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Abstract. Traditional secret sharing schemes involve the use of a mu- 
tually trusted authority to  assist in the generation and distribution of 
shares that  will allow a secret to  be protected among a set of partic- 
ipants. In contrast, this paper addresses the problem of estdblishing a 
secret sharing scheme for a given access structure without the  use of a 
mutually trusted authority. A general protocol is discussed and several 
implementmations of this protocol are presented. The efficiency of thcsc 
implementations is considered. The protocol is then refined and con- 
structions are presented for mutually trusted authority free threshold 
schemes. 

1 Introduction 

A secret sharing scheme  is a method by which a secret can be protected among a 
g r o u p  of participants.  Each participant holds a private share of the secret. Oiily 
certain sets of participants (auihorised sets) are desired to be able to reconstruct 
the secret from their respective pooled shares. The collection of these subsets is 
the access s tructure of thc secret sharing scheme. For the purposes of most of 
this paper, sets of participants that are not in the access structure (unau ihor i sed  
s e t s )  will not be able to  determine any more information about the secret than 
is known publicly. Such schemes are often referred to  as being perfect .  

I1 is natural to  make the assumption that if a set A of participants contains a 
subset that belongs to an access structure then A is itself in that access structure. 
We call access structures with this property monotone. A secret sharing scheme 
on n participants in which precisely all subsets o€ size at  least k (1 5 k 5 n) 
are in the access structure is known as a ( k , n ) - t h r e s h o l d  scheme  (we say that 
the access structure is (k, n)- lhreshold) .  Threshold schemes were the first types 
of secret sharing scheme proposed ([2, lo]). 

We make a subtle distinction between two types of secret that can be pro- 
tected by a secret sharing scheme. A secret is said to bc explicit  if i t  takes a fixed 
value that is predetermined by factors outside the sec.ret sharing scheme design. 
In other words, the scheme is designed to protect a part(icu1ar predetermined 
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number within a given domain. This might be, say, a bank account number, the 
number of a security box or an enabling code. A secret is said to  be implicit if 
it does not take a predetermined value. In this case the secrct sharing scheme 
must protect a secret, but the value of the secret can be any number within 
a specified domain. A secret sharing scheme is more likely to have an implicit 
secret either in a situation where there is no obvious number associated with the 
secret, such as when the scheme is to be used to demonstrate concurrence in an 
access control protocol, or in a situation where the implicit secret value is sub- 
sequently adopted as, say, a cryptographic key or the number of a secure vault. 
In these situations the implicit secret, and/or the shares that generate i t ,  must 
be part of the initialisation of the device that verifies the secret. For instance, 
an application was described in [6] where the shares of an implicit secret were 
manually incorporated into the initialisation process of the locking mechanism 
of a vault door. 

Traditional models for secret sharing schemes rely on the existence of a Mu- 
tually Trusted Authority ( M T A )  to set up the scheme in the first place. This 
authority must be trusted by all the participants and can either be human (per- 
haps an organisation) or be a device. If the secret is explicit then the MTA is 
trusted with the knowledge of the explicit secret and with the generation and 
distribution of suitable shares that relate to the secret in question. In the case 
of an implicit secret, the MTA is further responsible for the generation of the 
implicit secret that is to  be shared among the participants of the scheme. 

We study here secret sharing schemes that do no2 require the existence of 
an MTA during their set-up protocols. We will thus refer to  such schemes as 
being MTA-free.  In an MTA-free scheme the participants generate their own 
shares. The MTA-free schemes that we consider all have implicit secrets. Unless 
there is a singleton participant set in the access structure of a secret sharing 
scheme, it does not seem very likely that a protocol can be devised which allows 
a group of participants to generate shares to protect an explicit secret. If there 
is a singleton participant set in the access structure then, since that participant 
effectively knows the secret directly from their share, that participant could (in 
theory) play the role of an MTA and generate shares of the (explicit) secret 
for the other participants. Indeed, a traditional secret sharing scheme can be 
thought of as a secret sharing scheme of this type where the MTA is an extra 
participant, in the access structure as a singleton set. 

We note first that there does exist one family of monotone access structures 
which can be easily realised by MTA-free secret sharing schemes. A (unanimous) 
(n ,  n)-threshold scheme can be constructed without an MTA, as follows. Let w 
be a fixed positive integer. 

- Each participant chooses a (random) share from 2,; 
- The (implicit) secret is the sum of the participants’ shares modulo w. 

