
Efficient Satisfiability Modulo Theories
via Delayed Theory Combination�

Marco Bozzano1, Roberto Bruttomesso1, Alessandro Cimatti1, Tommi Junttila2,
Silvio Ranise3, Peter van Rossum4, and Roberto Sebastiani5

1 ITC-IRST, Povo, Trento, Italy
{bozzano, bruttomesso, cimatti}@itc.it

2 Helsinki University of Technology, Finland
Tommi.Junttila@tkk.fi

3 LORIA and INRIA-Lorraine, Villers les Nancy, France
Silvio.Ranise@loria.fr

4 Radboud University Nijmegen, The Netherlands
petervr@sci.kun.nl

5 DIT, Università di Trento, Italy
roberto.sebastiani@unitn.it

Abstract. The problem of deciding the satisfiability of a quantifier-free formula
with respect to a background theory, also known as Satisfiability Modulo The-
ories (SMT), is gaining increasing relevance in verification: representation ca-
pabilities beyond propositional logic allow for a natural modeling of real-world
problems (e.g., pipeline and RTL circuits verification, proof obligations in soft-
ware systems).

In this paper, we focus on the case where the background theory is the combi-
nation T1 ∪T2 of two simpler theories. Many SMT procedures combine a boolean
model enumeration with a decision procedure for T1 ∪T2, where conjunctions of
literals can be decided by an integration schema such as Nelson-Oppen, via a
structured exchange of interface formulae (e.g., equalities in the case of convex
theories, disjunctions of equalities otherwise).

We propose a new approach for SMT(T1 ∪T2), called Delayed Theory Com-
bination, which does not require a decision procedure for T1 ∪T2, but only indi-
vidual decision procedures for T1 and T2, which are directly integrated into the
boolean model enumerator. This approach is much simpler and natural, allows
each of the solvers to be implemented and optimized without taking into account
the others, and it nicely encompasses the case of non-convex theories. We show
the effectiveness of the approach by a thorough experimental comparison.

1 Introduction

Many practical verification problems can be expressed as satisfiability problems in de-
cidable fragments of first-order logic. In fact, representation capabilities beyond propo-

� This work has been partly supported by ISAAC, an European sponsored project, contract no.
AST3-CT-2003-501848, by ORCHID, a project sponsored by Provincia Autonoma di Trento,
and by a grant from Intel Corporation. The work of T. Junttila has also been supported by the
Academy of Finland, projects 53695 and 211025.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 335–349, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

336 M. Bozzano et al.

sitional logic enable a natural modeling of real-world problems (e.g., pipeline and RTL
circuits verification, proof obligations in software systems).

The field has been devoted a lot of interest and has recently acquired the name
Satisfiability Modulo Theories (SMT). SMT can be seen as an extended form of propo-
sitional satisfiability, where propositions are constraints in a specific theory. A promi-
nent approach which underlies several systems (e.g., MATHSAT [16, 6], DLSAT [7],
DPLL(T) [13], TSAT++ [28, 2], ICS [14, 11], CVCLITE [8, 4], haRVey [9]), is based
on extensions of propositional SAT technology: a SAT engine is modified to enumerate
boolean assignments, and integrated with a decision procedure for the theory.

The above schema, which we denote as Bool+T , is also followed when the back-
ground theory T turns out to be the combination T1 ∪T2 of two simpler theories — for
instance, Equality and Uninterpreted Functions (E) and Linear Arithmetic (LA). The
decision procedure to decide a combination of literals in T is typically based on an in-
tegration schema such as Nelson-Oppen (NO) [18] (we denote the resulting schema as
Bool+no(T1,T2)), starting from decision procedures for each Ti, and combining them
by means of a structured exchange of interface formulae.

In this paper, we propose a new approach for the SMT(T1 ∪T2) problem, called De-
layed Theory Combination. The main idea is to avoid the integration schema between T1

and T2, and tighten the connection between each Ti and the boolean level. While the truth
assignment is being constructed, it is checked for consistency with respect to each theory
in isolation. This can be seen as constructing two (possibly inconsistent) partial models
for the original formula; the “merging” of the two partial models is enforced, on demand,
since the solver is requested to find a complete assignment to the interface equalities.

We argue that this approach, denoted as Bool+T1 +T2, has several advantages over
Bool+no(T1,T2). First, the whole framework is much simpler to analyze and imple-
ment; each of the solvers can be implemented and optimized without taking into ac-
count the others; for instance, when the problem falls within one Ti, the solver behaves
exactly as Bool+Ti. Second, the approach does not rely on the solvers being deduction-
complete. This enables us to explore the trade-off between which deduction is beneficial
for efficiency and which is in fact hampering the search – or too difficult to imple-
ment. Third, the framework nicely encompasses the case of non-convex theories: in the
no(T1,T2) case, a backtrack search is used to take care of the disjunctions that need to be
managed. We experimentally show that our approach is competitive and often superior
to the other state of the art approaches based on Nelson-Oppen integration.

This paper is structured as follows. We first present some background and overview
the Bool+T procedure in Sect. 2. Then we discuss the T1 ∪ T2 case by means of the
Nelson-Oppen combination schema in Sect. 3. We present our approach Bool+T1+T2

in Sect. 4. Then we describe the implementation of Bool+T1+T2 for the case of LA∪E
in Sect. 5 and some related work in Sect. 6. We discuss the experimental evaluation in
Sect. 7. Finally, we draw some conclusions and discuss some future work in Sect. 8.

