Efficient Searches for Similar Subsequences of Different Lengths in Sequence Databases *

Sanghyun Park and Wesley W. Chu
University of California, Los Angeles
shpark@cs.ucla.edu,wwc@cs.ucla.edu

Jeehee Yoon
Hallym University, Korea
jhyoon@sun.hallym.ac.kr

Chihcheng Hsu
Santa Teresa Lab., IBM
ccheng@us.ibm.com

Abstract

We propose an indexing technique for fast retrieval of similar s ubsequences us ing time w arping di stances. A time warping d istance is a mo re suitable similarity measure t hant he Eucl idean di stance in many applications, where sequences may be of different lengths or different sampling rates. Our indexing technique uses a disk-based suffix tree as an index s tructure and employs lower-bound distance functions to filter out dis similar subsequences without false dismissals. To make the index structure compact and thus acceler ate the query processing, we convert sequences of continuous values to sequences of discrete values via a categorization method and store only a s ubset of suffixes whose first values are different from their p receding va lues. The exp erimental results reveal that our proposed technique can be a few orders of magnitude faster than sequential scanning.

1. Introduction

Similarity searches in sequence databases are important in many application d omains, such as inf ormation retrieval, d ata m ining, a nd c lustering. D etecting sto cks that have similar gro wth p atterns and f inding p atients whose lung le sions ha ve similar e volution characteristics are a few ex amples of sim ilarity qu eries. Although sequential scanning can be used to answer these queries, it may require an en ormous processin g tim e ov er larg e sequence databases. Recently, several indexing techniques $[1,5,10,22]$ have been proposed to speed up the processing of similarity queries.

Most of the previous techniques [1,10,22] for similarity searches use the Euclidean distance metric as a sim ilarity measure. However, in many applications, the sampling rates and the lengths of sequences may be different, making it d ifficult o r im possible to use the Euclidean distance as a similarity m easure. In the area of speech

[^0]recognition [15], this problem has been approached using a similarity m easure, called a tim ew arping distan ce [3,15], which allows sequences to be stretched or compressed along the time axis. Under time warping, any element of a sequ ence can be m atched to on e or m ore neighboring elements of another sequence. As an example [16], let us consider two sequences, $\mathrm{S}_{1}=$ $\langle 20,20,21,21,20,20,23,23\rangle$ and $S_{2}=\langle 20,21,20,23\rangle$ where the sequence S_{1} is the closing price of a stock taken every day an S_{2} is the closing price of another stock taken e very o ther day. S_{1} and S_{2} cannot be compared directly because the sequence S_{1} is longer than S_{2}. The Euclidean distance betw een S_{2} and any subsequence of length four of S_{1} is greater than 1.41. However, if we duplicate every element of S_{2} using time warping, we find that the two sequences are identical.

In the matching of similar sequences, it is important to prevent the occu rrence of false dismissals [1]. A false dismissal occurs when a sequ ence sim ilar to a qu ery sequence is n ot in cluded in the an swer set. Indexing techniques th at assu me the triangular inequality may produce f alse dism issals when the distance function not satisfying the triangular ine quality is use d as a similarity measure [22]. Un fortunately, a time warping distance does not satisfy the tr iangular ine quality, which c an be simply proved by a cou nter ex ample [22]. T his propert y makes spatial access m ethods b ased o n the $t r$ iangular inequality unsuitable for similarity searches with a time warping distance.

In the area of string matching, a suffix tree [17] has been ex tensively u sed as an in dex structure to find the substrings that are exactly m atched to the given q uery string. A suffix tree may be a g ood candidate for an index structure with a time warping distance because it does n ot assume an $y g$ eometry or an $y u$ nderlying distan ce functions. However, for a suffix tree to be used as an index structure f or sim ilarity search es, th ef ollowing problems have to be addres sed: 1) A suffix tree is designed to find the exactly matched substrings. Its exact search algorithm needs to be ex tended to f ind similarly matched subsequences. 2) In general, a suffix tree is built
from sequences whose elem ents tak eth ev alues from finite alphabets. However, sequences we con sider in th is paper are comprised of elem ents of con tinuous real values. A systematic method to co nvert co ntinuous element values to discrete values is required.

In this paper we propose a new indexing technique for the fast retrieval o f sim ilar sub sequences ofd ifferent lengths or different sampling rates. Our technique uses a time warping distance as a sim ilarity measure and a diskbased suffix tree as an index structure. To make the index structure com pact, we con vert sequ ences of con tinuous values to sequences of discrete values via a categ orization method and store only a subset of suffixes whose first values are dif ferent f rom th eir im mediately preceding values. When the query sequence, Q , is given, a suffix tree is traversed and time warping distances between Q and subsequences con tained in a su ffix tree are computed. Because subsequences con tained in a su ffix tree are of discrete values, th eir ex act distan ces from Q cannot be obtained. In stead, low er-bound distan ce functions are employed to estimate the exact distance; so our proposed technique guarantees no false dismissals.

This paper is organized as f ollows. In Sectio n 2 we provide a brief overview of the related work on sequence matching p roblems. In Sectio n 3, we give the definition and the property of a tim e w arping distan ce. Section 4 introduces the construction method and the similarity search algorithm of a disk-based suffix tree. We apply the ideas of a categorization and a sparse suffix tree in Section 5 an d Section 6, respectiv ely. Ex perimental results are given in Section 7.

2. Related work

Several approaches f or f ast retrieval o f similar sequences have recently been proposed. In [1], sequences are converted in to the f requency domain by a Discrete Fourier Transform and are subsequently mapped into multi-dimensional points that are m anaged by an R^{*}-tree; this technique w as extend ed to lo cate similar subsequences [10]. Since the approaches of $[1,10]$ use the Euclidean distance metric as a sim ilarity m easure, sequences of different lengths or different sampling rates cannot be matched.

Sequence m atching that allo ws transf ormations is proposed in [11,16]. In [11], s equences are grouped into equivalent classes accordin g to th eir n ormal f orms. Though normal forms are invariant to shape-based transformations such as scaling and shifting, they do not handle the compressions or the stretches of element values along the time axis. The authors of [16] propose a class of transformations that c an be used in a query language to express sim ilarity w ith an R- tree index. They handle moving average and global time scaling, but not time
warping.
The access m ethods of $[5,14,21,22]$ perm it the matching of sequences of different lengths. [5] presents a modified version of an edit distance, considering two sequences matching if a majority of elements match. This technique is extend ed to the m atching o fm ultidimensional sequences in [2 1]. In [2 2], a tim e w arping distance is u sed as a sim ilarity measure with a two-step filtering p rocess: a FastMap in dex filter proceeded by a lower-bound d istance f ilter. T he underlying index structures of $[5,21,22]$ a re b ased o n the tr iangular inequality. The authors of [14] introduce an aligned subsequence matching with a tim ew arping distan ce. Whereas their approaches are u sefulf or lon g data sequences, subsequences not starting or ending at segment boundaries cannot be found.

