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Abstract: This paper presents new algorithms to minimize total variation and more gen-
erally l1-norms under a general convex constraint. The algorithms are based on a recent
advance in convex optimization proposed by Yurii Nesterov [34]. Depending on the regu-
larity of the data fidelity term, we solve either a primal problem, either a dual problem.
First we show that standard first order schemes allow to get solutions of precision ǫ in O( 1

ǫ2 )
iterations at worst. For a general convex constraint, we propose a scheme that allows to
obtain a solution of precision ǫ in O(1

ǫ ) iterations. For a strongly convex constraint, we solve
a dual problem with a scheme that requires O( 1√

ǫ
) iterations to get a solution of precision

ǫ. Thus, depending on the regularity of the data term, we gain from one to two orders of
magnitude in the convergence rates with respect to standard schemes. Finally we perform
some numerical experiments which confirm the theoretical results on various problems.

Key-words: l1-norm minimization , total variation minimization, lp-norms, duality, gra-
dient and subgradient descents, Nesterov scheme, bounded and non-bounded noises, tex-
ture+geometry decomposition, complexity.



Algorithmes efficaces pour la minimisation de la
variation totale sous contraintes

Résumé : Ce papier présente de nouveaux algorithmes pour minimiser la variation to-
tale, et plus généralement des normes l1, sous des contraintes convexes. Ces algorithmes
proviennent d’une avancée récente en optimisation convexe proposée par Yurii Nesterov.
Suivant la régularité de l’attache aux données, nous résolvons soit un problème primal, soit
un problème dual. Premièrement, nous montrons que les schémas standard de premier ordre
permettent d’obtenir des solutions de précision ǫ en O( 1

ǫ2 ) itérations au pire des cas. Pour
une contrainte convexe quelconque, nous proposons un schéma qui permet d’obtenir une
solution de précision ǫ en O(1

ǫ ) itérations. Pour une contrainte fortement convexe, nous
résolvons un problème dual avec un schéma qui demande O( 1√

ǫ
) itérations pour obtenir une

solution de précision ǫ. Suivant la contrainte, nous gagnons donc un à deux ordres dans
la rapidité de convergence par rapport à des approches standard. Finalement, nous faisons
quelques expériences numériques qui confirment les résultats théoriques sur de nombreux
problèmes.

Mots-clés : norme l1, minimisation variation totale, bruits bornés, bruits de compression,
décomposition texture + géométrie, dualité, sous-gradient projeté, complexité, contraintes
convexes



Efficient schemes for TV minimization 3

1 Introduction

In this paper we are interested in the fast resolution of a class of image restoration and
decomposition problems that can be written under the general constrained form :

inf
u∈Rn,F (u)≤α

||Bu||1 (1.1)

or the "equivalent" Lagrangian form :

inf
u∈Rn

||Bu||1 + γF (u) (1.2)Rn is the discrete space of 2D images (n is the number of pixels). The results we present
apply to any linear operator B. In this paper we concentrate on the use of B = ∇, ||Bu||1
corresponding to the total variation (see the appendix for the discretization of differential
operators). F is a convex proper function. We will pay a particular attention to functions
that write F (u) = |λ(Au − f)|p where A is a linear invertible transform (identity, wavelet
transform, convolution,...), λ ∈ [0,∞]n is a possibly varying parameter, p ∈ {1, 2,∞} and f
is an observed datum.

This formalism covers a wide range of useful applications. Some of them are listed in
the following table :

p = 1 p = 2 p=∞
A = Identity Impulse noise de-

noising, Image de-
composition [2, 35,
11, 15]

Gaussian noise de-
noising [41]

Bounded noise de-
noising [45]

A = Convolution Robust deconvolu-
tion [19]

Image deconvolu-
tion [40, 12, 6]

No known reference

A = Wavelet, local
cosine transform

Image decomposi-
tion or denoising
[16]

Image denoising
(No known refer-
ence)

Compression noise
denoising [3, 43, 13]

This formalism also allows to do image zooming [29] using the Fourier transform or image
cartoon + texture decompositions [30].

Considering pseudo-invertible transforms the preceding formalism would include other
interesting applications like denoising using redundant transforms (dictionnaries, curvelets,
...) [26, 8] or image decompositions [42].

As we see the total variation is widely used in many image processing models. This
is certainly due to its good theoretical properties and practical results. The difficulty in
minimizing it lies in the non differentiability of the l1-norm. It makes it a challenging
task to design efficient numerical methods. This is very important for image processing
applications which involve huge dimension problems. A lot of different techniques have

RR n° 6260



4 Weiss, Aubert, Blanc-Féraud

been proposed. Some are PDE based with explicit [40, 41], semi-implicit [24] or fixed point
[44] schemes. Other are based on the minimization of a discretized energy. Those include
subgradient descents [28], Newton-like methods [25], second order cone programming [21],
interior point methods [19], or graph based approaches [15, 10]. Recently, some authors
tried to use primal-dual or dual-only approaches [12, 22, 9].

In this work, we propose new convergent schemes to solve (1.1) and (1.2). They are
all based on first order explicit schemes proposed recently by Y. Nesterov [32, 34]. These
schemes are given with explicit convergence rates (which is seldom seen in the literature),
are optimal with respect to a certain class of convex problems, require little memory and are
easy to parallelize and implement 1. We compare their efficiency with some other classical
first order schemes. We show their theoretical and practical superiority.

Depending on the regularity of F , we propose two different approaches motivated by
the maximization of the theoretical rates of convergence. For general convex F , we follow
the approach of Y. Nesterov in [34] and use a smooth approximation of the total variation.
Doing so, getting a solution of precision ǫ requires O(1

ǫ ) iterations while most first order
schemes require O( 1

ǫ2 ) iterations. For strongly convex F (typically l2-norms), we show that
the resolution of a dual problem with a Nesterov’s scheme leads to algorithms demanding
O( 1√

ǫ
) iterations to get an ǫ-solution.

The outline of the paper is as follows :

• In section 2, we settle the main notations and definitions. Then we show that many
image processing problems such as restoration or decomposition can be expressed as
(1.1) or (1.2).

• In section 3, we first analyse the convergence rates of some classical first order algo-
rithms. Then we detail the proposed algorithms. Their convergence rates outperform
the other classical schemes by one or two orders of magnitude depending on the regu-
larity of F .

• In section 4, we compare our approach with some other existing methods.

2 Notations and application examples

2.1 Notations and definitions

Let us describe the notations we use throughout this paper.
To simplify the notations, we use X = Rn, Y = X ×X , and J(u) = ||∇u||1.
All the theory developed in this paper can be applied to color images using for instance

color total variation [7]. Here we focus on gray-scale images.
ū denotes a solution of (1.1) or (1.2). f ∈ X will denote the given observed datum.