2 Satisfiability Modulo Theories

Satisfiability Modulo a Theory is the problem of checking the satisfiability of a
quantifier-free (or ground) first-order formula with respect to a given first-order theory

Efficient Satisfiability Modulo Theories via Delayed Theory Combination 337

T . Theories of interest are, e.g., the theory of difference logic DL , where constraints
have the form x− y ≤ c; the theory E of equality and uninterpreted functions, whose
signature contains a finite number of uninterpreted function and constant symbols, and
such that the equality symbol = is interpreted as the equality relation; the quantifier-
free fragment of Linear Arithmetic over the rationals (or, equivalently, over the reals),
hereafter denoted with LA(Rat); the quantifier-free fragment of Linear Arithmetic over
the integers, hereafter denoted with LA(Int).

Figure 1 presents Bool+T , a (much simplified) decision procedure for SMT(T).
The function Atoms takes a ground formula φ and returns the set of atoms which occurs
in φ. We use the notation φp to denote the propositional abstraction of φ, which is
formed by the function fol2prop that maps propositional variables to themselves, ground
atoms into fresh propositional variables, and is homomorphic w.r.t. boolean operators
and set inclusion. The function prop2fol is the inverse of fol2prop. We use βp to denote
a propositional assignment, i.e. a conjunction (a set) of propositional literals. The idea
underlying the algorithm is that the truth assignments for the propositional abstraction
of φ are enumerated and checked for satisfiability in T . The procedure either concludes
satisfiability if one such model is found, or returns with failure otherwise. The function
pick total assign returns a total assignment to the propositional variables in φp, that is,
it assigns a truth value to all variables in A p. The function T -satisfiable(β) detects if the
set of conjuncts β is T -satisfiable: if so, it returns (sat, /0); otherwise, it returns (unsat,
π), where π ⊆ β is a T -unsatisfiable set, called a theory conflict set. We call the negation
of a conflict set, a conflict clause.

The algorithm is a coarse abstraction of the ones underlying TSAT++, MATHSAT,
DLSAT, DPLL(T), CVCLITE, haRVey, and ICS. The test for satisfiability and the
extraction of the corresponding truth assignment are kept separate in this description
only for the sake of simplicity. In practice, enumeration is carried out on partial as-
signments, by means of efficient boolean reasoning techniques, typically by means of
a DPLL-algorithm (but see also [9] for an approach based on BDDs). Additional im-
provements are early pruning, i.e., partial assignments which are not T -satisfiable are
pruned (since no refinement can be T -satisfiable); theory conflicts discovered by the
theory solver can be passed as conflict clauses to the boolean solver, and trigger non-
chronological backjumping; such conflict clauses can also be learned, and induce the

function Bool+T (φ: quantifier-free formula)
1 A p ←− fol2prop(Atoms(φ))
2 φp ←− fol2prop(φ)
3 while Bool-satisfiable(φp) do
4 βp ←− pick total assign(A p,φp)
5 (ρ,π)←− T -satisfiable(prop2fol(βp))
6 if ρ = sat then return sat
7 φp ←− φp ∧¬fol2prop(π)
8 end while
9 return unsat
end function

Fig. 1. A simplified view of enumeration-based T-satisfiability procedure: Bool+T

338 M. Bozzano et al.

discovery of more compact learned clauses; finally, theory deduction can be used to re-
duce the search space by explicitly returning truth values for unassigned literals, as well
as constructing/learning implications. The interested reader is pointed to [6] for details
and further references.

3 SMT(T1 ∪T2) via Nelson-Oppen Integration

In many practical applications of SMT(T), the background theory is a combination
of two theories T1 and T2. For instance, DL and E ; LA(Rat) and E ; LA(Int) and
E ; LA(Int), E and the theory of arrays. Many recent approaches to SMT(T1 ∪ T2)
(e.g. CVCLITE, ICS) rely on the adaptation of the Bool+T schema, by instantiating
T -satisfiable with some decision procedure for the satisfiability of T1 ∪ T2, typically
based on the Nelson-Oppen integration schema (see Figure 2, left). In the following,
we briefly recall the most relevant issues pertaining to the combination of decision
procedures. (For a more complete discussion we refer the reader to [20].) 1

BOOLEAN MODEL
ENUMERATION

BOOLEAN MODEL
ENUMERATION

ei j
A p

T1-satisfiable T2-satisfiable

T1-deduce

T2-deduce

∨ei j

βp
1 βp

2

T2-satisfiable

T1-satisfiable

no(T1,T2)

Fig. 2. The different schemas for SMT(T1 ∪T2)

Let Σ1 and Σ2 be two disjoint signatures, and let Ti be a Σi-theory for i = 1,2. A
Σ1∪Σ2-term t is an i-term if it is a variable or it has the form f (t1, ..., tn), where f is in Σi

and n≥ 0 (notice that a variable is both a 1-term and a 2-term). A non-variable subterm s
of an i-term is alien if s is a j-term, and all superterms of s are i-terms, where i, j ∈{1,2}
and i
= j. An i-term is i-pure if it does not contain alien subterms. A literal is i-pure if
it contains only i-pure terms. A formula is said to be pure iff every literal occurring in
the formula is i-pure for some i ∈ {1,2}. The process of purification maps any formula
φ into an equisatisfiable pure formula φ′ by introducing new variables and definitions to
rename non-pure/alien terms. Especially, if φ is a conjunction of literals, then φ′ can be
written as φ1∧φ2 s.t. each φi is a conjunction of i-pure literals. In the following, we call

1 Notice that the Nelson-Oppen schema of Figure 2, left, is a simplified one. In actual imple-
mentations (e.g., CVCLITE, ICS) more than two theories can be handled at a time, and the
interface equalities are exchanged between theory solvers by exploiting sophisticated tech-
niques (see e.g. [10] for details).

