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Abstract—We study the problem of selecting the best sampling
set for bandlimited reconstruction of signals on graphs. A
frequency domain representation for graph signals can be defined
using the eigenvectors and eigenvalues of variation operators that
take into account the underlying graph connectivity. Smoothly
varying signals defined on the nodes are of particular interest in
various applications, and tend to be approximately bandlimited
in the frequency basis. Sampling theory for graph signals deals
with the problem of choosing the best subset of nodes for recon-
structing a bandlimited signal from its samples. Most approaches
to this problem require a computation of the frequency basis (i.e.,
the eigenvectors of the variation operator), followed by a search
procedure using the basis elements. This can be impractical, in
terms of storage and time complexity, for real datasets involving
very large graphs. We circumvent this issue in our formulation by
introducing quantities called graph spectral proxies, defined using
the powers of the variation operator, in order to approximate the
spectral content of graph signals. This allows us to formulate a
direct sampling set selection approach that does not require the
computation and storage of the basis elements. We show that our
approach also provides stable reconstruction when the samples
are noisy or when the original signal is only approximately
bandlimited. Furthermore, the proposed approach is valid for any
choice of the variation operator, thereby covering a wide range
of graphs and applications. We demonstrate its effectiveness
through various numerical experiments.

I. INTRODUCTION

Graphs provide a natural representation for data in many

applications, such as social networks, web information analy-

sis, sensor networks and machine learning [1], [2]. They can

also be used to represent conventional data, such as images

and videos [3], [4]. A graph signal is a function defined over

the nodes of a graph. Graph signal processing aims to extend

the well-developed tools for analysis of conventional signals to

signals on graphs while exploiting the underlying connectivity

information [1], [2]. In this paper, we extend the theory of

sampling for graph signals by developing fast and efficient

algorithms for sampling set selection.

Sampling theory is of immense importance in traditional

signal processing, providing a link between analog and discrete

time domains and also serving as a major component in

many discrete time processing systems. Fundamentally, it deals

with the problem of recovering a signal from a subset of its
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samples. It provides the conditions under which the signal has

a unique and stable reconstruction from the given samples.

Conversely, it gives the minimum sampling density required

in order to get a unique and stable reconstruction for a

signal that meets the modeling assumptions. Typically, the

signal model is characterized by bandlimitedness in the Fourier

domain. For example, the classical Nyquist-Shannon sampling

theorem states that a signal in L2(R) with bandwidth f can be

uniquely reconstructed by its (uniformly spaced) samples if the

sampling rate is higher than 2f . Analogous results have been

obtained for both regular and irregular sampling of discrete

signals bandlimited in the DFT domain [5].

Sampling theory of graph signals similarly deals with the

problem of recovering a signal from its samples on a subset

of nodes of the graph. The smoothness assumption on a

graph signal is formalized in terms of bandlimitedness in a

graph Fourier basis. The graph Fourier basis is given by the

eigenvectors and eigenvalues of certain variation operators
(e.g., graph Laplacian) that measure the variation in a graph

signal while taking into account the underlying connectivity.

To formulate a sampling theory for graph signals we need

to consider the following questions: 1. Given a subset of

nodes to be sampled, what is the maximum bandwidth (in

the appropriate graph Fourier domain) that a signal can have

so that it can be uniquely and stably reconstructed from those

samples? 2. Given the signal bandwidth, what is the best subset

of nodes to be sampled for a unique and stable reconstruction?

Stability is an important issue in the choice of sampling set.

In practice, signals are only approximately bandlimited and/or

samples are noisy. A poor choice of sampling set can result in

a very ill-conditioned reconstruction operator which amplifies

the sample perturbations caused by noise and model mismatch

and thus, lead to large reconstruction errors. Hence, selecting

a sampling set that gives stable reconstructions is vital.

The problem of selecting sampling sets for recovery of

smooth, bandlimited graph signals, arises in many applica-

tions. A prominent example is active semi-supervised learn-

ing [6], where a learner is allowed to specify a set of points

to be labeled, given a budget, before predicting the unknown

labels. In this setting, class indicator vectors can be considered

as smooth or bandlimited graph signals and the set of points to

be labeled as the sampling set. Therefore the task of actively

choosing the training set in this scenario is equivalent to

finding the best possible sampling set, under a given sampling

budget. Other applications of sampling set selection include

selective activation of sensors in sensor networks, and design

of graph based lifting transforms in image compression [7].

Signals of interest in these applications are also smooth with
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respect to the graph and the goal is to find the best sampling

locations that minimize the reconstruction error.

Most recent approaches for formulating a sampling theory

for graph signals involve two steps – first, computing a

portion of the graph Fourier basis, and second, using the basis

elements either to check if a unique and stable reconstruction

is possible with the given samples or to search for the best

subset for sampling. However, when the graphs of interest

are large, computing and storing multiple eigenvectors of

their variation operators increases the numerical complexity

and memory requirement significantly. Therefore, we propose

a technique that achieves comparable results by using the

variation operator directly and skipping the intermediate step

of eigen-decomposition.

A. Related work

Sampling theory for graph signals was first studied in [8],

where a sufficient condition for unique recovery of signals

is stated for a given sampling set. Using this condition, [9]

gives a bound on the maximum bandwidth that a signal

can have, so that it can be uniquely reconstructed from its

samples on a given subset of nodes. We refine this bound

in our previous work [10] by considering a necessary and

sufficient condition for sampling. Using this condition, we also

propose a direct sampling set selection method that finds a set

approximately maximizing this bound so that a larger space

of graph signals can be uniquely reconstructed. However,

[10] does not explain why maximizing this bound leads to

stable reconstructions. Moreover, the results are specific to

undirected graphs. Thus, the main contributions of this paper

are to extend our prior work and propose an efficient sampling

set selection algorithm that generalizes easily for different

graphs, while also considering the issue of stability.

Previous methods for sampling set selection in graphs can

be classified into two types, namely spectral-domain methods

and vertex-domain methods, which are summarized below.

1) Spectral-domain approaches: Most of the recent work

on sampling theory of graph signals assumes that a portion of

the graph Fourier basis is explicitly known. We classify these

methods as spectral-domain approaches since they involve

computing the spectrum of the variation operator. For example,

the work of [11] requires computation and processing of the

first r eigenvectors of the graph Laplacian to construct a

sampling set that guarantees unique (but not necessarily stable)

reconstruction for a signal spanned by those eigenvectors.

Similarly, a greedy algorithm for selecting stable sampling

sets for a given bandlimited space is proposed in [12]. It

considers a spectral-domain criterion, using minimum singular

values of submatrices of the graph Fourier transform matrix,

to minimize the effect of sample noise in the worst case. The

work of [13] creates a link between the uncertainty principle

for graph signals and sampling theory to arrive at similar

criteria in the presence of sample noise. It is also possible

to generalize this approach using ideas from the theory of

optimal experiment design [14] and define other spectral-

domain optimality criteria for selecting sampling sets that

minimize different measures of reconstruction error when the

samples are noisy (for example, the mean squared error).

Greedy algorithms can then be used to find sets which are

approximately optimal with respect to these criteria.

2) Vertex-domain approaches: There exist alternative ap-

proaches to sampling set selection that do not consider graph

spectral information and instead rely on vertex-domain char-

acteristics. Examples include [15] and [16], which select

sampling sets based on maximum graph cuts and spanning

trees, respectively. However, these methods are better suited

for designing downsampling operators required in bipartite

graph multiresolution transforms [17], [18]. Specifically, they

do not consider the issue of optimality of sampling sets in

terms of quality of bandlimited reconstruction. Further, it can

be shown that the maximum graph-cut based sampling set

selection criterion is closely related to a special case of our

proposed approach. There exists an alternate vertex-domain

sampling approach, described in the work of [19], that involves

successively shifting a signal using the adjacency matrix and

aggregating the values of these signals on a given node.

However, sampling using this strategy requires aggregating the

sample values for a neighborhood size equal to the dimension

of the bandlimited space, which can cover a large portion of

the graph.

The sampling strategies described so far involve deter-

ministic methods of approximating optimal sampling sets.

There also exists a randomized sampling strategy [20] that

guarantees a bound on the worst case reconstruction error

in the presence of noise by sampling nodes independently

based on a judiciously designed distribution over the nodes.

