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Abstract

We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple

photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum

electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The

gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a

superconducting qubit. This scheme is simple because the gate implementation requires only one

step of operation. In addition, this scheme is quite general because the two logic states of each

photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |ϕ〉 (e.g., a

Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal

or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: Because

only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher

energy levels of the coupler is avoided; the gate operation time does not depend on the number of

qubits; and the gate is implemented deterministically because no measurement is applied. As an

example, we numerically analyze the circuit-QED based experimental feasibility of implementing

a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state.

The scheme can be applied to accomplish the same task in a wide range of physical system, which

consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural

or artificial atom.
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I. INTRODUCTION AND MOTIVATION

Multiqubit gates (i.e., n-qubit gates with n ≥ 3 ) are essential elements in quantum net-

works, quantum simulation, and quantum information processing (QIP). Generally speaking,

there are two types of significant multiqubit gates, which have drawn much attention during

the past years. One is a multiplex-controlled NOT or phase gate with multiple qubits simul-

taneously controlling one target qubit (Fig. 1). The other is a multi-target-qubit controlled

NOT or phase gate with one qubit simultaneously controlling multiple target qubits (Fig.

2). It is well known that these two types of multiqubit gates are of significance in QIP. For

instance, they have applications in quantum algorithms [1-3], quantum Fourier transform,

error correction [4-6], quantum cloning [7], and entanglement preparation [8].

A multiqubit gate can in principle be decomposed into a series of single-qubit gates and

two-qubit gates. However, with an increasing number of qubits, the required number of

single- and two-qubit quantum gates increases drastically [9-12]. This means that based on

the conventional gate decomposition [9-12], the procedure for implementing a multiqubit

gate is complex and the gate is difficult to realize experimentally. Hence, it is worth looking

for efficient methods to directly implement multiqubit gates.

The focus of this work is on the implementation of the first type of multiqubit gate. A

multiplex-controlled NOT gate (Fig.1a), with multiple qubits simultaneously controlling one

target qubit, is often called as Toffoli gate [13]. For convenience, a multiplex-controlled phase

gate (Fig.1b), with multiple qubits simultaneously controlling one target qubit, is denoted as

a MCP gate throughout this paper. Over the past years, a number of theoretical proposals

have been put forward for directly realizing a Toffoli gate or a MCP gate using matter

qubits, such as trapped ionic qubits [14-16], quantum-dot qubits [17], atomic qubits [18-25],

NV-center qubits [26,27], and superconducting qubits [28-31]. Experimentally, a three-qubit

Toffoli gate or a three-qubit MCP gate of matter qubits was demonstrated in NMR quantum

systems [32], superconducting qubits [33,34], or atomic systems [35]. Moreover, a four-qubit

Toffoli gate was experimentally implemented with superconducting qubits [34]. On the

other hand, theoretical proposals for realizing a Toffoli gate or MCP gate with photons

have been presented by using linear optical setups [36-40] and linear optical devices plus

auxiliary systems [41-43], and a three-qubit Toffoli gate of photons has been experimentally

demonstrated in a linear-optical setup [44,45].
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FIG. 1: (color online) (a) Circuit of a multiplex-controlled NOT gate (Toffoli gate) with n − 1

control qubits (1, 2, ..., n − 1) simultaneously controlling a target qubit n. When the n − 1 qubits

(on the filled circles) are all in the state |1〉, the state at ⊕ for the target qubit is bit flipped as

|0〉 → |1〉 and |1〉 → |0〉. (b) Circuit of a multiplex-controlled phase gate (MCP gate) with n − 1

control qubits (1, 2, ..., n − 1) simultaneously controlling a target qubit n. When the n − 1 qubits

(on the filled circles) are all in the state |1〉, the state |1〉 at Z for the target qubit is phase flipped

as |1〉 → − |1〉 while nothing happens to the state |0〉 at Z for the target qubit. (c) Circuit for

constructing a Toffoli gate as shown in (a), by using a MCP gate plus a single-qubit Hadamard

gate on the target qubit before and after the MCP gate. Here, H represents a Hadamard gate

described by |0〉 → (1/
√
2) (|0〉+ |1〉) while |1〉 → (1/

√
2) (|0〉 − |1〉).
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FIG. 2: (color online) (a) Circuit of a multi-target-qubit controlled NOT gate with one control

qubit (qubit 1) simultaneously controlling n − 1 target qubits (2, 3, ..., n). If the control qubit

(on the filled circle) is in the state |1〉, then the state at ⊕ for each target qubit is bit flipped as

|0〉 → |1〉 and |1〉 → |0〉. (b) Circuit of a multi-target-qubit controlled phase gate with one control

qubit (qubit 1) simultaneously controlling n− 1 target qubits (2, 3, ..., n). When the control qubit

(on the filled circle) is in the state |1〉, the state |1〉 at Z for each target qubit is phase flipped as

|1〉 → − |1〉 but nothing happens to the state |0〉 at Z for each target qubit.
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Quite different from [14-45], schemes have also been proposed to directly realize an n-qubit

Toffoli or MCP gate of photonic qubits by a cavity QED system [46] or a circuit QED system

