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Abstract:  This paper has considered the problem of preemptively scheduling a set of independent periodic hard 
real-time tasks in primary-backup based multiprocessor systems. An efficient scheduling algorithm—Task Partition 
based Fault Tolerant Rate-Monotonic (TPFTRM) is proposed which extends RM algorithm to primary-backup based 
multiprocessor to provide fault tolerance. Compared with previous scheduling algorithms in this area, TPFTRM 
abandons active backup copies and only uses passive and overlapping backup copies to maximize the backup 
over-booking and deallocation, thus improves the scheduling performance. Moreover, TPFTRM proposes the task 
partitioning and processors grouping technique, which reduce the scheduling computation time and also make an 
easy way to understand and implement it. Extensive simulations experiments are also carried out based on task sets 
with different parameters. And the simulation result shows a remarkable saving of processors as well as scheduling 
computation time compared with previous algorithms, which proves the feasibility and effectiveness of the proposed 
TPFTRM algorithm. 
Key words:  hard real-time; primary-backup; fault-tolerant; scheduling algorithm; multiprocessor; periodic task 

摘  要: 针对基于主副版本容错的多处理机中独立的、抢占性的硬实时任务,提出了一种高效的调度算法——

TPFTRM(task partition based fault tolerant rate-monotonic)算法.该算法将单机实时 RM 算法扩展到容错多处理机上,
并且调度过程中从不使用主动执行的任务副版本,而仅使用被动执行和主副重叠方式执行的任务副版本,从而最大

限度地利用副版本重叠和分离技术提高了算法调度性能.此外,TPFTRM 根据任务负载不同将任务集合划分成两个

不相交的子集进行分配;还根据处理机调度的任务版本不同,将处理机集合划分成 3 个不相交的子集进行调度,从而

使 TPFTRM 调度算法便于理解、实现以及减少了调度所需要的运行时间.模拟实验对各种具有不同周期和任务负

载的任务集合进行了调度测试.实验结果表明,TPFTRM与目前所知同类算法相比,在调度相同参数的任务集合时不

仅明显减少了调度所需要的处理机数目,还减少了调度所需要的运行时间,从而证实了 TPFTRM 算法的高效性. 
关键词: 硬实时;主副版本;容错;调度算法;多处理机;周期任务 
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1   Introduction 

In recent years, hard real-time systems have been used in many applications which have stringent timing 
constraints, such as defense systems, air-traffic control systems, telecommunications and launch vehicle control. The 
classic RM algorithm[1] is becoming an industry standard because of its simplicity and flexibility for preemptive 
periodic hard real-time scheduling in uniprocessor[2]. However, scheduling algorithms in current hard real-time systems 
require critical tasks be executed correctly and timely even in the presence of processor failures, thus have led to the 
choice of multiprocessors systems as a natural candidate for them[3]. Some algorithms such as RMFF and RMST[4,5] 
generalize RM to multiprocessor systems but none of them provides fault-tolerance. Therefore, many fault-tolerant 
scheduling algorithms[2,6−11] have been proposed to extend RM to multiprocessor and meanwhile ensure that hard 
real-time tasks meet their deadlines before as well as after the occurrence of a processor fault. 

Most of these fault-tolerant scheduling algorithms are based on the Primary-Backup (PB) approach, which is one of 
the most common fault-tolerant approaches in multiprocessors systems. In PB approach, each task has primary and 
backup copies and the copies are scheduled on two different processors[12−14]. In general, PB approach provides a variety 
of schemes and they can be partitioned into three broad classes. In the first class, backup copies are called passive 
backup copies and when a primary copy fails, the passive backup copies are restarted on the backup processor. In the 
second class, backup copies are called active backup copies which run concurrently with the primary copies. In the third 
class, backup copies are called overlapping backup copies and their execution are started concurrently with the primary 
copies but terminated when corresponding primary copies are successfully completed. 