However, one needs to sample much more nodes than the

dimension of the bandlimited space to achieve the error bound.

B. Contributions of this work

It is possible to extract and process useful spectral informa-

tion about a graph signal even when the graph Fourier basis is

not known. For example, spectral filters in the form of polyno-

mials of the variation operator are used in the design of wavelet

filterbanks for graph signals [21], [17], [18] to offer a trade-off

between frequency-domain and vertex-domain localization. In

our work, we use a similar technique of extracting spectral

information from signals using k-hop localized operations,

without explicitly computing the graph Fourier basis elements.

Our main contributions can be summarized as follows:

1) Motivated by spectral filters localized in the vertex domain,

we define graph spectral proxies based on powers of the

variation operator to approximate the bandwidth of graph

signals. These proxies can be computed using localized op-

erations in a distributed fashion with minimal storage cost,

thus forming the key ingredient of our approach. These

proxies have a tunable parameter k (equal to the number

of hops), that provides a trade-off between accuracy of the

approximation versus the cost of computation.

2) Using these proxies, we give an approximate bound on the

maximum bandwidth of graph signals (cutoff frequency)

that guarantees unique reconstruction with the given sam-

ples. We show that this bound also gives us a measure of

reconstruction stability for a given sampling set.
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3) We finally introduce a greedy, iterative gradient based

algorithm that aims to maximize the bound, in order to

select an approximately optimal sampling set of given size.

A specific case of these spectral proxies based on the undi-

rected graph Laplacian, and a sampling set selection algorithm,

has been introduced earlier in our previous work [10]. With

respect to [10] the key new contributions are as follows. We

generalize the framework to a variety of variation operators,

thereby making it applicable for both undirected and directed

graphs. We provide a novel interpretation for the cutoff fre-

quency function in [10] as a stability measure for a given

sampling set that one can maximize. We show that the spectral

proxies arise naturally in the expression for the bound on

the reconstruction error when the samples are noisy or the

signals are only approximately bandlimited. Thus, an optimal

sampling set in our formulation minimizes this error bound.

We also show that our algorithm is equivalent to performing

Gaussian elimination on the graph Fourier transform matrix

in a certain limiting sense, and is therefore closely related

to spectral-domain approaches. Numerical complexity of the

proposed algorithm is evaluated and compared to other state

of the art methods that were introduced after [10] was pub-

lished. Finally, we evaluate the performance and complexity of

the proposed algorithm through extensive experiments using

different graphs and signal models.
The rest of the paper is organized as follows. Section II

defines the notation used in the paper. This is followed by

the concepts of frequency and bandlimitedness for signals,

on both undirected and directed graphs, based on different

variation operators. In Section III, we consider the problems

of bandlimited reconstruction, uniqueness and stable sampling

set selection, assuming that the graph Fourier basis is known.

Section IV addresses these problems using graph spectral

proxies. The effectiveness of our approach is demonstrated

in Section V through numerical experiments. We conclude in

Section VI with some directions for future work.

II. BACKGROUND

A. Notation
A graph G = (V, E) is a collection of nodes indexed by the

set V = {1, . . . , N} and connected by links E = {(i, j, wij)},

where (i, j, wij) denotes a link of weight wij ∈ R
+ pointing

from node i to node j. The adjacency matrix W of the graph

is an N ×N matrix with W(i, j) = wij . A graph signal is a

function f : V → R defined on the vertices of the graph, (i.e.,

a scalar value assigned to each vertex). It can be represented

as a vector f ∈ R
N where fi represents the function value on

the ith vertex. For any x ∈ R
N and a set S ⊆ {1, . . . , N}, we

use xS to denote a sub-vector of x consisting of components

indexed by S . Similarly, for A ∈ R
N×N , AS1S2

is used to

denote the sub-matrix of A with rows indexed by S1 and

columns indexed by S2. For simplicity, we denote ASS by

AS . The complement of S in V is denoted by Sc = V � S .

Further, we define L2(S) to be the space of all graph signals

which are zero everywhere except possibly on the subset of

nodes S , i.e.,

L2(S) = {x ∈ R
N | xSc = 0}. (1)

B. Notions of Frequency for Graph Signals

In order to formulate a sampling theory for graph signals,

we need a notion of frequency that enables us to characterize

the level of smoothness of the graph signal with respect to the

graph. The key idea, which is used in practice, is to define

analogs of operators such as shift or variation from traditional

signal processing, that allow one to transform a signal or

measure its properties while taking into account the underlying

connectivity over the graph. Let L be such an operator in the

form of an N × N matrix1. A variation operator creates a

notion of smoothness for graph signals through its spectrum.

Specifically, assume that L has eigenvalues |λ1| ≤ . . . ≤ |λN |
and corresponding eigenvectors {u1, . . . ,uN}. Then, these

eigenvectors provide a Fourier-like basis for graph signals with

the frequencies given by the corresponding eigenvalues. For

each L, one can also define a variation functional Var(L, f)
that measures the variation in any signal f with respect to L.

Such a definition should induce an ordering of the eigenvectors

which is consistent with the ordering of eigenvalues. More

formally, if |λi| ≤ |λj |, then Var(L,ui) ≤ Var(L,uj).

The graph Fourier transform (GFT) f̃ of a signal f is given

by its representation in the above basis, f̃ = U−1f , where

U = [u1 . . .uN ]. Note that a GFT can be defined using any

variation operator. Examples of possible variation operators

are reviewed in Section II-C. If the variation operator L is

symmetric then its eigenvectors are orthogonal leading to an

orthogonal GFT. In some cases, L may not be diagonalizable.

In such cases, one can resort to the Jordan normal form [22]

and use generalized eigenvectors.

A signal f is said to be ω-bandlimited if f̃i = 0 for all i
with |λi| > ω. In other words, GFT of an ω-bandlimited2 f is

supported on frequencies in [0, ω]. If {λ1, λ2, . . . , λr} are the

eigenvalues of L less than or equal to ω in magnitude, then any

ω-bandlimited signal can be written as a linear combination

of the corresponding eigenvectors:

f =
r∑

i=1

f̃iu
i = UVRf̃R, (2)

where R = {1, . . . , r}. The space of ω-bandlimited signals

is called Paley-Wiener space and is denoted by PWω(G) [8].

Note that PWω(G) = range(UVR) (i.e., the span of columns

of UVR). Bandwidth of a signal f is defined as the largest

among absolute values of eigenvalues corresponding to non-

zero GFT coefficients of f , i.e.,

ω(f)
�
= max

i
{|λi| | f̃i �= 0}. (3)

A key ingredient in our theory is an approximation of the

bandwidth of a signal using powers of the variation operator

L, as explained in Section IV. Since this approximation holds

1Although L has been extensively used to denote the combinatorial Lapla-
cian in graph theory, we overload this notation to make the point that any
such variation operator can be defined to characterize signals of interest in
the application at hand.

2One can also define highpass and bandpass signals in the GFT domain.
Sampling theory can be generalized for such signals by treating them as
lowpass in the eigenbasis of a shifted variation operator, e.g., one can use
L′ = |λN |I− L for highpass signals.
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for any variation operator, the proposed theory remains valid

for all of the choices of GFT in Table I.

C. Examples of variation operators

1) Variation on undirected graphs: In undirected graphs,

the most commonly used variation operator is the combinato-

rial Laplacian [23] given by:

L = D−W, (4)

where D is the diagonal degree matrix diag{d1, . . . , dN} with

di =
∑

j wij . Since, wij = wji for undirected graphs, this

matrix is symmetric. As a result, it has real non-negative

eigenvalues λi ≥ 0 and an orthogonal set of eigenvectors. The

variation functional associated with this operator is known as

the graph Laplacian quadratic form [1] and is given by

VarQF(f) = f�Lf =
1

2

∑
i,j

wij(fi − fj)
2. (5)

One can normalize the combinatorial Laplacian to obtain the

symmetric normalized Laplacian and the (asymmetric) random

walk Laplacian given as

Lsym = D−1/2LD−1/2, Lrw = D−1L. (6)

Both Lsym and Lrw have non-negative eigenvalues. However

the eigenvectors of Lrw are not orthogonal as it is asymmetric.

The eigenvectors of Lsym, on the other hand, are orthogonal.