[47-49]. We note that the previous works [46-49] only apply to the case that the two logic

states of each photonic qubit are encoded with a vacuum state and a single-photon state. In

addition, we note that the Toffoli or MCP gates discussed in Refs. [46-49] were implemented

essentially through step by step operations or by using a multi-level natural or artificial atom

to couple multiple cavities. Generally speaking, decoherence from higher energy levels could

be a severe issue when a multi-level quantum system is employed in the gate realization; and

step-by-step operations are not desirable in experiments, which increases the experimental

complexity and prolongs the operation time. For these reasons, in the following we will

propose a simple and more general scheme for the direct implementation of a MCP gate

with photonic qubits based on circuit QED. The circuit QED is analogue of cavity QED, it

consists of superconducting (SC) qubits and microwave resonators or cavities, and has been

considered as one of the most promising candidates for QIP [50-58]. In recent years, much

attention has been paid to the QIP with microwave photons, because microwave photons

can have lifetimes comparable to that of SC qubits [59].

As shown below, the present work works out for a more general case, i.e., the two logic

states of each photonic qubit are encoded with a vacuum state and an arbitrary non-vacuum

state |ϕ〉 (e.g., a single-photon state, a Fock state, a superposition of Fock states, a cat

state, or a coherent state, etc.). The state |ϕ〉 here is orthogonal or quasi-orthogonal to

the vacuum state. Moreover, the present work requires only a single-step operation and a

two-level coupler (a SC qubit) to couple n cavities, thus decoherence from higher energy

levels is avoided in our gate realization and the gate implementation procedure is greatly

simplified when compared to [46-49]. To the best of our knowledge, based on cavity QED

or circuit QED, how to realize a MCP gate of photonic qubits by using a two-level coupler

and through only a single-step operation has not been reported yet.

We stress that this work is on the implementation of a MCP gate with multiple control

qubits simultaneously controlling one target qubit (Fig. 1b), thus it is obviously different

from the previous works (e.g., [20,60-68]) on the realization of a multi-target-qubit gate with

one control qubit simultaneously controlling multiple target qubits (Fig. 2).

This paper is organized as follows. In Sec. II, we give a brief introduction to the n-qubit

MCP gate and the n-qubit Toffoli gate. In Sec. III, we explicitly show how to realize an n-
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qubit MCP gate with n photonic qubits each encoded via a vacuum state and a non-vacuum

state. In Sec. IV, we discuss the orthogonality required by the qubit encoding. In Sec.

V, we give a discussion on the circuit-QED based experimental feasibility of implementing

a three-qubit MCP gate with each photonic qubit encoded via a vacuum state and a cat

state, by using three one-dimensional (1D) microwave cavities coupled to a SC flux qubit.

A concluding summary is given in Sec. VI.

II. n-QUBIT MCP GATE AND TOFFOLI GATE

For n qubits, there exist 2n computational basis states, which form a set of complete

orthogonal bases in a 2n-dimensional Hilbert space of the n qubits. An n-qubit computa-

tional basis state is denoted as |i1i2...in〉, where subscript l represents qubit l, and il ∈ {0, 1}
(l = 1, 2, ..., n). The n-qubit MCP gate considered in this work (Fig. 1b) is described as

follows:

(i) When the n− 1 control qubits (say the first n− 1 qubits) are all in the state |1〉, the
state |1〉 of the target qubit (the last qubit) is phase flipped as |1〉 → − |1〉 (i.e., one has the
state transformation |11...1〉 → − |11...1〉 for the n qubits), while the state |0〉 of the target

qubit remains unchanged.

(ii) When even one of the n − 1 control qubits is not in the state |1〉 , nothing happens

to both states |0〉 and |1〉 of the target qubit.

According to the description here, the n-qubit MCP gate can be characterized by the

following state transformation

|11...1〉 → − |11...1〉 ,

|i1i2...in〉 → |i1i2...in〉 , for |i1i2...in〉 6= |11...1〉 , (1)

which shows that after the MCP gate, the computational basis state |11...1〉 of the n qubits

changes to − |11...1〉 , while nothing happens to all other 2n − 1 computational basis states

of the n qubits.

The n-qubit Toffoli gate (Fig. 1a) is described by the following state transformation:

|11...1〉12...n−1 |0〉n → |11...1〉12...n−1 |1〉n ,

|11...1〉12...n−1 |1〉n → |11...1〉12...n−1 |0〉n , (2)
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FIG. 3: (color online) (a) Diagram of n cavities coupled to a two-level coupler (the circle A in the

middle). Here, the coupler is a two-level SC qubit, which is capacitively or inductively coupled

to each cavity. Each square represents a cavity, which can be a one- or three-dimensional cavity.

(b) Illustration of n cavities (1, 2, ..., n) and a classical pulse dispersively coupled to the |g〉 ↔ |e〉

transition of the coupler.

where the subscripts 1, 2, ..., n represent the n qubits. Equation (2) implies that when the

n−1 control qubits (the first n−1 qubits) are all in the state |1〉 , a bit flip (i.e., |0〉 → |1〉 and
|1〉 → |0〉) happens to the states |0〉 and |1〉 of the target qubit (the last qubit). However,

when even one of the n − 1 control qubits is not in the state |1〉 , the states |0〉 and |1〉 of

the target qubit remain unchanged.