Similarity m atching bas ed on s hapes of s equences is proposed in [2,19]. [2] dem onstrates a s hape def inition language (SDL) a nd p rovides a n ind ex str ucture fo r speeding up the ex ecution of SDL queries. In [19], th e authors intro duce the no tion of generalized approximate queries th at specif y the general sh apes of data h istories. Whereas both approaches m ay h andle th ev ariations of element v alues on the time axis, they cannot be used for applications that care about specific element values.

There are also sev eral approach es f or m atching of biological sequences. [4] proposes tou se adi sk-based suffix tree f or solv ing the sequence alignment problem, and [20] addres ses the problem of discovering patterns in protein databases with the sim ilarity measure of a string edit distance. W hile w ef ocus on the sequences of continuous n umeric v alues, the approach es of $[4,20]$ center on the sequ ences of ch aracters. Fu rthermore, the algorithm of [20] u ses a m ain-memory based suffix tree, making it infeasible for a large sequence set.

3. Time warping distance

In general, finding a sim ilarity measure for sequences is not easy because sequences that are qualitatively the same may be quantitatively different. First, the sequences may be of different lengths, making it difficult or impossible to embed the sequences in a metric space and use the Euclideand istance to d etermine similarity. Second, the sampling rates of sequences may be different: one sequence may be sampled every minute while another sequence is sampled every other minute. Such differences in rates make similarity measures such as cross-correlation unusable.

In this paper, we use a time warping (TW) similarity measure $[3,15]$ that allows sequences to be stretched or compressed along the time axis. TW is a g eneralization of classical algorithms for com paring discrete sequ ences to sequences of continuous values, and is used extensively in
matching of v oice, au dio an d medical signals (electrocardiograms). T of ind th e m inimum dif ference between tw o sequ ences, T W m aps each element of a sequence to one or more neighboring elements of another sequence. Let us no w give the f ormal definition [15] of the time warping distance.

Definition 1. Given any two non-null sequences, S_{i} and S_{j}, the time warping distance, $\mathrm{D}_{\mathrm{tw}}()$, is defined as follows :
$D_{t w}\left(S_{i}, S_{j}\right)=D_{\text {base }}\left(S_{i}[1], S_{j}[1]\right)+\min \left\{\begin{array}{l}D_{t w}\left(S_{i}, S_{j}[2:-]\right) \\ D_{t w}\left(S_{i}[2:-], S_{j}\right) \\ D_{t w}\left(S_{i}[2:-], S_{j}[2:-]\right)\end{array}\right.$
$D_{\text {base }}(a, b)=|a-b|$
In above definition, $\mathrm{S}_{\mathrm{i}}[\mathrm{p}]$ represents the $\mathrm{p}^{\text {th }}$ element of S_{i} and $S_{i}[p: q]$ denotes the subsequence of S_{i} including elements in p ositions p thr ough q . We use the no tation $S_{i}[p:-]$ for the suffix of S_{i} starting from the $p^{\text {th }}$ element. That is, $S_{i}[p:-]$ is identical to $S_{i}\left[p:\left|S_{i}\right|\right]$ where $\left|S_{i}\right|$ is the length of S_{i}. $\mathrm{D}_{\text {base }}$ () on tw o n umeric v alues can be any distance function, but we assume that it is defined as the city-block distance. $\mathrm{D}_{\mathrm{tw}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$ can be calculated efficiently using a dy namic programming technique [3] bas ed on the recurrence relation $\gamma_{\mathrm{tw}}(\mathrm{x}, \mathrm{y})$.

Definition 2. Given any two non-null sequences, S_{i} and S_{j}, the recurrence relation $\gamma_{t w}(x, y)\left(x=1,2, \ldots,\left|S_{i}\right|, y=1,2, \ldots\right.$, $\left.\left|S_{j}\right|\right)$ that builds the cumulative time warping distance table for S_{i} and S_{j} is defined as follows:
$\gamma_{t w}(x, y)=D_{\text {base }}\left(S_{i}[x], S_{j}[y]\right)+\min \left\{\begin{array}{l}\gamma_{t w}(x, y-1) \\ \gamma_{t w}(x-1, y) \\ \gamma_{t w}(x-1, y-1)\end{array}\right.$

(a) Cumulative distance table (b) Mapping of elements

Figure 1. Time warping distance for $S_{3}=\langle 3,4,3\rangle$ and $\mathrm{S}_{4}=\langle 4,5,6,7,6,6>$

The d ynamic p rogramming algo rithm [3]f ills in the table of cumulative distances as the computation proceeds. This computation has complexity $\mathrm{O}\left(\left|\mathrm{S}_{\mathrm{i}}\right|\left|\mathrm{S}_{\mathrm{j}}\right|\right)$. T he final cumulative distance, $\gamma_{\mathrm{tw}}\left(\left|\mathrm{S}_{\mathrm{i}}\right|,\left|\mathrm{S}_{\mathrm{j}}\right|\right)$, is the minimum distance
between S_{i} and S_{j}, and the matching of elements can be traced backward in the table by ch oosing the previous cells with the lo west cumulative distance. Figure 1 shows the cu mulative distan ce table f or tw o sequ ences, $\mathrm{S}_{3}=$ $\langle 3,4,3\rangle$ and $S_{4}=\langle 4,5,6,7,6,6\rangle$ and the mapping of elements that generates the minimum distance.

By reading th e last colu mn of each row of the cumulative distance table, we get the distance between S_{i} and any prefix of S_{j}. That is, the distance between S_{i} and $\mathrm{S}_{\mathrm{j}}[1: \mathrm{q}]\left(\mathrm{q}=1,2, \ldots,\left|\mathrm{~S}_{\mathrm{j}}\right|\right)$ is obtained from the last column of the $q^{\text {th }}$ row. In the above example, $D_{t w}\left(S_{3}, S_{4}[1: 4]\right)$ is 8 , as seen in the last column of the row 4 . Thus, determination as to whether the time warping distance of two sequences is greater th an a distan ce-threshold ε does not require building the entire cumulative distance table, as proven by the following theorem.