The variation functional associated with Lsym has a nice

interpretation as it normalizes the signal values on the nodes

by the degree:

VarQFsym(f) = f�Lsymf =
1

2

∑
i,j

wij

(
fi√
di

− fj√
dj

)2

. (7)

2) Variation on directed graphs: Note that variation opera-

tors defined for directed graphs can also be used for undirected

graphs since each undirected edge can be thought of as two

oppositely pointing directed edges.

a) Variation using the adjacency matrix: This approach

involves posing the adjacency matrix as a shift operator over

the graph (see [22] for details). For any signal f ∈ R
n, the

signal Wf is considered as a shifted version of f over the

graph, analogous to the shift operation defined in digital signal

processing. Using this analogy, [22] defines total variation of

a signal f on the graph as

Var
p
TV (f) =

∥∥∥∥f − 1

|μmax|Wf

∥∥∥∥
p

, (8)

where p = 1, 2 and μmax denotes the eigenvalue of W with the

largest magnitude. It can be shown that for two eigenvalues

|μi| < |μj | of W, the corresponding eigenvectors vi and vj

satisfy Var
p
TV (v

i) < Var
p
TV (v

j). In order to be consistent

with our convention, one can define the variation operator

as L = I − W/|μmax| which has the same eigenvectors as

W with eigenvalues λi = 1 − μi/|μmax|. This allows us to

have the same ordering for the graph frequencies and the

variations in the basis vectors. Note that for directed graphs,

where W is not symmetric, the GFT basis vectors will not be

orthogonal. Further, for some adjacency matrices, there may

not exist a complete set of linearly independent eigenvectors.

In such cases, one can use generalized eigenvectors in the

Jordan normal form of W as stated before [22].

b) Variation using the hub-authority model: This notion

of variation is based on the hub-authority model [24] for

specific directed graphs such as a hyperlinked environment

(e.g., the web). This model distinguishes between two types

of nodes. Hub nodes H are the subset of nodes which point to

other nodes, whereas authority nodes A are the nodes to which

other nodes point. Note that a node can be both a hub and an

authority simultaneously. In a directed network, we need to

define two kinds of degrees for each node i ∈ V , namely

the in-degree pi =
∑

j wji and the out-degree qi =
∑

j wij .

The co-linkage between two authorities i, j ∈ A or two hubs

i, j ∈ H is defined as

cij =
∑
h∈H

whiwhj

qh
and cij =

∑
a∈A

wiawja

pa
(9)

respectively, and can be thought of as a cumulative link weight

between two authorities (or hubs). Based on this, one can

define a variation functional for a signal f on the authority

nodes [25] as

VarA(f) =
1

2

∑
i,j∈A

cij

(
fi√
pi

− fj√
pj

)2

. (10)

In order to write the above functional in a matrix form, define

T = D
−1/2
q WD

−1/2
p , where D

−1/2
p and D

−1/2
q are diagonal

matrices with

(D−1/2
p )

ii
=

{
1√
pi

if pi �= 0

0 otherwise,
(D−1/2

q )
ii
=

{
1√
qi

if qi �= 0

0 otherwise.

It is possible to show that VarA(f) = f�LAf , where LA =
I−T�T. A variation functional for a signal f on the hub nodes

can be defined in the same way as (10) and can be written in

a matrix form as VarH(f) = f�LHf , where LH = I−TT�.

A convex combination Varγ(f) = γVarA(f)+(1−γ)VarH(f),
with γ ∈ [0, 1], can be used to define a variation functional

for f on the whole vertex set V . Note that the corresponding

variation operator Lγ = γLA + (1− γ)LH is symmetric and

positive semi-definite. Hence, eigenvectors and eigenvalues

of Lγ can be used to define an orthogonal GFT similar to

the undirected case, where the variation in the eigenvector

increases as the corresponding eigenvalue increases.

c) Variation using the random walk model: Every di-

rected graph has an associated random walk with a probability

transition matrix P given by

Pij =
wij∑
j wij

. (11)

By the Perron-Frobenius theorem, if P is irreducible then it

has a stationary distribution π which satisfies πP = π [26].

One can then define the following variation functional for

signals on directed graphs [27], [28]:

Varrw(f) =
1

2

∑
i,j

πiPij

(
fi√
πi

− fj√
πj

)2

. (12)
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TABLE I: Different choices of the variation operator L for defining GFT bases.

Operator Expression Graph type Associated variation functional Properties

Combinatorial L = D−W Undirected f�Lf = 1
2

∑
i,j wij(fi − fj)

2 Symmetric, λi ≥ 0,
U orthogonal

Symmetric
normalized

L = I−D−1/2WD−1/2 Undirected f�Lf = 1
2

∑
i,j wij

(
fi√
di

− fj√
dj

)2

Symm. , λi ∈ [0, 2],
U orthogonal

Random
walk
(undirected)

L = I−D−1W Undirected ||Lf || Asymmetric, λi ≥ 0,
U non-orthogonal

Adjacency-
based

L = I− 1
|μmax|W, μmax: maximum eigenvalue

of W

Undirected/
Directed

||Lf ||p, p = 1, 2 Asymm., non-orthog.
U for directed graphs,
Re{λi} ≥ 0

Hub-
authority

L = γ(I − T�T) + (1 − γ)(I − TT�),

T = D
−1/2
p WD

−1/2
q , Dp = diag{pi}, pi =∑

j wji, Dq = diag{qi}, qi =
∑

j wij

Directed f�Lf , see text for complete expression. Symmetric, λi ≥ 0,
U orthogonal

Random
walk
(directed)

L = I− 1
2

(
Π1/2PΠ−1/2 +Π−1/2P�Π1/2

)
,

Pij = wij/
∑

j wij , Π = diag{πi}
Directed f�Lf = 1

2

∑
i,j πiPij

(
fi√
πi

− fj√
πj

)2

Symmetric, λi ≥ 0,
U orthogonal

Note that if the graph is undirected, the above expression

reduces to (7) since, in that case, πi = di/
∑

j dj . Intuitively,

πiPij can be thought of as the probability of transition from

node i to j in the steady state. We expect it to be large if

i is similar to j. Thus, a big difference in signal values on

nodes similar to each other contributes more to the variation. A

justification for the above functional in terms of generalization

of normalized cut to directed graphs is given in [27], [28].

Let Π = diag{π1, . . . ,πn}. Then Varrw(f) can be written as

f�Lf , where

L = I− 1

2

(
Π1/2PΠ−1/2 +Π−1/2P�Π1/2

)
. (13)

It is easy to see that the above L is a symmetric positive

semi-definite matrix. Therefore, its eigenvectors can be used

to define an orthonormal GFT, where the variation in the eigen-

vector increases as the corresponding eigenvalue increases.

Table I summarizes different choices of GFT bases based

on the above variation operators. Our theory applies to all of

these choices of GFT (with the caveat that diagonalizability is

assumed in the definition of adjacency-based GFT).

III. SAMPLING THEORY FOR GRAPH SIGNALS

In this section, we address the issue of uniqueness and

stability of bandlimited graph signal reconstruction and dis-

cuss different optimality criteria for sampling set selection

assuming that the graph Fourier basis (i.e., the spectrum of the

corresponding variation operator) is known. The uniqueness

conditions in this section are equivalent to the ones in [11],

[12], [29]. However, the specific form in which we present

these conditions lets us give a GFT-free definition of cutoff

frequency. This together with the spectral proxies defined later

in Section IV allows us to circumvent the explicit computation

of the graph Fourier basis to ensure uniqueness and find a good

sampling set.

The results in this section are useful when the graphs under

consideration are small and thus, computing the spectrum of

their variation operators is computationally feasible. They also

serve as a guideline for tackling the aforementioned questions

when the graphs are large and computation and storage of the

graph Fourier basis is impractical.

A. Uniqueness of Reconstruction

In order to give a necessary and sufficient condition for

unique identifiability of any signal f ∈ PWω(G) from its

samples fS on the sampling set S , we first state the concept

of uniqueness set [8].

Definition 1 (Uniqueness set). A subset of nodes S is a
uniqueness set for the space PWω(G) iff xS = yS implies
x = y for all x,y ∈ PWω(G).