Since a Toffoli gate can be constructed with a MCP gate (Fig. 1c), in the following we

will mainly show how to implement the MCP gate (1) using photonic qubits based on circuit

QED.

III. IMPLEMENTATION OF AN n-QUBIT MCP GATE WITH PHOTONIC

QUBITS

Let us consider a system consisting of n cavities (1, 2, ..., n) coupled to a two-level coupler

(Fig. 3a). The coupler here is a SC qubit with two levels |g〉 and |e〉 (Fig. 3b). Adjust the

level spacings of the coupler such that cavity j (j = 1, 2, ..., n) is dispersively coupled to

the |g〉 ↔ |e〉 transition of the coupler, with coupling constant gj and detuning ∆j (Fig. 3b).

Note that for the coupler being a SC qubit, the level spacings can be rapidly (within 1 − 3

ns) adjusted through changing the external control parameters (e.g., magnetic flux applied
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to the superconducting loop of a SC phase, transmon [69], Xmon [70], or flux qubit [71]).

In addition, a classical pulse with frequency ωp and initial phase φ is applied to the coupler.

The pulse is dispersively coupled to the |g〉 ↔ |e〉 transition (Fig. 3b). In the interaction

picture and after making a rotating-wave approximation, the Hamiltonian of the system is

given by

H =
n
∑

j=1

gje
i∆jtâj |e〉 〈g|+ Ωpe

i[(ωeg−ωp)t−φ] |e〉 〈g|+ h.c., (3)

where âj is the photon annihilation operator of cavity j, Ωp is the Rabi frequency of the

pulse, and ∆j = ωeg − ωcj (Fig. 3b). Here, ωeg is the |g〉 ↔ |e〉 transition frequency of the

coupler, while ωcj is the frequency of cavity j (j = 1, 2, ..., n).

For the dispersive coupling |∆j | ≫ gj (large detuning), the energy exchange between cav-

ity j and the coupler can be neglected. Under the condition |∆j −∆k| /
(∣

∣∆−1
j

∣

∣+
∣

∣∆−1
k

∣

∣

)

≫
gjgk (where j, k ∈ {1, 2, ...n}, j 6= k), the interaction between the cavities, induced by the

coupler, is negligible. In addition, assume |∆j| ≫ Ωp so that the stark-shift effect of the cou-

pler induced by the pulse is negligible. Under these considerations, based on the Hamiltonian

(3), one can obtain the following effective Hamiltonian [72,73]

He =
n
∑

j=1

λj
(

â+j âj + 1/2
)

σz + Ωpe
i[(ωeg−ωp)t−φ] |e〉 〈g|+ h.c., (4)

where λj = g2j/∆j and σz = |e〉 〈e| − |g〉 〈g| . In a rotating frame under the Hamiltonian

H0 =
n
∑

j=1

λj
(

â+j âj + 1/2
)

σz and by choosing ωp = ωeg +
∑n

j=1 λj = ωeg +
∑n

j=1 g
2
j/∆j , it

follows from the Hamiltonian (4)

He = Ωpe
−iφei2

∑n
j=1 λj â

+

j âjt |e〉 〈g|+ h.c. (5)

For the gate purpose, we consider that each cavity is either in a vacuum state |0〉 or an
arbitrary non-vacuum state

|ϕ〉 =
∞
∑

m=0

cm |m〉 , (6)

where |m〉 is an m-photon Fock state. When the n cavities are in the vacuum state |00...0〉 ,
the Hamiltonian (5) reduces to Heff = Ωpe

−iφ |e〉 〈g|+ h.c., which rotates the coupler’s state

as follows

|g〉 |00...0〉 →
(

cosΩpt |g〉 − ie−iφ sinΩpt |e〉
)

|00...0〉 . (7)

On the other hand, when the n cavities are not in the vacuum state, if the Rabi frequency

Ωp of the driving pulse is much smaller than 2 |λj|nj (i.e., Ωp ≪ 2 |λj |nj), the coupler’s

7



state is not changed by the driving pulse due to the large detuning [74]. Here, nj is the

average photon number of cavity j (j = 1, 2, ..., n). In this sense, one has

|g〉 |l1l2...ln〉 → |g〉 |l1l2...ln〉 , (8)

where subscript j represents cavity j, |l1l2...ln〉 is an abbreviation of the product state |l1〉
|l2〉 ... |ln〉 of n cavities, and |l1l2...ln〉 6= |00...0〉 (i.e., the n cavities are not in the vacuum

state). Here, |lj〉 ∈ {|0〉 , |ϕ〉} (j = 1, 2, ..., n), which is the state of cavity j.