The first paper to consider constructions of more general MTA-free schemes was 
by Meadows [9]. In this novel paper a (k,n)-threshold scheme was proposed 
which allows the first k participants to generate their own (random) shares. Un- 
fortunately a ‘black box’ is then required to  generate the shares of the remaining 
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n - k participants. This black box must be trusted with the knowledge of all 
the shares and with the value of the (implicit) secret. Thus by our definition the 
black box is playing the role of an MTA. The only possible advantage of this 
protocol is that the value of the implicit secret is directly determined from the 
shares chosen by the first k participants. However this does not appear to  be 
much different from a scheme set up by a (device-based) MTA that selects the 
implicit secret using a random number generator. 

In 1991 Ingemarsson and Simmons [6] reconsidered the design of MTA-free 
schemes for general monotone access structures and suggested an elegant pro- 
tocol. The basic idea of [6] is that the n participants first generate shares of an 
(MTA-free) unanimous (n ,  n)-threshold scheme. The implicit secret of this unan- 
imous scheme becomes the secret of the final scheme. Each participant then acts 
as their own MTA and sets up a private secret sharing scheme to protect their 
share of the unanimous scheme among a number of the other participants. Thus 
a participant’s share in the unanimous scheme becomes the explicit secret of 
their private secret sharing scheme. It is quite possible that after carrying out 
this protocol, no participant will actually know the access structure of the in- 
duced secret sharing scheme. In [6] it is suggested that this procedure has the 
potential to  realise an MTA-free scheme lor ariy rrioriotone access struclure. We 
will later prove this suggestion to be correct. 

The main aim of this paper is to start with a monotone access structure r, 
and determine which initial MTA-free scheme and which private secret sharing 
schemes should be used in order to realise an MTA-free scheme for r. There is 
not necessarily a unique way of doing this and so we are particularly interested 
in trying to  find efficient and economical methods. These are based on trying 
to  minimise the number of shares that have to  be generated, mutually com- 
municated and stored by the participants in the scheme. In doing so we show 
that not all  of the participants need to generate shares in the first instance. 
It is often the case that in an efficient realisation of an MTA-free scheme for 
r ,  some participants need only store shares that have been generated by other 
participants . 

In Section 2 we discuss the concept of access structure domination, which is 
fundamental to  the rest of the paper. Section 3 is about MTA-free schemes in 
general and includes a construction protocol that will work for any monotone 
access structure. In Section 4 we concentrate on MTA-free threshold schemes 
and show that some variations of the standard protocol can be used to improve 
scheme efficiency. We have been forced to omit most proofs in this extended 
abstract, but it is hoped that by way of examples we can illustrate the main 
ideas behind the constructions presented. Complete proofs will be provided in 
the full paper. 

2 Access Structure Domination 

Let r be a monotone access structure defined on a participant set P .  The mono- 
tonicity of r ensures that we can find a collection r- of minimal authorised 



sets in r and a set r+ of maximal unauthorised sets. Note that a part>icipa.nt 
need not belong to any minimal set in r.  If every participant does belong to a 
minimal set then we say that r is connected. We recall from [l] that r can be 
considered as a logical expression with the participants being boolean variables. 
Let 1’- = (C.1, , , . , Cr}, let + denote logical OR and let juxtaposition denote 
logical AND. Then the disjunctive normal form of the logical equivalent of 1’ is 
r = C1 + . . . + C,.. It follows that a subset A of participants is in the access 
structure r if and only if the logical equivalent of r is t r u e  when the variables 
in A are all true. For example, let P = { a ,  b , c , d }  and r- = { { a ,  b,  c } ,  { c , d } } .  
Then we write r = abc + cd, or equivalently r = (ab  + d)c.  

We now recall from [8] a useful family of monotone access structures that 
can be derived from r. Let A 2 P .  We define the contract ion r . A of r at A 
to be the monotone access structure on P given by 

B E P A  u H u A E r .  