Theorem 1. If all columns of the last row of the cumulative distan ce table h ave v alues g reater than a distance-threshold ε, adding more rows on this table does not yield the new values less than or equal to $\boldsymbol{\varepsilon}$.
Proof. The proof is given in [13].
Let us look at the table shown in Figure 1. If $\boldsymbol{\varepsilon}$ is 3, after inspecting the row 3 , we can d etermine that the distance betw een S_{3} and S_{4} is greater than ε becau se all columns of the row 3 h ave v alues g reater th an 3 . Therefore, we do not have to fill the remaining three rows. In subsequent sections, we use Theorem 1 to reduce the search space of an index structure.

4. Similarity search using a suffix tree

In this section, we propose to use a suffix tree (ST) as an in dex stru cture f or sim ilarity search es w ith a time warping di stance. Bef ore des cribing t he m ethods f or constructing and searching a su ffix tree, w e presen t the definition and the internal structure of a suffix tree.

A trie is an indexing structure used for indexing sets of keywords of vary ing sizes. A suf fix trie [17] is a trie whose set of keywords comprises the suffixes of a single sequence. Nodes w ith a sin gle outgoing edge can be collapsed, yielding the structure known as the suffix tree [17]. A suffix tree is generalized $[4,20]$ to allow multiple sequences to be stored in the same tree. Each suffix of a sequence is represen ted by a leaf node. Precisely, the suffix $\mathrm{S}_{\mathrm{t}}[\mathrm{p}:-]$ is expressed by a leaf node labeled with (t, p). The edges are labeled with su bsequences su ch th at the concatenation of the edge labels on the path from the root to the leaf (t, p) becomes $\mathrm{S}_{\mathrm{t}}[\mathrm{p}:-]$. The concatenation of the edge labels on the path from the root to the internal no de, N_{i}, represents the longest common prefix of the suffixes represented by the leaf n odes u nder N_{i}. We use the
notation lab el $\left(\mathrm{N}_{\mathrm{i}}, \mathrm{N}_{\mathrm{j}}\right)$ for the con catenated labels on the path f rom N_{i} to N_{j}. Figure 2 shows the suffix tree constructed from two sequences, $S_{5}=\langle 4,5,6,7,6,6\rangle$ and $S_{6}=\langle 4,6,7,8\rangle$, where ' $\$$ ' is used as an end marker of a suffix.

Figure 2. Suffix tree from $S_{5}=<4,5,6,7,6,6>$ and $S_{6}=<4,6,7,8>$

4.1. Index construction

A suffix tree for multiple sequences can be constructed by addin g a special sequ ence separator symbol to the alphabet. The sequ ences to be in cluded in the tree are concatenated, separated from each other by this separator symbol. Then, the ordinary suffix tree algorithm is applied to the con catenated sequ ence. T he su ffix tree created using this process has to be kept in main memory during construction. Therefore, this ap proach is not realistic to a large sequence set.

To remedy the problem, we u se an in cremental diskbased s uffix t ree con struction m ethod propos ed in [4]. Two suffix trees, representing two disjoint sets of sequences, are merged to produ ce a sin gle suffix tree by pre-order traversal of both suffix trees and combining the paths corres ponding to com mon s ubsequences. A suffix tree for a larg e set of sequ ences can be con structed by performing a series of bi nary m erges of s uffix t rees of increasing size. The merge operation of tw o su ffix trees can s upport di sk-based repres entations in 1 imited main memory.

Two suffix t rees fo $r S_{i}$ and S_{j} are merged with complexity $\mathrm{O}\left(\left|\mathrm{S}_{\mathrm{i}}\right|+\left|\mathrm{S}_{\mathrm{j}}\right|\right)$, hence th e su ffix tree f or M sequences is co nstructed with co mplexity $\mathrm{O}(\mathrm{M} \overline{\mathrm{L}})$ where \bar{L} is the average length of M sequences. The total number of nodes in a suffix tree is con strained due to two factors: 1) there are $O(M \bar{L})$ leaf nodes and 2) the deg ree of any internal node is at least $2 . \mathrm{T}$ herefore, th e m aximum
number of n odes an d ov erall space requ irement of the suffix tree is linear in $M \bar{L}$ [17].

4.2. Search algorithm: SimSearch-ST

A suffix tree (ST) is a u seful index structure to locate subsequences th at are ex actly m atched to a query sequence Q . To find ex actly matched subsequences, Q is traversed from the root of the tree an d trav ersal is terminated w hen the en d of Q is reach ed or a node is reached bey ond which f urther trav ersal is n ot possible. Exact searches are performed in $\mathrm{O}(|\mathrm{Q}|)$. Even though the exact matching algorithm of a su ffix tree is sim ple and fast, it cannot be directly applied to the p roblem we are going to solve in this paper.

Problem Defin ition: Given M sequences $S_{1}, S_{2}, \ldots, S_{M}$ of arbitrary lengths, a qu ery sequ ence Q an d a u ser-given distance-threshold ε, find the subsequences $\mathrm{S}_{\mathrm{i}}[\mathrm{p}: q]$ ($\mathrm{i}=$ $1,2, \ldots, \mathrm{M})$ whose time warping distances from Q are less than or equal to ε.

Our proposed similarity search algorithm SimSearchST is given in Algorithm 1. The search starts from the root of a suffix tree and continues the depth-first traversal until all subsequences whose time w arping distances are less than or equal to ε are found.

```
Input : Root Node R, Q, \varepsilon
Output : answerSet
cumDistTable }\leftarrow\mathrm{ NULL;
answerSet }\leftarrow\mathrm{ Filter-ST (R, Q, &, cumDistTable);
return answerSet;
```

Algorithm 1. SimSearch-ST
The actual f iltering p rocess is executed in Filter-ST shown in Algorithm 2. When Filter-ST visits a node N , it inspects each child node CN_{i} to find a new answer and to determine whether further depth traversal is needed or not. For simpler explanation, we assume that the edge between two nodes, N and CN_{i}, is labeled with a single value.

