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Abstract

In this paper, the concept of previous medoid index is
introduced. The’ utilization of memory for efficient medoid
search is also presented. We propose a hybrid search approach
for the problem of nearest neighbor search. The hybrid search
approach is to combine the previous medoid index, the
utilization of memory, the critetion of triangular inequality
-elimination and the partial distance search. The proposed
hybrid search approach is applied to the k-medoids-based
algorithms. Experimental results based on Gauss-Markov
source, curve data set and elliptic clusters demonstrate that the
proposed algorithm applied to CLARANS algorithm may
reduce the number of distance calculation from 88.4% to
95.2% with the same average distance per object comparing
with CZLARANS. The proposed hybrid search approach can also
be applied to the nearest neighbor searching and the other
clustering algorithms.

1 Introduction

The clustering problems [1} have been investigated extensively
in data mining, image compression, texture segmentation,
computer vision, psychiatry, vector quantization, medicine and
marketing. Recent works in the data mining community
including #medoids [2), CACTUS |3}, CHAMELEON 4], and
AUTOCLUST |5). No clustering algorithm described above
has applied the concept of efficient codeword search in vector

quantization area to reduce the computational complexity [6-9].

In this paper, we introduce the concept of previous medoid
index and present the technique of the utilization of memory to
reduce the computation time. We also present three search
approaches for efficient clustering algorithms and apply these
three search approaches to k-medoids-based algorithms that
have been shown to be robust to outliers, not generally
influenced by the order of presentation of objects and invariant
to translations and orthogonal transformations of objects [2].

Partitioning Around Medoids (2444) [2]), Clustering
LARge Applications (CZARA) [2] and Clustering Large
Applications based on RANdomized Search (CLARANS) [10]
are three popular Amedoids-based algorithms.” Clustering
Large Applications based on Simulated Annealing (CZA4S.4)
algorithm applied the simulated annealing to select better
medoids [11]. The drawback of the k-medoids algorithms is
the time complexity for getting the medoids. In this paper,
three extended version of CLZARANY are presented based on
the proposed efficient search algorithms.
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2 A-medoids algorithms
2.1 P4 algorithm
The Amedoids clustering algorithm evaluates a set of 4

objects considered to be representative objects (medoids) for #
clusters within the 7’objects such that the non-selected objects
are clustered with the medoid to which it is the most similar.
The total distance between non-selected objects and their
medoid may be reduced by the swap of one of the medoids
with one of the objects iteratively. The computational
complexity of the 244/ algorithm is OX(1+ A& (T- #H*)
which is based on the number of distance calculation and /£
is the number of successful swap. Obviously, it is time

consuming even for the middle number of objects and small
number of medoids.

2.2 CLARA algorithm

CLARA (Clustering L.ARge Applications) algorithm [2]
reduces the computational complexity by drawing multiple
samples of the objects and applying 244/ algorithm on each
sample. The final medoids are obtained from the best result of
these multiple draws. The computational complexity of the
CLARA algorithm is XA £ 5* + & (T~ B)+ f5*) , where
@, s, & fand 7 are the number of samples, object size per

~ sample, number of medoids, the number of successful swaps

for all samples test and the total number of objects,

- respectively. Obviously, CZAR4 algorithm can deal with a
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large number objects than can be 244/ algorithm if s<<Z7'.
The CZARA algorithm can be depicted as follows:

Step 1:  Repeat the following steps ¢ times.

Step 2:  Call 2447 algorithm with a random sample, s objects
from the original set of 7"objects.

Step 3: Partition the 7"objects based on the £ medoids obtained
from previous step. Update the better medoids based
on the average distance of the partition. -

23 CLARANS algorithm

If the sample size s is not large enough, the effectiveness
(average distortion) of the CZARA algorithm is lower.
However, the efficiency (computation time) is not good if the
sample size is too large. It is tradeofl between the effectiveness
and efficiency in CZARA algorithim. The best clustering cannot
be obtained in CZARA algorithm if one of the best medoids is
not included in the sample objects. In order to get the
efficiency and acceptable performance in average distance per



object, the CZARANS (Clustering Large Applications based on
RANdomized Search) algorithm™ [10] :was ‘proposed.. The
clustering process in CLARANS a]gonthm is. formalized  as
searching through a certain graph where each ‘node is
represented by a set of £medoids, and two nodes are neighbors
if they only differ by one medoid. Each node has AZ-4
neighbors, where 7’is the total number of objects. CLZARANS

algorithm starts with a selected nodé randomly: It-moves-to:the -

neighbor node if one test for the: nmxrwm/lbor number .of

neighbors is successful; otherwise it-récords- the current riode .

