 for a detailed description), however the convergence may be affected
depending on the basis function used.15 In all the stochastic model problems studied in this paper, we model
the input uncertainties as uniform random variables that have bounded probability distributions. Therefore,
in our Point-Collocation NIPC method described below we use multi-dimensional Legendre polynomials that
are orthogonal in the interval [-1,1] for each random dimension. The detailed information about polynomial
chaos expansions can be found in Walters and Huyse16 and Hosder et al.12
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To model the uncertainty propagation in computational simulations via polynomial chaos with the intru-
sive approach, all dependent variables and random parameters in the governing equations are replaced with
their polynomial chaos expansions. Taking the inner product of the equations, (or projecting each equation
onto kth basis) yield P + 1 times the number of deterministic equations which can be solved by the same
numerical methods applied to the original deterministic system. Although straightforward in theory, an
intrusive formulation for complex problems can be relatively difficult, expensive, and time consuming to im-
plement. To overcome such inconveniences associated with the intrusive approach, non-intrusive polynomial
chaos formulations have been considered for uncertainty propagation.

The objective of the non-intrusive polynomial chaos methods is to obtain approximations of the poly-
nomial coefficients without making any modifications to the deterministic code. Main approaches for non-
intrusive polynomial chaos are sampling based, collocation based, and quadrature methods. To find the
polynomial coefficients αk = αk("x), (k = 0, 1, .., P ) in Equation 1 using sampling based and quadrature
methods, the equation is projected onto kth basis:

〈

α ! ("x,"ξ),Ψk("ξ)
〉

=

$

P
∑

i=0

αiΨi("ξ),Ψk("ξ)

%

(3)

where the inner product of two functions f("ξ) and g("ξ) is defined by

〈

f("ξ)g("ξ)
〉

=

&

R

f("ξ)g("ξ)pN ("ξ)d"ξ (4)

Here the weight function pN ("ξ) is the probability density function of "ξ and the integral is evaluated on the
support (R) region of this weight function. Using the orthogonality of the basis functions,

〈

α ! ("x,"ξ),Ψk("ξ)
〉

= αk

〈

Ψ
2
k("ξ)

〉

(5)

we can obtain

αk =

〈

α ! ("x,"ξ),Ψk("ξ)
〉

〈

Ψ2
k("ξ)

〉 (6)

In sampling based methods, the main strategy is to compute α ! ("x,"ξ)Ψk("ξ) for a number of samples ("ξi

values) and perform averaging to determine the estimate of the inner product
〈

α ! ("x,"ξ),Ψk("ξ)
〉

. Quadrature

methods calculate the same term, which is an integral over the support of the weight function pN ("ξ), using
numerical quadrature. Once this term is evaluated, both methods (sampling based and quadrature) use
Equation 6 to estimate the projected polynomial coefficients for each mode.

A. Point-Collocation Non-Intrusive Polynomial Chaos

The collocation based NIPC method starts with replacing the uncertain variables of interest with their
polynomial expansions given by Equation 1. Then, P + 1 vectors ("ξi = {ξ1, ξ2, ...,ξ n}i, i = 0, 1, 2, ..., P ) are
chosen in random space for a given PC expansion with P +1 modes and the deterministic code is evaluated at
these points. With the left hand side of Equation (1) known from the solutions of deterministic evaluations
at the chosen random points, a linear system of equations can be obtained:

'

(

(

(

(

(

(

)

Ψ0("ξ0) Ψ1("ξ0) · · · ΨP ("ξ0)
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*

+

+

+
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,

(7)

The spectral modes (αk) of the random variable, α ! , are obtained by solving the linear system of equations
given above. Using these, mean (µα

∗) and the variance (σ2
α
∗) of the solution can be obtained by

µα
∗ = α0 (8)
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σ2
α
∗ =

P
∑

i=1

α2
i

〈

Ψ
2
i (

"ξ)
〉

(9)