By applying a unitary operation U = e−iH0t to return to the original interaction picture,

one has the following state transformation according to Eqs. (7) and (8)

|g〉 |00...0〉 →
(

ei
∑n

j=1 λjt/2 cosΩpt |g〉 − ie−iφe−i
∑n

j=1 λjt/2 sin Ωpt |e〉
)

|00...0〉 , (9)

|g〉 |l1l2...ln〉 → ei
∑n

j=1
λjt/2ei

∑n
j=1

λj â
+

j âjt |g〉 |l1l2...ln〉 . (10)

In the following, we set |λj | = λ (j = 1, 2, ..., n). If the coupler-cavity interaction time is

chosen such that λt = 2kπ and Ωpt = sπ (k is a positive integer while s is a positive odd

number), one has from Eqs. (9) and (10)

|g〉 |00...0〉 → ei
∑n

j=1
λjt/2 (− |g〉 |00...0〉) ,

|g〉 |l1l2...ln〉 → ei
∑n

j=1 λjt/2 |g〉 ei
∑n

j=1
±2kπâ+j âj |l1l2...ln〉 , (11)

where we take 2kπ for λj > 0 but −2kπ for λj < 0. One can verify that the following equality

holds

ei
∑n

j=1
±2kπâ+j âj |l1l2...ln〉 = |l1l2...ln〉 . (12)

To see Eq. (12) clearly, let us consider a three-cavity case (i.e., n = 3). Because of |lj〉
∈ {|0〉 , |ϕ〉} (j = 1, 2, 3), the product state |l1l2l3〉 of the three cavities is |00ϕ〉 , |0ϕ0〉, |0ϕϕ〉,

8



|ϕ00〉, |ϕ0ϕ〉, |ϕϕ0〉, or |ϕϕϕ〉. By applying ei
∑3

j=1 ±2kπâ+j âj to these states, we have

ei
∑

3
j=1

±2kπâ+j âj |00ϕ〉 = |00〉
∞
∑

m=0

cme
±i2mkπ |m〉 = |00ϕ〉 ,

ei
∑

3
j=1

±2kπâ+j âj |0ϕ0〉 = |0〉
∞
∑

m=0

cme
±i2mkπ |m〉 |0〉 = |0ϕ0〉 ,

ei
∑3

j=1 ±2kπâ+j âj |0ϕϕ〉 = |0〉
∞
∑

m=0

cme
±i2mkπ |m〉

∞
∑

m=0

cme
±i2mkπ |m〉 = |0ϕϕ〉 ,

ei
∑3

j=1
±2kπâ+

j
âj |ϕ00〉 =

∞
∑

m=0

cme
±i2mkπ |m〉 |0〉 |0〉 = |ϕ00〉 ,

ei
∑

3
j=1

±2kπâ+j âj |ϕ0ϕ〉 =

∞
∑

m=0

cme
±i2mkπ |m〉 |0〉

∞
∑

m=0

cme
±i2mkπ |m〉 = |ϕ0ϕ〉 ,

ei
∑

3
j=1

±2kπâ+j âj |ϕϕ0〉 =

∞
∑

m=0

cme
±i2mkπ |m〉

∞
∑

m=0

cme
±i2mkπ |m〉 |0〉 = |ϕϕ0〉 ,

ei
∑

3
j=1

±2kπâ+j âj |ϕϕϕ〉 =
∞
∑

m=0

cme
±i2mkπ |m〉

∞
∑

m=0

cme
±i2mkπ |m〉

∞
∑

m=0

cme
±i2mkπ |m〉

= |ϕϕϕ〉 , (13)

where we have used |ϕ〉 =
∞
∑

m=0

cm |m〉 (see Eq. (6)) and applied e±i2mkπ = 1. Obviously, the

state transformations given in Eq. (13) can be summarized as Eq. (12) for n = 3. Following

the same derivation as shown in Eq. (13), one can easily verify that Eq. (12) also holds for

the case of n > 3.

According to Eq. (12), we have from Eq. (11)

|g〉 |00...0〉 → ei
∑n

j=1
λjt/2 (− |g〉 |00...0〉) ,

|g〉 |l1l2...ln〉 → ei
∑n

j=1
λjt/2 |g〉 |l1l2...ln〉 , (14)

After dropping off the common phase factor ei
∑n

j=1 λjt/2, it follows from Eq. (14)

|00...0〉 |g〉 → − |00...0〉 |g〉 ,

|l1l2...ln〉 |g〉 → |l1l2...ln〉 |g〉 , (15)

where |l1l2...ln〉 6= |00...0〉 .
Let us now consider n photonic qubits (1, 2, ..., n). Each photonic qubit is encoded as

follows. Namely, the logic state |1〉L of photonic qubit j is represented by the vacuum state

|0〉 of cavity j, while the logic state |0〉L of photonic qubit j is represented by the non-

vacuum state |ϕ〉 of cavity j (j = 1, 2, ..., n). With this encoding, the state |00...0〉 of the n
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cavities corresponds to the computational basis state |11...1〉 of the n photonic qubits, and

the state |l1l2...ln〉 of the n cavities corresponds to the computational basis state |i1i2...in〉
of the n photonic qubits (ij ∈ {0, 1}). Note that we have |i1i2...in〉 6= |11...1〉 because of

|l1l2...ln〉 6= |00...0〉 (see the above). Thus, from the state transformation of the n cavities in

Eq. (15), one can obtain the following state transformation for the n photonic qubits

|11...1〉 → − |11...1〉 ,

|i1i2...in〉 → |i1i2...in〉 , for |i1i2...in〉 6= |11...1〉 . (16)

where subscripts (1, 2, ..., n) represent the n photonic qubits 1, 2, ..., and n, respectively.