as a local minimum. If the node with the’
found, it starts with a new randomly selecte

r

the search for a new local minimum. The procedure continues #

until the numlocal numbers of local ‘minima: have been . found;.,
and return the best node. The compiitational complexity” is
OB+ numlocah (T - A)) based on the number of distance
calculation, where A is thé’ number “of successtul move
between nodes. The CMMVS algorithm can be descnbed as
follows:

Step 1: Repeat the following ’siep’s fo‘r’ }izmi/aca'/ tiines

R4

Step 2: Select a current node randomly and calculate the average

distance of this ‘current code, where node is - the
collecuon of #medoids. :

Step 3: Repeat’ the following step for ﬂzamezg/bartlmes
— Select a neighbor node randomly and. calculate the

average distance for this node: If the average distance is’
. lower, set currentrriode to:be.,the neighbor node.

3  Proposed search approaches -'

Although Amedoids-based . algorithms are -designed for
clustering large database, -:all. - existing" #medoids-based
algorithms are time consuming. The computational complexity

of k-medoids-based algorithms can.be reduced by applymg the

concept in VQ-based codeword search [6 -9].
3.1 Partial distance search -

The efficient codeword search algonthms m~VQ -based 51gna1
compression have never been applied- to fmiedoids-based
algorithms. The partial distance search (PDS) algorithmi[6] is
a simple and efficient codeword seatch algorithm which allows
early termination of the: distortion ¢alculation between a test
vector and a codeword by mtroducmg a premature exit
condition in the search process. G;ven the squared Euclidean
distance measure, one obJecl K= {0 e Xig), ‘and two

_ medoids (represematlve obJects) e
0, ={04,0 -, 017} and 0,;=40,1,035:.40,7} 5~ assume

the current minimum distance is

Do) = 5051 00)* = Dy (6
. A 5 4

v R0 2 Pon @
then D(xo,)z Dix0) s ®

where 1<4<4.

The efficiency of PDS is denved from the ellmmatlon of an
unfinished distance computation- if its’ partial accumulated
distortion is larger than the current minimum distance: This
will reduce (/- /) multiplications and 2(&— /). additions

al the expense of / comparisons.
3.2 Triangular inequality-¢limination criteria

Vidal proposed - the apprqximzfting and elimination : search
algorithm (AESA) [7] whose computation time is

“reduce from O(7~ A)4)
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approximately constant for a codeword search in .a large
codebook size. The high correlation characteristics between
data vectors of adjacent speech frames and the triangular
inequality elimination (TIE) criterion were utilized to
VQ-based recognition of isolated words [8].

- Triangular mequahly ‘elimination (TIE) criterion is an
efficient method for applying to nearest neighbor search. Let
opand -0,. be two different medoids and x be an object, then

TIE criterion ¢ab be obtained as following.

d(0y,05) 2 2d(x,0,), )
d(2,00) 2 d(x,00). &)
In this criterion, these distances between all pairs of

medoids are computed in advance. If Eq. 4 is satisfied, then we
omit the computation of @(x,0,)if @(x,0)) has already

then

been calculated. In this paper, TIE criterion is modified for a
squared error distance measure. Given the medoid size 4 a
table with memory size 441)/2 is made to store the one-fourth
of squared distance between medoids,
d(01,0)42 d*(%,0)),
then d(x,0,)2 d(x,0).

(®
M

3.3 Previous medoid index

Most of the #-medoids-based algorithms are checked whether
one of the medoids need to be changed by one of the objects.
Since only one medoid is changed, most of the objects will
belong to the cluster represented by the same medoid. By
using this property, we may calculate the distance betwéen the
object and its previous medoid index firstly. Since the
probability is very high for the object belong to the same
medoid index, the distance is very small. If we get a very smail
distance between the object and one medoid, then it is easier to
use 77 criterion and the pa.nlal distance search to reduce the
distance computation.