The Point-Collocation approach was first introduced by Walters7 to approximate the polynomial chaos
coefficients of the metric terms which are required as input stochastic variables for the intrusive polynomial
chaos representation of a stochastic heat transfer problem with geometric uncertainty. Recently Hosder et.
al.12 applied this Point-Collocation NIPC method to stochastic fluid dynamics problems with geometric
uncertainty. They demonstrated the efficiency and the accuracy of the NIPC method in terms of modeling
and propagation of an input uncertainty and the quantification of the variation in an output variable. That
study included a single random input variable, and the collocation locations were equally spaced in the
the random space. In this paper, multiple uncertain input variables are considered and different sampling
methods are investigated to determine if any particular technique gives optimum collocation points for
efficiency and accuracy.
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Figure 1. The number of function evaluations for
the Point-Collocation (np = 1) and the numerical
quadrature NIPC for different number of random
variables.

The solution of linear problem given by Equation 7
requires P +1 deterministic function evaluations. If more
than P + 1 samples are chosen, then the over-determined
system of equations can be solved using the Least Squares
method. In this paper, we investigate this option by in-
creasing the number of collocation points in a systematic
way through the introduction of a parameter np defined
as

np =
number of samples

P + 1
(10)

In the solution of stochastic model problems with mul-
tiple uncertain variables, we have used np = 1, 2, 3, and
4 to study the effect of the number of collocation points
(samples) on the accuracy of the polynomial chaos expan-
sions.

Figure 1 shows the computational cost associated
with the Point-Collocation and the numerical quadrature
NIPC. For the point collocation, the number of function

evaluations is np × (P + 1) where P+1 is the number of output modes for a given polynomial degree and
number of random variables (n) (See Equation 2). The number of function evaluations for the numerical
quadrature is nn

q where nq is the number of quadrature points in each random dimension. For a single
random variable, the number of function evaluations for each method is comparable. However, as the num-
ber of random variables increase, the computational cost of the numerical quadrature grows significantly.
One may think of using an optimum number of quadrature points to reduce the cost, but for a general
stochastic function or problem, considerable number of quadrature points may be required to evaluate the
integration with desired accuracy as shown by Huyse et al.15 For both methods, the computational cost
becomes formidable with the increase of the polynomial degree and the number of random variables. It
should be noted that in Figure 1 the limits of the number of function evaluations are extended to very large
numbers to show the general trend. In reality, especially for large scale stochastic computations, one can
afford only a certain number of deterministic runs to the produce the output values at the selected collocation
or quadrature points. This again emphasizes the necessity of the implementation of innovative methods in
large scale stochastic problems to model and propagate multiple input uncertainties with desired accuracy
and efficiency.

III. Sampling Methods for the Point-Collocation NIPC approach

In this study, we investigate three widely-used sampling techniques in stochastic computations for the
selection of the collocation points:

• Random Sampling (RS)

• Latin Hypercube Sampling (LHS)
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x2

(a) Random Sampling (RS)

x1

x2

(b) Latin Hypercube Sampling (LHS)

1

x1

x2

(c) Hammersley Sampling

Figure 2. Samples obtained with different methods in a two-dimensional random space

• Hammersley Sampling (HS)

These techniques are also used as Modern Design of Experiments (DOE) techniques in computational simula-
tions for engineering design and optimization and are discussed in detail by Giunta et al.17 In the stochastic
model problems studied in this paper, we evaluate the NIPC expansions using the collocation points obtained
from each technique and determine the performance for estimating the statistics (mean and standard devia-
tion) in terms of the accuracy and computational cost. Figure 2 shows an example of 50 samples produced by
each method in a two dimensional random space. Both variables (x1 and x2) are uniform random variables
defined for the interval [0,1]. Compared to the RS (can also be referred as crude Monte Carlo sampling),
LHS and HS exhibit a better coverage of the design space. Since the Hammersley points are calculated with
a deterministic algorithm17,18 for a given number of samples and random variables, they are scattered in a
more organized pattern in the random space.

