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Abstract—One of the important problems in secret sharing
schemes is to establish bounds on the size of the shares to
be given to participants in secret sharing schemes. The other
important problem in secret sharing schemes is to reduce the
computational complexity in both secret distribution phase and
secret reconstruction phase. In this paper, we design efficient
threshold (n, k) secret sharing schemes to achieve both of the
above goals. In particular, we show some sufficient conditions
(e.g., the secret size |s| is larger than n), for which efficient
ideal secret sharing schemes exist. In the efficient ideal secret
sharing schemes that we will construct, only XOR-operations on
binary strings are required (which is the best we could achieve).
These schemes will have many applications both in practice
and in theory. For example, they could be used to design very
efficient verifiable secret sharing schemes which will have broad
applications in secure multi-party computation and could used to
design efficient privacy preserving data storage in cloud systems.

I. INTRODUCTION

Threshold secret sharing scheme is one of the most im-
portant cryptographic primitives that have been used in many
areas of cryptographic applications. Since the concept of secret
sharing scheme was introduced by Blakley [3] and Shamir
[19], there have been considerable efforts on the study of
the bounds of of share sizes, on the bounds of information
rate, on the bounds of the number of participants for ideal
threshold schemes, and on efficient secret sharing schemes. By
an ideal threshold scheme, we mean a secret sharing scheme
for which the size of the shares is the same as the size of the
secret. Ideal threshold schemes have important applications
in practice. For example, there has been interest in designing
privacy-preserving data storage in cloud using efficient XOR-
based ideal secret sharing schemes (see, e.g., Wang [21]).

In a simple secret sharing scheme, we have n participants,
a secret s is encoded into n shares and each participant will
receive one share. Any k& < n participants can come together
and reconstruct the secret s though no k — 1 participants could
learn any information of the secret. These schemes are known
as (n, k) threshold schemes.

One of the important problems in secret sharing schemes
is to establish bounds on the size of the shares to be given
to participants in secret sharing schemes, which is normally
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referred to as the information rate. Brickell and Stinson [6]
gave several upper and lower bounds on the information rate
of access structures based on graphs.

Ito, Saito, and Nishizeki [12] extended the threshold
schemes to a general framework and proposed secret sharing
schemes for any access structure. Benaloh and Leicher [2]
observed that there are access structures in which any secret
sharing scheme must give to some participant a share which
is taken from a domain strictly larger than that of the secret.
Capocelli et al. [7] further constructed a general access struc-
ture for secret sharing schemes for which any secret sharing
scheme must give to a participant a share at least 50% greater
than the secret size.

Desmedt and Frankel [11] proposed the black-box secret
sharing scheme for which the distribution matrix and the
reconstruction vectors are defined over the integer rings Z
and are designed independently of the group G from which
the secret and the shares are sampled. Desmedt and Frankel
showed an example of (n, k) black-box threshold secret shar-
ing scheme with information rate n. In other words, in order
to share a single element in the black box group G' among n
participants, each participant will receive n elements from the
black-box group G. By a result from Karchmer and Wigderson
[13], it is easy to show that in order for n participants to share
one element from the black box group G, each participant will
receive at least O(log, n) elements from the black-box group.
Cramer and Fehr [9] then improved these results by showing
that the lower bound O(log, ) could be achieved in general
Abelian groups. In particular, Cramer and Fehr developed
a technique to design low degree integral extensions of the
integer ring Z over which there exists a pair of sufficiently
large Vandermonde matrices with co-prime determinants. The
technique to use a pair of Vandermonde matrices with co-
prime determinants could be used in other research areas to
avoid the limit of Lenstra constant, where the Lenstra constant
I[(S) of a ring S is defined as the largest integer ! such that
there exists an invertible [ x [ Vandermonde matrix with entries
in S.

There has also been an extensive interest in designing
efficient secret sharing schemes. For example, Kurihara et al.



[15] and Lv et al. [17] have tried to design efficient threshold
secret sharing schemes for which only XOR operations on bit-
strings are used in the distribution and reconstruction phases.
However, the schemes in [17] are not accurate. For example,
the authors in [17] designed a multi-secret sharing scheme with
the following properties: Let k,n be integers and p > n + k
be a prime number. For any Abelian group G, there is a (n, k)
secret sharing scheme to share (p — 1)k elements in G, and
each participant will receive a share of p — 1 group elements.
Assume that each groud element in G could be represented by
a [-bit string. For the scheme in [17], each participant receives
(p — 1)l-bits and the shared secret is (p — 1)kl-bits. By the
following theorem from Karnin, Greene, and Hellman [14,
Theorem 1], this is impossible.