1this is an important feature for Graphic Processing Unit or Programmable Logic Device programming

INRIA



Efficient schemes for TV minimization 5

For u ∈ X , ui ∈ R denotes the i-th component of u.
For g ∈ Y , gi ∈ R2 denotes the i-th component of g, and gi = (gi,1, gi,2).
< ·, · >X denotes the usual scalar product on X . For u, v ∈ X we have :

< u, v >X :=

n
∑

i=1

uivi (2.3)

< ·, · >Y denotes the usual scalar product on Y . For g, h ∈ Y :

< g, h >Y :=
n

∑

i=1

2
∑

j=1

gi,jhi,j (2.4)

| · |p, p ∈ [1,∞[ is the lp norm on X :

|u|p := (

n
∑

i=1

|ui|p)1/p (2.5)

| · |∞ is the l∞-norm on X :

|u|∞ = max
i∈{1,2,...,n}

|ui| (2.6)

|| · ||p, for p ∈ [1,∞[ is a norm on Y defined by :

||g||p := (
n

∑

i=1

|gi|p2)1/p (2.7)

And :

||g||∞ := max
i∈{1,2,...,n}

|gi|2 (2.8)

Finally ⌊a⌋ is the integer part of a ∈ R.

Definition 2.1. [Euclidean projector] Let K ⊂ X be a convex set. The Euclidean projector
on K is defined by :

ΠK(x) = argmin
u∈K

|u− x|2

Definition 2.2. [Euclidean norm of an operator] Let B be a linear operator from X to Y .
The Euclidean norm of B is defined by :

||B||2 = max
x∈X,|x|2≤1

(||Bx||2)

RR n° 6260



6 Weiss, Aubert, Blanc-Féraud

Definition 2.3. [Proper function] A convex function F on X is proper if and only if F is
not identically equal to +∞ and that it does not take the value −∞ on X .

Definition 2.4. [Indicator function] Let K ∈ X be a non empty closed convex subset of
X . The indicator function of K, denoted χK , is defined by:

χK(x) =

{

0 if x ∈ K
∞ otherwise

(2.9)

Definition 2.5. [Subdifferential and subgradient] Let J : X → R be a convex function.
The subdifferential of J at point u ∈ X , is defined by :

∂J(u) = {η ∈ X, J(u)+ < η, (x − u) >X≤ J(x), ∀x ∈ X} (2.10)

η ∈ ∂J(u) is called a subgradient.

The subdifferential can be thought of as the set of hyperplanes passing through point u
which are less than the function J . On points where J is differentiable, the subdifferential
reduces to a singleton : the classical gradient.

Definition 2.6. [L-Lipschitz differentiable function]
A function F defined on K is said to be L-Lipschitz differentiable if it is differentiable

on K and that |∇F (u1) −∇F (u2)|2 ≤ L|u1 − u2|2 for any (u1, u2) ∈ K2.

Definition 2.7. [Strongly convex differentiable function]
A differentiable function F defined on a convex set K ∈ X is said to be strongly convex

if there exists σ > 0 such that :

< ∇F (u) −∇F (v), u − v >X≥ σ

2
|u− v|22 (2.11)

for any (u, v) ∈ K2. σ is called the convexity parameter of F . Note that property (2.11)
implies that |∇F (u) −∇F (v)|2 ≥ σ

2 |u− v|2.

Definition 2.8. [Legendre-Fenchel Conjugate]
Let G be a convex proper application from X to R∪ {∞}. The conjugate function of G

is defined by :

G∗(y) = sup
x∈X

(< x, y >X −G(x)) (2.12)

G∗ is a convex proper function. Moreover, we have : G∗∗ = G.

Definition 2.9. [ǫ-solutions]

INRIA



Efficient schemes for TV minimization 7

An ǫ-solution of problem (1.1), is an element uǫ of {u, F (u) ≤ α} satisfying ||Buǫ||1 −
||Bū||1 ≤ ǫ, where ū is a solution of (1.1).

An ǫ-solution of problem (1.2), is an element uǫ of X satisfying :

||Buǫ||1 + F (uǫ) − (||Bū||1 + F (ū)) ≤ ǫ

where ū is a solution of (1.2).

2.2 Presentation of some applications

Many image processing models use the total variation J(u) = ||∇u||1 as a prior on the
images. This quantity somehow measures the oscillations of an image. It was introduced
by Rudin, Osher and Fatemi (ROF) in [41] as a regularizing criterion for image denoising.
Its main interest lies in the fact that it regularizes the images without blurring the edges.
Nowadays it is appreciated for its ability to model the piecewise smooth or constant parts
of an image. Let us show that the following formalism :

inf
u∈X,|λ(Au−f)|p≤α

(J(u)) (2.13)

describes lots of image processing problems.

2.2.1 A = Id, p ∈ {1, 2,∞} - Denoising or decomposition

Many image degradation models write : f = u + b. u is the original image, b is a white
additive noise and f is the degraded observation. Suppose that we have a probability P (u)
over the space of images that is proportional to exp(−J(u)) 2. Then it can be shown using
the Bayes rule that the "best" way to retrieve u from f is to solve the following problem :

inf
u∈X,|u−f |p≤α

(J(u)) (2.14)

with p = 1 for impulse noise [2, 35, 11, 15], p = 2 for Gaussian noise [41], p = ∞ for
uniform noise [45], and α a parameter depending on the variance of the noise. The noise
might have a different variance on different parts of the image. In this case, we can solve
the problem :

inf
u∈X,|λ(u−f)|p≤α

(J(u)) (2.15)

where λ ∈ [0,∞]n is a parameter that will allow to treat differently the different regions
of the image. On pixels where λi = ∞ the model will impose ūi = fi. On pixels where
λi = 0, the value of ūi will only depend on the prior J . This idea was proposed in [40, 6].

Let us finally note that recently, the BV − l1 model was shown to be an efficient model
for the decomposition of an image into a cartoon and a texture [46].

2This is possible if we suppose that images have a bounded amplitude.

RR n° 6260



8 Weiss, Aubert, Blanc-Féraud

2.2.2 A =local cosine transform, wavelet transform, p ∈ {1,∞}
Quantization, thresholding, and white noises denoising

Below, we list three different applications of this formalism:

• A classical way to compress a signal is to :

1. Transform it with some linear, bĳective application.

2. Quantize the obtained coefficients to reduce the entropy.

3. Use a lossless compression algorithm on the quantized coefficients.

In image compression the first used transform was the local cosine transform in jpeg.
The new standard is jpeg2000 which uses a wavelet transform. This kind of compres-
sion introduces artefacts like oscillations near the edges. Let u be an original image,
and f a compressed image. The degradation operator Ψ can be written :

Ψ(u) = A−1(Q(Au)) = f (2.16)

where Q is a uniform or non uniform quantizer and A is a linear transform. A natural
way to recover u, is to look for the image of minimal total variation in the convex set
Ψ−1(f) [3, 17]. This amounts to solving :

inf
u∈X,∀i∈[1..n], |(A(u−f))i|≤αi

2

(J(u))

where αi stands for the quantization steps. This problem can easily be redefined as :

inf
u∈X,|λA(u−f)|∞≤1

(J(u)) (2.17)

with λ ∈ [0,∞]n.