IV. Results

A. Stochastic Model Problem with Two Random Variables

The first stochastic model problem tested in this study is based on the equation

f(x1, x2) = ln
-

1 + x2
1

.

Sin (5x2) . (11)

Both x1 = x1(ξ1) and x2 = x2(ξ2) are modeled as uniform random variables with a mean value of 2.0 and a
coefficient of variation (CoV ) of 20% which gives a constant probability density function (PDF) of 0.722 for
each variable. Here, ξ1,2 are uniform random variables defined in the interval [−1, 1], which have a constant
PDF of 0.5. This stochastic model problem is chosen to evaluate the performance of Point-Collocation NIPC
method with different sampling techniques (RS, LHS, and HS) and number of collocation points (np) in
estimating the statistics of f(x1, x2) = f (x1(ξ1), x2(ξ2)) which is a stochastic output variable with highly
non-linear dependence on x1 and x2.

The statistics and the histogram of f(x1, x2) were obtained with crude Monte Carlo (MC) simulations
using 100,000 samples from the corresponding probability distributions of x1 and x2 (Figure 3(a) and 3(b)).
The MC histogram of f(x1, x2) is shown in Figure 3(c). The distribution is bounded, but significantly
different than the input uniform distributions due to the non-linear nature of the stochastic problem. To
compare the statistics of the MC simulations to the NIPC results, 95% confidence intervals (CI) for the
MC mean and standard deviation were constructed using the Bootstrap Method. The advantage of the
Bootstrap Method is that it is not restricted to a specific distribution, e.g. a Gaussian. It is easy and
efficient to implement, and can be completely automated to any estimator, such as the mean or the variance.
In practice, one takes 25–200 bootstrap samples to obtain a standard error estimate. In our computations,
we used 250 bootstrap samples. Each sample consisted of 100,000 observations selected randomly from
the original Monte Carlo simulations by giving equal probability (1/100, 000) to each observation. Table 1
presents the MC statistics and the associated 95% confidence intervals. For this stochastic model problem,
the exact values of the statistics were also calculated. Note that the exact mean and the standard deviation
fall within the 95% CI of MC results which validates the confidence interval estimates obtained by the
Bootstrap method.
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(a) Histogram of x1(ξ1) (b) Histogram of x2(ξ2) (c) Histogram of f = f (x1(ξ1), x2(ξ2))

Figure 3. Histograms of the input variables (x1 and x2) and the output variable (f(x1, x2)) obtained with
100,000 crude MC simulations.

Table 1. The exact and the Monte Carlo (MC) statistics obtained for the stochastic model problem with
two uniform random variables. The 95% confidence intervals for the MC statistics were calculated using the
Bootstrap method.

Statistics of f(x1, x2) Exact MC 95% CI of MC

Mean 0.079169123 0.07783876 [0.07084801, 0.08527571]

Standard Deviation 1.12413615 1.12605069 [1.1229222, 1.12894006]

For this model problem, systematic studies on the convergence of Point-Collocation NIPC statistics were
performed to determine the effect of the number of collocation points (np = 1, 2, 3, and 4) and the effect
of different sampling techniques (RS, LHS, and HS) for the selection of the collocation points. Figure 4
and 5 give a comprehensive summary on the convergence characteristics of the standard deviation (StD) of
f(x1, x2). In Figure 4 and 5, the first column of graphs give the convergence characteristics in terms of the
absolute error which is defined as

% Absolute Error =
[StDexact − StDNIPC ]

StDexact

× 100 (12)

where StDexact stands for the exact value of the standard deviation and StDNIPC is the NIPC approximation
to the same statistics. In the second column of plots, the convergence behavior is analyzed with comparison
to the exact solution and MC results which include the standard deviation and the associated 95% CI. All
plots also include the convergence history of the standard deviation obtained with the numerical quadrature
NIPC using 14 quadrature points in both random dimensions. The plots on each row of Figure 4 give the
results for a particular sampling technique, while the plots on each row of Figure 5 present the results for a
particular value of np.