Unique identifiability requires that no two bandlimited sig-

nals have the same samples on the sampling set as ensured by

the following theorem in our previous work [10].

Theorem 1 (Unique sampling). S is a uniqueness set for
PWω(G) if and only if PWω(G) ∩ L2(Sc) = {0}.

Let S be a matrix whose columns are indicator functions

for nodes in S . Note that S� : Rn → R
|S| is the sampling

operator with S�f = fS . Theorem 1 essentially states that no

signal in PWω(G) is in the null space N (S�) of the sampling

operator. Any f ∈ PWω(G) can be written as f = UVRc.

Thus, for unique sampling of any signal in PWω(G) on S ,

we need S�UVRc = USRc �= 0 ∀ c �= 0. This observation

leads to the following corollary (which is also given in [30]).

Corollary 1. Let R = {1, . . . , r}, where λr is the largest
graph frequency less than ω. Then S is a uniqueness set for
PWω(G) if and only if USR has full column rank.

If USR has a full column rank, then a unique reconstruction

f̂ ∈ PWω(G) can be obtained by finding the unique least

squares solution to fS = USRc:

f̂ = UVRU+
SRfS , (14)

where U+
SR = (U�

SRUSR)−1U�
SR is the pseudo-inverse

of USR. The above reconstruction formula is also known
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as consistent reconstruction [29] since it keeps the observed

samples unchanged3, i.e., f̂S = fS . Moreover, it is easy to see

that if the original signal f ∈ PWω(G), then f̂ = f .

B. Issue of Stability and Choice of Sampling set
Note that selecting a sampling set S for PWω(G) amounts

to selecting a set of rows of UVR. It is always possible to

find a sampling set of size r = dimPWω(G) that uniquely

determines signals in PWω(G) as proven below.

Proposition 1. For any PWω(G), there always exists a
uniqueness set S of size |S| = r.

Proof. Since {ui}ri=1 are linearly independent, the matrix

UVR has full column rank equal to r. Further, since the row

rank of a matrix equals its column rank, we can always find a

linearly independent set S of r rows such that USR has full

rank that equals r, thus proving our claim.

In most cases picking r nodes randomly gives a full rank

USR. However, all sampling sets of given size are not equally

good. A bad choice of S can give an ill-conditioned USR
which in turn leads to an unstable reconstruction f̂ . Stability

of reconstruction is important when the true signal f is only

approximately bandlimited (which is the case for most signals

in practice) or when the samples are noisy. The reconstruction

error in this case depends not only on noise and model

mismatch but also on the choice of sampling set. The best

sampling set achieves the smallest reconstruction error.

1) Effect of noise: We first consider the case when the

observed samples are noisy. Let f ∈ PWω(G) be the true

signal and n ∈ R
|S| be the noise introduced during sampling.

The observed samples are then given by yS = fS + n. Using

(14), we get the following reconstruction

f̂ = UVRU+
SRfS +UVRU+

SRn. (15)

Since f ∈ PWω(G), UVRU+
SRfS = f . The reconstruction

error equals e = f̂ − f = UVRU+
SRn. If we assume that the

entries of n are iid with zero mean and unit variance, then the

covariance matrix of the reconstruction error is given by

E = E[ee�] = UVR(U�
SRUSR)−1U�

VR. (16)

Different costs can be defined to measure the reconstruction

error as a function of the error covariance matrix. These cost

functions are based on optimal design of experiments [31]. If

we define the optimal sampling set Sopt of size m, as the set

which minimizes the mean squared error, then assuming UVR
has orthonormal columns, we have

SA-opt = argmin
|S|=m

tr[E] = argmin
|S|=m

tr[(U�
SRUSR)−1]. (17)

This is analogous to the so-called A-optimal design. Similarly,

minimizing the maximum eigenvalue of the error covariance

matrix leads to E-optimal design. For an orthonormal UVR,

the optimal sampling set with this criterion is given by

SE-opt = argmin
|S|=m

λmax(E) = argmax
|S|=m

σmin(USR), (18)

3Existence of a sample consistent reconstruction in PWω(G) requires that
PWω(G)⊕ L2(Sc) = RN [29].

where σmin(.) denotes the smallest singular value of a matrix.

It can be thought of as a sampling set which minimizes

the worst case reconstruction error. The above criterion is

equivalent to the one proposed in [12]. Further, one can show

that when UVR does not have orthonormal columns, (17)

and (18) produce sampling sets that minimize upper bounds

on the mean squared and worst case reconstruction errors

respectively. Note that both A and E-optimality criteria lead

to combinatorial problems, but it is possible to develop greedy

approximate solutions to these problems.

So far we assumed that the true signal f ∈ PWω(G) and

hence, UVRU+
SRfS = f . However, in most applications, the

signals are only approximately bandlimited. The reconstruc-

tion error in such a case is analyzed next.

2) Effect of model mismatch: Let P = UVRU�
VR be the

projector for PWω(G) and Q = SS� be the projector for

L2(S). Assume that the true signal is given by f = f∗ +Δf ,

where f∗ = Pf is the bandlimited component of the signal

and Δf = P⊥f captures the “high-pass component” (i.e., the

model mismatch). If we use (14) for reconstructing f , then a

tight upper bound on the reconstruction error [29] is given by

‖f − f̂‖ ≤ 1

cos(θmax)
‖Δf‖, (19)

where θmax is the maximum angle between subspaces

PWω(G) and L2(S) defined as

cos(θmax) = inf
f∈PWω(G),‖f‖=1

‖Qf‖. (20)

cos(θmax) > 0 when the uniqueness condition in Theorem 1

is satisfied and the error is bounded. Intuitively, the above

equation says that for the worst case error to be minimum, the

sampling and reconstruction subspaces should be as aligned as

possible.

We define an optimal sampling set Sopt of size m for

PWω(G) as the set which minimizes the worst case re-

construction error. Therefore, L2(Sopt) makes the smallest

maximum angle with PWω(G). It is easy to show that

cos(θmax) = σmin(USR). Thus, to find this set we need to

solve a similar problem as (18). As stated before, this problem

is combinatorial. It is possible to give a greedy algorithm

to get an approximate solution. A simple greedy heuristic

to approximate Sopt is to perform column-wise Gaussian

elimination over UVR with partial row pivoting. The indices

of the pivot rows in that case form a good estimate of Sopt in

practice.

Table II summarizes the different set selection criteria and

corresponding search algorithms under various assumptions

about the signal. However, the methods described above

require computation of many eigenvectors of the variation

operator L. We circumvent this issue in the next section, by

defining graph spectral proxies based on powers of L. These

spectral proxies do not require eigen-decomposition of L and

still allow us to define a measure of quality of sampling sets.

As we will show, these proxies arise naturally in the expression

for the bound on the reconstruction error. Thus, a sampling set

optimal with respect to these spectral proxies ensures a small

reconstruction error bound.
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TABLE II: Summary of uniqueness conditions and sampling set selection criteria when the graph Fourier basis is known

Assumption Objective Optimality criteria Algorithm

bandlimited f , noise free samples Unique reconstruction full column rank USR Gaussian elimination, greedy [11]

bandlimited f , noisy samples
minimum reconstruction MSE min tr[(U�

SRUSR)−1] Gaussian elimination with pivoting,

minimum worst case reconstruction error minσmin(USR) greedy [12], convex optimization [31]

approximately bandlimited f , noise
free samples

minimum worst case reconstruction error minσmin(USR) Gaussian elimination with pivoting,
greedy [12], convex optimization [31]

IV. SAMPLING SET SELECTION USING GRAPH SPECTRAL

PROXIES

As discussed earlier, graphs considered in most real appli-

cations are very large. Hence, computing and storing the graph

Fourier basis explicitly is often practically infeasible. We now

present techniques that allow us to express the condition for

unique bandlimited reconstruction and methods for sampling

set selection via simple operations using the variation operator.

The following discussion holds for any choice of the variation

operator L in Table I.