• Wavelet thresholding is widely used to denoise signals. Such operations show good
performances, but introduce oscillatory artefacts when using non redundant wavelet
transforms. Solving a problem similar to (2.17) can be shown to reduce those artefacts.

• Recently a model similar to (2.17), with an l1-norm instead of the l∞-norm was pro-
posed for image denoising [16].

INRIA



Efficient schemes for TV minimization 9

2.2.3 A = convolution, p = 2 - Image deconvolution

One of the fundamental problems of image processing is the deblurring. A common way to
model image degradation is : f = h⋆u+ b. u is a given original image, b is a white Gaussian
noise and h is a convolution kernel representing the degradation due to the optical system
and sensors. To retrieve the original image, we can solve the following problem :

inf
u∈X,|h⋆u−f |2≤α

(J(u)) (2.18)

2.2.4 A = Fourier transform - Image zooming

In view of Shannon’s theorem, one could think that the best way to zoom an image is to use
a zero-padding technique. Unluckily, this introduces oscillations near the edges. A simple
way to avoid them is to solve the following problem :

inf
u∈X,|λ(Au−f)|∞≤α

(J(u)) (2.19)

with f the zero-padded Fourier coefficients of the reduced image, λi = ∞ where fi is
known, and λi = 0 otherwise. This problem is a particular instance of a more general class
of zooming techniques proposed in [29]. Let us now look at the numerical algorithms to
solve (1.1) and (1.2).

3 The proposed algorithms

Problem (1.1) covers many useful applications but it is difficult to solve and many currently
used algorithms are slow. This clearly limits the industrial interest for such models.

In this section, we first show that some commonly used approaches require O( 1
ǫ2 ) iter-

ations to provide an ǫ-solution. With such a rate getting a 10−3-solution requires of order
106 iterations. Then we show how to apply the ideas of Y. Nesterov [34] to solve (1.1). This
leads to an O(1

ǫ ) algorithm. We thus gain one order of convergence. With this new rate
getting a 10−3-solution requires of order 103 iterations. Finally, we show that when dealing
with a strongly convex function F , the resolution of a dual problem can be done with an
O( 1√

ǫ
) algorithm. Thus, we again gain one order of convergence. With this rate getting a

10−3-solution requires of order 30 iterations!

3.1 Some commonly used approaches

Maybe the most straightforward algorithm to solve (1.1) for general convex function F , is
the projected subgradient descent algorithm. It writes :

{

u0 ∈ K

uk+1 = ΠK(uk − tk ηk

|ηk|2 )
(3.20)

RR n° 6260
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Here, tk > 0 for any k, ηk is any element of ∂J(uk) (see (2.10)) and ΠK is the Euclidean
projector on K = {u, F (u) ≤ α}. It was proposed recently in some image processing papers
[3, 28]. This kind of scheme has two severe drawbacks. First, it is difficult to design the
sequence {tk}. Secondly, even if the sequence {tk} is defined optimally, it might be very
slow. It is shown in [31] that any algorithm only using the sequences J(uk) and ∂J(uk) has
a worst case complexity of O( 1

ǫ2 ).

Another widely spread technique consists in approximating the total variation [40, 44]
by :

J̃µ(u) =

n
∑

i=1

√

|(∇u)i|2 + µ2 (3.21)

and use a projected gradient descent with constant step to minimize it. This idea was
used from the first numerical attempts to solve total variation problems [41]. The evolution
equation ∂u

∂t = div( ∇u
|∇u| ) was replaced by ∂u

∂t = div( ∇u√
|∇u|2+µ2

). Again we can show that to

get an ǫ-solution, one needs to choose µ of order ǫ and k of order O( 1
ǫ2 ).

The two strategies presented are widely used but only lead to approximate solutions. In
the following we introduce faster algorithms.

3.2 Nesterov’s scheme

In [34], Y. Nesterov presents an O( 1√
ǫ
) algorithm adapted to the problem:

inf
u∈Q

E(u) (3.22)

where E is any convex, L − Lipschitz − differentiable function, and Q is any convex,
closed set. For this class of problems, it can be shown that no algorithm - only using the
values and gradients of E - has a better rate of convergence than O( 1√

ǫ
) uniformly on all

problems of type (3.22). Y. Nesterov’s algorithm is thus optimal for this class of problems.
His main result is as follows :

Theorem 3.1. The following algorithm :

1 Set k = −1, G−1 = 0, xk ∈ Q, L Lipschitz constant of ∇E
2 Set k = k + 1, compute ηk = ∇E(xk)
3 Set yk = argminy∈Q

(

< ηk, y − xk >X + 1
2L||y − xk||2

)

4 Set Gk = Gk−1 + k+1
2 ηk

5 Set zk = argminz∈Q

(

L
σ d(z)+ < Gk, z >X

)

6 Set xk+1 = 2
k+3z

k + k+1
k+2y

k, go back to 2 until k = N .

(3.23)

ensures that :

0 ≤ F (yk) − F (ū) ≤ 4Ld(ū)

σ(k + 1)(k + 2)
(3.24)

INRIA



Efficient schemes for TV minimization 11

At step 3, || · || denotes any norm, at step 5, d is any convex function satisfying:

d(x) ≥ σ

2
||x− x0||2 for some element x0 ∈ Kandσ is the convexity parameter of d. (3.25)

Using inequality (3.24), it is easily seen that getting an ǫ-solution does not require more

than
√

4Ld(ū)
ǫ iterations. This shows that (3.23) is an O( 1√

ǫ
) algorithm.

Supposing that steps 3 and 5 are achievable, this scheme has many qualities. It is simple
to implement, does not require more than 5 times the size of the image and it is theoretically
optimal (see [32] for a precise definition of its optimality). Note that the classical projected
gradient descent is an O(1

ǫ ) algorithm.

3.3 Solving (1.1) for the total variation and some convex functions
F

Unfortunately, algorithm (3.23) cannot be used directly to solve (1.1) due to the non differ-
entiability of the total variation. To cope with this difficulty, we use a smooth approximation
of J .

How to smooth the total variation?