The effect of the number of collocation points on the convergence of the standard deviation can be
analyzed by examining Figure 4. For all sampling methods, using a number of collocation points that is
twice more than the minimum number required (np = 2) gives a better approximation to the statistics at
each polynomial degree. This improvement can be related to the increase of the accuracy of the polynomial
coefficients due to the use of more information (collocation points) in their calculation. For np = 2, the
standard deviation of the Point-Collocation NIPC tends to fall within the 95% CI of the MC statistics with
a lower degree polynomial compared to the case obtained with np = 1. This behavior is more significant
for the collocation points obtained with LHS. For this sampling technique, the standard deviation of the
Point-Collocation NIPC falls within the 95% CI of MC at a polynomial degree of 8 with np = 1, whereas it
enters the CI at a polynomial degree of 6 for np = 2. The number of function evaluations is 45 for the first
case and 56 for the second. In this specific example, the computational work required for np = 2 exceeds
the computational work required for np = 1 to obtain the statistics at the same accuracy level. However, as
will be shown in the next model problem, for stochastic problems with more random variables, using np = 2
can be computationally more efficient than using higher degree polynomials with np = 1 to achieve the same
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Figure 4. Absolute error and convergence of the standard deviation (StD) obtained with Point-Collocation
(PCol) NIPC for the stochastic model problem with two uniform random variables. Each figure shows the
results obtained with a specific sampling technique (RS, LHS, and HS).

accuracy level, since the required number of function evaluations grows significantly with the increase of
the number of random variables. For this model problem, further increase of np beyond 2 does not give a
significant accuracy improvement.

Figure 5 shows that for a particular value of np, none of the sampling methods have a significant advantage
over each other in terms of accuracy. However, the convergence of the Point-Collocation NIPC statistics
obtained with HS and np = 2 exhibits a much smoother (monotonic) convergence compared to the cases
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Figure 5. Absolute error and convergence of the standard deviation (StD) obtained with Point-Collocation
(PCol) NIPC for the stochastic model problem with two uniform random variables. Each figure shows the
results obtained with a specific value of np (np = 1, 2 and 3).

obtained with other sampling techniques. The standard deviation values of the numerical quadrature NIPC
are more accurate than the Point-Collocation results for all polynomial degrees. The absolute error of the
numerical quadrature converges to a value of approximately 10−7% at a polynomial degree of 9 and the
Point-Collocation statistics obtained with np > 1 reach this accuracy level at a polynomial degree of 14.

The histograms of f(x1, x2) obtained with Point-Collocation NIPC (based on HS and np = 2) for various
polynomial degrees are shown in Figure 6. The probability distribution of the polynomial chaos expansion
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(a) PCol NIPC, polynomial degree=1 (b) PCol NIPC, polynomial degree=3 (c) PCol NIPC, polynomial degree=5

(d) PCol NIPC, polynomial degree=7 (e) PCol NIPC, polynomial degree=9 (f) Monte Carlo

Figure 6. The histogram of f(x1, x2) obtained with the Point-Collocation (PCol) NIPC (HS and np = 2) for
various polynomial degrees. Monte Carlo histogram is included for comparison.

converges to the Monte Carlo distribution at a polynomial degree of 7. Note that this is also the polynomial
degree that the standard deviation of the same NIPC method falls within the 95% CI of the MC statistics
(Figure 5).

B. Stochastic Model Problem with Four Random Variables

The second stochastic model problem is described by the exponential function

f(x1, x2, x3, x4) = e1.5(x1+x2+x3+x4) (13)

For this model problem, all xi = xi(ξi) (i = 1, ..4) are taken as uniform random variables with a mean value
of 0.4 and a coefficient of variation (CoV ) of 40% which gives a constant probability density function (PDF)
of 1.804 for each xi. Here, ξi are again uniform random variables defined in the interval [−1, 1], which have
a constant PDF of 0.5. This stochastic model problem with four random variables is studied to evaluate
the accuracy and the computational efficiency of Point-Collocation NIPC method with different sampling
techniques and number of collocation points in estimating the statistics of f(xi) = f (xi(ξi)).