The most important metric for measuring the performance of a fault-tolerant scheduling algorithm in multiprocessor 
is the used processor number. For a given task set, the less processor a fault-tolerant scheduling algorithm requires, the 
better scheduling performance it has. Another metric is the computation time required by allocating tasks to processors, 
although the task allocation happens only once in the scheduling (after tasks are assigned to processors, RM algorithm is 
used to schedule them), the less task allocation computation time a scheduling algorithm requires, the better scalability it 
has. However, according to these two metrics, none of the previous proposed algorithms[2,6−11] have good scheduling 
performance for all the cases when the task set has different upper bound for the task load. Therefore, in this paper, 
we present an efficient scheduling algorithm named Task Partition based Fault-Tolerant Rate-Monotonic (TPFTRM). 
TPFTRM abandons active backup copies and only uses the passive and overlapping backup copies to maximize the 
backup over-booking and deallocation, thus reduces the required processor number. Moreover, TPFTRM proposes 
the task partitioning and processors grouping technique, which reduce the scheduling computation time and also 
make an easy way to understand and implement it. 

2   Related Work 

Scheduling periodic hard real-time tasks on multiprocessor even without fault-tolerance consideration has been 
found to be NP-hard, hence several heuristic algorithms have been proposed. Dhall and Liu firstly proposed 
Rate-Monotonic First-Fit (RMFF) heuristic[4]. Burchard, et al. gave more refined Rate-Monotonic Small Tasks (RMST) 
and Rate-Monotonic General Tasks (RMGT) heuristics[5]. Since RMFF, RMST and RMGT algorithms do not provide 
fault-tolerance, Bertossi, et al. proposed Fault-Tolerant Rate-Monotonic First-Fit (FTRMFF) heuristic, which firstly 
extends RMFF algorithm by combining in the same schedule both active and passive backup copies, thus exploiting 
the advantages of PB fault-tolerant approach[2]. Later, the Efficient Fault-tolerant Rate-Monotonic Best-fit (ERMBF) 
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algorithm is proposed in Ref.[6] which uses the Best-Fit heuristic to improve scheduling performance. S-Priority 
Passive algorithm (S-PR-Pass), Active Resource Reclaiming (ARR) algorithm and Deferred Active Backup-Copy 
based Best-Fit (DABCBF) algorithms were also proposed in Refs.[7,8] which have better scheduling performance 
than FTRMFF and ERMBF. Finally, they were extended to heterogeneous distributed environments and with 
resource constrains in Refs.[9−11]. However, none of these algorithms[2,6−11] has good scheduling performance in all 
the cases when the task set has different upper bound for the task load. S-PR-Pass and DABCBF algorithms have 
better scheduling performance than ARR2 when tasks have light load while ARR2 algorithm has better scheduling 
performance than S-PR-Pass and DABCBF when tasks have heavy load. Moreover, ARR2 algorithm is based on the 
phasing delay technique which has a time offset restriction for the backup copies[7]. Therefore, in this paper, we 
propose TPFTRM algorithm, which does not have any time offset restrictions and also requires little computation time; 
and meanwhile TPFTRM has good scheduling performance as the same as S-PR-Pass when tasks have light load and 
also has the similar scheduling performance as ARR2 when tasks have heavy load. 

3   Problem Formulation 

As for the fault-tolerance model, failure characteristics of the hardware are the following: (1) processors fail in 
a fail-stop manner, which means a processor is either operational or cease functioning; (2) hardware provides fault 
isolation mechanism, that is a faulty processor can not cause incorrect behaviors in a non-faulty processor; (3) the 
failure of a processor is detected by the remaining ones within the closest completion time of a task scheduled on 
the faulty processor[2]; (4) a second processor does not fail before the system recovers from the first failure. 

A periodic task ti is characterized by a pair (Ci,Ti), where Ci is the computation time and Ti is the request (or 
arrival) period. Each request of any task must be completely executed before the next request of the same task and 
the first request of ti occurs at time 0. Wi denotes the worst-case response time of ti. Periodic tasks ti,…,tn are 
independent and preemptive. The ratio Ui is the load (or utilization) of ti, which equals Ci/Ti and U is the load of the 
task set t1,…,tn hence 

1
i

i n
U U

≤ ≤

= ∑ . 