To find a new answer, Filter-ST builds a cum ulative distance table for Q and label $\left(\mathrm{N}, \mathrm{CN}_{\mathrm{i}}\right)$. If N is a root node, the table is b uilt from the bottom. Otherwise, the table is constructed by augmenting a new row on the table T that has been accu mulated from the root to N . The function $\operatorname{AddRow}\left(\mathrm{T}, \mathrm{Q}, 1 \quad \operatorname{abel}\left(\mathrm{~N}, \mathrm{CN}_{\mathrm{i}}\right), \quad \mathrm{D}_{\mathrm{tw}}()\right)$ builds a n ew cumulative distan ce table, u sing the distance function $\mathrm{D}_{\mathrm{tw}}()$, by augmenting a new row corresponding to label(N, CN_{i}) on T . S uppose that the $\mathrm{r}^{\text {th }}$ row is the newly added row. If the last co lumn of the $\mathrm{r}^{\text {th }}$ row has the value less
than or equal to ε, label $\left.\left(\operatorname{Get} \operatorname{Root}\left(\mathrm{CN}_{\mathrm{i}}\right), \mathrm{CN}_{\mathrm{i}}\right)\right)$ is in serted into the answer set.

To determine if further depth traversal is needed, Filter-ST uses Theorem 1. If at least one column of the $\mathrm{r}^{\text {th }}$ row has a v alue n ot g reater th an ε, the search con tinues down the tree to find more answers. Otherwise, the search moves to the next child of N .

```
Input : Node N, Q, \varepsilon, Cumulative Distance Table T
Output : answerSet
answerSet }\leftarrow{}
CN}\leftarrow\mathrm{ GetChildren(N)
for i}\leftarrow1\mathrm{ to |CN| do {
    CT
    Let dist be the last column value of the new row;
    Let mDist be the minimum column value of the new row;
    if dist }\leq\varepsilon,\mathrm{ insert label(GetRoot( }\mp@subsup{\textrm{CN}}{\textrm{i}}{\mathbf{i}}),\mp@subsup{\textrm{N}}{\textrm{i}}{})\mathrm{ into answerSet;
    if mDist \leq\varepsilon,
        answerSet }\leftarrow\mathrm{ answerSet }\cup\mathrm{ Filter-ST(CN
}
return answerSet;
```


Algorithm 2. Filter-ST

4.3. Algorithm analysis

Before analyzing the complexity of SimSearch-ST, let us examine the complexity of sequential scanning. Sequential scan ning reads each sequ ence and builds as many cumulative distance tables as the number of suffixes contained in the sequence. The complexity of building a cumulative distan ce table f or the query sequence Q an d the suffix of length L is $O(L|Q|)$. For M sequences whose average len gth is $\overline{\mathrm{L}}$, there are $\mathrm{M} \overline{\mathrm{L}}$ suffixes and their average len gth is $(\overline{\mathrm{L}}+1) / 2$. Therefore, the com plexity of sequential scanning is $\mathrm{O}\left(\mathrm{ML}^{-2}|\mathrm{Q}|\right)$.

SimSearch-ST is computationally less expensive than sequential scan ning du e to bran ch-pruning (based on Theorem 1) and sharing cumulative distance tables for all suffixes that have common prefixes. Thus, the complexity of SimSearch-ST is $O\left(\frac{M \bar{L}^{-2}|Q|}{R_{d} R_{p}}\right)$, where $R_{d}(\geq 1)$ is the reduction f actor due to sh aring the cumulative distance tables, and $R_{p}(\geq 1)$ is the reduction factor gained from the branch-pruning. R_{d} grows as the length and the number of common prefixes of the suffixes contained in a suffix tree increase. G iven k suffixe $s, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$, whose f irst t elements are the same, the con struction of k cu mulative distance tables requires the computation of $\left|\mathrm{Q} \| \alpha_{1}\right|+|\mathrm{Q}|\left|\alpha_{2}\right|$ $+\ldots+\left|\mathrm{Q} \| \alpha_{k}\right|$ cells. Ho wever, it is red uced to $\mathrm{t}|\mathrm{Q}|+$ $|\mathrm{Q}|\left(\left|\alpha_{1}\right|-\mathrm{t}\right)+|\mathrm{Q}|\left(\left|\alpha_{2}\right|-\mathrm{t}\right)+\ldots+|\mathrm{Q}|\left(\left|\alpha_{\mathrm{k}}\right|-\mathrm{t}\right)$ if the cum ulative
distance table for Q an d the common prefix of length t is shared by k suffixes. In this case, R_{d} can be expressed as $\mathrm{R}_{\mathrm{d}}=\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\ldots+\left|\alpha_{k}\right|\right) /\left(\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\ldots+\left|\alpha_{k}\right|\right)-\mathrm{t}(\mathrm{k}-1)\right)$.

While R_{d} is determined by the distribution of element values, R_{p} is decided by the number of answers required by a user. That is, R_{p} increases as the distance-threshold $\boldsymbol{\varepsilon}$ decreases. If ε is so small that just one or two subsequences may be an swers, only the topmost part of a suffix tree may be v isited during the query proces sing. In another ex treme case w here ε is large enough for all subsequences to be answers, all nodes of a suffix tree need to be visited, thus making $R_{p}=1$. In the worst case where there is no common subsequence and the branch-pruning cannot help, both values of R_{d} and R_{p} are 1 , and therefore the complexity of SimSearch-ST becomes the same as that of sequential scanning.

5. Similarity search using categorization

In this sectio $n w e$ intro duce the co ncept o f categorization to decrease th e n umber of v alues th at elements can take and th us increase the length and the number of com mon su bsequences. A s explained in the previous section, if the length and the number of common subsequences increase, the in dex size an d th e qu ery processing time are reduced. T og et the categ orized representations of element values, we first generate the set of categories and determine their ranges. Then, we convert every elem ent v alue to the sy mbol of the corresponding category. For example, given two categories $\mathrm{C}_{1}=[0.1,3.9]$ and $\mathrm{C}_{2}=[4.0,10.0], \mathrm{S}_{7}=\langle 5.27,2.56,3.85\rangle$ is transformed to $\mathrm{CS}_{7}=\left\langle\mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{C}_{1}\right\rangle$ where CS_{7} denotes the converted sequence of S_{7}. Thus, sequences of continuous values are converted to sequences of discrete symbols.

5.1. Categorization method

In this work, the following two categorization methods have been chosen and experimented for their simple implementations, albeit oth er categ orization approaches like the type abstraction hierarchy (TAH) [6] and the kmeans algorithm may also be used to categorize element values.

The first method is an equal-length categorization. As the name im plies, all the catego ries have eq ual interval length (MAX-MIN) / c. Here, MIN is the smallest element value found in the set o f sequences, MAX is the largest element value found in the set of sequences, and c is the number of categories given as the input parameter to the categorization alg orithm. This categ orization approach is simple and fast, b ut lo ses information about value and frequency distributions of the sequences.