Following the ideas in [34], we use a uniform smooth approximation of J . First note that
:

J(u) = sup
q∈Y,||q||∞≤1

(< ∇u, q >Y ) (3.26)

The approximation we propose writes :

Jµ(u) = sup
q∈Y,||q||∞≤1

(

< ∇u, q >Y −µ
2
||q||22

)

+
µ

2
(3.27)

It is easily shown that Jµ(u) =
∑n

i=1 ψµ(|(∇u)i|) with :

ψµ(x) =

{

|x| if |x| ≥ µ
x2

2µ + µ
2 otherwise

(3.28)

ψµ is thus the so called Huber function. Jµ seems more appropriate than J̃µ defined in

(3.21), as both approximations are
||div||22

µ -Lipschitz differentiable 3, but :

0 ≤ J̃µ(u) − J(u) ≤ nµ (3.29)

3the Lipschitz constant determines the convergence rate of most first order schemes
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12 Weiss, Aubert, Blanc-Féraud

while :

0 ≤ Jµ(u) − J(u) ≤ nµ

2
(3.30)

The approximation Jµ thus seems "twice" better. Let us finally note that :

∇Jµ(u) = −div(Ψ) with Ψi =

{

(∇u)i

|(∇u)i| if |(∇u)i| ≥ µ
(∇u)i

µ otherwise
(3.31)

From now on, we concentrate on the resolution of :

inf
u∈X,F (u)≤α

Jµ(u) (3.32)

How to achieve steps 3 and 5?

To apply algorithm (3.23), we first have to choose a norm || · || and a function d. For
simplicity and because we found no numerical interest in other choices, we choose the Eu-
clidean norm | · |2 and set d(x) = 1

2 |x− x0|22, where x0 ∈ K is for instance the center of K.
With this choice σ = 1. We have to find - preferably in closed form - the expressions of the
argmin at steps 3 and 5.

Proposition 3.1. With the above choices, step 3 reduces to yk = ΠK(xk − ηk

L ) and step 5

reduces to zk = ΠK(x0 − Gk

L ). ΠK stands for the Euclidean projector on K.

Proof: Let us solve the problem argminy∈K (f(y)) with f(y) =< η, y >X +L
2 |y − x|22.

From first order optimality conditions, we get that the solution ȳ of this problem satisfies
< (−∇f(ȳ)), w − ȳ >≤ 0 for any w ∈ K. This is equivalent to < (x− η

L) − ȳ, w − ȳ >X≥ 0
for any w ∈ K and finally, thanks to projection theorem to ȳ = ΠK(x − η

L).

�

How to chose µ and the number of iterations?

Convergence rate (3.24) and bound (3.30) tell us that after k iterations of a Nesterov

scheme, the worst case precision is
2||div||22d(ū)

µk2 + nµ
2 . Using this quantity, it is easily shown

that the fastest way to get an ǫ-solution is to chose µ = ǫ
n and the number of iterations :

N = ⌊2
√

2||div||2
ǫ

√

nD(K)⌋ + 1 (3.33)

where D(K) = maxu∈K (d(u)). This shows that algorithm (3.23) has a complexity in
O(1

ǫ ).
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Efficient schemes for TV minimization 13

Unfortunately, in most problems, knowing that |J(yk) − J(ū)| ≤ ǫ does not bring any
quantitative information on more important features like |yk − ū|∞. Thus, we cannot use
directly the bound (3.24) to define the number of iterations.

Experimentally, for images rescaled in [0, 1], we can check that the solution of (3.32)
obtained by choosing µ = 0.02 is very close perceptually to the solution of (1.1). Choosing
µ = 0.001 leads to solutions that are perceptually identical to the solution of (1.1).

From this remark and (3.33) the approach we suggest is thus to choose µ ∈ [0.001, 0.01]

and there is no reason to chose N > 2
√

2||div||2
nµ

√

nD(K). In all cases we studied (except

deconvolution) D(K) ∼ θn, with θ ∈]0, 1[. Thus, the maximum iterations needed to get a
good approximate solution is :

N =
2
√

2||div||2
√
θ

µ
(3.34)

This quantity does not exceed 8000 iterations for the worst case problem, and lies in
[30, 400] for most practical applications.

The theoretical rate of convergence leads to low iterations number and computing times.

Let us show how to apply the ideas presented for some applications.
Restoration involving linear invertible transforms : F (u) = |λ(Au − f)|p with

p ∈ {1, 2,∞}
One of the most interesting data term is F (u) = |λ(Au−f)|p where p ∈ {1, 2,∞}, A is a

linear invertible transform, λ ∈ [0,∞]n are some parameters, and f are the some given data.
To apply algorithm (3.23) to problem (3.32), we need to be able to compute projections on
{u, |λ(Au− f)|p ≤ α}. As this might be cumbersome, we use a change of variable and solve
the equivalent problem :

inf
z,|λz|p≤α

(Eµ(z)) (3.35)

with Eµ(z) = Jµ(A−1(z+f)). The solution ū of (3.32) can be retrieved from the solution
z̄ of (3.35) by :

ū = A−1(z̄ + f) (3.36)

It is easy to show that Eµ is L-Lipschitz differentiable with L =
||div||22||A−1||22

µ .

For all invertible transforms the final algorithm to solve (3.35) writes :
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14 Weiss, Aubert, Blanc-Féraud

1 Chose N and µ depending on the precision required

Set k = 0, G−1 = 0, L =
||div||22||A−1||22

µ , xk = 0

2 Compute ηk = A−∗∇Jµ(A−1(xk + f))
3 Set yk = ΠK(xk − ηk

L )
4 Set Gk = Gk−1 + k+1

2 ηk

5 Set zk = ΠK(−Gk

L )
6 Set xk+1 = 2

k+3z
k + k+1

k+2y
k

7 Set k = k + 1, go back to 2 until k = N .
8 Set ū = A−1(yk−1 + f)

(3.37)

At steps 3 and 5, K = {u ∈ X, |λu|p ≤ α}. We refer the reader to the appendix for the
expressions of the projections on weighted lp-balls.

Figure 1 shows the result of a compression noise restoration using this technique for
µ = 0.01 (60 iterations until convergence) and µ = 0.001 (120 iterations until convergence).
The price per iteration is about 2 wavelet transforms. We do not give our computational
times as we used a slow Matlab implementation of Daubechies 9-7 wavelet transform. We
refer the reader to section (4) for comparisons with other algorithms. Let us note that to
our knowledge, few or no precise schemes exist in the literature to solve this problem. We
note that large oscillations are removed, while thin details are preserved. The main default
of this model is that the contrast of the details decrease.

Deconvolution : F (u) = |h ⋆ u− f |2
In this paragraph we present a way to do deconvolution using a Nesterov scheme. This

problem is particularly difficult and cannot be solved by the previous algorithm, because
the convolution matrices are generally non-invertible or ill-conditioned. In the following, we
show a way to handle this problem.