Efficient Satisfiability Modulo Theories via Delayed Theory Combination 339

interface variables of a pure formula φ′ the set of all variables c1, . . . ,cn ∈ Var(φ′) that
occur in both 1-pure and 2-pure literals in φ′, and we define ei j as the interface equality
ci = c j.

A Σ-theory T is called stably-infinite iff for any T -satisfiable Σ-formula φ, there
exists a model of T whose domain is infinite and which satisfies φ. A Nelson-Oppen
theory is a stably-infinite theory which admits a satisfiability algorithm. E.g., E , DL ,
LA(Rat), and LA(Int) are all Nelson-Oppen theories. A conjunction Γ of Σ-literals is
convex in a Σ-theory T iff for any disjunction

∨n
i=1 xi = yi (where xi, yi are variables)

we have that T ∪Γ |= ∨n
i=1 xi = yi iff T ∪Γ |= xi = yi for some i ∈ {1, ...,n}. A Σ-theory

T is convex iff all the conjunctions of Σ-literals are convex. Note that, while E and
LA(Rat) are convex theories, LA(Int) is not: e.g., given the variables x,x1,x2, the set
{x1 = 1,x2 = 2,x1 ≤ x,x ≤ x2} entails x = x1 ∨ x = x2 but neither x = x1 nor x = x2.

Given two signature-disjoint Nelson-Oppen theories T1 and T2, the Nelson-Oppen
combination schema [18], in the following referred to as no(T1,T2), allows one to
solve the satisfiability problem for T1 ∪ T2 (i.e. the problem of checking the T1 ∪ T2-
satisfiability of conjunctions of Σ1 ∪Σ2-literals) by using the satisfiability procedures
for T1 and T2. The procedure is basically a structured interchange of information in-
ferred from either theory and propagated to the other, until convergence is reached. The
schema requires the exchange of information, the kind of which depends on the convex-
ity of the involved theories. In the case of convex theories, the two solvers communi-
cate to each other interface equalities. In the case of non-convex theories, the no(T1,T2)
schema becomes more complicated, because the two solvers need to exchange arbi-
trary disjunctions of interface equalities, which have to be managed within the decision
procedure by means of case splitting and of backtrack search.

We notice that the ability to carry out deductions is often crucial for efficiency: each
solver must be able to derive the (disjunctions of) interface equalities ei j entailed by its
current facts φ. When this capability is not available, it can be replaced by “guessing”
followed by a satisfiability check with respect to Ti.

Example 1. Let T1 be E and T2 be LA(Int), and consider the following SMT problem
for the purified formula, V = {x,w1,w2} being the set of interface variables:

φ = ¬(f (x) = f (w1))∧ (A ↔¬(f (x) = f (w2))) ∧ 1 ≤ x∧ x ≤ 2∧w1 = 1∧w2 = 2.

Suppose we first assign the boolean variable A to true (branch 1), so that φ simplifies
into a conjunction of literals φ1∧φ2, s.t., φ1 =¬(f (x) = f (w1))∧¬(f (x) = f (w2)) and
φ2 = 1 ≤ x∧ x ≤ 2∧w1 = 1∧w2 = 2. Then the no(T1,T2) schema runs as follows:

1. The literals of φ1 are processed, T1-satisfiability is reported, and no equality is derived.
2. The literals of φ2 are processed, T2-satisfiability is reported, and the disjunction x = w1∨x =

w2 is returned.
3. The disjunction induces a case-splitting; first, x = w1 is passed to the solver for T1:

(a) φ1 ∧ x = w1 is T1-unsatisfiable, since ¬(f (x) = f (w1))∧ x = w1 is;
then, x = w2 is passed to the satisfiability procedure for T1:
(b) φ1 ∧ x = w2 is T1-unsatisfiable, since ¬(f (x) = f (w2))∧ x = w2 is.
The T1-solver may be able to return the conflict clauses C1: ¬(x = w1)∨ f (x) = f (w1) and
C2: ¬(x = w2)∨ f (x) = f (w2) to the boolean solver, which learns them to drive future search.

4. no(T1,T2) returns the T1 ∪T2-unsatisfiability of φ1 ∧φ2, and the procedure backtracks.

340 M. Bozzano et al.

Then we assign A to false (branch 2), so that φ1 becomes ¬(f (x) = f (w1))∧ (f (x) =
f (w2)). Hence the no(T1,T2) combination schema reruns steps 1, 2, and 3(a) as in
branch 1. (Notice that, if the conflict clause C1 has been generated, then ¬(x = w1)
is added to branch 2 by the boolean solver, so that step 2 generates only x = w2, and
hence step 3(a) is skipped.) Then, x = w2 is passed to the satisfiability procedure for T1,
which states that φ1 ∧ x = w2 is T1-satisfiable, and that no new interface equalities are
deducible. Hence φ1 ∧φ2 in branch 2 is T1 ∪T2-satisfiable, so that the original formula
φ is T1 ∪T2-satisfiable.