3.4 Utilization of memory

Assume £ medoids 0,./=1° £, are chosen from 7 'objects

/=1, ,7 and the number of dimension for each object or

medoid is & The size of the memory for all objects in the
database is 7. If the distance table for each pair of objects.
dx,x;). i#/, £7=1+ T are stored, then the size of

memory for the distance table'is ﬂz_ll . If this memory

is available, then the distance calculation need be performed
just the once, whether for 244/ CLARA and CLZARANS
algorithms. All these algorithras will thus be very efficient,
and the computational complexity will be similar.
Unfortunately, if the number of objects is large, memory is not
always available. We thus propose a new approach which

uses only (7' £). memory to store the distance, but it may
to X7-1+Hk-1)) , the
distances computation for the test of the swap between object
Opery and 0,,,, Where » is the number of objects whose
nearest medoids are swapped. The probability to swap the
nearest medoid with any object is %,, S0 r= % Assume
NAM(x;). is the nearest medoid- to the object x; before the
swap, the total distance before the swap of objéct Oy and

7=k
medoid o,;,, can be expressed as 2, = ¥ d(x;, NA(x;) .
=1

The total distance after the swap of object o,,,, and medoid



0,4# can be separated into three items. The first item is the
distance for the objects which are not swapped from the

- medoids and their nearest medoids are not swapped to be the
objects. This distance can be expressed as

-k i
Hﬂ = z min[{/('ri’/V/V(xi))’d(xhonewn KXpEOp, s
= N (x,)# 0,

®
Where min{a(x;, VM(3,)), 4(x ,0,,,)] denotes the minimum
distance of (VM%) and d(x7,0,,,) . ¥ * 0,y and
NM( %) # 0,,; represents that the object is not swapped from
the medoid and the nearest medoid of the object is not
swapped to be the object, respectively. The second distance is
introduced from the medoids swapped to objects as following:
Dy =min[d(0,,,0,), j=1° #1].

O]
The third distance is introduced from those objects whose
nearest medoids are swapped to be objects as following:

I-% ]
25 ="Y 0| e > (10)
= NH(x,)=0,1
15,

where NVAM(x;) = 0, represents those objects whose nearest
medoids are swapped to be objects and J), is the #h
partitioned set where o, is the representative nredoid. Hence
the total distance after the swap of object ¢,,,, and medoid

0,47 can be expressed as

: I-k
ﬁr = z {min[a’(x,', /V/V(Iz))- X (.l',',ﬂ,mw)] X#0opy
- Nbfx 20,

+d35,0,)  ro yrmind(0,,0,), =10 4]
NM(3)=0yy
x,ef},

: : an
If the distances &(x,NAy;)), /=1 ,7—£ are stored,
then only (7—#-1-/) distances computation for
A 50pp) i =10 T—F, X% 0py, NM(3;)# 0y, and £
distances computation for d(o,4,0,), j=1* £ and r&
!/(-r,',ﬂp),i: 1" ,7’—1’ ’
NM(x;) = 0, . Since the memory size (Z7'—£) is generally

distances  computation  for

reasonable for the clustering of the objects with memory size
74, it is a useful approach. Note that this approach can be
applied to 244/, CLARA, CLARANS and the other clustering
algorithms.

3.4 Proposed search approaches

In this paper, three new search approaches are presented for
the problem of nearest neighbor search. These three new
search approaches are applied to CZARANF algorithm.
CLARANS algorithm with previous medoid index, the criterion
of TIE and PDS is referred to as CZARANS—/TP. CLARANS
with the proposed utilization of memory is referred to as
CLARANS—A/. Application of the previous medoid index, the
proposed utilization of memory, the first criterion of TIE and

_partial distance search algorithm to CLARANS is referred to

as CLARANS —AITP.

4, Experimental Results
4.1 datasets

Three artificial data sets were used for the experiments as
follows:

1. 3,000 objects with 8 dimensions are generated from the
Gauss-Markov  source which is of the form
Yy =00, +w, where w, is a zero-mean, unit

variance, Gaussian white noise process, with @=10.5.

2. 12,000 objects with 2 dimensions collected from twelve
elliptic clusters.

3. 5,000 objects with 2 dimensions are generated from
curve data sets. The object (1,3) is collected from the

form -2<x<2 and }/=8xx—x.