Table 2. The exact and the Monte Carlo (MC) statistics obtained for the stochastic model problem with
four uniform random variables. The 95% confidence intervals for the MC statistics were calculated using the
Bootstrap method.

Statistics of f(x1, x2, x3, x4) Exact MC 95% CI of MC

Mean 12.36096638 12.34363325 [12.30993751, 12.37955764]

Standard Deviation 6.155660136 6.141888533 [6.101064788, 6.187226973]

The statistics of this model problem were also calculated using crude MC simulations with 100,000
samples. Table 2 gives the MC statistics, the associated 95% confidence intervals obtained with the Bootstrap
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Figure 7. Absolute error and convergence of the standard deviation (StD) obtained with Point-Collocation
(PCol) NIPC for the stochastic model problem with four uniform random variables. Each figure shows the
results obtained with a specific sampling technique (RS, LHS, and HS).

method, and the exact solution to the statistics. The histogram of f(xi) can be seen in Figure 9(c). The
distribution is bounded, skewed to right, and different than the input uniform distributions due to the
exponential functional dependency. Compared to the output histogram obtained for the first model problem,
the shape of the current output distribution can be considered as less complex. In a similar approach
performed for the first model problem, Figures 7 and 8 may be used for this problem to analyze the
convergence of standard deviation as a function of the chaos order for various number of collocation points
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Figure 8. Absolute error and convergence of the standard deviation (StD) obtained with Point-Collocation
(PCol) NIPC for the stochastic model problem with two uniform random variables. Each figure shows the
results obtained with a specific value of np (np = 1, 2 and 3).

and sampling techniques. As also observed in the first model problem, the selection of a specific sampling
technique does not seem to change the accuracy of the polynomial chaos expansions. However, the NIPC
expansions obtained with the LHS and HS exhibit more smooth (monotonic) convergence compared to the
cases with random collocation points, especially for np > 1. Again, using a number of collocation points that
is twice more than the minimum number required (np = 2) gives a better approximation to the statistics at
each polynomial degree. For this stochastic model problem with four random variables, a reduction in the
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(a) PCol NIPC, polynomial degree=1 (b) PCol NIPC, polynomial degree=3 (c) Monte Carlo with 100,000 samples

Figure 9. The histograms of f(xi) (i = 1, .., 4) obtained with Monte Carlo simulations and with the Point-
Collocation (PCol) NIPC (HS and np = 2) for chaos orders of 1 and 3.

number of function evaluations can be observed when np > 1 is chosen over np = 1 (Table 3). For example,
the standard deviation of the Point-Collocation NIPC obtained with HS falls within the 95% CI of MC at
a polynomial degree of 5 for np = 1, while it enters the CI at a polynomial degree of 3 for np = 2. The
corresponding number of function evaluations is 126 and 70, which indicates a significant improvement in
computational efficiency. This example points out the fact that for problems with multiple random variables,
improving the accuracy of polynomial chaos coefficients in NIPC approaches may reduce the computational
expense via achieving the same accuracy level with a lower order polynomial expansion.

In Figures 7 and 8, the standard deviation values calculated with the numerical quadrature up to a poly-
nomial degree of 6 are also included. For this problem, 6 quadrature points were used in each random dimen-
sion. The absolute error of the numerical quadrature is again lower compared to Point-Collocation methods
for each polynomial degree, however the associated computational cost (number of function evaluations= 64)
is large due to the increase in random dimensions.

The histograms of f(xi) obtained with Point-Collocation NIPC (based on HS and np = 2) for a polynomial
degree of 1 and 3 are shown in Figure 9. The probability distribution of the polynomial chaos expansion
converges to the Monte Carlo distribution with a polynomial degree of 3 at which the standard deviation of
the same NIPC method falls within the 95% CI of the MC statistics (Figure 8).