Conceptually, r A is llie access structure that results if the shares belonging to 
the participants in A are publicly revealed. For example, if I’ = abc + cd tjhen 
r . c = a b + d a n d  T . d = c .  

be a monotone access structure defined on P = {PI,. . . ,yn}. 
Associate with each p;  E P a monotone access structure Ti defined on P .  Let 
r = (TO; TI,. . . , Tn) be the monotone access structure defined on P that is 
formed by replacing pi  by Ti in  the logical equivalent of ro. 
E x a m p l e  1. Let P = {al b ,  c, d } .  Let To = abcd, r, = c ,  rb = c + d ,  rc = d and 
rd = d.  Then r = (ro; r,, rb, r,, rd) = c ( c  + djdd = cd. Similarly, if To = abcd, 
ra = a + c ,  r, = b+ d ,  rc =‘true’ (in other words, (rC)- = (02) and rd =‘true’ 

For A g P ,  let X ( A )  = {p i  I A E r;}. We can also describe r = (To; TIl 
in the following way. 

Lemma 1. Le t  r, ro, TIl . . . , r, be m o n o t o n e  access s t ruc tures  defined on P = 

Now let 

then r = (To; Fa,  rb, rc, I ‘ d )  = ( a  + c)(b + d )  = ab + ad + bc + cd.  

, p n } .  Then the  fol lowing t w o  s ta t emen t s  are equivalent:  

have A E T if and only i f X ( A )  E To. 

Now let ro and r be distinct monotone access structures defined on 7’ = 
domina tes  

r if there exist monotone access structures TI, . . . , 
, p n } .  Using terminology suggested in [ll], we say that 

such that 

1.  {pi} E ri (for each i, 15 i 5 nj;  
2.  r=(r0;r,,...,rnj. 

Thus, from Example 1, we see that ro = nhcd dominates r = ab + nd + be + 
cd.  We say that directly dominates r if there does no t  exist a monotone 
access structure r’ (distinct from To and r )  such that r0 dominates r’ and 
r’ dominates r. We now classify all the monotone access structures that are 
(directly) dominated by a given monotone access structure. 
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Theorem2. Let TO and r be monotone access structures defined on P .  Then  
dominates I' if and only if r, C r .  

The next result is an interpretation of the main theorem in [ll]. 

Result 3. Let To and r be monotone access structures defined on P .  Then  1'0 

directly dominates r i f  and only i f  there exists a (unique) maximal unauthorised 
subset B of r, such that F = To u { B ) .  

3 

We first give a basic model for secret sharing (see, for example, [13]). We will use 
the entropy function in oiir definition (see, for example, [5] for an introduction 
to entropy and its properties). Let P = { p l ,  . . . , p n }  be a participant set and let 
s be a secret. Let participant p ;  receive a share from a set [pi] and let the secret 
come from a. set [s]. A secret sharing scheme for r is a probability distribution 
p defined on a set of distribution rules R c [PI] x . . x [p,] x [s] such that for 

Mutually Trusted Authority free Schemes 

A c p ,  
1. if A E I' then H(s1A) = 0;  
2. if A 6 T then H(slA)  > 0. 

If it is the case that for each A 4 r we have H(slA) = H ( s )  then the secret 
sharing scheme is said to be perfect. We call H ( p i )  the size of the share associated 
with pi, and H ( s )  the size of the secret. It can be seen (for example [13]) that in 
any perfect secret sharing scheme, if pi E A for some minimal authorised set A 
then H ( p i )  2 H ( s ) .  If H ( p i )  = H ( s )  for all such p ;  then we say that the perfect 
secret sharing scheme and its access structure are ideal. We note ( [ a ,  lo]) that 
ideal ( k ,  n)-threshold schemes can be found for all 1 5 k 5 n. 

In a traditional secret sharing scheme, an MTA selects a distribution rule T 

from R with probability p(.) and then distributes the appropriate shares to  the 
participants of the scheme. In an MTA-free scheme the participants indirectly 
select a (random) distribution rule through the generation of their own (random) 
shares. 

Consider the following extension of the protocol in [6] for setting up an MTA- 
free scheme. Firstly, let a subset PO of the participants in P generate shares 
of a perfect scheme Mo for some access structure To. Let xi denote the share 
generated by pi  (pi E Po). Then let each pi E Po construct a private perfect secret 
sharing scheme M; for Ti c3n P to protect the explicit secret xi. Thus x; can be 
obtained by pi or by any authorised set in Ti. In the degenerate casc where Ti- = 
{O}, pi publicly reveals (broadcasts) their share. Otherwise p; communicates the 
shares of Mi t80 the participants included in Mi.  This process creates a new 
perfect secret sharing scheme M for access structure r = (ro; TI, . . . , m), where 
for each pi @ PO we take to be such that 12- = (0) and thus for each i 
(1  5 i 5 n), {pi} E Ti. For the structure of the distribution rules of M in terms 
of those of MO and M i ,  we refer to [8, 141, where constructions of this type were 
fully described. 
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Simmons [ll] asked which access structures r could be realised from I'o in 
this manner. In other words, which access structures r are dominated by To? 
Theorem 2 concisely answers this question by showing that these are precisely 
the access structures r such that r 2 To. We approach the problem from another 
direction in this paper. Namely, given an access structure r ,  exactly which access 
structures rol fl, . . . , r, such that T = (fo; fl, . . . rn) should be chosen in 
order to (efficiently) generate an MTA-free scheme for r? 

