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Abstract 
In this paper, the concept of previous medoid index is 
introduced. The' utilization of memory for efficient medoid 
search is also presented. We propose a hybrid search approach 
Cor the problem of nearest neighbor search. The hybrid search 
approach is to combine tlie previbus medoid index, the 
utilization of memory, the criterion of triangular inequality 
elimination add the partial distance search. The proposed 
hybrid search approach is applied to the k-medoids-based 
algoritluns. Experimental results based on Gauss-Markov 
source, curve data set and elliptic clusters demonstrate that the 
proposed algorithm applied to C L 4 M 5 '  algorithm may 
reduce the number of distance calculation from 88.4% to 
95.2% with the s a n ~  average distance per object comparing 
with CURAVX The proposed hybrid search approach can also 
he applied to the nearest neighbor searching and the other 
clustering algorithms. 

I Introduction 
The clustering problem [ 11 have been investigated extensively 
in data mining, image compression, texture segmentation, 
computer vision, psychiatry, vector quantization, medicine and 
inarketiug. Recent works in the data mining comnunity 
including Rniedoids [2], CALTCL5'[3], CsY~ELEQN[4], and 
AUZUCLUSP 151. No clustering algorithm described above 
has applied the concept of efficient codeword search in vector 
quantization area to reduce the computational complexity [6-91. 
In this paper, we introduce the concept of previous medoid 
index and present the technique of the utilization of memory to 
reduce the computation time. We also present three search 
approaches for efficient clustering algoritlms and apply these 
three search approaches !o k-medoids-based algorithms that 
have been shown to be robust to outliers, not generally 
influenced by the order of presentation of objects and invariant 
to translations and orthogonal transformations of objects [2]. 

Partitioning Around Medoids (PAM) [2], Clustering 
LARge .4pplications (CUM) [2] and Clustering Large 
Applications based on RANdomized Search (C-4 [lo] 
are three popular k-medoids-based algorithms. Clustering 
Large ,4pplications based on Simulated Annealing (CUA-2) 
algorithm applied the simulated annealing to select better 
medoids [ll].  The drawback of the k-medoids algorithms is 
the time complexity for getting the medoids. In this paper, 
~hree extended version of C U ~ N r S  are presented based on 
the proposed efficient search algorithms. 
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2 X-mea'oia's algorithms 
2.1 PMalgorithm 

The k-medoids clustering algorithm evaluates a set of k 
objects considered to be representative objects (niedoids) fork 
clusters within the Tobjects such that the non-selected objects 
are clustered with the medoid to which it is the most similar. 
The total distance between non-selected objects and their 
medoid may he reduced by the swap of one of the medoids 
with one of the objects iteratively. The computational 
complexity of the P ? f  algorithm is q ( 1 +  fiL? (T- ky ) 
which is based on the number of distance calculation and ,8 
is the number of successful swap. Obviously, it is time 
consuming even for the middle number of objects and small 
number of medoids. 

2.2 CZAR2 algorithm 
CURA (Clustering LARgc Applications) algorithm [Z] 

reduces the computational complexity by drawing multiple 
samples of the objects and applying PAM algorithm on each 
sample. The final medoids are obtained from the best result of 
these multiple draws. The computational complexity of the 
&.isRA algorithm is O(Mk'2 + k (2"- k)) +B'd) , where 
a ,  s, k, ,Band Tare thc number of samples, object size per 
sample, number of medoids, the number of successful swaps 
for all samples test and the total number of objects, 
respectively. Obviously, CUX.4 algorithm can deal with a 
large number objects than can be kZWalgorithm if s<<T. 
The CLAM algorithm can be depicted as follows: 

' 

Step 1: 

Step 2: 

step 3: 

Repeat the following steps p times. 

Call PAMalgorithm with a random sample, s objects 
from the original set of Tobjects. 

Partition the Tobjects based on the kinedoids obtained 
from previous step. Update the better niedoids based 
on the average distance of the partition. - 

2.3 CLARXNSalgorithrn 
If the sample size s is not large enough, the effectiveness 
(average distortion) of the CUM algorithm is lower. 
However, the efficiency (computation time) is not good if the 
sample size is too large. It is tradeoffbetween the effectiveness 
and efficiency in C W  algoritlun. The best clustering camot 
be obtained in CZAR4 algorithm if one of the best medoids is 
not included in the sample objects. In order to get tlie 
efficiency and acceptable performance in average distance per 
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RANdomized Search) algorithm 
clustenng process ni C W N S  
searching through a certain graph where each node is 
represented by a set of kmedoids, and two nodes are neighbors 
if they only differ by one medoid. Each node has k( f lk)  
neighbors, where Tis the total number of ob] 
algorithm starts with a selected node 
neighbor node if one test for the 
neighbors is successful: otlierwse it 
as a local ininirnuin. If the node with tl 
found, it starts with a new randomly 
the search for a new local mmmum. The-procedure continues 
until the ni/m/ocn/numbers of local niiiifma have been found.. 
and return the best node. The computational complexity is 

n the number of distance 
calculation, where 
between nodes. The 
follows: 

Step 1: Repeat the followin 

Step 2: Select a current node randomly ai 
distance of this current code, 
collection of kmedoids. 