4 SMT(T1 ∪T2) via Delayed Theory Combination

We propose a new approach to SMT(T1 ∪T2), which does not require the direct combi-
nation of decision procedures for T1 and T2. The Boolean solver Bool is coupled with
a satisfiability procedure Ti-satisfiable for each Ti (see Fig. 2, right), and each of the
theory solvers works in isolation, without direct exchange of information. Their mu-
tual consistency is ensured by conjoining the purified formula with a suitable formula,
containing only the interface equalities ei j, even if these do not occur in the original
problem; such a formula encodes all possible equivalence relations over the interface
variables in the purified formula. The enumeration of assignments includes not only the
atoms in the formula, but also the interface atoms of the form ei j. Both theory solvers re-
ceive, from the boolean level, the same truth assignment for ei j: under such conditions,
the two “partial” models found by each decision procedure can be merged into a model
for the input formula. We call the approach Delayed Theory Combination (DTC): the
synchronization between the theory reasoners is delayed until the ei j’s are associated a
value. We denote this schema as Bool+T1+T2.

function Bool+T1+T2 (φi: quantifier-free formula)
1 φ ←− purify(φi)
2 A p ←− fol2prop(Atoms(φ)∪E(interface vars(φ)))
3 φp ←− fol2prop(φ)
4 while Bool-satisfiable (φp) do
5 βp

1 ∧βp
2 ∧βp

e = βp ←− pick total assign(A p,φp)
6 (ρ1,π1)←− T1-satisfiable (prop2fol(βp

1 ∧βp
e))

7 (ρ2,π2)←− T2-satisfiable (prop2fol(βp
2 ∧βp

e))
8 if (ρ1 = sat∧ρ2 = sat) then return sat else
9 if ρ1 = unsat then φp ←− φp ∧¬fol2prop(π1)
10 if ρ2 = unsat then φp ←− φp ∧¬fol2prop(π2)
11 end while
12 return unsat
end function

Fig. 3. A simplified view of the Delayed Theory Combination procedure for SMT(T1 ∪T2)

A simplified view of the algorithm is presented in Fig. 3. Initially (lines 1–3), the for-
mula is purified, the interface variables ci are identified by interface vars, the interface

Efficient Satisfiability Modulo Theories via Delayed Theory Combination 341

equalities ei j are created by E and added to the set of propositional symbols A p, and the
propositional abstraction φp of φ is created. Then, the main loop is entered (lines 4–11):
while φp is propositionally satisfiable (line 4), we select a satisfying truth assignment
βp (line 5). We remark that truth values are associated not only to atoms in φ, but also
to the ei j atoms, even though they do not occur in φ. βp is then (implicitly) separated
into βp

1 ∧βp
e ∧βp

2 , where prop2fol(βp
i) is a set of i-pure literals and prop2fol(βp

e) is a set
of ei j-literals. The relevant part of βp are checked for consistency against each theory
(lines 6–7); Ti-satisfiable (β) returns a pair (ρi,πi), where ρi is unsat iff β is unsatisfi-
able in Ti, and sat otherwise. If both calls to Ti-satisfiable return sat, then the formula is
satisfiable. Otherwise, when ρi is unsat, then πi is a theory conflict set, i.e. πi ⊆ β and
πi is Ti-unsatisfiable. Then, φp is strengthened to exclude truth assignments which may
fail in the same way (line 9–10), and the loop is resumed. Unsatisfiability is returned
(line 12) when the loop is exited without having found a model.

To see why Bool+T1+T2 is a decision procedure for SMT(T1 ∪T2), let us first con-
sider the case where φ is a conjunction of literals. In this case, we claim that the cor-
rectness and completeness of Bool+T1+T2 reduces to that of a nondeterministic ver-
sion of Nelson-Oppen combination schema (see e.g. [27]). The traditional, determin-
istic Nelson-Oppen schema relies on the exchange of entailed interface equalities, i.e.
discovering that ei j is entailed by the set of literals φ modulo the theory Ti. In the non-
deterministic case, the same deduction is simulated by “guessing” that ei j holds, and
then checking whether φ∧¬ei j is Ti-unsatisfiable. Similar reasoning applies in the dual
case where we “guess” that ei j is false. In Bool+T1+T2, the selection of the truth assign-
ment on line 5 corresponds to guessing a truth value for each of the ei j, while the calls to
Ti-satisfiable of lines 6 and 7 check the consistency of this guess with respect to each Ti.
According to [27], T1 ∪T2-satisfiability can be concluded when both checks return sat.
Otherwise, another guess should be attempted: this is carried out by strengthening the
formula with the conflict clause (lines 9–10), and selecting a different total assignment
to the ei j. This result can be generalized to the case when φ is an arbitrary formula. We
consider that φ is satisfiable iff there exists a satisfying assignment to its literals, which
is also T1∪T2-satisfiable. It is not difficult to see that the set of assignments enumerated
by the algorithm is the same set obtained by enumerating the assignments of Atoms(φ),
and then extending it with a complete assignment over the ei j.

For lack of space, the algorithm is described in Fig. 3 at a high level of abstraction.
In practice, enumeration is carried out by means of a DPLL-based SAT engine, and all
the optimizations discussed for Bool+T can be retained. For a thorough discussion of
these issues, we refer the reader to an extended version of this paper [5]. Here, we only
emphasize the role of theory deduction, where a call to Ti-satisfiable, when satisfiable,
can return in πi a set of theory deductions (i.e. theory-justified implications, which may
in turn force truth values on unassigned literals, thus further constraining the boolean
search space).