We wish to solve the following problem :

inf
u∈X,|h⋆u−f |2≤α

(Jµ(u)) (3.38)

Let A denote the Fourier Transform. As it is an isometry from X to X , this problem is
equivalent to :

inf
u∈X,|A(h⋆u−f)|2≤α

(Jµ(u)) (3.39)

⇔ inf
u∈X,|AhAu−Af |2≤α

(Jµ(u)) (3.40)

⇔ inf
z∈Cn,|Ahz−Af |2≤α

(

Jµ(A−1z)
)

(3.41)

In this formulation is z → Jµ(A−1z) is L-Lipschitz-differentiable with L =
||div||22

µ . The
interests of this formulation are that we have a very fast algorithm to do projections on

INRIA



Efficient schemes for TV minimization 15

Figure 1: Example of image decompression - TL : Original image - TR : Compressed image
using Daubechies 9-7 wavelet transform (the quantization coefficients are chosen by hand to
outline the model features) - BL : Solution of (2.17) using µ = 0.01 - BR : Solution of (2.17)
using µ = 0.001
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K = {u ∈ X, |Ahz − Af |2 ≤ α} (see the appendix section (6.2)), and that the Lipschitz
constant of the gradient of z → Jµ(A−1z) does not blow up. Note that the set K = {u ∈
X, |Ahz−Af |2 ≤ α} might be unbounded if the Fourier transform of h contains zeros. Thus
we lose the convergence rate unless we estimate an upper bound on d(ū). Practically, the
Nesterov scheme remains efficient.

The cost per iteration is around 2 fast Fourier transforms and 2 projections on ellipsoids.
For a 256 × 256 image, the cost per iteration is 0.2 seconds (we used the fft2 function of
Matlab and implemented a C code with Matlab mex compiler for the projections).

Image texture + cartoon decomposition : F (u) = λ|u− f |G
The first application of total variation in image processing was proposed by Rudin-

Osher-Fatemi in [41]. It consisted in choosing F (u) = |u − f |2. In [30], Y. Meyer studied
theoretically this model, and figured out its limitation to discriminate well a cartoon in a
noise or a texture. He observed that this limitation could be overpassed using a different data
term than the rather uninformative L2-distance to the data. To simplify the presentation,
we present the model in the discrete setting and refer the interested reader to [30, 5] for
more details.

Y. Meyer defined a norm :

||v||G = inf
g∈Y

{||g||∞, div(g) = v} (3.42)

and proposed to decompose an image f into a cartoon u and a texture v using the
following model :

inf
(u,v)∈X2,f=u+v

{J(u) + λ||v||G} (3.43)

The G-norm of an oscillating function remains small and it blows up for characteristic
function. That is why this model should permit to better extract oscillating patterns of the
images.

Y. Meyer did not propose any numerical method to solve his model. The first authors
who tried to compute a solution were L. Vese and S. Osher in [38]. Later, other authors
tackled this problem. Let us cite the works of J.F. Aujol et. al. in [4] and of D. Goldfarb
et. al. in [21]. The former is based on a first order scheme which solves a differentiable
approximation of Meyer’s model, while the latter solves it exactly with second order cone
programming methods. In the following, we propose a new efficient scheme.

Y. Meyer’s discretized problem writes :

inf
u∈X

{J(u) + λ inf
g∈Y,div(g)=f−u

{||g||∞)}} (3.44)

We have the following result :

INRIA



Efficient schemes for TV minimization 17

Proposition 3.2.

Problem (3.44) can be reformulated as follows :

inf
g∈Y,||g||∞≤α

{J(f − div(g))} (3.45)

Proof: The main idea is that we can use the change of variable :

u = f − div(g) (3.46)

to get an optimization problem that depends only of one variable g. The operator div is
surjective from Y to X̃ = X − {(γ, γ, ..., γ), γ ∈ R}, so that :

inf
u∈X

{J(u) + λ inf
g∈Y,div(g)=f−u

{||g||∞}} = inf
g∈Y

{J(f − div(g)) + λ||g||∞} (3.47)

Turning the Lagrange multiplier λ into a constraint, we get the following minimization
problem :

inf
g∈Y,||g||∞≤α

{J(f − div(g))} (3.48)

�

Instead of solving problem (3.45), we solve :

inf
g∈Y,||g||∞≤α

{Jµ(f − div(g))} (3.49)

and get an O(1
ǫ ) algorithm. Note that the solution of (3.49) is unique while that of

Meyer’s model is not.

Also note that if we replace the l∞-norm by an l2-norm in (3.45), we get the model
of Osher-Solé-Vese [37]. In Figure (4), we also show the result of (3.45) with an l1-norm
instead of the l∞-norm. We do not provide any theoretical justification to this model, we
present it to alleviate the curiosity of the reader. Formula (3.45) allows to easily constrain
the properties of the g field. This might also be interesting for spatially varying processing.

In all experiments we took µ = 0.001 to smooth the total variation. After 200 iterations,
very little perceptual modifications are observed in all experiments, while a projected gra-
dient descent requires around 1000 iterations to get the same result. Let us finally precise
that all the texture components have the same l2-norm.

In Figure (3), we observe that Meyer’s model does not allow to retrieve correctly the
oscillating patterns of the clothes of Barbara. It can be shown that the amplitude of the
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Figure 2: Image to be decomposed

texture (v component) is bounded by a parameter depending linearly on α in (3.45). That
might explain the deceiving result. On the given example, Osher-Solé-Vese’s model gives
more satisfying results. This was already observed in [46].

The BV − l1 model correctly separates the oscillating patterns and the geometry. The
same observation holds when minimizing the l1-norm of the g field in (3.45). We remark that
both decompositions are very similar, except that the cartoon component of the BV − l1

model is slightly less blurred than that of the new model. We think that one part of the
explanation is that the numerical scheme for the new model is slightly more diffusive as it
is based on second order finite differences.

3.4 Solving (1.2) for l2 fidelity term

Having the previous section in mind, a straightforward approach to solve (1.2) is to smooth
the total variation, if F is non-smooth, it can be smoothed too, and then one just needs
to use a fast scheme like (3.23) adapted to the unconstrained minimization of Lipschitz
differentiable functions [33]. This method should be functional, but in the case of strongly
convex F - which notably corresponds to l2 data fidelity term - one can do much better. We
present an O( 1√

ǫ
) algorithm rather than the previous O(1

ǫ ) algorithm. Thus we gain two

orders of convergence compared to classical approaches!

Instead of directly attacking (1.2) we can solve its dual problem for which no smoothing
is needed. The key idea is that for strongly convex F , F ∗ is Lipschitz differentiable.