The secon $d m$ ethod is a maximum-entropy categorization. T he en tropy [18] of a categorization is defined as $H(C)=-\sum_{i=1}^{c} P\left(C_{i}\right) \log P\left(C_{i}\right)$ where $P\left(C_{i}\right)$ is the probability that an elem ent is includ ed in the $\mathrm{i}^{\text {th }}$ category. To minimize the lo ss of inf ormation ab out the sequences, this categ orization m ethod decides th e category bou ndaries th at g enerate the maximum en tropy value. The boundaries can be determined easily by making all categories include the same number of elements $\left(\mathrm{P}\left(\mathrm{C}_{1}\right)\right.$ $\left.=\mathrm{P}\left(\mathrm{C}_{2}\right)=\ldots=\mathrm{P}\left(\mathrm{C}_{\mathrm{c}}\right)\right)$.

It is not easy to determine the number of categories: too many categ ories do n ot h elp m uch to increase the number of common subsequences, but likewise, too few categories do n ot h elp m uch to redu ce the query processing time because of the decreased filtering rate of the index. A simple strategy is to do many experiments on the s et of s equences an det ermine t he best number of categories using the cost function $W_{t} C_{t}+W_{s} C_{s}$. Here, C_{t} and C_{s} are costs for processing the query and storing the index, respectiv ely, an $d W_{t}$ and W_{s} are their relative weights. T he d etermination $o f$ these w eights is application-dependent.

5.2. Index construction

After converting element values into discrete symbols, we build a suffix tree from the set of converted sequences. We denote the resultant tree $\mathrm{ST}_{\mathrm{C}} . \mathrm{ST}_{\mathrm{C}}$ is constructed using the same construction a lgorithm use d fo r a n o rdinary suffix tree.

5.3. A modified distance function: $\mathbf{D}_{\mathbf{t w - l b}}()$

Whereas the edges of a su ffix tree are labeled w ith numeric values, the edges of ST_{C} are labeled with discrete symbols. As a resu lt, the ex act tim e w arping distan ce between a query sequ ence of n umeric v alues an d an y subsequence con tained in ST_{c} cannot be computed. Therefore, we introduce the new distance function $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}()$.

Definition 3. Given two non-null sequences, S_{i} and S_{j}, the distance f unction $D_{t w-l b}\left(S_{i}, C S_{j}\right)$ that returns the lowerbound distance of $\mathrm{D}_{\mathrm{tw}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$ is defined as follows:
$D_{t w-b}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}\right)=\mathrm{D}_{\text {base-bb }}\left(\mathrm{S}_{\mathrm{i}}[1], \mathrm{CS}_{\mathrm{j}}[1]\right)+\min \left\{\begin{array}{l}\mathrm{D}_{\mathrm{tw}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[2:-]\right) \\ \mathrm{D}_{\mathrm{tw}}\left(\mathrm{S}_{\mathrm{i}}[2:-], \mathrm{CS}_{\mathrm{j}}\right) \\ \mathrm{D}_{\mathrm{tw}}\left(\mathrm{S}_{\mathrm{i}}[2:-], \mathrm{CS}_{\mathrm{j}}[2:-]\right)\end{array}\right.$
$D_{\text {base-lb }}(a, B)= \begin{cases}0 & \text { (if B.lb } \leq a \leq \text { B. } u b) \\ \mathrm{a}-\text { B.ub } & \text { (if } a>B . u b) \\ \text { B.lb-a } & \text { (if } \mathrm{a}<\text { B.lb) }\end{cases}$
where ' a ' is the numeric value corresponding to $S_{i}[1]$ and
' B ' is the category symbol corresponding to $\mathrm{CS}_{\mathrm{j}}[1]$.
In the definition of $\mathrm{D}_{\text {base-bb }}(), B . \mathrm{lb}$ an $\mathrm{d} B . \mathrm{ub}$ are th e minimum and the maximum element values, respectively, found in the categ ory B. As shown in Figure 3, $\mathrm{D}_{\text {base-lb }}(\mathrm{a}$, B) returns the possible minimum distance between a and B.

Figure 3. Minimum distance between a and B
To prevent false dismissals, the distance returned from $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}\right)$ should always be less than o r equal to the distance com puted by $\mathrm{D}_{\mathrm{tw}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$. Theorem 2 states this fact.

Theorem 2. For any tw o non-null sequences, S_{i} and S_{j}, the following inequality holds.

$$
\mathrm{D}_{\mathrm{tw}-\mathrm{b}}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}\right) \leq \mathrm{D}_{\mathrm{tw}}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{~S}_{\mathrm{j}}\right)
$$

Proof. The proof is given in [13].

5.4. Search algorithm: SimSearch-ST ${ }_{c}$

```
Input : Root Node R, Q, \varepsilon
Output : answerSet
cumDistTable }\leftarrow\mathrm{ NULL;
candidateSet }\leftarrow\mathrm{ answerSet }\leftarrow{}
candidateSet }\leftarrow\mathrm{ Filter-ST ( }\textrm{R},\textrm{Q},\varepsilon,\mathrm{ , cumDistTable);
answerSet }\leftarrow\mathrm{ PostProcess(candidateSet, Q, &)
return answerSet;
```


Algorithm 3. SimSearch-ST ${ }_{c}$

The algorithm SimSearch-ST needs to be modified to reflect the categorized represen tation of elem ent v alues. Our proposed search algorithm SimSearch-ST ${ }_{c}$ is shown in Algorithm 3. Note that elem ent v alues of a qu ery sequence are not converted to discrete symbols.

To f ind the can didate su bsequences w hose lower-
bound distan ces to the qu ery sequ ence Q are w ithin ε, Filter- ST_{C} is called recursively. Filter- ST_{C} is the same as Filter-ST except that the former uses $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}()$ to build the cumulative distance table while the latter uses $D_{t w}()$. Since the lower-bound d istance is used f or f iltering, the subsequences whose exact tim ew arping distan ces are larger than ε may be included in the candidate answer set. These subsequences are called false a larms. For each answer con tained in the can didate an swer set, the algorithm PostProcess retrieves the actual subsequences and computes their exact time warping distances. Finally, the subsequences whose actual time warping distances are not larger than ε are returned as answers. Algorithms Filter- ST_{c} and PostProcess are omitted due to space limitations.