In order to achieve fault tolerance, each task has two copies pi and bi, called primary and backup copies which 
are located on different processors. For the sake of simplicity, it is assumed that each backup copy has the same 
computation time and period parameters as its primary copy. The backup copy has three statues: active, passive and 
overlapping. Oi denotes the length of the computation overlap between pi and bi. Therefore, the status of backup 
copy is determined by the following: 
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All the task copies assigned to the same processor are scheduled by the RM algorithm. Given n periodic 
independent tasks {ti,…,tn}, the fault-tolerant scheduling problem considered in this paper is to find a minimum 
number of processors to ensure each task request can be executed by the end of its period before as well as after the 
occurrence of a fault. 

4   TPFTRM Scheduling Algorithm 

When we allocate task primary and backup copies to processors, there are three questions we have to consider. 
First, how should the algorithm decide the status for the backup copy? Second, what order should task copies follow 
to be assigned to processors? Third, what criteria should be taken for checking the schedulability of task copies? 
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The following sections will address these questions one by one. 

4.1   Task partitioning and status of backup copy 

In TPFTRM, primary copies are firstly partitioned into two groups according to Ui: Big task group B and small 
task group S. Let g(pi) denote the group which pi belongs to, thus 
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The reason to partition primary copies according to Ui is that passive backup copies can be used for all the 
tasks whose Ui≤0.5 while they are not able to be used for the tasks whose Ui>0.5. As shown in Fig.1, there is not 
any length of the computation overlap between pi and bi when Ui≤0.5 while in Fig.2, the length of the computation 
overlap is Oi=2⋅Ci−Ti when Ui>0.5. 

 
 
 
 
 
 

Fig.1  Passive backup is used                   Fig.2  Overlapping backup is used 

Therefore, tasks in different groups have different status of the backup copy. In TPFTRM, the status of backup 
copy is determined by the following: 
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Unlike previous algorithms[2,6−11], TPFTRM algorithm does not use active backup copies. The reason is that active 
backup copy introduces more redundant computation time which has a big impact on the scheduling performance. In 
contrast, passive and overlapping backup copies do not need execute if their primaries execute successfully hence reduce 
the redundant computation time. Moreover, passive or overlapping copies whose primary copies are assigned to 
different processors can be scheduled on the same processor so as to share the same time interval, which called the 
backup overbooking technique[15], has great advantages of saving processors. 

4.2   Processors grouping and assignment of tasks to processors 

Unlike previous algorithms[2,6−11], TPFTRM divides processors into three groups to avoid mixing backup copies 
and primary copies coming from different task groups on the same processor. Therefore, in TPFTRM, processors in the 
first group G1 are only for primary copies coming from S; processors in the second group G2 are only for primary copies 
coming from B; and processors in the third group G3 are only for passive or overlapping backup copies coming from S 
and B. 

The next problem we consider is what order the algorithm should follow to allocate primary and backup copies 
to processors. One approach is called RMFF, which assigns task copies by decreasing RM priorities[2,8−10]. This 
approach simplifies the algorithm since only lower priority tasks are assigned later to the same processor hence time 
intervals for already assigned tasks will remain unchanged. Another approach is called RMST, which assigns task 
copies by the increasing value si, where si=log2Ti−⎣log2Ti⎦

[5,7]. This approach allocates task copies whose periods are 
equal to or multiple on the same processor, thus producing a more compact schedule and requiring fewer processors 
when tasks have light load. 

TPFTRM uses RMST approach to allocate task copies. The first reason is that it has better performance than 
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RMFF in many cases. The second reason is that in TPFTRM, the backup status has already been decided beforehand 
and processors are also partitioned; hence using RMST won’t require much computation time than using RMFF. For 
each task group, when we assign a task, we assign its primary copy before assigning its backup copy. 