Table 3. The degree of the polynomial at which the standard deviation of Point-Collocation NIPC falls within
the 95% CI of MC for different values of np and sampling techniques (LHS and HS). The number of function
evaluations are given in parentheses for each case.

np = 1 np = 2 np = 3 np = 4

LHS 5 (126) 4 (140) 3 (105 ) 2 (60)

HS 5 (126) 3 (70) 3 (105) 3 (140)

C. Stochastic Aerodynamics Problem with a Three-Dimensional Wing

To demonstrate the application of Point-Collocation NIPC to a aerospace problem with multiple uncertain
input variables, a stochastic computational aerodynamics problem which includes the numerical simulation
of steady, inviscid, transonic flow over a three-dimensional wing has been selected. The wing geometry is the
AGARD 445.6 Aeroelastic Wing19 (Figure 10) which has been extensively used to validate computational
aeroelasticity tools especially in the determination of flutter boundary at various transonic Mach numbers.
The wing has a quarter-chord sweep angle of 45 deg., a panel aspect ratio of 1.65, a taper ratio of 0.66,
and a NACA 65A004 airfoil section. The current study includes the aerodynamic simulations with the rigid
wing assumption which can be thought as a preliminary investigation before the application of the NIPC to
a stochastic computational aeroelasticity problem involving the same geometry.

For the CFD simulations, we have used CFL3D code of NASA Langley Research Center to solve the
steady Euler equations numerically. CFL3D is a three-dimensional, finite-volume Navier-Stokes code capable
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of solving steady or time-dependent aerodynamic flows ranging from subsonic to supersonic speeds.20 The
computational grid has a C-H topology having 193× 65× 42 points.

Figure 10. AGARD 445.6 Wing and the surface grid

For the stochastic aerodynamics problem, the
free-stream Mach number (M∞) and the angle of
attack (α) are treated as uncertain variables. The
Mach number is modeled as a uniform random vari-
able between M∞ = 0.8 and 1.1, and the angle of
attack is defined as a uniform random variable be-
tween α = −2.0 and 2.0 degs. Stochastic solutions
to the problem were obtained with two approaches:
Latin Hypercube Monte Carlo with 1000 samples
and Point-Collocation NIPC. Based on our obser-
vations from the stochastic model problems, Ham-
mersley Sampling with np = 2 has been used for
the selection of collocation points for the NIPC ap-
proach. The chaos expansions were obtained up to a
polynomial degree of 5. Table 4 gives the computa-
tional cost associated with each stochastic approach.
As can be seen from this table, it took 46.6 hours to

finish the Monte Carlo simulations whereas the computational time was approximately 2 hours for the Point
Collocation NIPC with a polynomial degree of 5.

Table 5 gives the statistics and the 95% confidence intervals of the lift (CL) and drag (CD) coefficients
obtained with the Latin Hypercube Monte Carlo simulations. In figure 11, the convergence of CL and
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Figure 11. Mean and standard deviation of CL and CD obtained with Point-Collocation NIPC and Latin
Hypercube MC
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(a) PCol NIPC, polynomial degree=1 (b) PCol NIPC, polynomial degree=2 (c) PCol NIPC, polynomial degree=3

(d) PCol NIPC, polynomial degree=4 (e) PCol NIPC, polynomial degree=5 (f) Latin Hypercube MC

Figure 12. The histograms of CD obtained with the Latin Hypercube Monte Carlo (MC) simulations and the
Point-Collocation (PCol) NIPC.

Table 4. The computational cost for evaluation of the Latin Hypercube Monte Carlo simulations and the
Point-Collocation NIPC for the stochastic aerodynamics problem. The CFD runs were performed on a SGI
Origin 3800 with 64 processors. (p is the degree of the polynomial chaos expansion).

