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ABSTRACT

Periodic nonuniform sampling is a known method to sample spec-

trally sparse signals below the Nyquist rate. This strategy relies on

the implicit assumption that the individual samplers are exposed to

the entire frequency range. This assumption becomes impractical for

wideband sparse signals. The current paper proposes an alternative

sampling stage that does not require a full-band front end. Instead,

signals are captured with an analog front end that consists of a bank

of multipliers and lowpass filters whose cutoff is much lower than the

Nyquist rate. The problem of recovering the original signal from the

low-rate samples can be studied within the framework of compres-

sive sampling. An appropriate parameter selection ensures that the

samples uniquely determine the analog input. Moreover, the analog

input can be stably reconstructed with digital algorithms. Numerical

experiments support the theoretical analysis.

Index Terms— Analog to digital conversion, compressive sam-

pling, infinite measurement vectors (IMV), multiband sampling.

1. INTRODUCTION

Radio frequency (RF) technology enables the modulation of a nar-

rowband signal by a high carrier frequency. As a consequence, man-

made radio signals are often sparse. That is, they consist of relatively

small number of narrowband transmissions spread across a wide ter-

ritory of spectrum. A convenient description for these signals is the

multiband model where the frequency support of a signal resides

within several continuous intervals in a wide spectrum but vanishes

elsewhere.

It has become prohibitive to sample modern multiband signals

because their Nyquist rates may exceed the specifications of the best

analog-to-digital converters (ADCs) by orders of magnitude. As a

result, any attempt to acquire a multiband signal must exploit its

structure in an intelligent way.

Previous work on multiband signals has shown that it is possi-

ble to reduce the sampling rate by acquiring samples from a periodic

but nonuniform grid [1]. Multi-coset sampling, a specific strategy of

this type, was analyzed in [2], which established that exact recovery

is possible when the band locations are known. The blind case, in

which the band locations are unknown, has been extensively studied

in [3]. Unfortunately, the sampling front ends proposed in [1–3] are

impractical for wideband applications because they require ADCs
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whose sampling rate is matched to the Nyquist rate of the input sig-

nal, even when the average sampling rate is much lower. Other limi-

tations are described in Section 2.2. Another recent work [4] has par-

tially overcome these shortcomings using a hybrid optic–electronic

system at the expense of size and cost.

In this paper, we analyze a practical sampling system inspired

by the recent work on the random demodulator [5]. This system

multiplies the input signal by a random square wave alternating at

the Nyquist rate, then it performs lowpass filtering, and samples the

signal at a lower rate. Our system consists of a bank of random

demodulators running in parallel. We show that, for an appropriate

choice of parameters, our system uniquely and stably determines a

multiband input signal. Moreover, we describe digital algorithms for

reconstructing the signals from the parallel samples.

We continue with an outline of the paper. Section 2 reviews

essential background material. In Section 3, we describe the sys-

tem design and a frequency-domain analysis that leads to an infi-

nite measurement vectors (IMV) system. Applying ideas from [6],

we reduce the problem of locating the frequency bands to a finite-

dimensional compressive sampling problem. We then derive an ap-

propriate choice of parameters for the sampling system. Section 4

presents our numerical experiments, which demonstrate that the sys-

tem permits stable signal recovery in the presence of noise.

2. FORMULATION AND BACKGROUND

2.1. Design Goals for Efficient Sampling

Let x(t) be a real-valued, finite-energy, continuous-time signal, and

let X(f) =
∫∞

−∞
x(t) exp(−j2πft)dt be its Fourier transform. We

treat a multiband signal model M in which x(t) is bandlimited to

F = [−fNYQ/2, fNYQ/2] and the support of X(f) consists of at

most 2N frequency interval whose widths do not exceed B. Fig. 1

depicts a typical communication application that obeys this signal

model.

We wish to design a sampling system for signals from our model

M that satisfies the following properties:

1. The sampling rate should be as low as possible;

2. the system has no prior knowledge of band locations; and

3. the system can be implemented with existing devices.

We will call this type of sampling stage efficient.

The set M is a union of subspaces corresponding to all possible

signal supports. Every x(t) ∈ M lies in one of these subspaces. De-

tecting the exact subspace, prior to sampling, may be impossible or

too expensive to implement. An efficient system should therefore be

blind, in the sense that band locations are not assumed to be known.
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Fig. 1: Three RF transmissions with different carriers fi. The receiver
sees a multiband signal (bottom drawing). In this example N = 3, and
the modulation techniques of the transmitters determine the maximal
expected width B.

