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ABSTRACT
Abstract: Haplotypes defined by common single nu-
cleotide polymorphisms (SNPs) have important implica-
tions for mapping of disease genes and human traits.
Often only a small subset of the SNPs is sufficient to
capture the full haplotype information. Such subsets of
markers are called haplotype tagging SNPs (htSNPs).
Although htSNPs can be identified by eye, efficient
computer algorithms and flexible interactive software
tools are required for large datasets such as the human
genome haplotype map. We describe a java-based
program, SNPtagger, which screens for minimal sets of
SNP markers to represent given haplotypes according to
various user requirements. The program offers several
options for inclusion/exclusion of specific markers and
presents alternative panels for final selection.
Availability: The www-based program is available at http:
//www.well.ox.ac.uk/∼xiayi/haplotype/index.html.
Contact: xiayi@well.ox.ac.uk.

Haplotype-based methods offer a powerful approach to
disease gene mapping, based on association between
causal mutations and the ancestral haplotypes on which
they arose (Gabrielet al., 2002). Both regional (Jeffreys
et al., 2001) and chromosome-wide studies of linkage
disequilibrium (LD) and haplotype structures (Patilet
al., 2001; Dawsonet al., 2002) have revealed blocks
of limited haplotype diversity in which the majority
of population samples can be characterized by only a
few common haplotypes. Using the knowledge of these
common haplotypes and the reduced sets of SNP markers
that uniquely identify, or ‘tag’, them has the potential to
greatly reduce the scale and cost of genotyping. These
tagging SNPs have been called htSNPs by Johnsonet al.
(2001) who also provided a STATA script to aid their
identification. While appropriate for the original dataset,
many applications have specific needs that require further
flexibility, such as the need to include or exclude specific
SNPs (e.g. based on availability of PCR primers or on past
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performance of genotyping assays), the ability to review
complete listings of all possible tag sets under different
conditions, and the need to tag SNPs in exceptionally large
datasets.

Here we describe an efficient tool that incorporates
some of this flexibility and provides users with convenient
access and use. The program is aided by a simple web
interface in which users can set various options. For
example, users can ignore uncommon haplotypes by
setting a ‘coverage value’ less than 1.0, the default value,
which identifies htSNPs for all observed haplotypes. Also,
switches are available to force inclusion and exclusion
of specific markers and inclusion of specific haplotypes.
Moreover, the program provides support for haplotype
data containing missing allele calls, which is an essential
feature for large scale haplotype projects based on either
traditional genotyping methods (Dawsonet al., 2002)
or haploid cells (Patilet al., 2001). The number of
markers in any htSNP set ranges from 1 toT , but there
is often more than one set of htSNPs having the same
number of markers. They can be displayed by setting
the ‘number of output sets’ in the interface. Certain
flexibility is also allowed in the haplotype data input to
accommodate haplotype and frequency estimation using
different programs.

Our algorithm is based on the following set recovery
process. Consider a matrix,P, containingi = 1, . . . N
haplotypes (rows) andt = 1, . . . T markers (columns).

(1) For all pairs of haplotypesi and j (i <> j), set
a(t)

i j = 1 if the allele at markert differs betweeni
and j ; i.e. Pi,t <> Pj,t ;

(2) Let x (t) =
{

1 if marker t is included in the htSNP set
0 otherwise;

(3) Minimise
∑

t x (t)subject to the constraint∑
t a(t)

i j x (t) � 1 for all pairs i and j (i <> j).
A minimum number of htSNPs needed for
any htSNP set is calculated as follows: for
m haplotypes find the minimumn satisfying
2n � m(n = ceil[ln(m)/ ln(2)]. A set recovery
process is then employed to produce htSNPs sets
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with n or more htSNPs. For each htSNP set, the
haplotype diversity captured is measured: if the
set uniquely identifies two haplotypes, the htSNP
set’s diversity score is incremented by one. This
measurement terminates at any time if the set fails
to identify any pair of haplotypes, in which case,
the set is not considered further.

Before applying the set recovery calculation, the follow-
ing operations are conducted.

(1) Haplotypes are sorted according to their frequencies
(descending). If a coverage value less than 1.0 is set
by the user, the haplotypes are selected one by one
into a separate haplotype set (the working haplo-
type set) until the cumulative haplotype frequency
reaches the required coverage value. This process
favors common haplotypes, i.e. it always takes the
next most common of the remaining haplotypes.

(2) Users can bypass or overwrite the above haplotype
selection process by explicitly indicating which
haplotypes are included (via ‘Rare haplotypes to
be included’). All the specified haplotypes have
the highest priority and are always selected into
the working haplotype set even if their cumulative
frequency exceeds the required coverage setting.
If the required coverage is not met, Operation 1
is followed to select the remaining most common
haplotypes. This option is particularly useful in
combination with an appropriate coverage setting.
It allows the explicit inclusion of a rare haplotype
that is a slight variant of a common haplotype.
Once a working haplotype set is established, all
haplotypes in the set are treated equally regardless
of their frequencies. Therefore, any candidate htSNP
set should uniquely identify all haplotypes in the
working set.

(3) Identify markers having identical patterns in the
working haplotype set and keep only the first one
of them since the others do not contribute additional
distinguishing information (a pattern is considered
identical if the Hamming distance between column
vectors ps and pt , H(ps, pt ) = 0, ignoring all
haplotypes with missing data).

(4) All remaining markers are ranked according to
their haplotype diversity values. These values are
calculated by counting the number of major and
minor allele appearances (e.g. in SNPs, ‘1’s and
‘2’s with ‘0’s ignored) in the column, separately,
and choosing whichever is smaller. These columns

(markers) are then rearranged in such a way that the
set recovery technique will start constructing a new
htSNP set using markers with the highest diversity
value possible.

(5) If there are markers specified to be included/excluded,
they are checked against each other for any contra-
diction and/or redundancy. ‘Included’ markers have
the highest priority and are always included into
any htSNP sets. If more markers are needed, they
are selected according to Operation 4, provided that
they are not a member of the ‘excluded’ marker sets.

Johnsonet al. selected htSNPs using haplotype diversities
calculated for all possible htSNP sets whereas in our case
the calculation is completed for only those that satisfy the
haplotype coverage required by the user. Also, the present
algorithm favors common haplotypes. In the exhaustive
solution provided by Johnsonet al. algorithm, several rarer
haplotypes could contribute equally to a more common
haplotype in terms of haplotype diversity. One of the
consequences of our algorithm is, therefore, simplification
of its htSNP set selection and calculation process because
more controls are delegated to the user. This simplification
reduces computation, thereby enabling the algorithm to
handle potentially larger and more complicated haplotypes
blocks.
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