NIPC

Monte Carlo p = 1 p = 2 p = 3 p = 4 p = 5

number of CFD runs 1000 6 12 20 30 42

wall clock time (hours) 46.6 0.28 0.56 0.94 1.4 1.96

Table 5. The Latin Hypercube Monte Carlo statistics for CL and CD. The 95% confidence intervals for the
MC statistics were calculated using the Bootstrap method.

Mean 95% CI of Mean StD 95% CI of StD

CL 0.000169661 [-0.005324476, 0.005058219] 0.084082119 [0.081239769, 0.08641931]

CD 0.002538528 [0.002414416, 0.002655811 ] 0.002164797 [0.002075901, 0.002234283]

CD statistics obtained with the Point-Collocation NIPC is presented. For all polynomial degrees, the NIPC
approximations to the mean and the standard deviation of the lift coefficient stays within the 95% confidence
interval of the Monte Carlo statistics. The mean of the drag coefficient falls within the confidence interval
at a polynomial degree of 3 whereas the standard deviation enters the interval with a polynomial degree
of 4. The histogram of the drag coefficient obtained with the NIPC approach gets very similar to the
histogram shape of the Monte Carlo simulations at a polynomial degree of 5 (Figure 12). The mean and
the standard deviation distributions of the Mach number on the wing upper surface is given in Figure 13.
The Monte Carlo and the NIPC statistics are in a good qualitative agreement in most regions of the wing.
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(a) Mean, Latin Hypercube MC (b) StD, Latin Hypercube MC

(c) Mean, PCol NIPC (d) StD, PCol NIPC

Figure 13. Mean and standard deviation of Mach number on the upper surface of the AGARD 445.6 Wing.
The Point-Collocation (PCol) NIPC results are obtained with 5th degree chaos expansions.

Overall, this computational exercise shows that a 5th degree Point-Collocation NIPC expansion obtained
with Hammersley sampling and np = 2 is capable of estimating the statistics at an accuracy level of 1000
Latin Hypercube Monte Carlo simulations with a significantly lower computational cost.

V. Conclusions

In this paper, we have addressed the accuracy and the computational efficiency of a Point-Collocation
Non-Intrusive Polynomial Chaos (NIPC) method applied to various stochastic problems with multiple un-
certain input variables. Two stochastic model problems were studied to determine the effect of different
sampling methods (Random, Latin Hypercube, and Hammersley) for the selection of the collocation points.
The first stochastic problem had two uniform random variables and the second problem included four uni-
form random variables. The effect of the number of collocation points on the accuracy of polynomial chaos
expansions were also investigated.

The results of the stochastic model problems show that all three sampling methods exhibit a similar
performance in terms of the the accuracy and the computational efficiency of the chaos expansions. However,
the convergence of the Point-Collocation NIPC statistics obtained with Hammersley and Latin Hypercube
sampling exhibits a much smoother (monotonic) convergence compared to the cases obtained with Random
sampling. It has been observed that using a number of collocation points that is twice more than the
minimum number required gives a better approximation to the statistics at each polynomial degree. This
improvement can be related to the increase of the accuracy of the polynomial coefficients due to the use
of more information (collocation points) in their calculation. The results of the stochastic model problems
also indicate that for problems with multiple random variables, improving the accuracy of polynomial chaos
coefficients in NIPC approaches may reduce the computational expense by achieving the same accuracy level
with a lower order polynomial expansion.
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To demonstrate the application of Point-Collocation NIPC to an aerospace problem with multiple un-
certain input variables, a stochastic computational aerodynamics problem which includes the numerical
simulation of steady, inviscid, transonic flow over a three-dimensional wing with an uncertain free-stream
Mach number and angle of attack has been studied. In this study, for various output quantities of interest,
it has been shown that a 5th degree Point-Collocation NIPC expansion obtained with Hammersley sam-
pling was capable of estimating the statistics at an accuracy level of 1000 Latin Hypercube Monte Carlo
simulations with a significantly lower computational cost.
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