5.5. Algorithm analysis

The complexity of SimSearch-ST ${ }_{c}$ is represented as $\mathrm{O}\left(\frac{M \bar{L}^{-2}|Q|}{R_{d} R_{p}}+n \bar{L}|Q|\right)$ where n is th e number of subsequences requiring the post- processing. Hen ce, th e left expression represents the tim ef or filtering and the right expression represents the time for post-processing. Compared to SimSearch-ST, SimSearch-ST ${ }_{c}$ has performance im provements due to a larger value of R_{d}, despite the extra time for post-processing

6. Similarity search using a sparse suffix tree

A su ffix tree th at stores on ly a su bset of su ffixes is called a sparse su ffix tree [12]. Sin ce the size of a su ffix tree is linear in the number of leaves, a sparse su ffix tree is smaller than an o riginal suffix tree. Suffixes inserted into a tree are called stored suffixes, and suffixes no t inserted into a tree are called non-stored suffixes. T he reduction of t he i ndex size by storing on ly a subset of suffixes is measured by the compaction ratio $r(0 \leq r<1)$ that is defined as $r=$ (the number of non-stored suffixes) / (the number of suffixes). In this section, we propose to use a sparse suffix tree to f urther redu ce the index size and accelerate the query processing.

6.1. Index construction

Similar to ST_{C}, a sparse suffix tree is built from the set of categ orized sequ ences. How ever, unlike ST_{C}, only suffixes w hose fi rst va lues a re different from their immediately preceding values are stored in a sparse suffix tree. That is, the suffix $\mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]$ is stored only if $\mathrm{CS}_{\mathrm{j}}[\mathrm{p}] \neq$ $\mathrm{CS}_{\mathrm{j}}[\mathrm{p}-1]$. For example, for $\mathrm{CS}_{8}=\left\langle\mathrm{C}_{1}, \mathrm{C}_{1}, \mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{2}, \mathrm{C}_{2}\right\rangle$, only the three suf fixes $\left(\mathrm{CS}_{8}[1:-], \mathrm{CS}_{8}[4:-]\right.$, and $\left.\mathrm{CS}_{8}[5:-]\right)$
are stored in a sparse su ffix tree. We denote the resultant tree $\mathrm{SST}_{\mathrm{C}}$.

6.2. A modified distance function: $\mathrm{D}_{\mathrm{tw}-\mathrm{b} 2}()$

Suppose that we have the cumulative distance table for S_{i} and CS_{j} where S_{i} and CS_{j} are located along the x-axis and the y-axis, respectively. While we can get the distance between S_{i} and any prefix of CS_{j} by reading the last column of each row, there is no direct way to compute the distance betw een S_{i} and any suffix of CS_{j} except by building a new table. However, if the f irst N elem ents of CS_{j} have the same value, we can obtain the lower-bound distance of $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right)(\mathrm{p}=2,3, \ldots, \mathrm{~N})$ using a new distance function, $\mathrm{D}_{\mathrm{tw}-\mathrm{b} 2}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right)$.

Definition 4. For any two non-null sequences, S_{i} and CS_{j}, if the first N elements of CS_{j} have the same value, then the distance f unction $\mathrm{D}_{\mathrm{tw}-\mathrm{b} 2}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right)(\mathrm{p}=2,3, \ldots, \mathrm{~N})$ that returns the lower-bound distan ce of $\mathrm{D}_{\mathrm{tw}-\mathrm{lb}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right)$ is defined as follows:
$\mathrm{D}_{\mathrm{tw}-\mathrm{b} 2}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right)=\mathrm{D}_{\mathrm{tw}-\mathrm{b}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}\right)-(\mathrm{p}-1) * \mathrm{D}_{\text {base-lb }}\left(\mathrm{S}_{\mathrm{i}}[1], \mathrm{CS}_{\mathrm{j}}[1]\right)$

If we know the value of $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}\right)$, then $\mathrm{D}_{\mathrm{tw}-\mathrm{bb} 2}\left(\mathrm{~S}_{\mathrm{i}}\right.$, $\mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]$) can be computed with complexity $\mathrm{O}(1)$. The distance retu rned from $\mathrm{D}_{\mathrm{tw}-\mathrm{b} 2}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right)$ is always less than or equal to $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right)$. The following theorem states this fact.

Theorem 3. For any two non-null sequences, S_{i} and S_{j}, if the first N elements of CS_{j} have the same value, then the following inequality holds for $\mathrm{p}=2,3, \ldots \mathrm{~N}$:

$$
\mathrm{D}_{\mathrm{tw}-\mathrm{b} 2}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right) \leq \mathrm{D}_{\mathrm{tw}-\mathrm{b}}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{CS}_{\mathrm{j}}[\mathrm{p}:-]\right) \leq \mathrm{D}_{\mathrm{tw}}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{~S}_{\mathrm{j}}[\mathrm{p}:-]\right)
$$

Proof. The proof is given in [13].

6.3. Search algorithm: SimSearch-SST ${ }_{c}$

The algorithm SimSearch- ST_{C} needs to be modified to reflect the fact that there are some suffixes not stored in the index. If SimSearch- ST_{C} is applied to a $\mathrm{SST}_{\mathrm{C}}$ without modification, the sub sequences co ntained in the non-stored suffixes may not be included in the answer set even if similar to a targ et query sequence. Therefore, the steps of f inding an d processin g th esu bsequences contained in the non-stored suffixes need to be added to the SimSearch-ST ${ }_{C}$.

The proposed algorithm SimSearch- $\mathrm{SST}_{\mathrm{c}}$ includes the filtering step and the post-processing step. During the filtering step, $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}()$ is used to calcu late distances
between Q an d the subsequences contained in the stored suffixes, and $D_{t w-l b 2}()$ is used to com pute distan ces between Q an d the su bsequences con tained in the n onstored suffixes. Dur ing the post-processing, $\mathrm{D}_{\mathrm{tw}}()$ is applied to the su bsequences in cluded in the candidate answer set. A detail description of the SimSearch-SST ${ }_{c}$ algorithm is in [13].

6.4. Algorithm analysis

The complexity of SimSearch-SST ${ }_{\mathrm{C}}$ is represented as $O\left(\frac{(1-r) M \bar{L}^{-2}|Q|}{R_{d} R_{p}}+r M \bar{L}+n \bar{L}|Q|\right)$ where n is the number of subsequences requiring the post-processing, and r is the compaction ratio of a $\mathrm{SST}_{\mathrm{C}}$. Thus, ($1-\mathrm{r}$)M $\overline{\mathrm{L}}$ is the number of the stored suffixes, and $\mathrm{rM} \overline{\mathrm{L}}$ is the number of the nonstored suffixes. Co mpared w ith SimSearch-ST ${ }_{c}$, SimSearch-SST ${ }_{c}$ reduces the query processing time by decreasing the n umber of cu mulative distan ce tables generated during the tree traversal, at the cost of larger n .