A. Cutoff Frequency

In order to obtain a measure of quality for a sampling set

S , we first find the cutoff frequency associated with it, which

can be defined as the largest frequency ω such that S is a

uniqueness set for PWω(G). It follows from Theorem 1 that,

for S to be a uniqueness set of PWω(G), ω needs to be less

than the minimum possible bandwidth that a signal in L2(Sc)
can have. This would ensure that no signal from L2(Sc) can

be a part of PWω(G). Thus, the cutoff frequency ωc(S) for

a sampling set S can be expressed as:

ωc(S) �
= min

φ∈L2(Sc), φ 	=0
ω(φ). (21)

To use the equation above, we first need a tool to approx-

imately compute the bandwidth ω(φ) of any given signal

φ without computing the Fourier coefficients explicitly. Our

proposed method for bandwidth estimation is based on the

following definition:

Definition 2 (Graph Spectral Proxies). For any signal f �= 0,
we define its kth spectral proxy ωk(f) with k ∈ Z

+ as

ωk(f)
�
=

(‖Lkf‖
‖f‖

)1/k

. (22)

For an operator L with real eigenvalues and eigenvectors,

ωk(f) can be shown to increase monotonically with k:

∀f , k1 < k2 ⇒ ωk1
(f) ≤ ωk2

(f). (23)

These quantities are bounded from above, as a result,

limk→∞ ωk(f) exists for all f . Consequently, it is easy to prove

that if ω(f) denotes the bandwidth of a signal f , then

∀k > 0, ωk(f) ≤ lim
j→∞

ωj(f) = ω(f). (24)

Note that (24) also holds for an asymmetric L that has complex

eigenvalues and eigenvectors. The proofs of (23) and (24)

are provided in the Appendix. These properties give us an

important insight: as we increase the value of k, the spectral

proxies tend to have a value close to the actual bandwidth

of the signal, i.e., they essentially indicate the frequency

localization of the signal energy. Therefore, using ωk(φ) as

a proxy for ω(φ) (i.e. bandwidth of φ) is justified and this

leads us to define the cut-off frequency estimate of order k as

Ωk(S) �
= min

φ∈L2(Sc)
ωk(φ) = min

φ∈L2(Sc)

(‖Lkφ‖
‖φ‖

)1/k

. (25)

Using the definitions of Ωk(S) and ωc(S) along with (23) and

(24), we conclude that for any k1 < k2:

ωc(S) ≥ lim
k→∞

Ωk(S) ≥ Ωk2
(S) ≥ Ωk1

(S). (26)

Using (26) and (21), we now state the following proposition:

Proposition 2. For any k, S is a uniqueness set for PWω(G)
if, ω < Ωk(S). Ωk(S) can be computed from (25) as

Ωk(S) =
[
min
ψ

ψ�((L�)kLk)Scψ

ψ�ψ

]1/2k
= (σ1,k)

1/2k, (27)

where σ1,k denotes the smallest eigenvalue of the reduced
matrix ((L�)kLk)Sc . Further, if ψ1,k is the corresponding
eigenvector, and φ∗

k minimizes ωk(φ) in (25) (i.e. it approxi-
mates the smoothest possible signal in L2(Sc)), then

φ∗
k(Sc) = ψ1,k, φ∗

k(S) = 0. (28)

We note from (26) that to get a better estimate of the true cut-

off frequency, one simply needs a higher k. Therefore, there is

a trade-off between accuracy of the estimate on the one hand,

and complexity and numerical stability on the other (that arise

by taking higher powers of L).

B. Best Sampling Set of Given Size

As shown in Proposition 2, Ωk(S) is an estimate of the

smallest bandwidth that a signal in L2(Sc) can have and any

signal in PWω(G) is uniquely sampled on S if ω < Ωk(S).
Intuitively, we would like the projection of L2(Sc) along

PWω(G) to be as small as possible. Based on this intuition,

we propose the following optimality criterion for selecting the

best sampling set of size m:

Sopt
k = argmax

|S|=m

Ωk(S). (29)

To motivate the above criterion more formally, let P denote

the projector for PWω(G). The minimum gap [32] between
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the two subspaces L2(Sc) and PWω(G) is given by:

inf
f∈L2(Sc),‖f‖=1

‖f −Pf‖ =

√ ∑
i: ω<λi

|f̃∗i |2

≥
√∑

i∈I
|f̃∗i |2, (30)

where I = {i : ω < λi ≤ Ωk(S)} and f̃∗i denotes the

ith GFT coefficient of the minimizer f∗ for the left hand

side. The inequality on the right hand side holds because

Ωk(S) is the smallest bandwidth that any signal in L2(Sc)
can have. Eq. (30) shows that maximizing Ωk(S) increases

the lower bound on the minimum gap between L2(Sc) and

PWω(G). The minimum gap equals cos(θmax) as defined in

(20) [32]. Thus, maximizing Ωk(S) increases the lower bound

on cos(θmax) which, in turn, minimizes the upper bound on the

reconstruction error ‖f − f̂‖ given in (19), where the original

signal f /∈ PWω(G) and f̂ ∈ PWω(G) is obtained by (14).

We now show that Ωk(S) also arises in the bound on the

reconstruction error when the reconstruction is obtained by

variational energy minimization:

f̂m = argmin
y∈RN

‖Lmy‖ subject to yS = fS . (31)

It was shown in [33] that if f ∈ PWω(G), then the reconstruc-

tion error ‖f̂m − f‖/‖f‖, for a given m, is upper-bounded by

2(ω/Ω1(S))m. This bound is suboptimal and can be improved

by replacing Ω1(S) with Ωk(S) (which, from (26), is at least

as large as Ω1(S)) for any k ≤ m, as shown in the following

theorem:

Theorem 2. Let f̂m be the solution to (31) for a signal
f ∈ PWω(G). Then, for any k ≤ m,

‖f̂m − f‖ ≤ 2

(
ω

Ωk(S)
)m

‖f‖. (32)

Proof. Note that (f̂m − f) ∈ L2(Sc). Therefore, from (25)

‖f̂m − f‖ ≤ 1

(Ωm(S))m ‖Lm(f̂m − f)‖

≤ 1

(Ωm(S))m (‖Lmf̂m‖+ ‖Lmf‖) (33)

≤ 2

(Ωm(S))m ‖Lmf‖ (34)

≤ 2

(
ωm(f)

Ωm(S)
)m

‖f‖ (35)

≤ 2

(
ω

Ωk(S)
)m

‖f‖.

(33) follows from triangle inequality. (34) holds because f̂m
minimizes ‖Lmf̂m‖ over all sample consistent signals. (35)

follows from the definition of ωm(f) and the last step follows

from (24) and (26).

Note that for the error bound in (32) to go to zero as m →
∞, ω must be less than Ωk(S). Thus, increasing Ωk(S) allows

us to reconstruct signals in a larger bandlimited space using

the variational method. Moreover, for a fixed m and k, a higher

value of Ωk(S) leads to a lower reconstruction error bound.

The optimal sampling set Sopt
k in (29) essentially minimizes

this error bound.

C. Finding the Best Sampling Set

The problem posed in (29) is a combinatorial problem

because we need to compute Ωk(S) for every possible subset

S of size m. We therefore formulate a greedy heuristic to get

an estimate of the optimal sampling set. Starting with an empty

sampling set S (Ωk(S) = 0) we keep adding nodes (from Sc)

one-by-one while trying to ensure maximum increase in Ωk(S)
at each step. To achieve this, we first consider the following

quantity:

λα
k (1S) = min

x

(
ωk(x) + α

x�diag(1S)x
x�x

)
, (36)

where 1S : V → {0, 1} denotes the indicator function for

the subset S (i.e. 1(S) = 1 and 1(Sc) = 0). Note that the

right hand side of (36) is simply a relaxation of the constraint

in (25). When α � 1, the components x(S) are highly

penalized during minimization, hence, forcing values of x on

S to be vanishingly small. Thus, if xα
k (1S) is the minimizer

in (36), then [xα
k (1S)](S) → 0. Therefore, for α � 1,

φ∗
k ≈ xα

k (1S), Ωk(S) ≈ λα
k (1S). (37)

Now, to tackle the combinatorial nature of our problem, we

allow a binary relaxation of the indicator 1S in (36), to define

the following quantities

ωα
k (x, t) =

(
ωk(x) + α

x�diag(t)x

x�x

)
, (38)

λα
k (t) = min

x
ωα
k (x, t), (39)

where t ∈ R
N . These relaxations circumvent the combina-

torial nature of our problem and have been used recently to

study graph partitioning based on Dirichlet eigenvalues [34],

[35]. Note that making the substitution t = 1S in (39) gives

us (36) exactly. The effect of adding a node to S on Ωk(S)
at each step can now be understood by observing the gradient

vector ∇tλ
α
k (t), at t = 1S . Note that for any x and t,

dωα
k (x, t)

dt(i)
= α

(
x(i)

‖x‖
)2

. (40)

When t = 1S , we know that the minimizer of (39) with respect

to x for large α is φ∗
k. Hence,

dλα
k (t)

dt(i)

∣∣∣∣
t=1S

=
dωα

k (φ
∗
k, t)

dt(i)

∣∣∣∣
t=1S

= α

(
φ∗
k(i)

‖φ∗
k‖

)2

. (41)

The equation above gives us the desired greedy heuristic -

starting with an empty S (i.e., 1S = 0), if at each step, we

include the node on which the smoothest signal φ∗
k ∈ L2(Sc)

has maximum energy (i.e. 1S(i) ← 1, i = arg maxj(φ
∗
k(j))

2),

then λα
k (t) and in effect, the cut-off estimate Ωk(S), tend to

increase maximally. We summarize the method for estimating

Sopt
k in Algorithm 1.