Theorem 1.1: (Karnin, Greene, and Hellman [14, Theorem
1]) For an (n, k) secret sharing scheme, we have

H(’Ul)ZH(S), i:Oa"'vn_l

where s is the secret and vy, --- ,v,_1 are the shares.

This paper will concentrate on the design of efficient
threshold secret sharing scheme design. Though our main
interest is to share binary strings of secrets (that is, strings of
elements from F' = GF(2)), our constructions will be given
over general finite field GF'(q). Specifically, let s be a string
of elements from a finite field F' = GF(q) and k& < n be two
integers. we construct efficient (n, k) threshold secret sharing
schemes to optimize the following two factors:

« efficient implementation: only XOR and cyclic shift op-
erations are used in the secret distribution and reconstruc-
tion phases.

« optimal information rate: each participant should receive
as short shares as possible.

Secret sharing schemes, for which the secret distribution
and reconstruction phases are based on XOR and cyclic shift
operations on binary strings, could be converted to secret
sharing schemes on several Abelian groups on binary strings.
Thus our results show that if we consider the secret element s
from the black-box group G as binary strings, then we could
achieve better information rate (better than the lower bound
O(logyn) in [9]). Let s = s -+ s, € G7 be the secret to be
shared, then we have the following main results in this paper.

o If 7 > max{logyn,2(n — k)} or 7 > n, then there

exists an efficient XOR-operation based ideal (n, k) se-
cret sharing scheme such that each participant receives
7 elements from GF(q) as the share. In other words,
we could design efficient ideal threshold secret sharing
schemes with information rate 1.

Note that for 7 < max{log,n,2(n — k)}, we can use the
Reed-Solomon code to achieve the optimal information rate
though the designed schemes are not necessarily ideal.

The structure of the paper is as follows. Section II briefly
discuss the relationship between MDS codes and secret sharing
schemes. Section III presents the XOR-based secret shar-
ing schemes for the case |s| > n. Section IV presents
the XOR-based secret sharing schemes for the case |s| >

max{log, n,2(n — k)}. Section V presents XOR based secret
sharing schemes for k = 2,3,4. Finally, in Section VI, we
briefly discuss how to design efficient XOR-based verifiable
secret sharing schemes.

II. MDS CODES AND SECRET SHARING SCHEMES

For an [n, k, d] linear code, the Singleton bound claims that
d<n-—k+1. An [n,k,d] linear code is maximum distance
separable (MDS) if d = n—k+1 (see, e.g., [18]). It is folklore
(see, e.g., [4]) that each [n, k, d] MDS code could be converted
to an ideal and linear (n, k) threshold sharing scheme.

As an example, assume GF'(¢™) is a finite field and let

=(z-1)(z—a)--(z —a™ k1)
=go+giz+ -+ gng2" "

be the generator polynomial over FF = GF(¢™) for the
Reed-Solomon code over a finite field GF(¢™), where «
is a primitive element of GF'(¢™). For information symbols
(anflv"' 7fk*1) € GF(qm)k’ let f(Z) = fO + leJV e
fk,lzk_l. Then

9(2)f(2) = gofot+(gofi+g1fo)2+(g0fatg1f1+gafo)z®+ -

and the encoding symbols are (cg, - ,Ch_1) =
(g0fo,90f1 + 91 fo,- ). Alternatively, we could write
the coding process as equation (1) in terms of generator
matrix.

The above Reed-Solomon code could be converted to a
threshold secret sharing scheme by letting the secret be
s = go fo and distributing the shares (¢1,co, - ,¢,—1) to the
n — 1 participants respectively. It is straightforward to show
that this is a perfectly secure threshold (n—1, k) secret sharing
scheme over GF(¢™).

Indeed, applying the technique by Karnin, Greene, and
Hellman [14], the above secret sharing scheme could be easily
extended to an (n, k) threshold secret sharing scheme if we
let ¢, = fo+ -+ fr_1.

9(2)

III. THE BASIC XOR-OPERATION BASED SECRET
SHARING SCHEME

In this section, we present an efficient ideal secret sharing
scheme using techniques from array codes design (see, e.g.,
Blaum and Roth [5] and Wang [20]). In the distribution and
reconstruction phases of the scheme, only XOR and cyclic
shift operations are needed. Though we are mainly interested
in GF'(2), the scheme works in any finite field. Thus we will
give a general construction with F' = GF(q).

Let n > k be two integers and s = sg---s,_1 € F” be a
string of elements from F with 7 = |s| > n. Let p > 7+ 1 be
a prime number such that ged(p, q) = 1. In other words, p is
not the characteristic of F'. For an integer a, let (a), denote
the integer b € {0,--- ,p — 1} such that b = a (mod p).