Theorem 1. In TPFTRM, if the overlapping part of an overlapping backup copy bi is able to be finished before 
Wi on the processor Pj in the absence of failure, then it is also schedulable on Pj in the presence of a failure occurs 
on Pf (Pf ≠ Pj). 

Proof:  Assume bi’s corresponding primary copy pi is assigned to the processor Pk. It is worth noting that pi is 
the only one task copy located on Pk. (to prove this, assuming there is another task copy pm on Pk besides pi, then pi 
and pm are both from task group B and not able to schedule on Pk because of Ui+Um>1). Firstly, assuming a fault 
occurs on Pk, then Pj can reclaim all the time slots reserved for other passive or overlapping backup copies to 
recovery pi. So if the overlapping part of bi is able to be finished before Wi, then the left unfinished part of bi is also 
able to be finished before Ti. Secondly, assuming a fault occurs on Pf (Pf ≠ Pj and Pf ≠ Pk), then time slots reserved 
for bi can be reclaimed by Pj to execute backup copies which have faulty primary copies. 

In previous algorithms[2,6−11] except S-PR-Pass, to find a processor a task copy can be assigned to, both the 
situations in which no processor fails and any processor fails have to be considered when checking the 
schedulability of primary copies and overlapping backup copies. However, in TPFTRM, both the primary copies and 
overlapping backup copies have only one condition to be checked, therefore, there are only three assignments and 
schedulability testing cases in TPFTRM hence greatly reduces the computation time: 

1) To assign a primary copy pi to a processor Pj, only one condition has to be checked. 
• pi must be schedulable together with all the primary copies already assigned to Pj. 

2) To assign a passive backup copy bi to a processor Pj, assuming its corresponding primary copy pi is 
already assigned to processor Pf (Pf ≠ Pj), then only one condition has to be checked. 
• pi must be schedulable together with all the passive backup copies assigned to Pj such that their 

corresponding primary copies are all assigned to the same processor Pf. 
3) According to theorem 1, to assign an overlapping backup copy bi to a processor Pj, only one condition 

has to be checked. 
• The overlapping part of bi must be schedulable together with the overlapping part of the other 

overlapping backup copies already assigned to Pj. 
If a task copy is not able to be assigned to any of existing processors, then the task copy is assigned to a new 

processor. 

4.3   Schedulability condition in TPFTRM 

The classical Completion Time Test (CTT)[16] gives the following necessary and sufficient schedulability 
criterion for independent periodic tasks: 

Theorem 2. Let periodic tasks τ1,τ2,…,τn be given in priority order and scheduled by a fixed-priority 
algorithm. All periodic requests of τi will meet deadlines if and only if 
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The entire set of tasks τ1,τ2,…,τn is schedulable if and only if 
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max min / / 1

i
k kt Ti n k i

C t T t
< ≤≤ ≤ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ . 

In this section, we extend the CTT for checking the schedulability of task copies in TPFTRM algorithm. Let τi 
be a task copy (either the primary copy pi or the backup copy bi) to be assigned to a processor Pj. primary(Pj), 
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passive(Pj) and overlapping(Pj) represent primary copies, passive backup copies and overlapping backup copies 
assigned to processor Pj. recover(Pj,Pf) represents all the passive backup copies assigned to processor Pj with their 
corresponding primary copies assigned to Pf. 

Theorem 3. (1) Let primary copies p1,p2,…,pn be given in priority order and scheduled by TPFTRM. The 
entire set of primary copies p1,p2,…,pn is schedulable on Pj (Pj∈G1) if and only if: 

0( ) 1
max min / / 1

i ii j
k kt T Cp primary P k i

C t T t
< ≤ −∈ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ . 