One can show that the cutoff frequency estimate Ωk(S)
associated with a sampling set can only increase (or remain
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unchanged) when a node is added to it. This is stated more

formally in the following proposition.

Proposition 3. Let S1 and S2 be two subsets of nodes of G
with S1 ⊆ S2. Then Ωk(S1) ≤ Ωk(S2).

This turns out to be a straightforward consequence of the

eigenvalue interlacing property for symmetric matrices.

Theorem 3 (Eigenvalue interlacing [36]). Let B be a sym-
metric n×n matrix. Let R = {1, 2, . . . , r}, for 1 ≤ r ≤ n−1
and Br = BR. Let λk(Br) be the k-th largest eigenvalue of
Br. Then the following interlacing property holds:

λr+1(Br+1) ≤ λr(Br) ≤λr(Br+1) ≤ . . .

. . . ≤λ2(Br+1) ≤ λ1(Br) ≤ λ1(Br+1).

The above theorem implies that if S1 ⊆ S2, then Sc
2 ⊆ Sc

1

and thus, λmin

[(
(L�)kLk

)
Sc
1

]
≤ λmin

[(
(L�)kLk

)
Sc
2

]
.

Algorithm 1 Greedy heuristic for estimating Sopt
k

Input: G = {V, E}, L, sampling set size M , k ∈ Z
+.

Initialize: S = {∅}.

1: while |S| < M do
2: For S , compute smoothest signal φ∗

k ∈ L2(Sc) using

Proposition 2.

3: v ← arg maxi(φ
∗
k(i))

2.

4: S ← S ∪ v.

5: end while
6: Sopt

k ← S.

Connection with Gaussian elimination: From Section III,

we know that the optimal sampling set can be obtained

by maximizing σmin (USR) with respect to S . A heuristic

to obtain good sampling sets is to perform a column-wise

Gaussian elimination with pivoting on the eigenvector matrix

U. Then, a sampling set of size i is given by the indices of

zeros in the (i+1)th column of the echelon form. We now show

that the greedy heuristic proposed in Algorithm 1 is closely

related to this rank-revealing Gaussian elimination procedure

through the following observation:

Proposition 4. Let Φ be the matrix whose columns are
given by the smoothest signals φ∗

∞ obtained sequentially
after each iteration of Algorithm 1 with k = ∞, (i.e.,
Φ =

[
φ∗
∞||S|=0 φ∗

∞||S|=1, . . .
]
). Further, let T be the matrix

obtained by performing column-wise Gaussian elimination on
U with partial pivoting. Then, the columns of T are equal to
the columns of Φ∗

∞ within a scaling factor.

Proof. If S is the smallest sampling set for uniquely repre-

senting signals in PWω(G) and r = dim PWω(G), then we

have the following:

1) |S| = r.

2) The smoothest signal φ∗
∞ ∈ L2(Sc) has bandwidth λr+1.

Therefore, φ∗
∞||S|=r is spanned by the first r + 1 frequency

basis elements {u1, . . . ,ur+1}. Further, since φ∗
∞||S|=r has

zeroes on exactly r locations, it can be obtained by performing

Gaussian elimination on ur+1 using u1,u2, . . . ,ur. Hence the

(r+1)th column of Φ is equal (within a scaling factor) to the

(r + 1)th column of T. Pivoting comes from the fact that the

(i + 1)th sampled node is given by the index of the element

with maximum magnitude in φ∗
∞||S|=i, and is used as the

pivot to zeros out elements with same index in subsequent

columns.

The above result illustrates that Algorithm 1 is an itera-

tive procedure that approximates a rank-revealing Gaussian

elimination procedure on UVR. For the known-spectrum case,

this is a good heuristic for maximizing σmin (USR). In other

words, our method directly maximizes σmin (USR) without

going through the intermediate step of computing UVR. As

we shall see in the next subsection, this results in significant

savings in both time and space complexity.

D. Complexity and implementation issues

We note that in the algorithm, computing the first eigen-

pair of ((L�)kLk)Sc is the major step for each iteration.

There are many efficient iterative methods, such as those

based on Rayleigh quotient minimization, for computing the

smallest eigen-pair of a matrix [37]. The atomic step in all

of these methods consists of matrix-vector products. Specifi-

cally, in our case, this step involves evaluating the expression

((L�)kLk)Scx. Note that we do not actually need to compute

the matrix ((L�)kLk)Sc explicitly, since the expression can

be implemented as a sequence of matrix-vector products as

((L�)kLk)Scx = IScVL� . . .L�L . . .LIVScx. (42)

Evaluating the expression involves 2k matrix-vector products

and has a complexity of O(k|E|), where |E| is the number

of edges in the graph. Moreover, a localized and parallel

implementation of this step is possible in the case of sparse

graphs. The number of iterations required for convergence of

the eigen-pair computation iterations is a function of the eigen-

value gaps [37] and hence dependent on the graph structure

and edge-weights.

For the methods of [11] and [12], one needs to compute

a portion of the eigenvector matrix, i.e., UVS (assuming

|R| = |S|). This can be done using block-based Rayleigh

quotient minimization methods [37], block-based Kryolov sub-

space methods such as Arnoldi/Lanczos iterations or deflation

methods in conjunction with single eigen-pair solvers [38].

The complexity of these methods increases considerably as

the number of requested eigen-pairs increases, making them

impractical. On the other hand, our method requires computing

a single eigen-pair at each iteration, making it viable for

cases when a large number of samples are required. Moreover,

the sample search steps in the methods of [11] and [12]

require an SVD solver and a linear system solver, respectively,

thus making them much more complex in comparison to our

method, where we only require finding the maximum element

of a vector. Our algorithm is also efficient in terms of space

complexity, since at any point we just need to store L and

one vector. On the other hand, [11], [12] require storage of

at least |S| eigenvectors.

A summary of the complexities of all the methods is given

in Table III. The eigen-pair computations for [11], [12] are
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TABLE III: Comparison of complexity of different sampling set selection algorithms.

Method in [11] Method in [12] Proposed Method

Eigen-pair computations O((|E||S|+ C|S|3)T1) O((|E||S|+ C|S|3)T1) O (k|E||S|T2(k))

Sampling set search O(N |S|3) O(N |S|4) O(N |S|)
Space complexity O(N |S|) O(N |S|) O(N)

assumed to be performed using a block version of the Rayleigh

quotient minimization method, which has a complexity of

O((|E||S|+C|S|3)T1), where T1 denotes the number of itera-

tions for convergence, and C is a constant. The complexity of

computing one eigen-pair in our method is O(k|E||S|T2(k)),
where T2(k) denotes the average number of iterations required

for convergence of a single eigen-pair. T1 and T2(k) required

to achieve a desired error tolerance are functions of the eigen-

gaps of L and Lk respectively. In general, T2(k) > T1,

since Lk has lower eigengaps near the smallest eigenvalue.

Increasing the parameter k further flattens the spectrum of Lk

near the smallest eigenvalue leading to an increase in T2(k),
since one has to solve a more ill-conditioned problem. We

illustrate this in the next section through experiments that

compare the running times of all the methods.