7. Experimental results

To study the perf ormance of ou r sim ilarity search algorithms, we conducted se veral experiments on stock data sequences ex tracted f rom S\&P 500 (http://biz.swcp.com/stocks/) and o n the artif icial d ata sequences. The s tock dat a w ere bas ed on t heir dai ly closing prices. A total of 545 s tock sequences was used with an av erage 1 ength of 232 . T he ex pression for generating the artificial sequences was defined as $\mathrm{S}_{\mathrm{i}}[\mathrm{p}]=$ $\mathrm{S}_{\mathrm{i}}[\mathrm{p}-1]+\mathrm{Z}_{\mathrm{p}}$ where $\mathrm{Z}_{\mathrm{p}}(\mathrm{p}=1,2, \ldots)$ are independent, identically distributed random variables. Twenty percent of the qu ery sequ ences were ex tracted from the stocks whose av erage pri ces w ere bel ow $\$ 30,50 \%$ f rom t he stocks whose av erage prices were bet ween $\$ 30$ an $\mathrm{d} \$ 60$, and 30% from the remaining stocks. The query sequences for the artificial sequences were obtained in a similar manner. The av erage len gth of the query sequences was set to 20 . All experiments except for the scalability test in Section 7.3 w ere perf ormed on bot h he s tock and the artificial sequences.

7.1. Index siz e and query processing time w ith increasing number of categories

Table 1 shows the sizes of the proposed indices built from the stock sequences, where EL is the equal-length categorization an d ME is the maximum-entropy categorization. While the size of ST is not affected by the number of categories, ST_{C} and $\mathrm{SST}_{\mathrm{C}}$ become larger as the number of categories increases. ST_{C} and $\mathrm{SST}_{\mathrm{C}}$ are smaller
than ST due to the in creased n umber of com mon subsequences, and $\mathrm{SST}_{\mathrm{C}}$ is smaller than ST_{C} due to the decreased number of suffixes stored in the index.

Table 1. Index sizes with selected number of categories

	Index Size (Kbytes)				
	ST	$\mathrm{ST}_{\text {C }}$		$\mathrm{SST}_{\mathrm{C}}$	
		EL	ME	EL	ME
10	158,512	5,360	10,534	262	$\underline{914}$
20		7,982	15,879	850	2,355
40		12,362	26,069	2,685	7,108
80		18,817	41,288	3,985	18,317
120		26,888	51,942	7,657	28,842
160		32,860	59,927	11,620	37,922
200		37,837	66,357	15,416	45,449
250		43,413	72,937	20,326	53,535
300		48,087	78,297	24,905	60,345

Table 2 shows the average query processing times of the three proposed s imilarity s earch al gorithms w ith t he average distan ce-tolerance of 30 . On the whole, as th e number of categories increases, the executions of SimSearch-ST ${ }_{c}$ and SimSearch- $\mathrm{SST}_{\mathrm{C}}$ become faster. However, their executions slow down when the number of categories ex ceeds a certain th reshold. T his th reshold value may be u sed as the optimal number of categories. For example, 200 is the optimal number of categories for SimSearch-SST ${ }_{c}$ with EL and 120 is for SimSearchST_{C} with ME. Using similar-sized indices, SimSearch$\mathrm{SST}_{\mathrm{C}}$ is faster than SimSearch-ST ${ }_{c}$, and SimSearch$\mathrm{SST}_{\mathrm{c}}$ based on ME yields better performance than SimSearch-SST ${ }_{c}$ based on EL. We obtained similar conclusions from experiments on the artificial sequences.

Table 2. Average query processing times with selected number of categories

$\begin{gathered} \text { \# } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 . \\ 0 \\ 0 \end{gathered}$	Average Query Processing Time (sec)				
	SimSearchST	SimSearch-ST ${ }_{c}$		SimSearch-SST ${ }_{\text {c }}$	
		EL	ME	EL	ME
10		241.94	84.09	215.73	75.53
20		122.63	35.57	122.75	30.90
40		54.89	25.88	49.61	20.65
80		30.57	21.05	25.90	18.40
120	55.30	26.03	$\underline{20.93}$	21.30	20.80
160		23.08	21.60	19.13	23.49
200		21.42	22.41	$\underline{18.63}$	26.53
250		21.19	23.67	19.08	30.49
300		20.65	25.04	19.55	34.15

7.2. Comparison with sequential scanning

Based on the results from Section 7.1, we chose MEbased $\mathrm{S} \mathrm{ST}_{\mathrm{C}}$ as our index structure and compared its similarity search algo rithm with sequential scanning. Table 3 sh ows their average query processing times with increasing distance-threshold (ε) from 5 t o 50 . A bout 50 answers w ere retu rned when $\varepsilon=5$ and about 350,000 answers w ere reported w hen $\varepsilon=50$. Here, SeqScan is sequential scanning and SimSearch-SST $\mathrm{C}_{\mathrm{C}}(\mathrm{k})$ represents the proposed al gorithm with k categories. From Table 1, we know that $\mathrm{SST}_{\mathrm{C}}$ with 10,20 , and 80 categories require about $50 \%, 100 \%$, an d $1,000 \%$ s paces of databas e size (1,896 Kbytes), res pectively. Our proposed technique is up to 4.2 times faster with 10 categories, 11.1 times faster with 20 cat egories, an d 34.7 t imes f aster w ith 80 categories than the sequential scanning.

Table 3. Comparison of sequential scanning and our algorithm with selected distance-threshold

	Query Processing Time (sec)			
	Seq Scan	Sim Search- SST 10 保 SST(10)		
5	206.04	48.96	18.61	5.94
10	210.48	54.63	21.24	9.01
20	217.14	71.31	27.18	14.15
30	217.45	75.62	30.98	18.49
40	218.13	79.85	34.89	22.71
50	218.96	81.94	38.29	27.08

7.3. Scalability study

To study the scalability of our approach, we compared the execution times of ME-based SimSearch-SST ${ }_{c}$ with that of sequ ential scan ning by increasing the average length and the number of the artificial sequences. First, we increased the average length of the sequences from 200 to 1,000 while keeping the number of the sequences equal to 200. And we changed the number of sequences from 1000 to 10,000 while maintaining t he av erage l ength of sequences equal to $200 . \mathrm{F}$ or bot h ex periments, t he numbers of categories were chosen to make the index size smaller th an the database size. A s shown in Figure 4 and Figure 5, the performance improvements of SimSearch$\mathrm{SST}_{\mathrm{c}}$ is maintained for both long sequences and large number of sequ ences. Note th at the qu ery processin g times for both sequential scanning and SimSearch-SST ${ }_{c}$ increase qu adratically w ith respect to the average sequence length and linearly with respect to the number of sequences.