The lowest (average) sampling rate that allows blind perfect re-

construction for all signals in M is 4NB samples/sec [3]. This rate

is proportional to the effective bandwidth of x(t), and it is typically

far less than the Nyquist rate fNYQ, which depends only on the max-

imum frequency in x(t). See Section 3.3 for more discussion.

Our previous work describes blind reconstruction of x(t) ∈ M
from multi-coset samples taken at the minimal rate [3]. The next

section details the practical limitations of the multi-coset strategy,

which make it inefficient for wideband signals.

2.2. Practical Limitations of Multi-Coset Sampling

Multi-coset sampling involves periodic nonuniform sampling of the

Nyquist-rate sequence x(nTNYQ), where TNYQ = 1/fNYQ . The ith
coset takes the ith value in every block of L consecutive samples.

Retaining only p < L cosets, indexed by C = {ci}p
i=1

, gives p
sequences

xci
[n] =

{

x(nTNYQ) n = mL + ci, m ∈ Z

0 otherwise, (1)

with an average sampling rate p/(LTNYQ), which is lower than the

Nyquist rate.

To explain the practical limitations of this strategy, we observe

that standard ADC devices have a specified maximal rate r, and man-

ufactures require a preceding low-pass filter with cutoff r/2. Distor-

tions occur if the anti-aliasing filter is not used, since the design is

tailored to r/2-bandlimited signals and has an internal parasitic re-

sponse to frequencies above r/2. To avoid these distortions, an ADC

with r matching the Nyquist rate of the input signal must be used,

even if the actual sampling rate is below the maximal conversion rate

r. In multi-coset sampling, each sequence xci
[n] corresponds to uni-

form sampling at rate 1/(LTNYQ), whereas the input x(t) contains

frequencies up to fNYQ/2. Acquiring xci
[n] is only possible using

an ADC with r = fNYQ, which runs L times slower than its maximal

rate. Besides the resource waste, this renders multi-coset sampling

impractical in wideband applications where fNYQ is higher (typically

by orders of magnitude) than the rate r of available devices.

One recent paper [4] developed a nonconventional ADC de-

sign for wideband applications by means of high-rate optical de-

vices. The hybrid optic–electronic system allows sampling at rate

1/(LTNYQ) with minimal attenuation to higher frequencies (up to

fNYQ/2). Unfortunately, at present, this performance cannot be

achieved with purely electronic technology. Thus, for wideband ap-

plications that cannot afford the size or expense of an optical system,

multi-coset sampling becomes impractical.

Another limitation of multi-coset sampling, which also exists in

the optical implementation, is maintaining accurate time delays be-

tween the ADCs of different cosets. Any uncertainty in these delays

hobbles the recovery from the sampled sequences.

y(Λ)

Reconstruct joint support
V

S =
⋃

i

supp(Ūi)
SSolve V = AU for

sparsest matrix Ū
Construct a frame

V for y(Λ)

Fig. 2: Recovery of the joint support S = supp(x(Λ)).

Before describing the way our proposed sampling stage over-

comes these limitations, we briefly review the mechanism underly-

ing the blind reconstruction of [3].

2.3. IMV System

Let x(Λ) = {x(λ) : λ ∈ Λ} be a collection of n-dimensional

vectors indexed by a fixed set Λ that may be infinite. The sup-

port of a vector is the set supp(v) = {i |vi 6= 0}, and we define

supp(x(Λ)) = ∪λ supp(x(λ)). We will assume that the vectors in

x(Λ) are jointly K-sparse in the sense that | supp(x(Λ))| ≤ K. In

words, the nonzero entries of each vector x(λ) lie within a set of at

most K indices.

Let A be an m × n matrix with m < n, and consider a param-

eterized family of linear systems

y(λ) = Ax(λ), λ ∈ Λ. (2)

When the support S = supp(x(Λ)) is known, recovering x(Λ)
from the known vector set y(Λ) = {y(λ) : λ ∈ Λ} is possible

if the submatrix AS , consisting of the columns of A indicated by S,

has full column rank. In this case,

xS(λ) = (AS)†y(λ) (3a)

xi(λ) = 0, i /∈ S (3b)

where xS(λ) contains only the entries of x indexed by S, where

AH
S denotes the conjugate transpose of AS and where (AS)† =

(AH
S AS)−1AH

S is the Moore–Penrose pseudoinverse. For unknown

support S, (2) is still invertible if K = |S| is known, and every set of

2K columns from A is linearly independent [6–8]. In general, solv-

ing (2) for x(Λ) is NP-hard because it may require a combinatorial

search. Nevertheless, recent advances in compressive sampling and

sparse approximation delineate situations where polynomial-time re-

covery algorithms correctly identify supp(x(Λ)) for finite Λ. This

challenge is sometimes referred to as a multiple measurement vec-

tors (MMV) problem [8–13].