The choice of the parameter k depends on the desired

accuracy – a larger value of k gives a better sampling set,

but increases the complexity proportionally, thus providing a

trade-off. Through experiments, we show in the next section

that the quality of the sampling set is more sensitive to

choice of k for sparser graphs. This is because increasing k
results in the consideration of more global information while

selecting samples. On the other hand, dense graphs have a

lower diameter and there is relatively little information to be

gained by increasing k.

V. EXPERIMENTS

We now numerically evaluate the performance of the pro-

posed work. The experiments involve comparing the recon-

struction errors and running times of different sampling set

selection algorithms in conjunction with consistent bandlim-

ited reconstruction (14)4. We compare our approach with the

following methods:

M1: This method [12] uses a greedy algorithm to approximate

the S that maximizes σmin(USR). Consistent bandlim-

ited reconstruction (14) is then used to estimate the

unknown samples.

M2: At each iteration i, this method [11] finds the represen-

tation of ui as
∑

j<i βjuj +
∑

u/∈S αu1u, where 1u is

the delta function on u. The node v with maximum |αv|
is sampled. Reconstruction is done using (14).

Both the above methods assume that a portion of the frequency

basis is known and the signal to be recovered is exactly

bandlimited. As a baseline, we also compare all sampling set

selection methods against uniform random sampling.

4Although reconstruction using (14) requires explicit computation of
UVR, there exist efficient localized reconstruction algorithms that circumvent
this [39], [40]. However, in the current work, we restrict our attention to the
problem of sampling set selection.

A. Examples with Artificial Data

We first give some simple examples on the following

simulated undirected graphs:

G1: Erdös-Renyi random graph (unweighted) with 1000 nodes

and connection probability 0.01.

G2: Small world graph [41] (unweighted) with 1000 nodes.

The underlying regular graph with degree 8 is rewired

with probability 0.1.

G3: Barabási-Albert random network [42] with 1000 nodes.

The seed network is a fully connected graph with m0 = 4
vertices, and each new vertex is connected to m = 4
existing vertices randomly. This model, as opposed to G1
and G2, is a scale-free network, i.e., its degrees follow a

power law P (k) ∼ k−3.

The performance of the sampling methods depends on the

assumptions about the true signal and sampling noise. For each

of the above graphs, we consider the problem in the following

scenarios:

F1: The true signal is noise-free and exactly bandlimited with

r = dimPWω(G) = 50. The non-zero GFT coefficients

are randomly generated from N (1, 0.52).
F2: The true signal is exactly bandlimited with r = 50 and

non-zero GFT coefficients are generated from N (1, 0.52).
The samples are noisy with additive iid Gaussian noise

such that the SNR equals 20dB.

F3: The true signal is approximately bandlimited with an

exponentially decaying spectrum. Specifically, the GFT

coefficients are generated from N (1, 0.52), followed by

rescaling with the following filter (where r = 50):

h(λ) =

{
1, λ < λr

e−4(λ−λr), λ ≥ λr.
(43)

We generate 50 signals from each of the three signal models

on each of the graphs, use the sampling sets obtained from the

all the methods to perform reconstruction and plot the mean of

the mean squared error (MSE) for different sizes of sampling

sets. For our algorithm, we set the value of k to 2, 8 and 14.

The result is illustrated in Figure 1. Note that when the size

of the sampling set is less than r = 50, the results are quite

unstable. This is expected, because the uniqueness condition

is not satisfied by the sampling set. Beyond |S| = r, we make

the following observations:

1) For the noise-free, bandlimited signal model F1, all meth-

ods lead to zero reconstruction error as soon as the size of

the sampling set exceeds the signal cutoff r = 50 (error

plots for this signal model are not shown). This is expected

from the sampling theorem. It is interesting to note that in

most cases, uniform random sampling does equally well,

since the signal is noise-free and perfectly bandlimited.
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2) For the noisy signal model F2 and the approximately ban-

dlimited model F3, our method has better or comparable

performance in most cases. This indicates that our method

is fairly robust to noise and model mismatch. Uniform ran-

dom sampling performs very badly as expected, because

of lack of stability considerations.

Effect of parameter k in the spectral proxy: Parameter k
in the definition of spectral proxies controls how closely we

estimate the bandwidth of any signal f . Spectral proxies with

higher values of k give a better approximation of the band-

width. Our sampling set selection algorithm tries to maximize

the smallest bandwidth that a signal in L2(Sc) can have. Using

higher values of k allows us to estimate this smallest band-

width more closely, thereby leading to better sampling sets as

demonstrated in Figure 2. Intuitively, maximizing Ωk(S) with

k = 1 ensures that the sampled nodes are well connected to

the unsampled nodes [6] and thus, allows better propagation

of the observed signal information. Using k > 1 takes into

account multi-hop paths while ensuring better connectedness

between S and Sc. This effect is especially important in

sparsely connected graphs and the benefit of increasing k
becomes less noticeable when the graphs are dense as seen

in Figure 2. However, this improvement in performance in the

case of sparse graphs comes at the cost of increased numerical

complexity.

Running time: We also compare the running times of the

sampling set selection methods for different sizes of the graph.

For our experiments, we generate symmetrized Erdös-Renyi

random graphs of different sizes with parameter 0.01, and

measure the average running time of selecting 5% of the

samples in MATLAB. For computing the eigen-pairs, we

use the code for the Locally Optimal Block Prec-conditioned

Conjugate Gradient (LOBPCG) method available online [37]

(this was observed to be faster than MATLAB’s inbuilt sparse

eigensolver eigs, which is based on Lanczos iterations). The

results of the experiments are shown in Table IV. We observe

that the rate of increase of running time as the graph size

increases is slower for our method compared to other methods,

thus making it more practical. Note that the increase with

respect to k is nonlinear since the eigengaps are a function

of k and lead to different number of iterations required for

convergence of the eigenvectors.

TABLE IV: Running time of different methods (in seconds) for

selecting 5% samples on graphs of different sizes. The running

time for M1 increases drastically and is ignored beyond graph

size 5k.

1k 5k 10k 20k

M1 16.76 12, 322.72 - -

M2 2.16 57.46 425.92 3004.01

Proposed, k = 4 2.00 11.13 84.85 566.39

Proposed, k = 6 13.08 24.46 170.15 1034.21

Proposed, k = 8 31.16 53.42 316.12 1778.31

B. A Real World Example

In this example, we apply the proposed method to classifi-

cation of the USPS handwritten digit dataset [43]. This dataset

consists of 1100 images of size 16 × 16 each corresponding

digits 0 to 9. We create 10 different subsets of this dataset

randomly, consisting of 100 images from each class. The data

points can be thought of as points {xi}1000i=1 ⊂ R
256 with

labels {yi}1000i=1 . For each instance, we construct a symmetrized

k-nearest neighbor (k-nn) graph with k = 10, where each

node corresponds to a data point. We restrict the problem

to the largest strongly connected component of the graph for

convenience so that a stationary distribution for the resultant

random walk exists which allows us to define the random

walk based GFT. The graph signal is given by the membership

function f c of each class c which takes a value 1 on a node

which belongs to the class and is 0 otherwise. To solve the

multi-class classification task, we use the one-vs-rest strategy

which entails reconstructing the membership function of every

class. The final classification for node i is then obtained by

yi = argmax
c

{f ci }. (44)

We first compare the performance of the proposed method

against M1 and M2 using the normalized adjacency matrix

based GFT with the variation operator L = I−D−1W. The

bandwidth parameter r is set to 50. The plot of classification

error averaged over the 10 dataset instances vs. number of

labels is presented in Figure 3(a). It shows that the proposed

method has comparable performance despite being localized.

The performance is also affected by the choice of the variation

operators (or, the GFT bases). Figure 3(b) shows that the

variation operators based on the hub-authority model and

random walk offer higher classification accuracy and thus,

are more suited for this particular application. Their superior

performance can be explained by looking at the signal repre-

sentation in the respective GFT domains. Figure 3(c) shows

the fraction of signal energy captured in increasing number of

GFT coefficients starting from low frequency. Since the hub-

authority model based GFT and random walk based GFT offer

more energy compaction than adjacency based GFT, the signal

reconstruction quality using these bases is naturally better.