We first recall some facts of convex analysis (see [18], for a complete reference).
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Figure 3: Cartoon + texture decompositions. Top : Meyer’s model. Bottom : Osher-Solé-
Vese’s model
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Figure 4: Cartoon + texture decompositions. Top : BV − l1 model. Bottom : result of
minimizing the l1-norm of the g field in (3.45)
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Let F : X → R and G : Y → R be two convex proper functions. Let P , be the primal
problem :

inf
u∈X

G(∇u) + F (u) (3.50)

The dual problem P∗ is then defined by :

inf
q∈Y

G∗(−q) + F ∗(−div(q)) (3.51)

Let ū and q̄ be the solutions of P and P∗ respectively. Those solutions are related
through the extremality relations :

F (ū) + F ∗(−div(q̄)) =< −div(q̄), ū >X (3.52)

G(∇ū) +G∗(−q̄) =< −q̄,∇ū >Y (3.53)

3.4.1 Application to our problem

To apply the previous theory to our problem, we take :

G(q) = ||q||1 (3.54)

We wish to solve :

inf
u∈X

(G(∇u) + F (u)) (3.55)

and suppose that F is differentiable, strongly convex, with convexity parameter σ.

Theorem 3.2. The dual problem of (3.55) is defined by :

inf
q∈K

F ∗(−div(q)) (3.56)

with K = {q ∈ Y, ||q||∞ ≤ 1}.

The application H : q → F ∗(−div(q)), is L-Lipschitz differentiable, with L =
2||div||22

σ .
Problem (3.56) can thus be solved with a Nesterov scheme (no smoothing is needed!).

ū can be retrieved from the solution q̄ of (3.56) using :

ū = ∇F ∗(−div(q̄)) (3.57)

moreover :

∇ū = q̄|∇ū| (3.58)

This methods thus amounts to evolving the orientation of the level lines of u instead of
u itself.
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Proof :

1. Let us compute G∗ :

G∗(q) := sup
r∈Y

< q, r >Y −||r||1 (3.59)

= sup
t>0

sup
||r||1=t

< q, r >Y −t (3.60)

= sup
t>0

t||q||∞ − t (3.61)

= χK(q) (3.62)

with K = {q ∈ Y, ||q||∞ ≤ 1}.

2. Let us show F ∗ is 2
σ -Lipschitz differentiable.

F ∗(u) = sup
v∈X

< u, v >X −F (v) (3.63)

First, note that F ∗ is convex (see section 2). As F is strictly convex, the solution
of problem (3.63) exists and is unique. Let v(u) denote the argmax in (3.63). From
uniqueness of the solution of (3.63), we get that F ∗ is differentiable and its derivative
is v(u). From the optimality conditions we get that u −∇F (v(u)) = 0. Thus for any
(u1, u2) ∈ X2 :

∇F (v(u1)) −∇F (v(u2)) = u1 − u2 (3.64)

and :

|u1 − u2|2 = |∇F (v(u1)) −∇F (v(u2))|2 (3.65)

≥ σ

2
|v(u1) − v(u2)|2 (3.66)

≥ σ

2
|∇F ∗(u1) −∇F ∗(u2)|2 (3.67)

This shows that F ∗ is 2
σ -Lipschitz differentiable.

3. Let us show (3.57). The first extremality relation gives F (ū) =< −div(q̄), ū >X

−F ∗(−div(q̄)). We also recall that F ∗∗(u) = F (u). So that F (ū) = supv∈X < ū, v >X

−F ∗(v).

Those two equations imply that −div(q̄) cancels the derivative of v →< ū, v >X

−F ∗(v). This ends the proof.
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4. Finally let us show equation (3.58). It is done using the second extremality relation :

G(∇ū) = G∗∗(∇ū) (3.68)

= sup
q∈Y

< ∇ū, q >Y −G∗(q) (3.69)

= < −q̄,∇ū >Y −G∗(−q̄) (3.70)

Thus −q̄ solves problem (3.69). This yields the existence of multipliers µi such that :

(∇ū)i − µiq̄i = 0 (3.71)

with µi = 0 if |q̄i|2 < 1, or µi > 0 if |q̄i|2 = 1. In both cases we get µi = |(∇ū)i|2.

�

Application example : F (u) = |λ(Au − f)|22
An important class of strongly convex functions writes : F (u) = |λ(Au − f)|22 with A

a bĳective linear application, and λ ∈]0,∞]n. Let λ− = mini λi and λ−(A) denote the
smallest eigenvalue of A.

Proposition 3.3. If A is an invertible transform, and λ belongs to ]0,∞]n, then F ∗ is
L-Lipschitz differentiable, with L ≤ 1

2λ2
−

λ−(A)2
. Moreover :

F ∗(v) =< A−1f, v > +
1

4
|A

−∗v

λ
|22 (3.72)

Proof : F is obviously differentiable, with derivative ∇F (u) = 2A∗λ2(Au − f). Thus :

|∇F (u) −∇F (v)|2 = 2|A∗λ2A(u − v)|2 ≥ 2λ2
−λ

2
−(A)|u− v|2

F is thus strongly convex with convexity parameter 4λ2
−λ−(A)2. Then :

F ∗(v) = sup
u∈X

(

< u, v >X −|λ(Au − f)|22
)

(3.73)

= sup
w∈X

(

<
A−1(w + λf)

λ
, v > −|w|22

)

(3.74)

= < A−1f, v > + sup
r≥0

(

r|A
−∗v

λ
|2 − r2

)

(3.75)

(3.76)

And we get the result by canceling the derivative of r → r|A−∗v
λ |2 − r2.
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�

To solve problem :

inf
u∈X

||∇u||1 + |λ(Au − f)|22 (3.77)

We set K = {q ∈ Y, ||q||∞ ≤ 1} and the algorithm we propose writes :

0 Choose N .

1 Set k = 0, G−1 = 0, L =
||div||22

2λ2
−

λ−(A)2
, xk = 0

2 Compute ηk = ∇(A−1f) − 1
2∇(A−1(A−∗(div(xk))

λ2 ))
3 Set yk = ΠK(xk − ηk

L )
4 Set Gk = Gk−1 + k+1

2 ηk

5 Set zk = ΠK(−Gk

L )
6 Set xk+1 = 2

k+3z
k + k+1

k+2y
k

7 Set k = k + 1, go back to 2 until k = N .

8 Set uN = A−1f − 1
2A

−1(A−∗div(yk)
λ2 )

(3.78)

Using (3.24), we easily get that at iteration N we have :

0 ≤ F ∗(−div(yn)) − F ∗(−div(q̄)) ≤ n||div||22
λ2
−λ−(A)2

1

N2
(3.79)

so that to get an ǫ-solution on the dual problem, we do not need to choose N greater

than ||div||2
√

n
λ−λ−(A)

1√
ǫ
.