Note that the state transformation (16) is identical to that given in Eq. (1). Hence, an n-

qubit MCP gate described by Eq. (1) is implemented after the above operation. In addition,

one can see from Eq. (15) that the coupler returns to its original ground state after the

operation.

Before ending this section, some points may need to be addressed here:

(a) In above we have set |λj | = λ (j = 1, 2, ..., n), which turns out into

g21/ |∆1| = g22/ |∆2| = ... = g2n/ |∆n| . (17)

This condition can be readily achieved by carefully selecting the detunings ∆1,∆2, ...,∆n

via prior adjustment of the cavity frequencies due to ∆j = ωeg − ωcj (j = 1, 2, ..., n ).

(b) In above we have set

λt = 2kπ, Ωpt = sπ, (18)

which results in

Ωp =
s

2k
λ. (19)

The condition (19) can be easily satisfied by adjusting the Rabi frequency Ωp of the pulse

(e.g., through varying the pulse intensity).

(c) As mentioned above, the Hamiltonian (3) was constructed by adjusting the level

spacings of the coupler. However, we should point out that adjusting the level spacings of

the coupler is unnecessary. Alternatively, one can obtain the Hamiltonian (3) by tuning the

frequency of each cavity. Note that the frequency of a superconducting microwave cavity or

resonator can be rapidly tuned within a few nanoseconds [75,76].

(d) The single-step implementation of the n-qubit MCP gate here can significantly sim-

plify the realization of an n-qubit Toffoli gate (Fig. 1a). This is because the n-qubit
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Toffoli gate can be constructed by combining the n-qubit MCP gate with two single-qubit

Hadamard gates [13,28], which are performed on the target qubit before and after the n

-qubit MCP gate respectively (Fig.1c). However, using the conventional gate-constructing

technique to construct a Toffoli gate, the required number of single- and two-qubit quantum

gates increases drastically with an increasing number of qubits [9-12].

(e) As shown above, the n-qubit MCP gate is realized through a single step of operation

essentially described by the effective Hamiltonian (5), which is derived from the original

Hamiltonian (3). In addition, neither measurement on the state of cavities nor measurement

on the state of the coupler is needed.

IV. ENCODING AND ORTHOGONALITY

In the above, the two logic states of each photonic qubit are encoded with a vacuum

state |0〉 and an arbitrary non-vacuum state |ϕ〉. We now give a brief discussion on the

orthogonality required by the qubit encoding. In other words, to have the encoding effective,

the orthogonality or quasi-orthogonality between the vacuum state |0〉 and the non-vacuum

state |ϕ〉 needs to hold, i.e.,

〈0| ϕ〉 ≃ 0. (20)

To name a few, we will provide some encodings for which the condition (20) applies:

(i) The two logic states of each photonic qubit are encoded with a vacuum state |0〉 and
a Fock state |m〉 with m photons (i.e., |ϕ〉 = |m〉). For this encoding, one has 〈0| ϕ〉 = 0.

(ii) The two logic states of each photonic qubit are encoded with a vacuum state |0〉 and
a superposition of Fock states (e.g., |ϕ〉 = 1√

2
(|1〉+ |2〉) , 1√

n
(|1〉+ |2〉+ ...+ |n〉) , etc.). For

this encoding, one has 〈0| ϕ〉 = 0.

(iii) The two logic states of each photonic qubit are encoded with a vacuum state |0〉 and
a Schrödinger cat state (e.g., |ϕ〉 = N (|α〉 − |−α〉) , where |±α〉 are coherent states and N
is a normalization factor). For this encoding, one has 〈0| ϕ〉 = 0. It is noted that the cat-

state encoding, consisting of superpositions of coherent states, is protected against photon

loss and dephasing errors [77,78], and quantum computing based on cat-state encoding has

recently attracted much attention [68,79–81].

(iv) The two logic states of each photonic qubit are encoded with a vacuum state |0〉 and
a coherent state |α〉 with a large enough α. One can check 〈0| α〉 = exp

(

− |α|2 /2
)

≈ 0 for
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FIG. 4: (color online) Diagram of three 1D microwave cavities capacitively coupled to a supercon-

ducting flux qubit (FQ). Each cavity here is a one-dimensional transmission line resonator. The

flux qubit consists of three Josephson junctions and a superconducting loop.

a large enough α.

(v) The two logic states of each photonic qubit are encoded with a vacuum state |0〉 and
a multi-component Schrödinger cat state (e.g., |ϕ〉 = N (|α〉 − |−α〉+ |iα〉 − |−iα〉) , where
|±α〉 and |±iα〉 are coherent states and N is a normalization factor). For this encoding, one

has 〈0| ϕ〉 = 0.

(vi) The two logic states of each photonic qubit are encoded with a vacuum state |0〉 and
a squeezed vacuum state |ξ〉 with a large enough squeezed parameter r. Here, ξ = reiθ. One

can verify 〈0| ξ〉 =
√

2/ (er + e−r) ≈ 0 for a large enough r.