VI. CONCLUSION

We studied the problem of selecting an optimal sampling set

for reconstruction of bandlimited graph signals. The starting

point of our framework is the notion of the Graph Fourier

Transform (GFT) which is defined via an appropriate vari-

ation operator. Our goal is to find good sampling sets for

reconstructing signals which are bandlimited in the above

frequency domain. We showed that when the samples are

noisy or the true signal is only approximately bandlimited, the

reconstruction error depends not only on the model mismatch

but also on the choice of sampling set. We proposed a measure

of quality for the sampling sets, namely the cutoff frequency,

that can be computed without finding the GFT basis explicitly.

A sampling set that maximizes the cutoff frequency is shown

to minimize the reconstruction error. We also proposed a

greedy algorithm which finds an approximately optimal set.
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(a) Graph G1 and signal model F2
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(b) Graph G2 and signal model F2
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(c) Graph G3 and signal model F2
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(d) Graph G1 and signal model F3
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(e) Graph G2 and signal model F3
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(f) Graph G3 and signal model F3

Fig. 1: Reconstruction results for different graph and signal models. Plots for signal model F1 are not shown since the

reconstruction errors are identically zero for all methods when |S| ≥ dimPWω(G) = 50. The large reconstruction errors for

|S| < 50 arise due to non-uniqueness of bandlimited reconstruction and hence, are less meaningful.
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(a) p = 0.01
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(b) p = 0.05
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(c) p = 0.1

Fig. 2: Reconstruction performance for noisy signals (model F2) with different values of k in Erdös-Renyi graphs having

different connection sparsity levels. Higher connection probability p implies lower sparsity.

The proposed algorithm can be efficiently implemented in

a distributed and parallel fashion. Together with localized

signal reconstruction methods, it gives an effective method

for sampling and reconstruction of smooth graph signals on

large graphs.

The present work opens up some new questions for future

research. The problem of finding a sampling set with maxi-

mum cutoff frequency is combinatorial. The proposed greedy

algorithm gives only an approximate solution to this problem.

It would be useful to find a polynomial time algorithm with

theoretical guarantees on the quality of approximation. Further,

the proposed set selection method is not adaptive, i.e., the

choice of sampling locations does not depend on previously

observed samples. This can be a limitation in applications that

require batch sampling. In such cases, it would be desirable to

have an adaptive sampling set selection scheme which takes

into account the previously observed samples to refine the

choice of nodes to be sampled in the future.

APPENDIX

PROPERTIES OF SPECTRAL PROXIES

In this section, we prove the monotonicity and convergence

properties of ωk(f).

Proposition 5. If L has real eigenvalues and eigenvectors,
then for any k1 < k2, we have ωk1

(f) ≤ ωk2
(f), ∀f .
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Fig. 3: Classification results for the USPS dataset using different methods and GFTs

Proof. We first expand ωk1
(f) as follows:

(ωk1
(f))

2k1 =

(‖Lk1f‖
‖f‖

)2

=

∑
i,j(λiλj)

k1 f̃if̃ju
�
i uj∑

i,j f̃if̃ju
�
i uj

(45)

=
∑
i,j

(λiλj)
k1cij (46)

where cij = f̃if̃ju
�
i uj/

∑
i,j f̃if̃ju

�
i uj . Now, consider the

function f(x) = xk2/k1 . Note that since k1 < k2, f(x) is

a convex function. Further, since
∑

i,j cij = 1, we can use

Jensen’s inequality in the above equation to get⎛
⎝∑

i,j

(λiλj)
k1cij

⎞
⎠

k2/k1

≤
∑
i,j

(
(λiλj)

k1
)k2/k1

cij (47)

⇒
⎛
⎝∑

i,j

(λiλj)
k1cij

⎞
⎠

1/2k1

≤
⎛
⎝∑

i,j

(λiλj)
k2cij

⎞
⎠

1/2k2

⇒ ωk1(f) ≤ ωk2(f) (48)

If L has real entries, but complex eigenvalues and eigenvec-

tors, then these occur in conjugate pairs, hence, the above

summation is real. However, in that case, ωk(f) is not guaran-

teed to increase in a monotonous fashion, since cij’s are not

real and Jensen’s inequality breaks down.

Proposition 6. Let ω(f) be the bandwidth of any signal f .
Then, the following holds:

ω(f) = lim
k→∞

ωk(f) = lim
k→∞

(‖Lkf‖
‖f‖

)1/k

(49)

Proof. We first consider the case when L has real eigenvalues

and eigenvectors. Let ω(f) = λp, then we have:

ωk(f) =

(∑p
i,j=1(λiλj)

k f̃if̃ju
�
i uj∑p

i,j=1 f̃if̃ju
�
i uj

)1/2k

(50)

= λp

⎛
⎝cpp +

∑
(i,j)	=(p,p)

(
λi

λp

λj

λp

)k

cij

⎞
⎠

1/2k

(51)

where cij = f̃if̃ju
�
i uj/

∑
i,j f̃if̃ju

�
i uj . Taking limits, it is

easy to observe that the term in parentheses evaluates to 1.

Hence, we have

lim
k→∞

ωk(f) = λp = ω(f) (52)

Now, if L has complex eigenvalues and eigenvectors, then

these have to occur in conjugate pairs since L has real entries.

Hence, for this case, we do a similar expansion as above and

take |λp| out of the expression. Then, the limit of the remaining

term is once again equal to 1.
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nal processing on graphs: Sampling theory,” Signal Processing, IEEE
Transactions on, 2015.



14

[13] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on Graphs:
Uncertainty Principle and Sampling,” ArXiv e-prints, Jul. 2015.

[14] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” Signal
Processing, IEEE Transactions on, vol. 57, no. 2, pp. 451–462, 2009.

[15] S. Narang and A. Ortega, “Local two-channel critically sampled filter-
banks on graphs,” in Image Processing (ICIP), 2010 17th IEEE Inter-
national Conference on, Sept 2010, pp. 333–336.

[16] H. Nguyen and M. Do, “Downsampling of signals on graphs via
maximum spanning trees,” Signal Processing, IEEE Transactions on,
vol. 63, no. 1, pp. 182–191, Jan 2015.

[17] S. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet
filter banks for graph structured data,” IEEE Transactions on Signal
Processing, vol. 60, no. 6, pp. 2786–2799, June 2012.

[18] ——, “Compact support biorthogonal wavelet filterbanks for arbitrary
undirected graphs,” Signal Processing, IEEE Transactions on, vol. 61,
no. 19, pp. 4673–4685, Oct 2013.

[19] A. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph
signals with successive local aggregations,” Accepted in Signal Process-
ing, IEEE Transactions on, 2015.

[20] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random
sampling of bandlimited signals on graphs,” ArXiv e-prints, Nov. 2015.

[21] D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs
via spectral graph theory,” Applied and Computational Harmonic Anal-
ysis, vol. 30, no. 2, pp. 129 – 150, 2011.

[22] A. Sandryhaila and J. Moura, “Discrete signal processing on graphs:
Frequency analysis,” Signal Processing, IEEE Transactions on, vol. 62,
no. 12, pp. 3042–3054, June 2014.

[23] F. R. K. Chung, Spectral graph theory. CBMS Regional Conference
Series in Mathematics, AMS, 1997, vol. 92.

[24] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[25] D. Zhou, B. Schölkopf, and T. Hofmann, “Semi-supervised learning on
directed graphs,” in Advances in Neural Information Processing Systems
17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT
Press, 2004, pp. 1633–1640.

[26] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University
Press, 2012.

[27] F. Chung, “Laplacians and the Cheeger inequality for directed graphs,”
Annals of Combinatorics, vol. 9, no. 1, pp. 1–19, 2005.

[28] D. Zhou, J. Huang, and B. Schölkopf, “Learning from labeled and
unlabeled data on a directed graph,” in Proceedings of the 22nd
International conference on Machine learning, 2005, pp. 1036–1043.

[29] Y. C. Eldar, “Sampling with arbitrary sampling and reconstruction
spaces and oblique dual frame vectors,” Journal of Fourier Analysis
and Applications, vol. 9, no. 1, pp. 77–96, 2003.

[30] S. Chen, A. Sandryhaila, and J. Kovačević, “Sampling theory for graph
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