4 Numerical results and discussion

We cannot do an exhaustive comparison of all numerical methods that solve total variation
problems. The bibliography about this problem contains more than 50 items. Most are
time consuming to implement and their efficiency heavily depends on some choices like
preconditionners. We thus restrict our experimental numerical comparisons to two easy,
widely used first order methods. Namely :

• the [projected]-subgradient descent with optimal step.

• the [projected]-gradient descent after smoothing of the total variation.
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4.1 Experimental results

Is there a numerical difference between the smooth approximations of total

variation?

In equation (3.28), we presented a way to approximate the total variation, and claimed
that it should be better than the classical approximation (3.21). In all numerical experiments
we perform, the minimization of (3.28) leads to solutions that have a lower total variation
than (3.21), but the visual aspect of the solutions are the same. As the complexity of
computing ∇Jµ or ∇J̃µ is the same, we think that using Jµ definitely is a better choice if
one aims at approximating the total variation using first order methods.

Some comparisons for the constrained Rudin-Osher-Fatemi problem.

The problem we choose for numerical comparisons is the Rudin-Osher-Fatemi model. It
consists in solving :

inf
u∈X,|u−f |2≤α

(J(u)) (4.80)

We note J̄ the minimum in (4.80). Let us described the methods we implement for
comparisons.

• The first is a projected gradient descent with optimal constant step :

{

u0 = f
uk+1 = ΠK(uk − t∇Jµ(uk))

(4.81)

The optimal step can be shown to be t = 2µ
||div||22

[39]. We set K = {u ∈ X, |u− f |22 ≤
α2}.

• The second is a projected subgradient descent with optimal step :

{

u0 = f

uk+1 = ΠK(uk − tk
ηk

||ηk||2 )
(4.82)

ηk must belong to ∂J(uk) for convergence. We choose :

ηk = −div(Ψ) with Ψi =

{

(∇uk)i

|(∇uk)i|2 if |(∇uk)i|2 > 0

0 otherwise
(4.83)

and tk = J(uk)−J̄
|ηk|2 . This step is optimal in the sense that it leads to an O( 1

ǫ2 ) algorithm.

As J̄ is unknown, some authors try to evaluate it iteratively [23, 28]. To find it, we just
let a program (Nesterov) run until convergence, and get the optimal value J̄ . Clearly
this method is not usable in practice but serves as a reference.
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• The third is the presented Nesterov approach (3.37).

We used the 256 × 256 Lena image rescaled in [0, 1]. We set α = 20 in (4.80). This
corresponds to the images in figure (5). The curves in figure (6) compare the decrease of
the total variation w.r.t the number of iterations for the different methods.

Figure 5: Left : original image - Right : solution of (4.80) choosing α = 20

We notice that in all cases, the Nesterov’s scheme achieves much better than the pro-
jected gradient descent. The difference gets larger as the Lipschitz constant of the cost
function increases. For any value of µ the Nesterov’s approach competes with the projected
subgradient descent.

Some comparisons for Lagrangian Rudin-Osher-Fatemi problem.

In this part, we solve the following problem :

inf
u∈X

(

J(u) + λ2|u− f |22
)

(4.84)

Our goal is to evaluate the efficiency of the dual approach presented in (3.78). We
compare it with :

• the subgradient descent with optimal step.

• the Nesterov approach evaluated previously with µ = 0.005. This approach solved
the primal constrained problem. We thus have to find parameters α and λ such that
problems (4.80) and (4.84) are equivalent. In order to do so, we let the Nesterov
method applied to the dual problem of (4.84) run until convergence. This gives us a
solution ūλ. Then we compute α = |ūλ − f |2.
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Figure 6: Total variation VS number of iterations for µ ∈ {1e − 2, 5e − 3, 1e − 3}. PSD
stands for Projected subgradient descent. PGD stands for projected gradient descent.
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• the projected gradient descent applied to the dual problem (3.56). This approach is
slightly faster than A. Chambolle’s algorithm [9] (see for instance [10]).
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Figure 7: Total variation w.r.t to the iterations number.

The dual problem solved with a Nesterov scheme clearly outperforms all tested ap-
proaches. After 500 iterations (6 seconds) it gives a precision that can be attained by no
other scheme in less than 2 minutes.

Another interesting remark is that the smoothing technique competes with the projected
gradient descent applied to the dual problem and that they have the same theoretical O(1

ǫ )
rate of convergence. Let us precise that the computational effort per iteration of the Nesterov
technique is between one and twice that of the projected gradient descent.

4.2 Discussion

Stability of the Nesterov scheme

People who have tried the Nesterov technique, report experimental failure (see for in-
stance [47]). Our conclusion is opposite. In all tested cases, the Nesterov algorithm is faster
than the projected gradient descent. We hope this will incite people to use it.

Comparisons with other methods

INRIA



Efficient schemes for TV minimization 29

Second order methods are commonly used to solve problem (1.2) and it seems they
represent the closest rivals of our approach. Many papers suggest the use of ’half-quadratic
minimization’ [20] which was shown recently to be equivalent to quasi-Newton techniques
[36]. Those methods are proved to converge linearly [1]. Such a rate is better asymptotically
than our polynomial energy decays. This results in convergence after fewer iterations. The
counterpart clearly is the need to solve a huge linear system at each iteration. The efficiency
of this method strongly depends on the conditioning number of the system and the choice
of preconditioners. It is thus difficult to compare both approaches. We think that our
method should be advantageous in the case of low resources programming environments.
More computational comparisons should be led to give a definitive answer in the case of PC
programming.

Second order cone programming was proposed recently [46] and leads to very precise
solutions, but the computing times seem to be higher than those of the simple gradient
descents for moderate precision.

A promising approach based on graph-cuts was proposed recently [15, 10]. The authors
solve (1.2) for A = Id and p ∈ {1, 2,∞}. They show that they get exact solutions (up to
a quantization parameter) in a finite number of iterations. The computing times obtained
seem to be slightly higher than those of the dual algorithm [10] for Rudin-Osher-Fatemi
problem. They should be better than our approach for the BV − L1 problem. We think
that the presented approach allows to solve a larger class of problems and is simpler to
implement.

5 Conclusion

We presented efficient first order algorithms to minimize the total variation under many
smooth or non-smooth convex sets. Those schemes are simple to implement and present low
computing times. They are based on a recent advance [34] in convex optimization. Their
efficiency is comparable or better than state of the art methods.

In this paper we focused on total variation problems. More numerical experiments should
be led for the minimization of l1-norm of linear transforms.

Acknowledgement: The first author would like to thank Alexis Baudour for useful math-
ematical discussions.