4.2 Experiments

In this paper, three extended version of CZARANS are
presented. Experiments were carried out to test the number of
distances calculation and the average distance per object for
CLARA, CLARANS, CLARANS—ITP, CLARANS—M and
CLARANS—AITP algorithms. Since the computation time
depends not only on the clustering algorithm but also on the
use of computation facility. It is better to choose one measure
criterion so that the measure results are the same for all types
of computers and this measure criterion is proportional to the
computation time. That is why we choose the number of
distance calculation as the benchmark. Squared Euclidean
distance measure is used for the experiments. The
Gauss-Markov source was used for the first experiment. 32
medoids are selected from 3000 objects. For CZARA algorithm,
the parameter ¢ was set to 5 and s was set to 320 12*4 for the
sample size, where £ /4 the number of medoids. For CLARANS
algorithm, the parameters numlocal and maxneighbor are set to
5 and 1200, respectively. Experimental results are shown in
Table 1, comparing with CZARANS, CLARANS—MITP,
CLARANS—AM and CLARANS—/7P may reduce the number of
distance computation by 95.2%, 93.8% and 67%, respectively.

Table 1. Results of Experiment for Gauss-Markov source

CLARA _ [CLARANS|CLARANS-ITP[CTARANS -M[CLARANS-MITP]
Seeq| Countaf | Count of Count of Count of Count of  Ave . dis.|
dis. (107 )¢ 85} gis, (107) | dis 107 ) | dis. 007) dis. 407 )
1| 1548 [4559| 376 126 23 13 4432
2 ) 1637 {4.592{ 532 177 33 25 4,359
3| 1789 [ass1] 375 - 123 23 18 4.381
4l 1726 |4.578| 406 133 25 19 4.398
5 1827 |asse| 397 131 25 19 4.367
6] 1675 |4.526| 414 137 26 20 4.384
7l 1853 laszz) 323 166 20 15 4,380
g || 1624 [4.483| 396 130 .25 18 4.393
9 | 1903 45457 367 120 23 7. 43T
104 1802 [4.514] 358 119 22 17 [ 4406
ave ] 1738 [4.543] 394 130 24 13 4.388

The twelve elliptic clusters were used for the second
experiment. 12 medoids are selected from 12000 objects. For-
CLARA algorithm, the parameter ¢ was set to 5 and s was. set
to 960+2*4 For CLARANS algorithm, the parameters
numlocal and maxneighbor are set 10 5 and 1800, respectively.
As shown in Fig. 1, comparing with CLARANS,
CLARANS—MITP, CLARANS—M and CLARANS—/7P may
reduce the number of distance computation by 88.4%, 84%



and 84.3%, respectively.
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Fig. 1 Performance = comparison -of CLARA, CLARANS,
CLARANS-MITP, . CLARANS-M and  CLARANS-ITP
for twelve elliptic clusters

The curve database was used for the third experiment.
20 medoids are selected from 5000 objects. For CZARA
algorithm, ‘the parameter g was set to 5 and s was set to

400+2*4, For CLARANS. dlgonthm 'the parameterb numlocal
and maxneighbor are set 1o 5 and.1250, respectwely As shown
in Fig. 2 and Table 2, comparing with CZARANS,
CLARANS—MITP, CLARANS =M and: CLARANS—ITP
may reduce the pumber’ of distance computation by 93.9%,
90.2% and 92%, respecuvely
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: Fig. 2 Performance compél:iéon” “of " CLARA, CLARANS,
CLARANS-MITP, CLARANS:A and CLARANS-TTP

for curve clusters

Table 2. Results of Experiment for curve Clusters

 CLARA _ |CLARANS|CLARANS ITP|CLARANS -M|CLARANS -MITF

Seed| Count of | Countof | Countof Count of Countof - [ave. dis.
dis. (10 P85 gis, (107) | dis. (107) | dis.007) | dis.q0")

T 781 {2232 652 33 64 40 2.151
2 734 |2278| 626 51 61 38 2.181
3 847 23171 702 57 69 .43 - 2.179
s 17 |2342] 79 58 0 p 44 2192
s sas 2321 574 45 56 3s 2.156
6| 805 {2252] 623 49 61. 38, 2.157
71 741 2305 650 52 64 39 217
s | 77 |2238] 636 51 62 390|214
9l 741 |2208] 551 44 54 4 2.185
100 805 [2.317| 484 38 . 47 29 2.165
e 785 |2.281] 622 50 61 38 2.168
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5 Conclusions and Future Work

In this paper, three extended version of CZARANS are
presented based on the proposed three search strategies.
Experimental results demonstrate that applying the proposed
hybrid search method using previous medoid index, utilization
of memory, the criterion of TIE and partial distance search to
CLARANS may reduce the number of distance computation
from 88.4% to 95.2% comparing with CZARANS. Note that the
proposed search strategies may apply to the- other clustering
algorithms. We will extend the work of this paper to some
other well-known clustering algorithms for future work.
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