V. POSSIBLE EXPERIMENTAL FEASIBILITY

In the above, we have considered a two-level SC qubit as the coupler to couple multiple

cavities. The SC qubit could be a SC phase, flux, transmon, or Xmon qubit, etc. As an

example, we now give a discussion on the experimental feasibility of realizing a three-qubit

MCP gate based on a circuit-QED system, which consists of three 1D microwave cavities

(1,2,3) coupled to a SC flux qubit (Fig. 4). In this example, we consider that the two logic

states |0〉L and |1〉L of each photonic qubit are encoded with a cat state N (|α〉 − |−α〉) and
a vacuum state. In this case, we have

|ϕ〉 = N (|α〉 − |−α〉) , (21)

12



FIG. 5: (color online) Illustration of three cavities (1,2,3) and a microwave pulse dispersively

coupled to the |g〉 ↔ |e〉 transition of the flux qubit, as well as the unwanted couplings of the three

cavities and the pulse with the |e〉 ↔ |f〉 transition of the flux qubit. For a flux qubit, the level

spacing between the upper two levels is larger than that between the two lowest levels.

with N =1/
√

2 (1 + e−2|α|2). The three photonic qubits (1,2,3) involved in the gate corre-

spond to three microwave cavities (1,2,3), respectively.

In reality, we need to consider the effect of the second excited level |f〉 of the flux qubit

and the inter-cavity crosstalk on the gate operation. Thus, we modify the Hamiltonian (3)

as H ′ = H + δH. Here, H is the Hamiltonian (3) given above (with n = 3), and δH is given

by

δH =

(

3
∑

j=1

g′je
i∆′

jtâj |f〉 〈e|+ h.c.

)

+
(

Ω′
pe

i[(ωfe−ωp)t−φ] |f〉 〈e|+ h.c.
)

+
(

g12e
i∆12 â+1 â2 + g23e

i∆23 â+2 â3 + g13e
i∆13 â+1 â3 + h.c.

)

, (22)

where the terms in the first bracket represent the unwanted coupling of the three cavities with

the |e〉 ↔ |f〉 transition with coupling constant g′j and detuning ∆′
j = ωfe − ωcj (j = 1, 2, 3)

(Fig. 5), the terms in the second bracket represent the unwanted coupling between the pulse

and the |e〉 ↔ |f〉 transition with Rabi frequency Ω′
p (Fig. 5), while the terms in the last

bracket represent the inter-cavity crosstalk with the crosstalk strength gkl and frequency

detuning ∆kl = ωck −ωcl between the two cavities k and l. Here, kl ∈ {12, 23, 13} . Note that

13



the coupling of the cavities and the pulse with the |g〉 ↔ |f〉 transition is negligible because

of ωeg, ωfe ≪ ωfg (Fig. 5). Here, ωfe (ωfg) is the |e〉 ↔ |f〉 (|g〉 ↔ |f〉) transition frequency

of the qubit.

After considering the system dissipation and dephasing, the dynamics of the lossy system

is determined by the master equation

dρ

dt
= −i [H ′, ρ] +

3
∑

j=1

κjL [âj ]

+γegL
[

σ−
eg

]

+ γfeL
[

σ−
fe

]

+ γfgL
[

σ−
fg

]

+γe,ϕ (σeeρσee − σeeρ/2− ρσee/2)

+γf,ϕ (σffρσff − σffρ/2− ρσff/2) , (23)

where ρ is the density matrix of the whole system; H ′ is the modified Hamiltonian given

above; L [ξ] = ξρξ+−ξ+ξρ/2−ρξ+ξ/2 (with ξ = âj , σ
−
eg, σ

−
fe, σ

−
fg), σ

−
eg = |g〉 〈e| , σ−

fe = |e〉 〈f | ,
σ−
fg = |g〉 〈f | , σee = |e〉 〈e|, and σff = |f〉 〈f | ; γe,ϕ (γf,ϕ) is the dephasing rate of the level

|e〉 (|f〉); γeg is the |e〉 → |g〉 energy relaxation rate of the level |e〉; γfe (γfg) is the |f〉 → |e〉
(|f〉 → |g〉) energy relaxation rate of the level |f〉 of the qubit; while κj is the decay rate of

cavity j (j = 1, 2, 3).

The fidelity of the whole operation is given by F =
√

〈ψid| ρ |ψid〉, where |ψid〉 is the

ideal output state obtained under the theoretical model, while ρ is the final density matrix

of the whole system (i.e., the three cavities and the flux qubit) obtained by numerically

solving the master equation. As an example, let us consider an input state of the whole

system 1
2
√
2

∑ |l1l2l3〉 ⊗ |g〉 , where |lj〉 ∈ {|0〉 , |ϕ〉} (j = 1, 2, 3), with |ϕ〉 given in Eq.

(21). Thus, according to Eq. (15), the ideal output state of the whole system is |ψid〉 =

1
2
√
2

(

∑

l1,l2,l3 6=0 |l1l2l3〉 − |000〉
)

⊗ |g〉 after applying a three-qubit MCP gate.