A Appendix

A.1 Discretization of differential operators

In this section, to simplify the notations, we denote u(i, j) the value of u on pixel (i, j).
nx and ny will represent the number of pixels in the horizontal and vertical directions
respectively.
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To discretize the gradient we used in all experiments the following classical first order
scheme borrowed from [9]. For u ∈ X :

(∇u)(i, j) = ((∂1u)(i, j), (∂2u)(i, j)) (1.85)

∇u is an element of Y .

(∂1u)(i, j) =

{

u(i+ 1, j) − u(i, j) if i < nx

0 if i = nx
(1.86)

(∂2u)(i, j) =

{

u(i, j + 1) − u(i, j) if j < ny

0 if j = ny
(1.87)

This definition allows to define the divergence properly by duality, imposing :

< ∇u, p >Y = − < u, div(p) >X (1.88)

Simple computation gives :

(div(p))(i, j) =







p1(i, j) − p1(i− 1, j) if 1 < i < nx

p1(i, j) if i = 1
−p1(i− 1, j) if i = nx

+







p2(i, j) − p2(i, j − 1) if 1 < j < ny

p2(i, j) if j = 1
−p2(i, j − 1) if j = ny

(1.89)

Note that the operator div is surjective from Y to X − {(γ, γ, ..., γ), γ ∈ R}.
Moreover it can be shown [9] that ||div||2 ≤ 2

√
2.

A.2 Projections on weighted lp-balls (p ∈ {1, 2,∞})

Until now, we supposed that we could do Euclidean projections on weigthed lp balls. Some
projection operators are not straightforward to implement and we propose solutions to that
problem. Let K = {y ∈ X, |λ(y − f)|p ≤ α}, with λ ∈ [0,∞]n. The problem of projection
on K can be written analytically :

ΠK(x) = arg min
{y∈K}

(

|y − x|22
)

(1.90)

Let ȳ denote the solution of (1.90). A first important remark that holds for any p is
that if λi = 0, then ȳi = xi. If λi = ∞ then ȳi = fi. Thus in all projection algorithms the
first step is to set all those known values. This allows to restrict our attention to the case
λ ∈]0,∞[n.

Projections on weighted l∞-balls
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The simplest projector is the one on weighted l∞-balls. It writes in closed form :

ȳi =

{

xi if |λi(fi − xi)| ≤ α

fi + xi−fi

|xi−fi|
α
λi

otherwise
(1.91)

Projections on weighted l1-balls

Up to a change of variable, the projection on a weighted l1-ball writes :

ΠK(x) = argmin
{u,|λu|1≤α}

|u− x|22 (1.92)

with λ ∈]0,∞[n and α > 0.

• First notice that if |λx|1 ≤ α, then ū = x.

• In the other cases, existence and uniqueness of a minimizer results from strict convexity
of |u − x|22 and convexity of K. There exists σ ∈ [0,∞[ s.t. the solution of (1.92) is
given by the solution of the Lagrangian problem :

ΠK(x) = argmin
u∈Rn

|u− x|22 + σ|λu|1 (1.93)

The solution of this problem is in closed form :

u(σ)i =

{

xi − sgn(xi)
σλi

2 if |xi| ≥ σλi

2
0 otherwise

(1.94)

Let Ψ(σ) = |λu(σ)|1. Our problem is to find σ̄ such that Ψ(σ̄) = α. Ψ is a convex func-
tion (thus continuous) and decreasing. Moreover Ψ(0) = |λx|1, and limσ→∞ Ψ(σ) = 0.
From intermediary values theorem, for any α ∈ [0, |λx|1], there exists σ̄ s.t. Ψ(σ̄) = α.

Ψ(σ) =

n
∑

i=1

|λiūi| (1.95)

=
∑

i,|xi|≥σλi/2

λi(|xi| − σλi/2) (1.96)

=
∑

i,yi≥σ

λi|xi| − σλ2
i /2 (1.97)

with yi = 2|xi|
λi

. Now, it is important to remark that Ψ is a piecewise linear decreasing
function. The changes of slopes might only occur at values σ = yj . Thus, an algorithm
to find σ̄ is the following :
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1. For i ∈ [1..n], compute yi = 2|xi|
λi

. [O(n) operations]

2. Using a sort function, store the permutation j s.t. k → yj(k) is increasing.
[O(n)log(n) operations]

3. Compute the partial sums : Ψ(yj(k)) = E(k) =
∑n

i=k λj(i)|xj(i)| −
yj(k)λ

2
j(i)

2 . E is
decreasing. [O(n) operations]

4. – If E(1) < α, set a1 = 0, b1 = |λx|1, a2 = yj(1), b2 = E(1). [O(1) operations]

– Otherwise, find k̄ s.t. E(k̄) ≥ α and E(k̄ + 1) < α. Set a1 = yj(k̄), b1 =

|E(k̄)|1, a2 = yj(k̄+1), b2 = E(k̄ + 1). [O(n) operations]

5. Set σ̄ = (a2−a1)α+b2a1−b1a2

b2−b1
. [O(1) operations]

6. Set ū = u(σ̄) using (1.94). [O(n) operations]

Projections on weighted l2-balls

The projection on a weighted l2-ball (an ellipsoid) writes :

ΠK(x) = arg min
{y,|λy|22≤α2}

|y − x|22 (1.98)

Contrarily to the l∞ and l1 cases, we do not propose an exact solution to this problem.
We give an algorithm that leads to solutions that have ’the level of precision of the machine’.

• First notice that ȳ = x if |λx|2 ≤ α.

• Otherwise it can be shown using Lagrange multipliers that the solutions of (1.98)
writes :

ȳ =
x

σ̄|λ|2 + 1
(1.99)

for some parameter σ̄ > 0. Moreover, we know that |λȳ|22 = α2. Let Ψ(σ) = | λx
σ|λ|2+1 |22.

We are looking for a parameter σ̄ s.t. Ψ(σ̄) = α2. It can be shown that Ψ is convex
decreasing. To find σ̄ we used a Newton method. It writes :

1. Set k = 0, σk = 0.

2. Compute αk = Ψ(σk).

3. Compute βk = Ψ′(σk) = −2
∑n

i=1
λ4

i x2
i

(σkλ2
i
+1)3

.

4. Set σk+1 = σk + (α2−αk)
βk .

5. Set k = k + 1, go back to 2 until αk − α2 ≤ ǫ.

6. Set ȳ = x
σk|λ|2+1

.
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Theoretically, this scheme converges superlinearly. In all our numerical experiments on
deconvolution, we never needed more than 15 iterations to get a 10−15 precision. The
average number of iterations is 6. Thus, we think that the projection on a weighted
l2 ball can be thought of as an O(n) algorithm.
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