Recovering a multiband signal x(t) from a set of multi-coset

samples can be reduced to a certain infinite measurement vectors

(IMV) problem (where Λ is infinite). When the band locations are

known, the support set S is determined and reconstruction can be

performed via (3) [1, 2]. In a blind scenario, the support of the un-

known vectors x(λ) can be recovered in two steps [3, 6]. First, con-

struct a (finite) frame V for y(Λ). Then, find the (unique) solution

Ū to the MMV system V = AU that has the fewest nonzero rows.

It holds that supp(x(Λ)) is the set S = ∪i supp(Ūi), where the

union occurs over columns of Ū. Fig. 2 summarizes these recovery

steps.

In the next section, we describe and analyze the proposed sam-

pling system. In contrast to the multi-coset strategy, our system uses

standard low-rate ADCs. We match the analog input of the ADCs

to their maximal rate. The system also avoids time offsets between

devices. As in multi-coset sampling, the sampling sequences gener-

ated by our system are related to x(t) via an IMV system, different
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Symbol Meaning
m number of sampling channels
Tp period of each pi(t)
M number of ±1 intervals in each period of pi(t)
αik the value pi(t) takes on the kth interval
Ts time-interval between ADC samples, corresponding to cutting frequency of h(t)

The mixing function pi(t)

αi,0

αi,1

x̃m(t) am(t) am[n]

x̃1(t) a1(t) a1[n]

Fig. 3: Description of a practical sampling stage for multiband signals.

from the one which is based on the sequences (1). Consequently, the

recovery of x(t) can be performed via the steps described in Fig. 2

and (3).

3. EFFICIENT SAMPLING

3.1. Description

Let us present the proposed system in more detail. A block diagram

appears in Fig. 3. We discuss the choice of system parameters in the

sequel.

The signal x(t) enters m channels simultaneously. In the ith
channel, x(t) is multiplied by a mixing function pi(t), which is a

Tp-periodic, piecewise constant function that alternates between the

levels ±1 for each of M equal time intervals. Formally,

pi(t) = αik, k
Tp

M
≤ t ≤ (k + 1)

Tp

M
, 0 ≤ k ≤ M − 1, (4)

with αik ∈ {+1,−1}, and pi(t + nTp) = pi(t) for every n ∈ Z.

After mixing, the output is converted to digital using the stan-

dard approach. In each channel, the signal spectrum is truncated by

a lowpass filter with cutoff 1/(2Ts) and the filtered signal is sampled

at rate 1/Ts.

Note that the cutoff and the sampling rate match, and each chan-

nel operates independently. Since there are m channels, the average

sampling rate is m/Ts samples/sec. A further advantage of this type

of system is that samples are produced at a constant rate, so they

may be fed to a digital processor operating at the same frequency,

whereas multi-coset sampling requires an additional hardware buffer

to synchronize the nonuniform sequences.

3.2. Analysis

To ease exposition we choose an odd M , T = M/fNYQ, and Ts =
Tp = T . These choices are relaxed in [14]. Consider the ith chan-

nel. Since pi(t) is periodic, it has a Fourier expansion

pi(t) =
∞
∑

n=−∞

cinej 2π

T
nt, (5)

where the coefficients are given by [14]

cin =
1

2π

(

M−1
∑

k=0

αike−jω0nk

)

1 − e−jω0n

jn
, (6)

for ω0 = 2π/M and cin = ci,−n. Expressing the Fourier transform

Pi(f) in terms of the Fourier series coefficients cin leads to

Pi(f) =

∫ ∞

−∞

pi(t)e
−j2πftdt =

∞
∑

n=−∞

cinδ
(

f − n

T

)

, (7)

with δ(t) denoting the Dirac delta function. The analog multipli-

cation x̃i(t) = x(t)pi(t) translates to convolution in the frequency

domain,

X̃i(f) = X(f) ∗ Pi(f) =
∞
∑

n=−∞

cinX
(

f − n

T

)

. (8)

Therefore, X̃i(f) is a linear combination of shifted copies of X(f).