3.1 The Base Access Structure 

The first issue to be considered in the design of an MTA-free scheme for T is 
which initial access structure as the base 
access structure. We assume that each p E 'Po independently generates a random 
share of MO from set [PI. 

should be chosen. We refer to  

Theorem4. Let I 'o  be the access structure of a secret sharing scheme MO de- 
fined on P such that for each p E P the share held by p an Mo is independently 
and randomly chosen from the set [PI. Then ro has a unique minimal authorised 
set PO. 

If Mo is a perfect secret sharing scheme then it follows from Theorem 4 that  Mo 
is a unanimous threshold scheme defined on Pol and thus that the participants 
in P \PO need not generate shares in the initial stage of the protocol. Thus from 
Theorems 2 and 4 we ha.ve the following criteria for selection of the base access 
structure To. 

- ro c r;  
- To is unanimous threshold on Po (PO C P) .  

3.2 Measures of Efficiency 

There are three parameters that we might want to  minimise for reasons of econ- 
omy and efficiency in an MTA-free scheme. These are the total size g(P) of 
shares generated by the participants, the total size c ( P )  of shares communicated 
by participants] and the total size s (P)  of shares stored by participants in the 
scheme. For a participant p E P let g ( p )  be the sum of the sizes of shares gen- 
erated by p ,  c(y )  be the sum of the sizes of shares communicated by p and s ( p )  
be the sum of the sizes of shares stored by p .  

In the light of Section 3.1,  we assume that M o  is chosen to  be ideal and hence 
the shares of MO (and thus the secrets of Mi, for pi E Po) all have the same size 
h. For the purposes of the discussion immediately following we will take h as the 
size of a 'unit' share. 

Let p E 'P. If p $ PO then g ( p )  = c ( p )  = 0. Otherwise] if p E PO then p 
generates one share xp of the initial scheme and then a number (possibly zero) 
of shares of a private scheme to protect xp. These extra shares are communica,ted 
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to  some of the other participants. Thus if p E Po then g ( p )  = 1 + c ( p ) .  Hence in 
total, 

A participant p E PO either keeps the share xp secure or broadcasts it and hence 
does not need to store it. Let Ph be the subset, of Po who store their shares. All 
shares of private schemes that are communicated to p E P are stored securely. 
Hence we have in total, 

Then from (1) and (2) we have, 

Thus from (3) we see that s (P)  alone is an effective measure of efficiency since 
g(P) and c(P) are directly proportional to  s (P) .  In the event that two different 
schemes have the same total storage s (P)  then (3) suggests that a scheme which 
has a large value of lPhl relative to lP0l is preferable. 

Minimising storage has been the most studied measure of efficiency for tra- 
ditional secret sharing schemes (for example [3, 4, 8, 141). Efficiency rates can 
be calculated from the contribution vector  (or convec) of the scheme. This is 
the vector ( e l , .  . . , cn) = ( l / H ( s ) ) ( H ( p ~ ) , .  . . , H(p, ) ) .  For perfect secret sharing 
schemes the most common efficiency measures are the information rate, which 
is the minimum 1/c i  (1 5 i 5 n) ,  and the uveruge information rate, which is 
n / ( q  + . . . + cn). For MTA-free schemes we see that the total storage s(P) is 
c1+ . . . + en. For simplicity, in this paper we only consider minimising the total 
storage, which is equivalent to  maximising the average information rate. 

3.3 The Private Access Structures 

The problem of constructing an efficient MTA-free scheme for r is thus the 
problem of selecting a base access structure ro (subject to the constraints of 
Section 3.1) and a collection of private access structures r, ( p  E PO) in such a 
way that s ( P )  is minimised. As a standard for comparison we use what we call 
the Basic construction. This is in effect the most ‘obvious’ way of construct- 
ing an MTA-free scheme for F .  The Basic construction is used in the proof of 
Theorem 2. 