The secret sharing scheme S(p — 1,n, k) over F = GF(q)
is defined as a collection of (p — 1) x p matrices' T = [¢; ;]

'For our secret sharing scheme, it is sufficient to consider (p—1) x (n+1)
matrices. For the convenience of discussion, we consider (p— 1) X p matrices
and use a shortened version of the matrices for distributing shares.
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over GF(q) as follows.

e For0<i<7—1,let ¢ o= s;.

e Forr—1<i<p—1,letcy=0.

o The matrix satisfies the following p - (n — k) linear
constraints:

n

Z C{’m—jl)p,j

j=0

=0 0<m<p—-1,0<I<n—k-1.

2

In other words, S(p—1, n, k) consists of all (p—1) x p matrices
such that the first column consists of the elements in s, and
the entries along the p lines of slope [ (0 <[ <n—k—1)
sums to zero.

Each matrix I € S(p—1,n, k) can be used as a distribution
matrix for the secret sharing scheme by giving n participants
the values from the columns 1,--- ,n respectively. It remains
to show that the secret sharing scheme is complete (any &
participants could reconstruct the secret s) and private (any
k — 1 participants learn zero information about the secret).

Let M,(z) = S-"~) 2’ be a polynomial over F = GF(q)
and let R, be the rings of polynomials of degree less than
p — 1 with multiplication taken modulo M, (z). Let « be a
root of My(x) in R, (note that a? = 1). For r =p — k < p,
let i be the r x p matrix over R,, defined by

1 1 1 e 1
1 « a? a®-1)
H— 1 a2 ot a2(p71) 3)

rel g20-1) Q=11

1 «
and let C be the linear code of length p over R, with H as the
parity matrix. Blaum and Roth [5] showed that the determinant
of each r x r sub-matrix of H has a multiplicative inverse in
Rp. Hence H has rank r over R,,. In other words, the code C
is an MDS linear [p, k, p—k+1] code which can be considered
as the Reed-Solomon code over the ring R,,. It should be noted
that the code C is the same as the code discussed in Section
II if we replace the finite field GF'(¢™) with R,.

Furthermore, if we consider each matrix I in S(p—1,n, k)
as a (p— 1) x p array code, then Blaum and Roth’s results [5]
showed that S(p — 1, n, k) is equivalent to Cs where

Cs:{(CO7cl7"' 50>}

Let g(z) = go+ 912+ -+ g.z" be the generator polynomial
for C over R,. Since o has a multiplicative inverse in R, it
is straightforward that go has a multiplicative inverse in R,,.

7Cp—1) 6C:CO: <307"' 337—1507"'

g1 In—k 0 0

9o Ip—k—1 In—k 0

: (1)
0 In—2k+1  Gn—2k+2 In—k

Thus there exists f; € R, such that

00 ERy “4)

In other words, for any information symbol polynomial f(z) =
o+ fiz+-+ fr_12¥1 with random fy,--- , fr_1 € Ry,
f(2)g(z) generates a code in Cs. Thus we have Cs # (.

In a summary, if we consider the secret sharing scheme
S(p—1,n,k) as a (p — 1) X p array code, it is a non-empty
MDS [p, k, p—k+1] linear code over R,,. By the comments in
Section II, the secret sharing scheme S(p—1,n, k) is complete
and private.

For the array code C with at most r erasure (and no
errors), Blaum and Roth [5] described a decoding procedure
with O(r(p? +r)) operations (additions and cyclic shift) over
GF(q). The decoding procedure by Blaum and Roth could
be used as the secret reconstruction procedure for Cg (or
equivalently, S(p — 1,n,k)). For the distribution phase, we
can either use the generating polynomial g(z) and information
symbols (fg, f1, -+, fx—1) (with random fy,---, fr—1) to
generate the shares or to solve the equations in (2) to generate
the shares. For either case, the distribution could be done with
addition and cyclic shift operations over GF(q).

If we take the finite field as ' = GF(2), then both
distribution and reconstruction phases for the secret sharing
scheme S(p — 1,n, k) requires only XOR operations.

f890:<50»"' aST—laov"

IV. EFFICIENT XOR BASED SECRET SHARING SCHEMES
WITH |s| < n

In Section III, we described efficient XOR operation based
ideal secret sharing schemes for the case of |s| > n. In this
section, we design efficient ideal secret sharing schemes for
|s| < mn.

Similarly, let n > k be two integers and s = sg - S,_1 €
F7 be a string of elements from F with 7 = |s| < n. Let
p > n+ 1 be a prime number such that ged(p, q) = 1. The
secret sharing scheme S’(p — 1,n,k) over F' = GF(q) is
defined as a collection of (p—1) x p matrices I" = [¢; ;] as in
Section III with the following additional constraint.

e Forr<i<p—-land0<i<p-—-1,c¢;=0.