Step 3: Repeat the follomig step for m a t  

average &stance for this node. If tlie average distance is 
lower, set current node to be the neighbor node. 

3 Proposed search approaches 

3.1 Partial distance search 

medoids (representativ 

the current imimuni distance is 
0, = {O,l,O,Z ,-..>old) 

the11 

where l l h l d  
The efficieiicy of PIIS is denved from the elnnination of an 
unfuiished distance coniputatioii if its partial accumulated 
distortion is larger than the current muiiuium distance. 'Illis 
wdl reduce (d- h) multiplications 
at the expense of h compansons. 

3.2 Triangular inequalityelimination criteria 

D( X,  U, ) 2 D( X,  0,) , (3) 

Vidal proposed the approximatmg &id elimination search 
algorithm (AESA) [7] whose computation time is 

approximately constant for a codeword search in ti large 
codebook size. The high correlation characteristics between 
data vectors of adjacent speech frames and the tl%Il@llar 
inequality elimination (TIE) criterion were utllized to 
VQ-based recognition of isolated words [8]. 

Triangular inequality elimination (TIE) criterion i s  an 
efficient method for applying to nearest neighbor search. Let 
q and 02. be two different medoids and n be an object. then 
TIE criterion cab be obtamed as foUowing. 

(4) 

( 5 )  
In this criterion, these dislances between all pars of 

inedoids are computed in advance. If Eq. 4 is satisfied, then we 
omit the computation of d(x,02) if d(x,q) has already 
been calculated. In this paper, TIE criterion is modified for a 
squared error distance measure. (Given the medoid size k. a 
table with memory size k(k-1)/2 is made to store the one-fourth 
of squared distance between medoids, 

!'f d2 (01 9 0 2  4 2 d2 (x,q 1, (6 )  
then d(x,02) 2 d(s ,q) .  (7) 

3.3 Previous medoid index 

Most of the k-medoids-based algorithnls are checked whether 
one of the inedoids need to be changed by one of tlie objects. 
Since only one medoid is chang,ed, most of the objem will 
belong to the cluster represented by the same medoid. By 
using this property, we may calculate the distance between the 
object and its previous medo:id index firstly. Since the 
probability is very high for the: object belong to the same 
medoid index, the distance is very small. If we get a very small 
distance between the object and me medoid, then it is easier to 
use T/E criterion and the partial distance search to reduce the 
distance computation. 

3.4 Utilization of memory 

Assume kmedoids ui.j=l; , k ,  are chosen from Y'objects 

+,i= 1; ,T and the iiuniber of dimension for each object or 
medoid is d The size of the memory for all objects in the 
database is Td. If the distance table for each pair of objects. 
d(x,,x,.). i # j ' ,  i,j=l$* ,T are stored, then the size of 

memory for the distance table is - T(T-l) . If this memory 

is available, then the distance c.alculation need be performed 
just the once, whether for E 4 4  C U m  and CZA?dNS 
algorithms. All these algorithms will thus be very efficient, 
and the computational complexity will be similar. 
Unfortunately, if the number of  objects is large, meinory is not 
always available. We thus propose a new approach which 
uses only O(T- k) nieinory to store the distance, but it may 
reduce from O((T-k)k) to O(T-l+r(k-l)) , the 
distances computation for the test of the swap between object 
o.,,~,, and ooId, where Y is the number of objects whose 
nearest medoids are swapped. The probability to swap the 

nearest medoid with any object is f / k ,  so Y = %. .4ssuiiie 

NM(xi) is the ncarest mcdoid to thc objcct xi bcforc thc 
swap, the total distance before the swap of object one,, and 

medoid can be expressed as Dt = zd(xi,NW(.ri)) . 

The total distance after the swap of object o,,, and medoid 

2 

7-k 

;=I 
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T- k 

e1 
dfi = X min[d(xi,NM(xi)),d(q,une,,,)l .r,;Co,, > 

NA*'(+)#O,,d 

I 

3-k 

i=l 
4 = c 4-rfiup) 
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partial distance search algorithm to CLARANS is referred to 
as CUMS-MITP. 

T-k 

i=l 
0; = C {min[d(xi, NM((xi)), 4 4 , ~ n e w ) I  

4. Experimental Results 
4.1 datasets 

Three artificial data sets were used for the experiments as 
follows: 

1. 3.000 objects with 8 dimensions are generated from the 
Gauss-Markov sourcc which is of the fomi 
yn = v,,-~ + > I %  where wn ' is a zeromean, unit 
variance, Gaussian white noise process, with a= 0.5 . 
,12,000 objects with 2 dimensions collected from twelve 
elliptic clusters. 

5,000 objects with 2 dimensions are generated from 
curve data sets. The object (x,y) is collected fkom the 

form -2 5 xl 2 and JJ= 8 2  - A - .  

2. 