The Basic Construction 

r0 (n ,  n)-threshold on P 
r, 
Mo 
Mp 

p + r (for each p E P )  
ideal unanimous threshold scheme on P 
perfect scheme for r’ (for each p E P )  
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E x a m p l e 2 .  Let P = Po = {a, b,  c ,  d} and r = a6 + ac + bcd. Applying the 
Basic construction gives I b  = abcd, r, = a + bcd, rb = b + ac, r, = c + a6 
and r d  = d + ab + ac. Since ra, l b ,  r,, r d  are all ideal (see 1121) we can find 
ideal M a ,  Mb, M c ,  M d  and thus a scheme M for r with convec ( c a ,  Cb,  cc ,  c d )  = 
(4,4,4, 'L) (for example, participant a generates one unit share, and receives one 
unit share from each of b,c,d). 

We show that,  by applying contractions, the Basic construction can be quite 
considerably improved upon. We call this modified construction method the 
Contraction construction. 

The Contraction Construction 

(a ,  a)-threshold on Po, for some PO = {PI , .  . . , p a }  E r 

P2 + r Pl 
pl + r  

p a + r . p l p z . . . P a - l  
ideal unanimous threshold scheme on A 
perfect scheme for (for each i ,  1 5 i 5 a)  

Example  3. Let P and r be as in Example 2. Applying the Contraction con- 
strirrtion with Po = {a, b} and To = ab gives r, = a + bcd, r, = b + c .  Since 
ra, rb are ideal (see [12]) we can find ideal Ma, Mb and thus a scheme Mi for 
r with convec (1,2,2,1). Alternatively, applying the Contraction construction 
with Po = { b ,  c ,  d }  and r, = bcd givcs r, = b + ac ,  1: = c + a ,  r d  = d + a .  
Since rb, rc, r d  are ideal (see 1121) we can find ideal Mb, M,, M d  and thus 
a scheme A42 for r with convec ( 3 , 1 , 2 , 1 ) .  Both M I  and M2 are considerably 
more efficient in terms of total storage (and information rate) than the scheme 
M constructed in Example 2. Scheme Mi is slightly more efficient than M2. 

4 Mutually Trusted Authority free Threshold Schemes 

We now consider the special case of realising an MTA-free ( k ,  n)-threshold scheme. 
We assume that k < n since the case k = n was covered in Section 1. Lel 
P = { p l ,  . . . ,pn}, let 1 5 k < n and let r be ( k ,  n)-threshold on P. The most 
efficient MTA-free scheme for r we have seen thus far is by the Contraction 
construction applied to  a minimal authorised set of T. In this case, 

- ro = ( k ,  k)-threshold on Po = { P I , .  . . , p k } ;  

- ri = pi+((Ic-1:+lln-i)-threshold on { p ; + l , .  . . , p , } )  (for each i, 1 < - -  i < k). 

Using ideal threshold schemes ? d o l  MI , . . . , Ma we can calcuhte the convec for 
the resulting scheme M .  Each pi  (1 5 i 5 k) stores their share of Mo and receives 
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one share from each of p1, . . . , pi-  1. Each pi ( k  + 1 5 i 5 n )  receives one share 
f romeacl iofpl ,  ...,Y k . T h u s c i = i ( l < _ i . = _ I c ) a n d c i = / c  ( k + l s Z < _ n ) .  So 

1 1 s ( P )  = -k(k + I) + k(n - k) = nk - - k ( k  - 1) 
2 2 (4) 

We show that the Contraction construction gives an optimal construction for 
threshold schemes under certain assumptions. 

Theorem5. Let M be an MTA-free ( k ,  n)-threshold scheme that is constructed 
from an ideal unanimous threshold schenic MO on a k-subset A of Q ,  and, for 
each p E A ,  a p e r f e c t  scheme Mp for  same rp. Then s ( P )  2 n k  - (1/2)k(k - 1). 

We now show that if the protocol for establishing an MTA-free scheme is gener- 
alised to  permit, tfhc use of secret sharing schemes that are not perfect then we 
can always improve on the total storage given by the Contraction construction. 
Let 0 5 c 5 k. A ( c ,  k ,  11)-ramp scheme on an n-set P is a secret sharing scheme 
such that for A C P ,  

1. if JAJ 2 k then H(slA)  = 0; 
2. if IAl 5 c then H ( s l A )  = H ( s ) .  