Figure 4. Comparison of sequential scanning and our algorithm with selected length of sequences

Figure 5. Comparison of sequential scanning and our algorithm with selected number of sequences

8. Conclusion

In this paper we h ave propos ed an i ndexing method based on a di sk-based s uffix t ree, f or f ast ret rieval of similar su bsequences w ithout f alse dism issals. Because the sam pling rates an d the len gths of sequences may be different, t he propos ed m ethod u ses at ime warping distance as a sim ilarity measure that allows stretching or compressing of sequ ences alon g th e time axis. Experiments on the stock and the artificial sequences have shown that our proposed technique can be a few orders of magnitude f aster than seq uential scanning. The contributions of our w ork are: 1) ex tending the ex act matching algorithm of a suf fix tree to similarity searches with a tim e warping similarity measure, 2) ap plying the ideas of categorization and sparse suffix tree to make an index stru cture m ore com pact, an d 3) in troducing two lower-bound time warping distance functions, $\mathrm{D}_{\mathrm{tw}-\mathrm{b}}()$ and $\mathrm{D}_{\mathrm{tw}-\mathrm{b} 2}()$, to filter out dissimilar subsequences without false dismissals.

The index space can be reduced further if we know the minimum and ma ximum lengths of t he queries. U sing a warping w indow con straint [3], w e can calcu late th e minimum a nd ma ximum 1 engths oft he a nswers. The suffixes whose len gths are sh orter th an them inimum answer length need not be inserted into the index. For the suffixes whose lengths are longer than the maximum, only the pref ixes w hose len gths are equ al to the maximum length need to be stored in the index.

The subsequences found by similarity searches can be used for p redictions, hy pothesis te sting, c lustering a nd rule discov ery. For ex ample, in themedical domain, retrieved subsequences can be used for predicting the disease evolution patterns of ap atient; in the w eb environment, they can be u sed to discov er u ser web-site visiting patterns.

Our approach can be ex tended to the sequences of multivariate num eric values. Multivariate values are converted into m ulti-dimensional cells using $\mathrm{m} \quad$ ultidimensional categorization methods such as m ultipleattribute ty pe abstraction h ierarchy (MT AH) [6]. Then, the sam e in dex con struction and query processing techniques are applied to the set of converted sequences. We are currently working in this d irection for retrieving similar medical image subsequences $[7,8]$.

9. References

[1] R. Agrawal, C. Faloutsos, and A. Swami, "Efficient Similarity Search in Sequence Databases", Proc. FODO, Evanston, IL, USA, 1993.
[2] R. Agrawal, G. Psaila, E. L. Wimmers and M. Zaït, "Querying Shapes of Histories", Proc. VLDB, Zurich, Switzerland, 1995.
[3] D. J. Berndt and J. Clifford, "Finding Patterns in Time Series: A Dynamic Programming Approach", Advances in knowledge discovery and data mining, AAAI/MIT Press, 1996.
[4] P. Bieganski, J. Riedl and J. V. Carlis, "Generalized Suffix Trees for Biological Sequence Data: Applications and Implementation", Proc. Hawaii International Conference on System Sciences, 1994.
[5] T. Bozkaya, N. Yazdani, and M. Özsoyoğlu, "Matching and Indexing Sequences of Different Lengths", Proc. CIKM, Las Vegas, NV, USA, 1997.
[6] W. W. Chu and K. Chiang, "Abstraction of High Level Concepts from Numerical Values in Databases", Proc. AAAI Workshop on Knowledge Discovery in Databases, Seattle, WA, USA, 1994.
[7] W. W. Chu, A. F. Cárdenas, and R. K. Taira. "KMeD: a Knowledge-based Multimedia Medical Distributed Database

System", Information Systems 20(2), Premagon-Press/Elsevier Science, 1995.
[8] W. W. Chu, C. Hsu, A. F. Cárdenas, and R. K. Taira, "Knowledge-based Image Retrieval with Spatial and Temporal Constructs", IEEE TKDE 10(6), 1998.
[9] C. Faloutsos and K. Lin, "Fastmap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets", Proc. ACM SIGMOD, San Jose, CA, USA, 1995.
[10] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, "Fast Subsequence Matching in Time-Series Databases", Proc. ACM SIGMOD, 1994.
[11] D. Q. Goldin and P. C. Kanellakis, "On Similarity Queries for Time-Series Data: Constraint Specification and Implementation", Proc. C onstraint Pr ogramming, Marseilles, 1995.
[12] J. Kärkkäinen and E. Ukkonen, "Sparse Suffix Trees", Proc. COCOON, HongKong, 1996.
[13] S. Park, W. W. Chu, J. Y oon, C. Hsu, "A Suffix Tree for Fast Similarity Se arches of T ime-warped Subs equences in Sequence Databases", UCLA-CS-TR-990005, 1999.
[14] S. Park, D. L ee, W . W . Chu, " Fast Re trieval of Similar Subsequences in Long Sequence Databases", Proc. IEEE KDEX workshop, Evanston, IL, 1999
[15] L. Rab iner an d B.-H. Ju ang, Fundamentals of $S p$ eech Recognition, Prentice Hall, 1993.
[16] D. Rafiei and A. Mendelzon, "Similarity-based Queries for Time Series Data", Proc. ACM SIGMOD, Tucson, AZ, 1997.
[17] G. A . Ste phen, String Searching Algorithms, World Scientific Publishing Co., 1994.
[18] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. University of Illinois Press, 1964.
[19] H. Shatkay and S. B. Zdonik, "Approximate Queries and Representations for Large Data Sequences", Proc. IEEE ICDE, 1994.
[20] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and K. Zhang, "Combinatorial Pattern Discovery for Scientific Data: Some Preliminary Results", Proc. ACM SIGMOD, Minneapolis, MN, 1994.
[21]N. Yzsdani, M . Özsoyoğlu, "Sequence Matching of Images", Proc. SSDBM, Los Alamitos, CA, 1996.
[22]B.-K. Yi, H. V. Jagadish, and C. Faloutsos, "Efficient Retrieval of Sim ilar T ime Se quences unde r T ime W arping", Proc. IEEE ICDE, 1998.

[^0]: * This work is supported in part by grants from the NSF (IRI--9619345) and the NIH (CA51198-07)