(2) A primary copy pi is schedulable on Pj (Pj∈G2) if and only if Pj is the new processor. 
Proof:  In TPFTRM, processors in G1 or G2 only have primary copies allocated on them. Firstly, all the 

primary copies in G1 must be executed completely no later than Ti−Ci to ensure that their passive backup copies 
have enough time to recovery in the case a fault occurs. Secondly, each processor in G2 only has one primary copy 
allocated on it. If two primary copies were assigned to Pj (Pj∈G2), then the requests of one of them would not meet 
deadlines because no scheduling algorithm exits to schedule the task set with U>1. 

Theorem 4. Let passive backup copies b1,b2,…,bn be given in priority order and scheduled by TPFTRM. 
Assuming bi’s corresponding primary copy is already assigned to processor Pf (Pf ≠ Pj), then the entire set of passive 
backup copies b1,b2,…,bn is schedulable on Pj (Pj∈G3) if and only if 

0( , ) 1
max min / / 1

i ii j f
k kt T Wb recover P P k i

C t T t
< ≤ −∈ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ . 

Proof:  Unlike primary copy and active backup copy, the critical instant for a passive copy occurs not only 
when bi and all the task copies with higher priority than bi are released simultaneously, but also when it is the first 
request of bi which must be executed in the limited recovery period, which is shorter than the task period Ti and is at 
least Ti−Wi time units long. Therefore, if bi is schedulable on Pj starting from the critical instant, which represents 
the worst case, then it is also schedulable at any moment when its corresponding primary copy pi fails. 

Theorem 5. Let overlapping backup copies b1,b2,…,bn be given in priority order and scheduled by TPFTRM. 
Assuming bi’s corresponding primary copy is already assigned to processor Pf (Pf ≠ Pj), then the entire set of 
overlapping backup copies b1,b2,…,bn is schedulable on Pj (Pj∈G3) if and only if 

0( ) 1
max min / / 1

ii j
k kt Cb overlapping P k i

O t T t
< ≤∈ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
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Proof:  According to theorem 1, we only need to test the schedulability of bi in absence of the failure. Pj 
(Pj∈G3) has mixed passive and overlapping backup copies. However, the workload of passive backup copies can be 
ignored in absence of the failure because passive backup copies are only executed when a fault occurs. For bi, its 
overlapping part Oi equals 2⋅Ci−Ti and will execute Ti−Ci unfinished part when pi fails, therefore, Oi must be 
finished before Ci, otherwise, when a fault occurs, bi will not meet its deadline Ti. 

4.4   TPFTRM algorithm 

Let P(τi) be the processor to which the task copy τi is assigned. The algorithm is described below: 
1. Partitioning task copies into big task group B and small task group S according to Formula (2). 
2. Set the status for backup copies according to Formula (3). 
3. m represents the number of used processors in G1, v represents the number of used processors in G2, h 

represents the number of used processors in G3. Initialize m, v and h to 0. 
4. If S is empty, go to step 6. Otherwise, let primary copies p1,p2,…,pn (pi∈S) be indexed by the increasing 

value si, where si=log2Ti−⎣log2Ti⎦; set m to 1 and allocate Pm to G1; set h to 1 and allocate ph to G3. 
5. Repeat the following steps for i=1,2,…,n: 
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1) Assign the primary copy pi to the first processor Pj (Pj∈G1) on which the task set pi∪primary(Pj) is 
schedulable by means of the formula given in Theorem 3; if no such a processor exists, set m to 
m+1 and assign pi to Pm, setting P(pi)=Pm and allocate Pm to G1; 

2) Assign passive backup copy bi to the first processor Pj≠P(pi) (Pj∈G3) on which the task set 
bi∪recover(Pj,P(pi)) is schedulable by means of the formula given in Theorem 4; if no such 
processor exists, set h to h+1 and assign bi to ph, setting P(bi)=ph and allocate ph to G3; 