For a superconducting flux qubit, the transition frequency between adjacent energy levels

can be 1 to 20 GHz [82-84]. As an example, consider the parameters listed in Table 1, which

are used in our numerical simulations. The coupling constants g2 and g3 are calculated

according to Eq. (17). In addition, Ωp is calculated for s = 1 and k = 2 according to

Eq. (19). The pulse frequency ωp is calculated based on ωp = ωeg +
∑3

j=1 g
2
j/∆j. The dipole

matrix elements between any two of the three levels |g〉, |e〉, and |f〉 can be made to be on

the same order of magnitude via properly designing the flux qubit [85]. Thus, we choose

Ω′
p ∼ Ωp and g

′
j ∼ gj (j = 1, 2, 3) for simplicity. In addition, we consider gkl = 0.01gmax, with

14



ωeg/2π = 6.5GHz ωfe/2π = 13.5GHz ωfg/2π = 20.0GHz

ωc1/2π = 4.5GHz ωc2/2π = 3.72GHz ωc3/2π = 3.0GHz

△1/2π = 2.0GHz △2/2π = 2.78GHz △3/2π = 3.5GHz

△′
1/2π = 9.0GHz △′

2/2π = 9.78GHz △′
3/2π = 10.5GHz

△12/2π = 0.78GHz △23/2π = 0.72GHz △13/2π = 1.5GHz

g1/2π = 0.123GHz g2/2π = 0.145GHz g3/2π = 0.163GHz

g′1/2π = 0.123GHz g′2/2π = 0.145GHz g′3/2π = 0.163GHz

g12/2π = 1.63MHz g23/2π = 1.63MHz g13/2π = 1.63MHz

Ωp/2π = 1.89MHz Ω′
p/2π = 1.89MHz ωp/2π = 6.523GHz

TABLE I: Parameters used in the numerical simulation. ωeg, ωfe, and ωfg are the |g〉 ↔ |e〉 ,

|e〉 ↔ |f〉 , and |g〉 ↔ |f〉 transition frequencies of the flux qubit, respectively. ωcj is the frequency

of cavity j (j = 1, 2, 3). ∆j (∆′
j) is the detuning between the frequency of cavity j and the

|g〉 ↔ |e〉 (|e〉 ↔ |f〉) transition frequency of the flux qubit (j = 1, 2, 3). ∆kl is the frequency

detuning between the two cavities k and l (kl = 12, 23, 13). gj (g′j) is the coupling constant

between cavity j and the |g〉 ↔ |e〉 (|e〉 ↔ |f〉) transition of the flux qubit. gkl is the crosstalk

strength between the two cavities k and l (kl = 12, 23, 13). Ωp (Ω′
p) is the Rabi frequency of the

pulse associated with the |g〉 ↔ |e〉 (|e〉 ↔ |f〉) transition of the flux qubit. ωp is the frequency of

the pulse.

gmax = max{g1, g2, g3} (kl = 12, 23, 13). Other parameters used in the numerical simulations

are: (i) γ−1
eg = 2T , γ−1

fe = 2T , γ−1
fg = T , (ii) γ−1

e,ϕ = γ−1
f,ϕ = T , (iii) κj = κ (j = 1, 2, 3 ), (iv)

α = 1.0.

By solving the master equation (23), we numerically plot Fig. 6 to illustrate the fidelity

versus κ−1 for T = 10, 20, 50 µs. Figure 6 shows that when the decay rate of the cavities

increases, the gate fidelity quickly drops. This is because the present work focuses on the

gate with photonic qubits and thus photons are always populated in each cavity during

the gate realization. Nevertheless, one can see from Fig. 6 that for κ−1 ≥ 35 µs and T

≥ 20 µs, the fidelity exceeds 96%. The imperfect fidelity is also caused by the unwanted
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FIG. 6: (Color online) Fidelity versus κ−1. Other parameters used in the numerical simulation are

referred to the text and Table 1.
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FIG. 7: (Color online) Fidelity versus ∆1/g1. The figure is plotted by setting ∆2 = ∆1 + 10g1,

∆3 = ∆1 + 20g1, Ωp = s
2kg

2
1/∆1, g2 =

√

∆2/∆1g1, g3 =
√

∆3/∆1g1, and assuming that the

dissipation of the system as well as the unwanted couplings between the qubit levels |e〉 and |f〉

(see Fig. 6) are negligible.
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couplings of the cavities (and the pulse) with the irrelevant levels of the flux qubit as well

as the decoherence of the flux qubit. In addition, the imperfect fidelity is caused due to

that the large detuning conditions are not well satisfied. We remark that the fidelity can

be further improved by reducing the errors via optimizing the systematic parameters. As

demonstrated in Fig. 7, a high fidelity greater than 99% can be achieved for ∆1/g1 & 32

and gkl = 0.01gmax when the unwanted couplings of the cavities (and the pulse) with the

|e〉 ↔ |f〉 transition of the flux qubit and the dissipation of the system are negligible.