Example 2. Consider the formula and the situation of Example 1. As before, we first
assign A to true (branch 1), so that ¬(f (x) = f (w2)). We suppose that the SAT solver
branches, in order, on w1 = w2, x = w1, x = w2, assigning them the true value first.

1. Choosing w1 = w2 causes a T2-inconsistency be revealed by early-pruning calls to the theory
solvers, so that the conflict clause C3: ¬(w1 = 1)∨¬(w2 = 2)∨¬(w1 = w2) is learned, and
the SAT solvers backtracks to ¬(w1 = w2), which does not cause inconsistency.

342 M. Bozzano et al.

2. Similarly, choosing x = w1 causes a T1-inconsistency, the conflict clause C1 of example 1 is
learned, and the SAT solvers backtracks to ¬(x = w1), which does not cause inconsistency.

3. Similarly, choosing x = w2 causes a T1-inconsistency, the conflict clause C2 of example 1 is
learned, and the SAT solvers backtracks to ¬(x = w2).

4. ¬(x = w1) and ¬(x = w2) cause a T2-inconsistency, so that branch 1 is closed.

Then we assign A to false (branch 2), so that f (x) = f (w2). Hence ¬(x = w1) and
¬(w1 = w2) are immediately assigned by unit-propagation on C1 and C3. Thus, after
splitting on x = w2 we have a satisfying assignment.

Notice that (i) when a partial assignment on ei j’s is found unsatisfiable under some
Ti (e.g., w1 = w2 in branch 1, step 1), then all its total extensions are Ti-unsatisfiable, so
that there is no need for further boolean search on the other ei j’s. Therefore techniques
like early pruning, learning and theory deduction allow for restricting the search on
partial assignments; (ii) the extra boolean component of search caused by the non-
convexity of LA(Int) has been merged into the top-level boolean search, so that it can
be handled efficiently by the top-level DPLL procedure.

The following observations indicate what are the advantages of DTC.

Simplicity. The overall schema is extremely simple. Nothing is needed beyond deci-
sion procedures for each Ti, and no complicated integration schema between the Ti is
required. Furthermore, when the input problem is fully contained within one Ti, the
setup reduces nicely to Bool+Ti. All features from the DPLL framework such as early
pruning, theory driven backjumping and learning, deduction, and split control can be
used.

Bool vs. theory. The interaction between the boolean level and each theory is tightened,
thus taking into account the fact that the Boolean structure of the quantifier-free for-
mula can severely dominate the complexity of T1∪T2-satisfiability. In contrast, Nelson-
Oppen privileges the link between T1 and T2, while in fact SMT(T1 ∪T2) problems may
feature complex interactions between the boolean level and each of the Ti.

Multiple Theories. The DTC approach can be easily extended to handle the combina-
tion of n > 2 component theories. We only need to dispatch each satisfiability procedure
the conjunction of pure literals extended with a total assignment on the interface equali-
ties ei j and return the satisfiability of the formula if all report satisfiability. In case some
of the procedures report unsatisfiability, the conflict sets are added to the formula and
a new propositional assignment is considered. We see no practical difficulty to imple-
ment the DTC schema for n > 2 theories, although we have not yet investigated this
experimentally.

Deduction. The NO schema relies on theory solvers being deduction-complete, that is,
being able to always infer all the (disjunctions of) ei j’s which are entailed in the theory
by the input set of theory literals. However, deduction completeness can be sometimes
hard to achieve (e.g. it may greatly complicate the satisfiability algorithms), and com-
putationally expensive to carry out. In the DTC approach, the theory solvers do not
have to be deduction-complete. This enables us to explore the trade-off between which
deduction is beneficial to efficiency and which is in fact hampering the search – or too
difficult to implement.

Efficient Satisfiability Modulo Theories via Delayed Theory Combination 343

Non-convexity. The DTC schema captures in a very natural way the case of non-convex
theories. The Nelson-Oppen schema implements case-splitting on the disjunction of
equalities entailed by each Ti and this case splitting is separate from the management of
the boolean splitting. Therefore, the combination schema becomes very complex: one
has to deal with the fact that disjunctions of ei j need to be exchanged. Besides compli-
cating the deduction mechanism of each theory, a stack-based search with backtracking
has to be performed. In DTC the search on the “top-level” boolean component of the
problem and the search on the “non-convex” component are dealt with in an “amal-
gamated” framework, and positively interact with each other, so that to maximize the
benefit of the optimizations of state-of-the art SAT procedures.

Theory Conflict. The construction of conflict sets may be a non-trivial task within a
single theory. The problem is even harder in the case of T1 ∪T2, since the construction
of a conflict set must take into account the conflict obtained in one theory, as well as the
interface equalities that have been exchanged. In our framework, this complication is
avoided altogether: a conflict for the combined theories is naturally induced by the inter-
action between the conflict in one theory and the mechanisms for conflict management
in the boolean search.