In other words, I € §'(p — 1,n, k) if and only if I € S(p —
1,n, k) and the last p — 7 — 1 rows are zero vectors.

Let C and C, be the linear codes defined in Section III.

Define

C. ={(co,c1,- -

If we consider each matrix in §'(p—1,n,k) asa (p—1) X p
array code, then it is straightforward to check that &'(p —
1,n, k) is equivalent to the linear code C.. Thus in case that

yep—1) € Cs 1 e = (cip0,

701‘77—_1,0, o 70>}



C. is not empty, S'(p — 1,n,k) is an efficient ideal secret
sharing scheme for the case of 7 = |s| < n . In the following,
we show a sufficient condition for C, # (.

With the above constraint, the equation (2) has (p — 1)7
unknowns and p(p — k) equations. It is straightforward that
(2) has a solution (i.e., the matrix I exists) if and only if
(p — )7 > p(n — k). In order to achieve the MDS property,
we also need the property 7 > log, p (otherwise, there are not
enough elements in R,, for hq,--- , hp_; with only non-zero
entries in the first 7 positions).

Without loss of generality, we may assume that for each
n, there exists a prime number p with n + 1 < p < 2n.
Then we have p::lk) < p(”n_k) < 2(n — k). Thus for
7 > max {log, p,2(n — k)}, there exist solutions for the
equation (2). Hence C, # (. In a summary, for 7 >
max {log, p, 2(n — k) }, we can design an efficient ideal secret
sharing scheme based on XOR operations.

For a secret s with 7 = |s] < n and 7 <
max {log, p,2(n — k) }, where p is a prime larger than n, we
could use Reed-Solomon code over finite field G F(¢'°8«™) to
design secret sharing schemes so that each participant receives
log, n > 7 bits for the secret s. But the scheme based on the
Reed-Solomon code over finite field is not efficient (not XOR-
operation based). Alternatively, we could pad s to a string of
length n and then use our efficient XOR based ideal secret
sharing scheme that we have discussed in this section and
the previous section. In any cases, the resulting secret sharing
scheme is not ideal.

V. EFFICIENT XOR BASED SECRET SHARING SCHEME FOR
k=2,3,4

The authors of [16] showed that if 2 is primitive in F},, then
one can construct (p —1)/o x (p — 1) MDS array codes such
that the information symbols could be recovered from any
3 (respectively, 4) columns of the encoding symbols using
XOR operations. These codes could be easily converted to
ideal secret sharing schemes for 7 = |s| > n/3 (respectively
T =|s| > n/4). We will not give the details here.

VI. EFFICIENT XOR BASED VSS

In this section, we briefly show that it is straightforward
to convert our (n,k) ideal secret sharing scheme in Section
III to a verifiable secret sharing schemes using the techniques
discussed in [1], [10], [8].

In the following, we will use notations from Section III.
Specifically, let R, be the rings of polynomials of degree less
than p—1. Let f; be the secret value defined in the equation (4)
and let G = [vg, - ,V,_2] be the generator matrix obtained
by removing the first column (go,0,- - ,0)7 from the Reed-
Solomon code generator matrix in the right hand side of the
equation (1). Then the efficient verifiable (n — 1,k) secret
sharing is as follows:

o The dealer chooses a symmetric &k x k matrix R at random
over R, except that the upper left corner element in R

is f§.

o The dealer computes the k£ x (n — 1) matrix R x G
and securely sends the i-th column u; of R x G to the
participant P; for all « <n — 2.

o Participant P; sends to each participant P; the value
va -u,, who compares this to vl . u; and broadcast a
message “‘complaint(é, j)” if the values are different.

o In response to “complaint(z, j)”, the dealer must broad-
cast the s; j in the matrix GT x R x G.

o If any participant P; finds that the information broad-
casted by the dealer does not match the information sent
in Step 2, P; broadcasts an “accusation”.

« In response to accusation to P;, the dealer must broadcast
all information sent to P; in step 2.

o The information broadcast by the dealer in the previous
step may lead to further accusation. The process contin-
ues until the information broadcast by the dealer self-
contradicts itself, or he has been accused by at least k
participants, or no new accusation occurs. In the first two
cases, the dealer is corrupt. For the last case, the commit
protocol is accepted by the honest players and accusing
players accept the share broadcast for them by the dealer.

In the above VSS protocol, the major computation complexity
comes from the computation of R x G and GT x R x G
over R,. By using the algorithms developed by Blaum and
Roth [5]), these computations are reduced to addition and
cyclic shift operations over the finite field GF(q). If we use
GF(2) as the underlying finite field, then only XOR operations
are needed. Thus the above VSS protocol is very efficient. It
should be noted that the above VSS protocol could be further
simplified to lower the round complexity using the techniques
developed in [8].
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