Filtering X̃i(f) by H(f), whose frequency response is an ideal

rect function in the interval F0 = [−1/(2T ), 1/(2T )], results in

Ai(f) = H(f)X̃i(f) =

n0
∑

n=−n0

cinX
(

f − n

T

)

, f ∈ F0, (9)

where n0 is the smallest integer satisfying 2n0+1 ≥ TfNYQ. Under

the choices above, n0 = (M − 1)/2. The discrete-time Fourier

transform of ai[n] is

Ai(e
j2πfT ) =

∞
∑

n=−∞

ai[n]e−j2πfTn
(10)

=

n0
∑

n=−n0

cinX
(

f − n

T

)

, f ∈ F0. (11)

Substituting (6) in (11) leads to the system

y(f) = (SF)(Dx(f)), f ∈ F0, (12)

where yi(f) = Ai(e
j2πfT ), 1 ≤ i ≤ m, S is an m × M matrix

whose ikth entry Sik = αik. The M×M matrix F is a certain cyclic
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columns shift of the discrete Fourier transform matrix of order M .

The M -square diagonal D scales

xi(f) = X(f + (i − n0 − 1)/T ) (13)

according to the last term in (6). Since D has non-zero diagonal

entries, it can be absorbed into x(f) while keeping supp(x(F0)) =
supp(Dx(F0)). Thus, (12) is an IMV system with SF replacing A

of (2).

3.3. Parameter Selection and Stable Recovery

The following theorem suggests a parameter selection for which the

infinite sequences ai[n], 1 ≤ i ≤ m match a unique x(t) ∈ M.

When the band locations are known, the same selection works with

half as many sampling channels. Thus, the system appearing in

Fig. 3 can also replace the multi-coset stage of [2].

Theorem 1 (Uniqueness) Let x(t) ∈ M be a multiband signal and

assume the choices T = M/fNYQ for an integer M (not necessarily

odd) and Tp = Ts = T . If

1. M ≤ fNYQ/B,

2. m ≥ 2N for non-blind reconstruction or m ≥ 4N for blind,

3. S = {αik} is such that every 4N columns are linearly inde-

pendent,

then, for every f ∈ F0, the vector x(f) is the unique 2N -sparse

solution of (12). In addition, under these choices x(F0) is jointly

4N -sparse.

Proof. The proof goes along the line of [3]. The relation (13)

can be thought of slicing the spectrum X(f) into pieces of length

1/T and then rearranging them in a vector form x(f). Fig. 4 visual-

izes this relation for even and odd M .

The choice M ≤ fNYQ/B ensures that 1/T ≥ B and thus ev-

ery band can contribute only a single non-zero value to x(f). As

a consequence, x(f) is 2N -sparse for every f ∈ F0. In addition,

this choice of M and the continuity of the bands guarantee that each

band can occupy two spectrum pieces at the most. Therefore, when

aggregating the frequencies to compute S = supp(x(F0)), we have

|S| ≤ 4N.

In the non-blind setting, the band locations imply the support set

S. The other two conditions on m,S ensure the existence of (AS)†,

and thus (3) provides the uniqueness of x(f).

In blind recovery, S is unknown, and the following CS result is

used to ensure the uniqueness. A K-sparse vector x is the unique

solution of y = Ax if every 2K columns of A are linearly inde-

pendent [7]. Clearly, this condition translates to m ≥ 4N and the

condition on S of the theorem.

The parameter selection of Theorem 1 guarantees an average

sampling rate m/T ≥ 4NB. Depending on whether fNYQ/B is an

integer, this selection allows to achieve the minimal rate when taking

the extreme values for m,M . Note that each x(f) is 2N -sparse,

while x(F0) is jointly 4N -sparse under the parameter selection of

the theorem. As detailed in [3], this factor requires doubling m in

order to use Fig. 2 and (3). Gaining back this factor at the expense

of a higher recovery complexity is also described in [3].

Verifying that a set of signs {αik} satisfies the requirement of

the theorem is computationally difficult because one must check the

rank of every set of 4N columns from S. It is known that a ran-

dom choice of signs will work, except with probability exponentially

small in M [15].