As possible drawbacks, we notice that DTC requires the whole formula to be puri-
fied, and the upfront introduction of O(n2) interface constraints ei j. However, many of
these may not occur in the purified formula; and even though the truth assignment of the
interface equalities has to be guessed by the boolean level, which potentially increases
the boolean search space, early pruning, learning and deduction can help to limit the
increase in the search. On the whole, we expect that the DTC schema will make it eas-
ier the task of extending SMT tools to handle combination of theories while ensuring
a high-degree of efficiency. In fact, the DTC approach does not need dedicated mecha-
nisms to exchange selected formulae nor to handle non-convex theories, thereby greatly
simplifying the implementation task. On the one hand, we believe that systems based on
our approach can be made competitive with more traditional systems on theories where
deduction of entailed facts can be efficiently done, by adapting techniques developed
for SAT solvers. On the other hand, the DTC approach offers a flexible framework to
explore the different trade-offs of deduction for theories where deriving entailed facts
is computationally expensive.

5 Delayed Theory Combination in Practice: MATHSAT (E ∪LA)

We implemented the Delayed Theory Combination schema presented in the previous
section in MATHSAT [6]. MATHSAT is an SMT solver for each of the theories DL ,
LA(Rat), LA(Int), and E . Furthermore, it is also an SMT solver for (E ∪LA(Rat))
and for (E ∪LA(Int)), where uninterpreted symbols are eliminated by means of Ack-
ermann’s expansion [1]. MATHSAT is based on an enhanced version of the Bool+T
schema (see [6] for further details).

344 M. Bozzano et al.

We instantiated the Delayed Theory Combination schema to deal with E ∪LA(Rat)
and with E ∪LA(Int). During preprocessing, the formula is purified, the interface vari-
ables ci are identified, and the interface equalities ei j are added to the solver. The most
important points to be emphasized are related to the management of the interface atoms:

– in order to delay the activation of ei j atoms, we instructed the SAT solver not to
branch on them until no other choice is left; (by suitably initializing the activity
vector controlling the VSIDS splitting strategy [17]);

– once the search finds a truth assignment that satisfies φp and is also T1- and T2-
satisfiable, we are not done: to guarantee correctness, we need an assignment also
for those ei j’s that still do not have a value. This is provided by the SAT solver used
in MATHSAT, which constructs total assignments over the propositional variables
that are declared;

– before any new split, the current (partial) assignment is checked for T1- and T2-
satisfiability, and the procedure backtracks if it is found unsatisfiable. In this way,
the SAT solver enumerates total assignments on ei j’s only if strictly necessary;

– depending on the search, it is possible that ei j are given values not only by branch-
ing, but also by boolean constraint propagation on learned clauses, or even by the-
ory deduction. In fact, the ei j interface equalities are also fed into the congruence
closure solver, which also implements forward deduction [6] and therefore is able
to assign forced truth values (e.g., to conclude the truth of c1 = c2 from the truth of
x = c1, y = c2, and x = y). This reduces branching at boolean level, and limits the
delay of combination between the theories;

– when ei j is involved in a conflict, it is treated like the other atoms by the conflict-
driven splitting heuristic: its branching weight is increased and it becomes more
likely to be split upon. Furthermore, the conflict clause is learned, and it is thus
possible to prevent incompatible configurations between interface atoms and the
other propositions;

– the initial value attempted for each unassigned ei j is false. If ci and c j were in the
same equivalence class because of equality reasoning, then ei j had already been
forced to true by equality reasoning. Thus ci and c j belong to different equivalence
classes in the congruence closure solver and setting ei j to false will not result in
expensive merging of equivalence classes nor otherwise change the state of the
solver. However, conflicts can result in the arithmetic solver.

6 Related Work

To our knowledge, the integration schema we describe in this paper has not been pre-
viously proposed elsewhere. Most closely related are the following systems, which
are able to deal with combination of theories, using variants of Bool+no(T1,T2). CV-
CLITE [8, 4] is a library for checking validity of quantifier-free first-order formulas over
several interpreted theories, including LA(Rat), LA(Int), E , and arrays, replacing the
older tools SVC and CVC. VERIFUN [12] is a similar tool, supporting domain-specific
procedures for E , LA , and the theory of arrays. ZAPATO [3] is a counterexample-driven
abstraction refinement tool, able to decide the combination of E and a specific fragment
of LA(Int). ICS [14, 11] is able to deal with uninterpreted function symbols and a large

Efficient Satisfiability Modulo Theories via Delayed Theory Combination 345

variety of theories, including arithmetic, tuples, arrays, and bit-vectors. ICS [21, 24]
somewhat departs from the Bool+no(T1,T2) schema, by mixing Shostak approach (by
merging canonizers for individual theories into a global canonizer), with Nelson-Oppen
integration schema (to deal with non-Shostak’s theories).

Other approaches implementing Bool+T for a single theory are [28, 7, 13]. The
work in [13] proposes a formal characterization of the Bool+T approach, and an ef-
ficient instantiation to a decision procedure for E (based on an incremental and back-
trackable congruence closure algorithm [19], which is also implemented in MATH-
SAT). Despite its generality for the case of a single theory, the approach is bound to
the Bool+T schema, and requires an integration between theory solvers to deal with
SMT(T1 ∪T2).

A different approach to SMT is the “eager” reduction of a decision problem for T
to propositional SAT. This approach has been successfully pioneered by UCLID [29,
23], a tool incorporating a decision procedure for E , arithmetic of counters, separation
predicates, and arrays. This approach leverages on the accuracy of the encodings and on
the effectiveness of propositional SAT solvers, and performs remarkably well for certain
theories. However, it sometimes suffers from a blow-up in the encoding to propositional
logic, see for instance a comparison in [13] on E problems. The bottleneck is even more
evident in the case of more expressive theories such as LA [26, 25], and in fact UCLID
gives up the idea of a fully eager encoding [15]. The most relevant subcase for this
approach is DL ∪E , which is addressed in [22]. Unfortunately, it was impossible to
make a comparison due to the unavailability of the benchmarks (only the benchmarks
after Ackermann’s expansion were made available to us).