3 .  

xi#o0,, 

'+W4)#0O/d  

4.2 Experiments 

In this paper, three extended version of CUR4NS are 
presented. Experiments were carried out to test the number of 
distances calculation and the average distance per object for 

CWX-MITTP algorithms. Since the computation timc 
depends not only on the clustering algorithm but also on the 
use of computation facility. It is better to choose one measure 
criterion so that the measure results are the same for all iypes 
of computers and this measure criterion is proportional to tlie 
computation time. That is why we choose the number of 
distance calculation as the benchmark. Squared Euclidean 
distance measure is used for the experiments. The 
Gauss-Markov source was used for the first experinlent. 32 
medoid. are selected from 3000 objects. For CLARAalgoritliin. 
the parameter q was set to 5 and s was set to 320 I2*k for the 
sample size, where k rS the number of medoids. For C%ARA" 
algorithm, the parameters num/ucdand mzmaghbur are set to 
5 and 1200, respectively. Experimental results are shown in 
Table 1, comparing with CURAN$ CUMNJ-hfIT< 
CZAR4NS-Mand CWNS- f lP  may reduce the number of 
distance computation by 95.2%. 93.8% and 67%. respectively. 

CZdh2, C M N &  CLMANX-ITP, C M S - M  and 

Table 1. Results of Experiment for Gauss-Markov source 

+ dCxj;.,Op) 

jee counted 
&.(io7 

h. I 1738 

1 1548 
2 1637 
3 1789 
4 1726 
5 1827 
6 1675 
7 1853 
8 1624 
9 1903 
IO 1802 

1 +min[4oo/d,u1.), .i= 1,. ,k I. 
NM(X/)=O,J 

X,E Jp 

A CLARANS 
Countof 
dS (10') 

4559 376 

CLARANS-I'IP CLARANS-M CLARANS.MlTp 
Countof COunIOf Countof pM dls 
&S (10') &S 007 ) &S do7 ) 

126 23 18 4432 
177 
123 
133 
131 
137 
106 
130 
120 

4.592 
4.551 
4.578 
4.559 
4526 
4.527 

4.545 
4.483 

33 
23 
25 
2s 
26 
20 

. 25 
23 

532 
375 
406 
397 
414 
323 

367 
396 

25 
18 
19 
19 
20 
15 
1 9. 
17 

4.359 
4.381 
4.398 
4.367 
4 384 
4.380 
4 393 
4.377 

4514 I 358 1 119 1 22 I 17 14406 
4 5431 394 I 130 I 24 1 19 I4388 

The twelve elliptic clusters were used for the ssond 
experiment. 12 medoids are selected from 12000 objects. For 
L W  algorithm, the parameter q was set to 5 and s was set 
to 960+2*k For CUMN5' algorithm, the parameters 
ntmlocaland maxneighburare set to 5 and 1800, respectively. 
4 s  shown in Fig. 1, coinparing with CLAMXc 
CLWX-AflTP, CMk4fV3-M and CI!&lMVS-ITP may 
reduce the number of distance Computation by 88.4%, 84% 



and 84.3%, respectively. 5 Conclusions and ]Future Work 
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Fig. 1 Perfonnance comparison of CUM, CZ4XXNZ 
CZAXZNS-AhZF, CZAhWKS-M and CUMS-PP 
for twelve elliptic clusters 

The curve database was used for the third experiment. 
20 medoids are selected from 5000 objecfs. For C W  
algorithm, the parameter q was set to 5 and s was set to 
400+2*k. For C m X a l g o r i  the parameters numfocaf 
and mnezghborare set to 5 and 1250, respectively. As shown 
in Fig. 2 and Table 2, comparing with C-4 

inay reduce the iiunber uf &stance computation by 93.9%, 
90.2% and 92%. respectively. 

C-S-MTP, CZARXNS-.&f and CURANSRP 

2.5 
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21 
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Fig. 2 Performance comparison of CUM, C W N 4  
CUMNS-hfRP, CZAZ4NS-M and C M S - P P  
for curve clusters 

Table 2. Results of Experiment for curve clusters 

7 9 7  
14 1 

IRA CLAIUNS CLARANS-ITP CLARANS-M C W N S - M I T P  
Countof Countof countof COlnlIOf h*a & 

1 2 2 3 2  652 53 64 40  2 151 
2 2 1 8  626 51 61 3 8  2 181 
2 3 1 7  702  57 69 4 3  2 119 
2 342 I19 58 70 4 4  2 192 
2 3 2 1  514 4s 56 35 2 156 
2 2 5 2  623 49 61 38 2 157 
2 3 0 5  650 52 64 39 2 171 
2 2 3 8  636 51 62 3 9  2 144 
2 2 0 9  551 44 54 34 2 1 8 5  
2 3 1 1  484 38 47  29 2 165 
2 2 8 1  622 50 61 3 8  2 168 

In this paper, three extended version of CUAfNS are 
presented based on the proposed three search strategies. 
Expcrirnental results demonstrate that applying the proposed 
hybrid search method using prwious medoid index, utilization 
of memory, the criterion of TIE and partial distance search to 
C U M $  may reduce the number of distance computation 
from 88.4% to 95.2% comparing with C m N X  Note that the 
proposed search strategies may apply to the other clustering 
algorithms. We will extend the work of this paper to some 
other well-known clustenng algorithms for future work. 
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