In fact, recent work on compressive sampling shows that a ran-

dom choice of signs ensures that signal acquisition is stable [9]. A

matrix A is said to have the restricted isometry property (RIP) of

order K, if there exists 0 ≤ δK < 1 such that

(1 − δK)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δK)‖x‖2
(14)

for every K-sparse vector x [9]. When A = SF satisfies the RIP of

order 4N , then the matrices AS and (AS)† are well conditioned for

every possible frequency subset S ⊆ F0 with |S| ≤ 2N . This fact

implies stable recovery, in the sense that the reconstruction error is

controlled by the error in the samples [14].

It remains to quantify when stable recovery is possible for spe-

cific choices of m and M . Let F be an M × M unitary matrix

(such as F in (12)), and suppose that S is an m × M random ma-

trix whose entries are equally likely to be ±1/
√

m. The RIP of

order K holds with high probability for the matrix A = SF when

m ≥ CK log(M/K), where C is a positive constant independent

of everything [16]. The log factor is necessary [17]. In practice, we

empirically evaluate the stability of the system since the RIP cannot

be verified computationally.

4. NUMERICAL EVALUATION

To evaluate the empirical performance of the proposed system (see

Fig. 3), we can simulate the action of the system on test signals con-

taminated with white Gaussian noise. To recover the signals from

the sequences of samples, we apply the reduction from an IMV sys-

tem to an MMV system, as described in Fig. 2. We solve the re-

sulting MMV systems using simultaneous orthogonal matching pur-

suit [11, 12].

More precisely, we evaluate the performance on 100 noisy test

signals of the form x(t) + w(t), where x is a multiband signal and

w is a white Gaussian noise process. The multiband signals consist

of N = 3 pairs of bands, each of width B = 40 MHz, constructed

using the formula

x(t) =
N
∑

i=1

√
EiB sinc(Bt)cos(2πfit),

where sinc(x) = sin(πx)/(πx). The energy coefficients are fixed

Ei = {1, 2, 3}, whereas for every signal the carriers fi are cho-
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covery Ŝ = S, for reconstruction from different number of sampling
sequences m̄ and under several SNR levels.

sen uniformly at random in [−fNYQ/2, fNYQ/2] with fNYQ =
10 GHz. To represent the continuous signals in simulation, we

place a dense grid of 4000 equispaced points in the time interval

[−200/fNYQ, 200/fNYQ]. The Gaussian noise is added and scaled

so that the test signal has the desired signal-to-noise ratio (SNR),

where we define the SNR to be 10 log(‖x‖/‖w‖).

We simulate the proposed system with m = 51 channels,

where each mixing function pi(t) alternated sign at most M = 51
times. The sampling rate parameters are chosen so that Ts = Tp =
M/fNYQ. Each sign αik is chosen uniformly at random and fixed

for the duration of the experiment. To simulate the analog lowpass

filter, we use a 50-tap digital FIR filter, designed with the MATLAB

command h=fir1(50,1/M). The output of the filter is decimated

to produce the sampled sequences ai[n].

The input signal is reconstructed from m̄ ≤ m channels. We

follow the procedure described in Fig. 2 to obtain an estimated sup-

port set Ŝ. When Ŝ = S, the true support set, we declare that the

system has recovered the signal. Fig. 5 reports the percentage of

recoveries for various numbers m̄ of channels and various SNRs.

To construct the frame V, we begin by computing the m2 values

Qik =
∑

n ai[n]ak[n]. We then perform the eigenvalue decompo-

sition Q = VVH and then discard the eigenvectors of the noise

space [3].

5. CONCLUSIONS

We developed an efficient sampling stage for analog multiband sig-

nals. In the proposed system, analog mixers and standard ADCs re-

place impractical nonuniform sampling of multi-coset strategy. Ana-

log mixers for wideband applications is an existing RF technology,

though selecting the exact devices may require an expertise in analog

design.

The proposed system has a set of parameters, which determines

the signal, if selected according to the conditions we derived. Ana-

lyzing our system in the frequency domain lead to an IMV system,

which allows to use existing reconstruction stages with only minor

modifications. In addition, based on the IMV system and recent

works in the CS literature, we deduce the rate requirements for sta-

ble blind recovery, which in general is higher than the rate required

to determine the signal from its samples.

A preliminary computer evaluation of our system shows a

promise for stable blind recovery from sub-Nyquist sampling rate,

although further work is required to quantify the optimal working

point in the trade-off between sampling rate, blindness, and practical

implementation.
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