7 Experimental Evaluation

We ran the implementation of MATHSAT with Delayed Theory Combination (hereafter
called MATHSAT-DTC) against the alternative implementation based on Ackermann’s
expansion (hereafter called MATHSAT-ACK), and the competitor tools ICS (v.2.0) and
CVCLITE (v.1.1.0). (We also tried to use the unstable version of CVCLITE, which is
somewhat more efficient, but it was unable to run the tests due to internal errors). Un-
fortunately, there is a general lack of test suites on E ∪LA available. For instance, the
tests in [22] were available only after Ackermann’s expansion, so that the E component
has been removed. We also analyzed the tests in the regression suite for CVCLITE [8],
but they turned out to be extremely easy. We defined the following benchmarks suites.

Modular Arithmetic. Simulation of arithmetic operations (succ, pred, sum) modulo
N. Some basic variables range between 0 and N; the problem is to decide the satisfi-
ability of (the negation of) known mathematical facts. Most problems are unsat. The
test suite comes in two versions: one purely E , where the behaviour of arithmetic op-
erations is “tabled” (e.g., s(0) = 1, . . . ,s(N) = 0); one in E ∪LA , where each arith-
metic operation has also a characterization via LA and conditional expressions (e.g.,
p(x,y) = if (x+ y < N) then x+ y else x+ y−N) take into account overflows.

Random Problems. We developed a random generator for SMT(E ∪LA(Rat)) prob-
lems. The propositional structure is a 3-CNF; the atoms can be either fully proposi-

346 M. Bozzano et al.

M
od

ul
ar

A
ri

th
m

.E

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

M
od

ul
ar

A
ri

th
m

.E
∪L

A

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

R
an

do
m

C
ou

pl
ed

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

R
an

do
m

D
ec

ou
pl

ed

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

H
as

h

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

MATHSAT-Ack CVCLITE ICS

Fig. 4. Execution time ratio: the X and Y axes report MATHSAT-DTC and each competitor’s
times, respectively (logarithmic scale). A dot above the diagonal means a better performance
of MATHSAT-DTC and viceversa. The two uppermost horizontal lines and the two rightmost
vertical lines represent, respectively, out-of-memory (higher) or timed-out (lower)

Efficient Satisfiability Modulo Theories via Delayed Theory Combination 347

tional, equalities between two terms, or a comparison between a term and a numer-
ical constant. A basic term is an individual variable between x1, . . . ,xn; a compound
terms xi, with i > n, is either the application of an uninterpreted function symbol (e.g.
f (x j1 , . . . ,x jn)), or a ternary linear polynomial with random coefficients to previously
defined terms. The generator depends on the coupling: high coupling increases the prob-
ability that a subterm of the term being generated is a compound term rather than a
variable. We denote a class of problem as RND(vartype, n, clauses, coupling); for each
configuration of the parameters we defined 20 random samples.

Hash. The suite contains some problems over hash tables modeled as integer-valued
bijective functions over finite sets of integers.

We ran the four tools on over 3800 test formulae. The experiments were run on a
2-processor INTEL Xeon 3 GhZ machine with 4 Gb of memory, running Linux RedHat
7.1. The time limit was set to 1800 seconds (only one processor was allowed to run for
each run) and the memory limit to 500 MB. An executable version of MATHSAT and
the source files of all the experiments performed in the paper are available at [16].

The results are reported in Fig. 4. The columns show the comparison between
MATHSAT-DTC and MATHSAT-ACK, CVCLITE, ICS; the rows correspond to the
different test suites. MATHSAT-DTC dominates CVCLITE on all the problems, and
MATHSAT-ACK on all the problems except the ones on Modular Arithmetic on E . 2

The comparison with ICS is limited to problems in E ∪LA(Rat), i.e. the first four
rows (the Hash suite is in E ∪LA(Int) and ICS, being incomplete over the integers,
returns incorrect results). In the first row, MATHSAT-DTC generally outperforms ICS.
On the second row, MATHSAT-DTC behaves better than ICS on part of the problems,
and worse on others. In the third and fourth rows, MATHSAT-DTC is slower than ICS
on simpler problems, but more effective on harder ones (for instance, it never times
out); this is more evident in the third row, due to the fact that the problems in the fourth
row are simpler (most of them were run within one second).

8 Conclusions and Future Work

In this paper we have proposed a new approach for tackling the problem of Satisfiability
Modulo Theories (SMT) for the combination of theories. Our approach is based on de-
laying the combination, and privileging the interaction between the boolean component
and each of the theories. This approach is much simpler to analyze and implement; each
of the solvers can be implemented and optimized without taking into account the oth-
ers; furthermore, our approach does not rely on the solvers being deduction-complete,
and it nicely encompasses the case of non-convex theories. We have implemented the
approach in the MATHSAT [6] solver for the combination of the theories of Equality
and Uninterpreted Functions (E) and Linear Arithmetic, over the rationals (LA(Rat))
and the integers (LA(Int)), and we have shown its effectiveness experimentally.

2 The tests for CVCLITE on the “random coupled” benchmark (3rd row, 2nd column in Fig. 4)
are not complete, because on nearly all samples CVCLITE produced either a time-out or a
out-of-memory, so that we could not complete on time the whole run on the 2400 formulas of
the benchmark.