The maximum among the coupling constants {g1, g2, g3, g′1, g′2, g′3} is 2π × 0.163 GHz,

which is available in experiments because a coupling strength ∼ 2π × 0.636 GHz was re-

ported for a superconducting flux qubit coupled to a 1D microwave cavity [86]. As an

example, consider T = 20 µs. In this case, the decoherence times of the flux qubit used

in the numerical simulations are 20 µs − 40 µs. Note that decoherence time 70 µs to 1

ms for a superconducting flux qubit has been demonstrated in experiments [87,88]. Hence,

the decoherence time of the flux qubit considered in the numerical simulation is a rather

conservative case. In addition, the crosstalk strength gkl used in the numerical simulation

can be obtained by prior design of the coupling capacitances C1, C2, C3 between the cavities

and the coupler qubit [89].

With the detunings ∆i and the coupling constants gi listed in Table 1 (i = 1, 2, 3),

one finds the effective coupling constant λ = g2i / |∆i| ∼ 2π × 7.56 MHz, which results in

Ωp/2π ∼ 1.89 MHz for s = 1 and k = 2 used in the numerical simulation. According to

Eq. (18), the operation time is given by t = sπ/Ωp. For s = 1 and Ωp/2π ∼ 1.89 MHz,

a simple calculation gives the operation time t ∼ 0.26 µs, much shorter than the qubit

decoherence time applied in the numerical simulation and the cavity decay time 10 µs −
100 µs considered in Fig. 6. For κ−1 = 35 µs and the cavity frequencies given above, the

quality factors for the three cavities (1,2,3) are respectively Q1 ∼ 9.89×105, Q2 ∼ 8.18×105,

and Q3 ∼ 6.59 × 105, which can be achieved because a 1D microwave cavity or resonator

with a high quality factor Q & 106 was experimentally demonstrated [90,91]. The analysis

given above implies that implementation of a three-qubit MCP gate using photonic qubits

is feasible with the present circuit QED technology.

17



VI. CONCLUSION

We have proposed an efficient scheme to implement an n-qubit MCP gate, i.e., a

multiplex-controlled phase gate with n − 1 photonic qubits simultaneously controlling one

photonic target qubit, based on circuit QED. As shown above, this scheme is universal,

because the two logic states of each photonic qubit can be encoded via a vacuum state and

an arbitrary non-vacuum state |ϕ〉 (e.g., a Fock state, a superposition of Fock states, a cat

state, or a coherent state, etc.), which is orthogonal or quasi-orthogonal to the vacuum state.

In addition, this scheme is simple because it requires only one step of operation.

This scheme has additional distinguishing features: (i) Since only two levels of the coupler

are used, i.e., no auxiliary levels are utilized, decoherence from the higher energy levels of the

coupler is avoided; (ii) The gate operation time is independent of the number of qubits, thus

it does not increase with the increasing number of qubits; and (iii) The gate implementation

is deterministic because no measurement is needed.

As an example, we have numerically analyzed the circuit-QED based experimental feasi-

bility of realizing a three-qubit MCP gate with each photonic qubit encoded via a vacuum

state and a cat state. This scheme can be applied to implement the MCP gate using photonic

qubits in a wide range of physical system, which consists of multiple microwave or optical

cavities coupled to a two-level coupler such as a natural atom or an artificial atom (e.g., a

quantum dot, an NV center, or a supercoducting qubit, etc.). Finally, it is noted that an

n-qubit Toffoli gate of photonic qubits can be realized, by applying the present scheme to

implement an n-qubit MCP gate of photonic qubits, plus a single-qubit Hadamard trans-

formation on the target qubit before and after the n-qubit MCP gate.
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[36] J. Fiurášek, Linear-optics quantum Toffoli and Fredkin gates, Phys. Rev. A 73, 062313 (2006)

[37] T. C. Ralph, K. J. Resch, and A. Gilchrist, Efficient Toffoli gates using qudits, Phys. Rev. A

75, 022313 (2007)

[38] H. L. Huang, W. S. Bao, T. Li, F. G. Li, X. Q. Fu, S. Zhang, H. L. Zhang, and X. Wang,

Deterministic linear optical quantum Toffoli gate, Phys. Lett. A 381, 2673 (2017)

[39] L. Dong, S. L. Wang, C. Cui, X. Geng, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao,

Polarization Toffoli gate assisted by multiple degrees of freedom, Opt. Lett. 43, 4635 (2018)

[40] X. Zou, K. Li, and G. Guo, Linear optical scheme for direct implementation of a nondestructive

N-qubit controlled phase gate, Phys. Rev. A 74, 044305 (2006)

[41] H. R. Wei and G. L. Long, Universal photonic quantum gates assisted by ancilla diamond

nitrogen-vacancy centers coupled to resonators, Phys. Rev. A 91, 032324 (2015)

[42] H. R. Wei, F. G. Deng, and G. L. Long, Hyper-parallel Toffoli gate on three-photon system

with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24,

21



18619 (2016)

[43] B. Y. Xia, C. Cao, Y. H. Han, and R. Zhang, Universal photonic three-qubit quantum gates

with two degrees of freedom assisted by charged quantum dots inside single-sided optical

microcavities, Laser Phys. 28, 095201 (2018)
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