Ramp schemes such that H ( p )  = H ( s ) / ( k  - c)  ( p  E P )  can be constructed from 
ideal ( k ,  n)-threshold schemes ( [ 7 ] ) .  

We now present a construction which works for all k 5 i(n + 1). This con- 
struction relies on implementing the private access structures by using ramp 
schemes as opposed to perfect threshold schemes. For this reason we call it the 
Private Ramp construction. 

The Private Ramp Construction 

TO (n ,  n)-threshold on P 
rp 
Mo 
M p  

p + ((k, n - 1)-threshold on P \ { p } )  
ideal (71,  n)-threshold scheme on P 
modified (0, k, n - 1)-ramp scheme on P \ { p )  

We say that Mp is ‘modified’ because p E l;, and so every distribution rule 
of M p  must also distribute a copy of the secret of M p  to participant p .  

Example 4. Let r be (2,3)-threshold defined on P = { a ,  b ,  c } .  Using the Con- 
traction construction with Po = { a , b }  and TO = ab, gives ra = a+bc, rb = h+c 
and a scheme M I  for T with convec (c,,cb,cc) = (1 ,2 ,2 ) .  Using the Private 
Ramp construction gives r, = a + bc, rb = b + ac, I‘, = c + ab.  We then use the 
(0 ,2 ,2 ) - ramp  schemes M a ,  M b ,  Mc  to construct a scheme Mz for r with convec 
( 2 , 2 , 2 ) .  Thus  Mz has a total storage of 6 which is slightly more than the total 
storage 5 of MI. 
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Thus for the ( 2 , 3 )  case, the Private Ramp construction did not perform as well as 
the Contraction construction. In the Private Ramp construction each participant 
p E P generates a share of unit size and then receives n - 1 other shares, each 
of size l / k ,  from the other participants. So for the Private Ramp construction, 

(5) 
n - 1  n ( k + n -  1) 

k 
s(P)  = n( 1 + -) = 

k 
Thus we can see from (4) and (5) that, generally, the Contraction construction 
has a lower total storage than the Private Ramp construction when k is small 
with respect to  n,  but the Private Ramp construction is an improvement on the 
Contraction construction when k is close to f ( n  + 1). 

We show now that if a ramp scheme is used to  implement the base access 
structure instead of the private access structures then we can do even better. 
The Base Ramp construction has the added advantage that it works for all 
15 k 5 n - 1 .  

The Base Ramp Construction 

r0 (n ,  n)-threshold on P 
r, 
Mo 
M, 

p + ( (k ,  n - 1)-threshold on P \ { p } )  
(k - 1, n,  n)-ramp scheme on P 
ideal scheme for r, ( p  E P )  

Example 5. As in Example 4 ,  let r be (2,3)-threshold defined on P = { a ,  b ,  c } .  
Using the Base Ramp construction gives I'a = a + bc, r b  = b + ac, r, = c + 
ab and a scheme M3 for r with convec (3 /2 ,3 /2 ,3 /2) .  Thus M3 has a total 
storage of 912 which is an improvement on the total storage 5 of M I  using the 
Contraction construction, and on the total storage 6 of Mz using the Private 
Ramp construction. 

Note that the Base Ramp construction is essentially the same as the Basic con- 
struction for a (k, n)-threshold scheme, except with a different Mo. Each partic- 
ipant p E P generates a share of size 1/(n - Ic + 1) and then receives n - 1 other 
shares, each of size l / (n  - k + l ) ,  from the other participants. So for the Rase 
Ramp construction, 

n n2 
s ( P )  = n( 

n - k + l ) =  n - k + l '  

Thus from (4) and (6), and from (5) and (B),  we see that the Base Ramp 
scheme is an improvement on both the Contraction construction and the Private 
Ramp construction (when applicable) for (k ,  n)-threshold schemes. We notme that 
the Base Ramp Construction for threshold schemes can be generalised to  other 
monotone access structures. 

We conclude by presenting a table containing the values for the total storage 
of various MTA-free (k, n)-threshold schemes under the constructions discussed 
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9 1  5 

in this paper (* denotes that the construction is not possible for these parame- 
ters). 

6 912 
16 
25 
16 
25 
25 
100 
400 

7 
9 
9 
12 
14 
40 
155 

10 
15 
* 

35/3 
* 

28 
58 

1613 
2514 

8 

2512 
10016 

400/11 

2 5 / 3  

Table 1. Various total storage values for MTA-free (k, n)-threshold schemes. 
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