6. If B is not empty, let primary copies p1,p2,…,pk (pi∈B) be indexed by the increasing value si, where 
si=log2Ti−⎣log2Ti⎦; repeat the following steps for i=1,2,…,k: 
1) Set v to v+1 and assign pi to Pv, setting P(pi)=Pv and allocate Pv to G2; 
2) Assign overlapping backup copy bi to the first processor Pj≠P(pi) (Pj∈G3) on which the task set 

bi∪overlapping(Pj) is schedulable by means of the formula given in Theorem 5. If no such 
processor exists, set h to h+1 and assign bi to ph, setting P(bi)=ph and allocate ph to G3; 

7. Return the number m+h+v of processors used and the task assignment found. 

5   Performance Evaluation 

This section presents simulation results for the comparison of our algorithm and previous research. We use the 
simulated method and task set as the same as that in Refs.[2,6−8]. Task sets with 100≤n≤1000 tasks are generated. 
The parameters of each task τi are chosen as follows. The period Ti is an integer uniformly chosen from [1,500], 
while the computation time Ci is an integer uniformly distributed in [1,αTi], where α=max(Ui) is the upper bound 
for the task load. In this simulation, we use three values for α(0<α<1), which is 0.2, 0.5 and 0.8. For the chosen n 
and α, the experiment is repeated 10 times and the average result is computed. 

Let M be the number of processors used for scheduling both primary and backup copies. M/U(M/U>1) is the ratio 
of processor number to task set load. Figure 3 shows the ratio M/U for the experiments executed by FTRMFF, ARR2, 
S-PR-Pass and TPFTRM when α=0.2 while Fig.4 shows the same experiments when α=0.5. As shown in Figs.3 and 4, 
TPFTRM and S-PR-Pass have the smallest M/U hence have the best performance, and as task number increases, their 
advantages of saving processors are more obvious. It is worth noting that when α≤0.5, both TPFTRM and S-PR-Pass 
only use passive backup copies hence have the same performance. 

 
 
 
 
 
 
 
 
 

Fig.3  M/U ratios comparison when α=0.2        Fig.4  M/U ratios comparison when α=0.5 

Figure 5 reports the comparison results when α=0.8. As shown in Fig.5, ARR2 has the smallest M/U hence have 
the best performance. However, compared with ARR2, TPFTRM have the similar small M/U value and in the 
meantime, TPFTRM does not have any time offset restrictions for backup copies. When α>0.5, TPFTRM uses 
overlapping backup copies as well as passive backup copies hence have much better performance than S-PR-Pass which 
only uses passive backup copies. It is observed that TPFTRM always has good scheduling performance in all the cases 
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when the task set has different upper bound for the task load. 
All the algorithms were written in Java and ran on a Windows 2000 PC with 1GB memory and Intel Pentium 4 

2.26GHz. Figure 6 shows the total running time required by each algorithm in this simulation. As shown in Fig.6, 
TPFTRM and SP-PR-Pass only take 5% of the running time required by FTRMFF and ARR2. We also get the 
similar simulation results on other different PCs hence the conclusions are not dependent on a particular PC 
platform. 

 
 
 
 
 
 
 
 
 

Fig.5  M/U ratios comparison when α=0.8       Fig.6  Computation time comparison 

6   Conclusion 

In this paper, we propose TPFTRM algorithm which extends Rate-Monotonic algorithm to tolerate failures 
based on the primary-backup approach. TPFTRM algorithm abandons active backup copies and only uses passive 
and overlapping backup copies to maximize the backup over-booking and deallocation, thus improves the 
scheduling performance. Moreover, another contribution of TPFTRM algorithm is that it partitions the task set into 
two groups according to their load and partitions processors into three groups to avoid mixing backup copies and 
primary copies coming from different task groups, which reduce the scheduling computation time and make an easy 
way to understand and implement it. Simulation results also show a remarkable saving of processors as well as 
scheduling computation time compared with previous algorithms. However, this paper has assumed that tasks are all 
independent. Further research includes scheduling a set of tasks subject to precedence constraints or resource 
requirements[11]. Also, further research includes looking for some new heuristics strategies for the task assignment 
and extending to heterogeneous distributed systems. 
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