348 M. Bozzano et al.

As future work, we plan to further improve MATHSAT by investigating new ad
hoc optimizations for LA(Rat) ∪E and LA(Int) ∪E . In particular, the most evident
limitation of the approach presented in this paper is the upfront introduction of interface
equalities. We believe that this potential bottleneck could be avoided by means of a lazy
approach, which will be the objective of future research. We also want to provide a more
extensive experimental evaluation on additional sets of benchmarks. Finally, we plan to
apply our framework for the verification of RTL circuit designs, where the combination
of LA(Int) and E is essential for representing complex designs.

References

1. W. Ackermann. Solvable Cases of the Decision Problem. North Holland Pub. Co., 1954.
2. A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based Decision Proce-

dure for the Boolean Combination of Difference Constraints. In Proc. SAT’04, 2004.
3. T. Ball, B. Cook, S.K. Lahiri, and L. Zhang. Zapato: Automatic Theorem Proving for Predi-

cate Abstraction Refinement. In CAV 2004, volume 3114 of LNCS. Springer, 2004.
4. C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating Validity

Checker. In CAV 2004, volume 3114 of LNCS. Springer, 2004.
5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P.van Rossum, and R. Se-

bastiani. Efficient Theory Combination via Boolean Search. Technical Report T05-04-02,
ITC-IRST, 2005.

6. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Se-
bastiani. An incremental and Layered Procedure for the Satisfiability of Linear Arithmetic
Logic. In TACAS 2005, volume 3440 of LNCS. Springer, 2005.

7. S. Cotton, E. Asarin, O. Maler, and P. Niebert. Some Progress in Satisfiability Checking for
Difference Logic. In FORMATS/FTRTFT 2004, volume 3253 of LNCS. Springer, 2004.

8. CVC, CVCLITE and SVC. http://verify.stanford.edu/{CVC,CVCL,SVC}.
9. D. Deharbe and S. Ranise. Light-Weight Theorem Proving for Debugging and Verifying

Units of Code. In Proc. SEFM’03. IEEE Computer Society Press, 2003.
10. D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: A Theorem Prover for Program Checking.

Technical Report HPL-2003-148, HP Laboratories, 2003.
11. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonizer and Solver. In

CAV 2001, volume 2102 of LNCS. Springer, 2001.
12. C. Flanagan, R. Joshi, X. Ou, and J.B. Saxe. Theorem Proving using Lazy Proof Explication.

In CAV 2003, volume 2725 of LNCS. Springer, 2003.
13. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast deci-

sion procedures. In CAV 2004, volume 3114 of LNCS. Springer, 2004.
14. ICS. http://www.icansolve.com.
15. D. Kroening, J. Ouaknine, S. A. Seshia, , and O. Strichman. Abstraction-Based Satisfiability

Solving of Presburger Arithmetic. In CAV 2004, volume 3114 of LNCS. Springer, 2004.
16. MATHSAT. http://mathsat.itc.it.
17. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proc. DAC’01, pages 530–535. ACM, 2001.
18. G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Procedures. ACM Trans.

on Programming Languages and Systems, 1(2):245–257, 1979.
19. R. Nieuwenhuis and A. Oliveras. Congruence Closure with Integer Offsets. In LPAR 2003,

number 2850 in LNAI. Springer, 2003.
20. S. Ranise, C. Ringeissen, and D.-K. Tran. Nelson-Oppen, Shostak, and the Extended Can-

onizer: A Family Picture with a Newborn. In ICTAC 2004, volume 3407 of LNCS, 2005.

Efficient Satisfiability Modulo Theories via Delayed Theory Combination 349

21. H. Rueß and N. Shankar. Deconstructing Shostak. In Proc. LICS’01, pages 19–28. IEEE
Computer Society, 2001.

22. S.A. Seshia and R.E. Bryant. Deciding Quantifier-Free Presburger Formulas Using Parame-
terized Solution Bounds. In Proc. LICS’04. IEEE, 2004.

23. S.A. Seshia, S.K. Lahiri, and R.E. Bryant. A Hybrid SAT-Based Decision Procedure for
Separation Logic with Uninterpreted Functions. In DAC 2003. ACM, 2003.

24. N. Shankar and H. Rueß. Combining Shostak Theories. In RTA 2002, volume 2378 of LNCS.
Springer, 2002.

25. O. Strichman. On Solving Presburger and Linear Arithmetic with SAT. In FMCAD 2002,
volume 2517 of LNCS. Springer, 2002.

26. O. Strichman, S. Seshia, and R. Bryant. Deciding separation formulas with SAT. In CAV
2002, volume 2404 of LNCS. Springer, 2002.

27. C. Tinelli and M. Harandi. A New Correctness Proof of the Nelson-Oppen Combination
Procedure. In Proc. FroCos’96. Kluwer Academic Publishers, 1996.

28. TSAT++. http://www.ai.dist.unige.it/Tsat.
29. UCLID. http://www-2.cs.cmu.edu/∼uclid.

	Introduction
	Satisfiability Modulo Theories
	SMT$(T_1 ∪T_2)$ via Nelson-Oppen Integration
	SMT$(T_1 ∪T_2)$ via Delayed Theory Combination
	Delayed Theory Combination in Practice: MATHSAT (E∪LA)
	Related Work
	Experimental Evaluation
	Conclusions and FutureWork
	References

